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Abstract: We make use of generalized iterations of the Sacks forcing to define cardinal-preserving
generic extensions of the constructible universe L in which the axioms of ZF hold and in addition
either (1) the parameter-free countable axiom of choice AC∗ω fails, or (2) AC∗ω holds but the full
countable axiom of choice ACω fails in the domain of reals. In another generic extension of L, we
define a set X ⊆ P(ω) , which is a model of the parameter-free part PA∗2 of the 2nd order Peano
arithmetic PA2 , in which CA(Σ1

2) (Comprehension for Σ1
2 formulas with parameters) holds, yet

an instance of Comprehension CA for a more complex formula fails. Treating the iterated Sacks
forcing as a class forcing over Lω1 , we infer the following consistency results as corollaries. If the
2nd order Peano arithmetic PA2 is formally consistent then so are the theories: (1) PA2 + ¬AC∗ω ,
(2) PA2 + AC∗ω + ¬ACω , (3) PA∗2 + CA(Σ1

2) + ¬CA .

Keywords: forcing; projective well-orderings; projective classes; Jensen’s forcing

MSC: 03E15; 03E35

1. Introduction

In this paper, we let PA2 be the second-order Peano arithmetic without the schema
of (countable) Choice. Discussing the structure and deductive properties of PA2 , one of
founders of modern proof theory Georg Kreisel ([1], § III, page 366) wrote that the selection
of subsystems “is a central problem”. In particular, Kreisel notes, that

[...] if one is convinced of the significance of something like a given axiom schema,
it is natural to study details, such as the effect of parameters.

Recall that parameters in this context are free variables in various axiom schemata in
PA, PA2 , ZFC, and other similar theories. Thus the most obvious way to study “the effect
of parameters” is to compare the strength of a given axiom schema S with its parameter-free
subschema S∗ . (The asterisk will refer to the parameter-free subschema in this paper).

Some research in this direction was accomplished in the early years of modern set
theory. In particular Levy [2] proved that the generic collapse of cardinals below ℵω (called
the Levy collapse, see Solovay [3]) results in a generic extension of L in which AC∗ω fails,
where AC∗ω is the parameter-free subschema of the (countable) Choice schema ACω in the
language of PA2 . This result by Levy implies the formal consistency of PA2 + ¬AC∗ω .

Later Guzicki [4] established that the Levy-style generic collapse below ℵω1 results in a
generic extension of L in which ACω (in the language of PA2 ) fails, but the parameter-free
subschema AC∗ω holds, so that AC∗ω is strictly weaker than ACω , or saying it differently,
PA2 + AC∗ω + ¬ACω is consistent. (This can be compared with an opposite result for the
dependent choice schema DC, in the language of PA2 , which happens to be equivalent to its
parameter-free subschema DC∗ by a simple argument given for instance in [4]).

We may note that the Levy and Guzicki results above involve uncountable cardinals
up to ℵω (Levy) and ℵω1 (Guzicki), so that the consequent consistency results are based on
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set theoretic tools far beyond the axiomatic system PA2 itself. This discrepancy motivated
us to conduct this research, aimed at cardinal-preserving constructions of models with the
same properties, with the final goal to obtain the consistency results as above on the basis
of the consistency of PA2 alone.

Outside of the domain of PA2 , some results related to parameter-free versions of the
Separation and Replacement axiom schemata in ZFC also are known from [5–7]. This
gives us an additional motivation to include the PA2 Comprehension schema CA in our study,
which is a direct PA2 counterpart of the ZFC Separation and Replacement schemata.

To conclude, our paper is devoted to further clarification of the role of parameters in
the Choice and and Comprehension schemata ACω and CA in PA2 . The main integrated
result is that the parameter-free versions of both ACω and CA are strictly weaker than the
full versions of the schemata (Theorems 1 and 2 below), but still the parameter-free version
AC∗ω of ACω is not provable in PA2 (Theorem 3). Special attention will be paid to the
evaluation of those proof theoretic tools used in the arguments. That is, we show that the
formal consistency of PA2 suffices. This is the main contribution of this paper. It has a crucial
advantage comparably to the above-mentioned earlier results and approaches by Levy [2]
and Guzicki [4], which involve cardinal-collapse forcing notions and thereby definitely
cannot be rendered on the basis of the consistency of PA2 .

The following Theorems 1–3 are the main results of this paper.

Theorem 1. In ZF, let L be the constructible universe. Then :

(i) There is a cardinal-preserving generic extension of L in which ACω(OD) (that is, ACω for
ordinal-definable relations) holds, but the full ACω fails in the domain of reals.

(ii) If PA2 is consistent then PA2 + AC∗ω does not prove ACω .

Theorem 1 is entirely new. Part (i) greatly surpasses the above-mentioned result of
Guzicki [4] by the requirement of cardinal-preservation. This is a conditio sine qua non for
Claim (ii) to be obtained by a similar technique, because the involvement of uncountable
cardinals in the arguments, as in [4], is definitely beyond the formal consistency of PA2 .

In the next theorem, PA∗2 is the subtheory of PA2 in which the full schema CA is
replaced by its parameter-free version CA∗ , and the Induction principle is formulated as a
schema rather than one sentence.

Theorem 2. In ZF, let L be the constructible universe. Then :

(i) There is a cardinal-preserving generic extension of L , and a set M ⊆P(ω) in this extension,
such that P(ω) ∩ L ⊆ M and M models PA∗2 + CA(Σ1

2) + ¬CA.

(ii) If PA2 is consistent then PA∗2 + CA(Σ1
2) does not prove CA.

This is a new result as well, appeared in our recent ArXiv preprint [8].
The next theorem, albeit not entirely new in part (i), is added in for good measure,

because its proof involves basically the same type of generic extensions.

Theorem 3. In ZF, let L be the constructible universe. Then :

(i) There is a cardinal-preserving generic extension of L in which AC∗ω fails.

(ii) If PA2 is consistent then PA2 does not prove AC∗ω .

Part (i) of this theorem essentially follows from a result by Enayat [9], where it is shown
that using the finite-support infinite product of Jensen’s minimal-∆1

3 -real forcing [10] results
in a permutation model of ZF with an infinite Dedekind-finite Π1

2 set of reals, and the
existence of such a set implies the refutation of AC∗ω . Part (ii) is new.

The first claims of all three theorems will be established by means of a complex
iteration of the Sacks forcing which resembles the generalized iteration by Groszek and
Jech [11], but is carried out in a pure geometric way that avoids any formalism of forcing
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iterations. We call this technique arboreal Sacks iterations. The associated coding by degrees
of constructibility is also involved, more or less along the lines discussed in ([12], p. 143).

To conclude, the main novelty of all three theorems is that the unified forcing technique
of arboreal Sacks iterations is used to define generic cardinal-preserving models of set
theory and second-order Peano arithmetic with different effects related to parameters in the
Choice and Comprehension schemata in PA2 , to subsequently prove that the parameter-
free versions of the schemata are weaker than the full versions. This leads to further
development of the research line outlined by Georg Kreisel [1], see a quote above. The other
principal novelty is that we demonstrate, by claims (ii) of all three theorems, that the ensuing
consistency results can be obtained on the basis of the consistency of PA2 alone, rather than
on the basis of full-scale set theoretic forcing technique. Claims (i) of Theorems 1 and 2 are
new as they stand; claim (i) of Theorem 3 is a corollary of a known result.

It remains to note that topics in subsystems of second order arithmetic remain of big
interest in modern studies, see e.g., [13–15], and our paper contributes to this research line.

The paper is organized as follows. After a short review of PA2 preliminaries in
Section 2, we take some space to briefly describe the aforementioned cardinal-collapse
models by Levy [2] and Guzicki [4] in Sections 3 and 4.

Our basic forcing notion P is introduced in Section 5; it consists of iterated perfect sets.
The structure of P-generic extensions L[G] of L is studied in Sections 6 and 7. In particular,
Theorem 4 provides the cardinal preservation, and Theorem 5 presents several important
results on the degrees of constructibility of reals and the relation of true 6L -successor in
the generic extensions considered.

The proof of Theorem 3(i) is carried out in Section 8 modulo an important lemma
(Lemma 11) established in Section 9. Basically, a generic extension that proves Theorem 3(i)
will be obtained as a certain subextension of a P-generic extension L[G], which is the
content of Theorem 6.

Claims (i) of Theorems 1 and 2 are established in Sections 10 and 11, via certain other
subextensions of a P-generic extension, studied by Theorems 7 and 8 respectively.

Finally Section 12 contains the proof of claims (ii) of all three theorems. To accomplish
this proof, we will redo the proofs of claims (i) of all three theorems in some uniform
manner. This will involve a rather well-known Theorem 9 on the equiconsistency of PA2
and the set theory ZFC without the Power Set axiom.

The paper ends with a usual conclusion-style material in Section 13.
A flowchart follows on page 4, Figure 1 for the convenience of the reader.
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Figure 1. Flowchart.

2. Second Order Peano Arithmetic Preliminaries

Following [1,16,17] we consider the second order Peano arithmetic PA2 as a theory
in the language L(PA2) with two sorts of variables—for natural numbers and for sets of
them. We use j, k, m, n for variables over ω and x, y, z for variables over P(ω) , reserving
capital letters for subsets of P(ω) and other sets. The axioms are as follows in (1)–(4):

(1) Peano’s axioms for numbers.

(2) The Induction schema: Φ(0) ∧ ∀ k (Φ(k) =⇒ Φ(k + 1)) =⇒ ∀ k Φ(k) , for every for-
mula Φ(k) in L(PA2) , and in Φ(k) we allow parameters, i.e., free variables other than
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k . (We do not formulate Induction as one sentence here because the Comprehension
schema CA will not be assumed in full generality in Section 11).

(3) Extensionality for sets of natural numbers.

(4) The Comprehension schema CA: ∃ x ∀ k (k ∈ x ⇐⇒ Φ(k)), for every formula Φ in
which x does not occur, and in Φ we allow parameters.

PA2 is also known as A−2 (see e.g., an early survey [16]), as Z2 (see e.g., Simpson [17]
and Friedman [18]), as Z−2 (in [19] or elsewhere). Note that the schema of Choice (see
below) is not included in PA2 .

The following schemata are not assumed to be parts of PA2 , yet they are often consid-
ered in the context of and in connection with PA2 .

The Schema of Choice ACω : ∀ k ∃ x Φ(k, x) =⇒ ∃ x ∀ k Φ(k, (x)k)) , for every formula Φ ,
where we allow parameters in Φ , and (x)k = { j : 2k(2j + 1)− 1 ∈ x} , as usual.

We use ACω instead of AC, more common in PA2 studies, because AC is the general
axiom of choice in the ZFC context.

Dependent Choices DC: ∀ x ∃ y Φ(x, y) =⇒ ∃ x ∀ k Φ((x)k, (x)k+1)), for every formula
Φ , and in Φ we allow parameters.

We let CA∗ be the parameter-free sub-schema of CA (that is, Φ(k) contains no free
variables other than k). We define the parameter-free sub-schema AC∗ω ⊆ ACω the same
way. The parameter-free sub-schema DC∗ ⊆ DC can be defined as well, but this does not
make much sense because DC∗ is known to be equivalent to DC by a simple argument,
see e.g., [4].

In set-theoretic setting, ACω and DC can be considered in the assumption that Φ
is a set-theoretic binary relation on ω ×P(ω), whose type can be restricted in this or
another way depending on the context. In particular, ACω(OD) assumes that Φ is an OD
(ordinal-definable) relation. (See [20] on ordinal definability.) In addition, say AC∗ω(Π1

3)
or ACω(Π1

3) means the restriction to the type of lightface Π1
3 (parameter-free) or resp.

boldface Π1
3 (with parameters in P(ω) allowed) formulas.

3. A Cardinal-Collapse Model Where the Parameter-Free AC∗ω Fails

Here we recall an old model by Levy [2] in which the parameter-free AC∗ω fails for
a certain (lightface) Π1

2 relation. This is basically any model of ZF + (ℵ1 = ℵL
ω). To

obtain this model, Levy makes use of the collapse below ℵω , i.e., a Cohen-style generic
sequence f = 〈 fn〉n<ω of (generic) collapse maps fn : ω

onto−→ ℵL
n is adjoined to the Gödel-

constructible universe L . Consider the set F = { fn : n < ω} and the class N = HOD(F)
of all sets hereditarily F-ordinal-definable in L[ f ] . Then N is a model of ZF + (ℵ1 = ℵL

ω) .
We may note that the set P(ω) ∩ N of all reals in N is equal to the set P(ω) ∩⋃

n<ω L[ f0, f1, . . . , fn] .
To prove that ACω fails under ℵ1 = ℵL

ω , Levy considers the relation R(n, f ) := n < ω ,
f ∈ ωω, and f codes a well-ordering of length ≥ ℵL

n .
Then, first, ACω fails for R under ℵ1 = ℵL

ω by obvious reasons, and second, R can be
presented as a lightface Π1

2 relation.
To prove the second claim, we may note, following Levy, that R(n, f ) is equivalent to

the following relation:
R′(n, f ) := n < ω , f ∈ ωω, f codes a well-ordering, whose length we denote by α ,

and, for every countable transitive set X which models ZF minus the Power Set axiom, if
α ∈ X then it is true in 〈X ; ∈〉 that “there are at least n + 1 infinite cardinals ≤ α”.

To see that R′ is a Π1
2 relation, Levy uses well-founded relations on ω as a substitution

for countable transitive sets. Since the well-foundedness is a Π1
1 property, the definition of

R′ can be converted to a Π1
2 form.

From a more modern perspective, we may note that R′ is a ΠHC
1 relation, where

HC = Hω1 is the transitive set of all hereditarily countable sets, and then make use of the
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conversion theorem (see e.g., Theorem 25.25 in [20]) saying that ΠHC
1 relations on the reals

are the same as Π1
2 relations.

4. A Cardinal-Collapse Model Where the Parameter-Free AC∗ω Holds But the Full
ACω Fails

The Guzicki model with such an effect appeared in [4]. It is similar to Levy’s model
of [2], yet it makes use of the Levy collapse below ℵω1 . To obtain such a model, we adjoin,
to the Gödel constructible universe L , a Cohen-style (finite-support) generic sequence
f = 〈 fξ〉ξ<ωL

1
of (generic) collapsing maps fξ : ω

onto−→ ℵL
ξ . Consider the set F = { f � β :

β < ωL
1 } and the class N of all sets hereditarily F-real-ordinal definable in L[ f ] . Then N is

a model of ZF + (ℵ1 = ℵL
ω1
) .

The set P(ω) ∩ N of all reals in N is equal to P(ω) ∩⋃β<ωL
1

L[ f � β] .

To check that ACω fails in N for a Π1
2 relation, let p ∈ N , p ⊆ ω code a strictly

increasing map g = gp : ω → ωL
1 whose range is cofinal in ωL

1 . Accordingly the sequence
of cardinals ℵL

g(n) ∈ N is cofinal in ℵL
ω1
). This allows to accomodate the arguments in

Section 3, with minor changes mutatis mutandis, and prove that ACω fails in N for a Π1
2

relation similar to R but defined with p as a parameter.
To see that the parameter-free AC∗ω , and even ACω(OD) for all ordinal-definable

relations holds in N , let ϕ(k, x, γ) be an ∈-formula with an ordinal γ as the only parameter.
Assume that ∀ k ∃ x ⊆ ω ϕ(k, x, γ) holds in N . Then for every k there exist ordinals β < ωL

1
such that a set x ⊆ ω satisfying ϕ(k, x, γ) in N exists in L[ f � β] . Let βk be the least such an
ordinal. The sequence 〈βn〉n<ω immediately belongs to L[ f ] . Yet using the homogeneous
character of the product collapse forcing that yields f , one can prove that in fact the
sequence 〈βn〉n<ω in fact belongs to L . Therefore β = supn βn < ωL

1 , and accordingly for
any k there is a set x ⊆ ω , x ∈ L[ f � β] satisfying ϕ(k, x, γ) in N . It remains to note that
L[ f � β] ⊆ N .

5. Iterated Perfect Sets

Here we begin the proof of Theorems 1–3. The proof involves the engine of generalized
iterated Sacks forcing developed in [21,22] on the base of earlier papers [11,23,24] and others.
We consider the constructible universe L as the ground model.

Arguing in L in this section, we define, in L , the set

I = ω<ω
1 r {Λ} ; I ∈ L ;

of all non-empty tuples i = 〈ξ0, . . . , ξn〉 , n < ω , of ordinals ξk < ω1 , partially ordered by
the extension ⊂ of tuples. I is a tree without the minimal node Λ (the empty tuple), which
we exclude.

Our plan is to define a generic extension L[a] of L by an array a = 〈ai〉i∈I of reals
ai ⊆ ω , in which the structure of “sacksness” is determined by this set I , so that in
particular each ai is Sacks-generic over the submodel L[〈aj〉j⊂i] . Then Theorems 1–3 will
be obtained via submodels of the basic model L[a] .

Let Ξ be the set of all countable and finite initial segments (in the sense of ⊂) ζ ⊆ I .
If ζ ∈ Ξ then ISζ is the set of all initial segments of ζ .

Greek letters ξ, η, ζ, ϑ will denote sets in Ξ .
Characters i, j are used to denote elements of I .
For any i ∈ ζ ∈ Ξ, we consider initial segments ζ[⊂i] = { j ∈ ζ : j ⊂ i} and

ζ[ 6⊆i] = { j ∈ ζ : j 6⊆ i}, and ζ[⊆i], ζ[ 6⊂i] defined analogously.
We consider P(ω) as identical to 2ω, so that both P(ω) and P(ω)ξ for ξ ∈ Ξ are

homeomorphic Polich compact spaces. Points of P(ω) will be called reals.
Assume that η ⊆ ξ ∈ Ξ . If x ∈ P(ω)ξ then let x�η ∈ P(ω)η denote the usual

restriction. If X ⊆ P(ω)ξ then let X�η = {x�η : x ∈ X} . To save space, let X�⊂i mean
X� ξ[⊂i] , X� 6⊆i mean X� ξ[ 6⊆i] , etc.

But if Y ⊆P(ω)η then we put Y�−1 ξ = {x ∈P(ω)ξ : x�η ∈ Y} .
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To describe the idea behind the definition of iterated perfect sets, recall that the Sacks
forcing consists of perfect subsets of P(ω) , that is, sets of the form H ”P(ω) = {H(a) :
a ∈P(ω)} , where H : P(ω)

onto−→ X is a homeomorphism.
To obtain a product Sacks model, with two factors (the case of a two-element unordered

set as the length of iteration), we have to consider sets X ⊆ P(ω)2 of the form X =
H ”P(ω)2 where H is any homeomorphism defined on P(ω)2 so that it splits in obvious
way into a pair of one-dimensional homeomorphisms.

To obtain an iterated Sacks model, with two stages of iteration (the case of a two-
element ordered set as the length of iteration), we have to consider sets X ⊆P(ω)2 of the
form X = H ”P(ω)2 , where H is any homeomorphism defined on P(ω)2 such that if
H(a1, a2) = 〈x1, x2〉 and H(a′1, a′2) = 〈x′1, x′2〉 then a1 = a′1 ⇐⇒ x1 = x′1 .

The combined product/iteration case results in the following definition.

Definition 1 (iterated perfect sets, [21,22]). For any ζ ∈ Ξ, Perfζ is the collection of all sets

X ⊆P(ω)ζ such that there is a homeomorphism H : P(ω)ζ onto−→ X satisfying

x0� ξ = x1� ξ ⇐⇒ H(x0)� ξ = H(x1)� ξ

for all x0, x1 ∈ dom H and ξ ∈ Ξ , ξ ⊆ ζ . Homeomorphisms H satisfying this requirement will be
called projection–keeping. In other words, sets in Perfζ are images of P(ω)ζ via projection–keeping
homeomorphisms.

We put Perf =
⋃

ξ∈Ξ Perfξ .

Remark 1. Note that ∅, the empty set, formally belongs to Ξ , and then P(ω)∅ = {∅} , and we
easily see that 1 = {∅} is the only set in Perf∅ .

For the convenience of the reader, we now present five lemmas on sets in Perfζ

established in [21,22].

Lemma 1 (Proposition 4 in [22]). Let ζ ∈ Ξ . Every set X ∈ Perfζ is closed and satisfies the
following properties :

1. If i ∈ ζ and z ∈ X�⊂i then DXz(i) = {x(i) : x ∈ X ∧ x�⊂i = z} is a perfect set in
P(ω) .

2. If ξ ∈ ISζ , and a set X′ ⊆ X is open in X (in the relative topology) then the projection X′� ξ
is open in X� ξ . In other words, the projection from X to X� ξ is an open map.

3. If ξ, η ∈ ISζ , x ∈ X� ξ , y ∈ X� η , and x� (ξ ∩ η) = y� (ξ ∩ η), then x ∪ y ∈ X� (ξ ∪ η) .

Proof (sketch). Clearly P(ω)ζ satisfies P-1, P-2, P-3, and one easily shows that projection–
keeping homeomorphisms preserve the requirements.

Lemma 2 (Lemma 5 in [22]). Suppose that ξ, ζ, ϑ ∈ Ξ , ξ ∪ ζ ⊆ ϑ , W ∈ Perfϑ , C ⊆ W� ζ is
any set, and U = W ∩ (C�−1 ϑ) . Then U� ξ = (W� ξ) ∩ (C� (ξ ∩ ζ)�−1 ξ) .

Lemma 3 (Lemma 6 in [22]). If ζ ∈ Ξ , X ∈ Perfζ , ξ ∈ ISζ , then X� ξ ∈ Perfξ .

Lemma 4 (Lemma 8 in [22]). If ζ ∈ Ξ , X ∈ Perfζ , a set U ⊆ X is open in X, and x0 ∈ U,
then there is a set X′ ∈ Perfζ , X′ ⊆ U, clopen in X and containing x0 .

Lemma 5 (Lemma 9 in [22]). Suppose that ζ ∈ Ξ , η ∈ ISζ , X ∈ Perfζ , Y ∈ Perfη , and
Y ⊆ X� η . Then Z = X ∩ (Y�−1 ζ) belongs to Perfζ .

In particular Y�−1 ζ ∈ Perfζ , since obviously P(ω)ζ ∈ Perfζ .

Corollary 1. Assume that ξ, η ∈ Ξ , ϑ = ξ ∪ η , X ∈ Perfξ , Y ∈ Perfη , and X� (ξ ∩ η) =

Y� (ξ ∩ η) . Then Z = (X�−1 ϑ) ∩ (Y�−1 ϑ) ∈ Perfϑ .
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Proof. The bigger set X′ = X �−1 ϑ belongs to Perfϑ by Lemma 5. In addition,
X′�η = X� (ξ ∩ η) �−1 η by Lemma 2 (with C = X , W = P(ω)ϑ ). It follows that
Y ⊆ X′�η , because Y� (ξ ∩ η) = X� (ξ ∩ η). We conclude that X′ ∩ (Y �−1 ϑ) ∈ Perfϑ by
Lemma 5. Finally, we have X′ ∩ (Y�−1 ϑ) = Z by construction.

Corollary 2. Assume that ξ0, ξ1, ξ2, · · · ∈ Ξ are pairwise disjoint, ϑ =
⋃

k ξk , and Xk ∈ Perfξk

for each k. Then the set Z =
⋂

k(Xk �−1 ϑ) belongs to Perfϑ , Z� ξk = Xk and Z 6 Xk for all k.

Proof. For each k , there exists a projection–keeping homeomorphism Hk : P(ω)ξk
onto−→ Xk .

Define H : P(ω)ϑ → P(ω)ϑ by H(x)� ξk = Hk(x� ξk) for all k . Then H is projection–
keeping and H : P(ω)ϑ onto−→ Z .

Still arguing in L , we let Π be the group of all permutations π of the index set I , i.e.
all bijections π : I onto−→ I such that i ⊂ j ⇐⇒ π(i) ⊂ π(j) . Any such a permutation π ∈ Π
induces a transformation acting on several types of objects as follows.

• If ξ ∈ Ξ , or generally ξ ⊆ I , then πξ = π ”ξ = {π(i) : i ∈ ξ} .

• If ξ ⊆ I and x ∈ P(ω)ξ then πx ∈ P(ω)πξ is defined by πx(π(i)) = x(i) for all
i ∈ ξ . That is, formally πx = x ◦ π−1 , the superposition.

• If ξ ⊆ I and X ⊆P(ω)ξ then πX = {πx : x ∈ X} .

• If G ⊆ Perf then πG = {πX : X ∈ G} .

The following lemma is obvious.

Lemma 6. If X ∈ Perfξ then πX ∈ Perfπξ .
Moreover π is an order preserving automorphism of Perf .

6. The Forcing Notion and the Basic Extension

This section introduces the forcing notion we consider and the according generic
extension called the basic extension.

We continue to argue in L. Recall that a partially ordered set I ∈ L is defined in
Section 5, and Ξ is the set of all at most countable initial segments ξ ⊆ I in L . For any
ζ ∈ Ξ, let Pζ = (Perfζ)

L .
The set P = PI =

⋃
ζ∈Ξ Pζ ∈ L will be the forcing notion.

To define the order, we put ‖X‖ = ζ whenever X ∈ Pζ . Now we set X 6 Y (i.e. X is
stronger than Y) if and only if ζ = ‖Y‖ ⊆ ‖X‖ and X� ζ ⊆ Y .

Remark 2. We may note that the set 1 = {∅} as in Remark 1 belongs to P and is the 6-largest
(i.e., the weakest) element of P.

Now let G ⊆ P be a P-generic set (filter) over L .

Remark 3. If X ∈ Pζ in L then X is not even a closed set in P(ω)ζ in L[G] . However we can
transform it to a perfect set in L[G] by the closure operation. Indeed the topological closure X# of
such a set X in P(ω)ζ taken in L[G] belongs to Perfζ from the point of view of L[G] .

It easily follows from Lemma 4 that there exists a unique array a[G] = 〈ai[G]〉i∈I , all
ai[G] being elements of P(ω) , such that a[G]� ξ ∈ X# whenever X ∈ G and ‖X‖ = ξ ∈ Ξ .
Then L[G] = L[〈ai[G]〉i∈I ] = L[a[G]] is a P-generic extension of L , which we call the basic
extension.

For the sake of convenience, let aΛ[G] = ∅.

Theorem 4 (Thm 24 in both [21,22]). Every cardinal in L remains a cardinal in L[G] . Every
ai[G] is Sacks generic over the model L[a[G]�⊂i] .
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Proof (idea). The forcing Perf has the following property in L , common with the ordinary
one-step Sacks forcing:

(∗) if sets Dn ⊆ Perf are open dense in Perf , and X ∈ Perf , then there is a stronger
condition Y ∈ Perf , Y 6 X , and finite sets D′n ⊆ Dn pre-dense in Perf below Y , in the
sense that any stronger Z ∈ Perf , Z 6 Y , is compatible with some Z′ ∈ Dn .

This property, established in [21,22] by means of a splitting/fusion technique, easily
implies the preservation of all L-cardinals in P-generic extensions of L .

Here follow several lemmas on reals in P-generic models L[G] , established in [21]. In
the lemmas, we let G ⊆ P be a set P-generic over L .

Lemma 7 (Lemma 22 in [21]). Suppose that sets η, ξ ∈ Ξ satisfy ∀ j ∈ η ∃ i ∈ ξ (j ⊆ i) . Then
a[G]� η ∈ L[a[G]� ξ] .

Lemma 8 (Lemma 26 in [21]). Suppose that K ∈ L is an initial segment in I , and i ∈ I \ K .
Then ai[G] 6∈ L[a[G]�K] .

Lemma 9 (Corollary 27 in [21]). If i 6= j then ai[G] 6= aj[G] and even L[ai[G]] 6= L[aj[G]] .

Lemma 10 (Lemma 29 in [21]). If K ∈ L is an initial segment of I , and r ∈ P(ω) ∩ L[G] ,
then either r ∈ L[a[G]�K] or ai[G] ∈ L[r] for some i ∈ I r K .

7. Structure of the Basic Extension

We apply the lemmas above in the proof of the next theorem. Let 6L denote the Gödel
well-ordering on P(ω), so that x 6L y if and only if x ∈ L[y] . Let x <L y mean that
x 6L y but y 66L x , and x ≡L y mean that x 6L y and y 6L x .

Say that y is a true 6L -successor of x (where x, y ∈P(ω)) if and only if x <L y and
any real z ∈P(ω) satisfies z <L y =⇒ z 6L x .

Theorem 5. Let G ⊆ P be a set P-generic over L , and i ∈ I . Then we have the following :

(i) if j ∈ I and j ⊆ i then aj[G] 6L ai[G] ;

(ii) if j ∈ I and j 6⊆ i then aj[G] 66L ai[G] ;

(iii) if r ∈ L[G] ∩P(ω) and r 6L ai[G] then r ∈ L or r ≡L aj[G] for some j ∈ I , j ⊆ i ;

(iv) if i ∈ I , γ < ωL
1 , then aiaγ[G] is a true 6L -successor of ai[G] ;

(v) if i ∈ I , and y ∈P(ω) ∩ L[G] is a true 6L -successor of ai[G] , then there is γ < ωL
1 such

that y ≡L aiaγ[G] ;

(vi) if γ < ωL
1 , then a〈γ〉[G] is a true 6L -successor of aΛ[G] ;

(vii) if y ∈ P(ω) ∩ L[G] is a true 6L -successor of aΛ[G] , then there is γ < ωL
1 such that

x ≡L a〈γ〉[G] .

Proof. (i) Apply Lemma 7 with η = { j} and ξ = {i} .
(ii) Apply Lemma 8 with K = [⊆ i] .
(iii) If there are elements j ∈ I , j ⊆ i , such that aj[G] ∈ L[r] , then let j be the largest

such one. Let ξ = [⊆ j] (a finite initial segment of I ). By Lemma 10, either r ∈ L[a[G]� ξ] ,
or there is i′ 6∈ ξ such that ai′ [G] ∈ L[r] . In the “either” case, we have r ∈ L[aj[G]] by (i),
so that L[r] = L[aj[G]] by the choice of j . In the “or” case we have ai′ [G] ∈ L[ai[G]] , hence
i′ ⊆ i by (ii). However, this contradicts the choice of j and i′ .

Finally if there is no j ∈ I , j ⊆ i , such that aj[G] ∈ L[r] , then the same argument with
ξ = ∅ gives r ∈ L .
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(iv) The relation ai[G] <L aiaγ[G] is implied by Lemmas 7 and 8. If now z <L aiaγ[G]

then z ∈ L or z ≡L aj[G] for some j ⊆ iaγ by (iii), and in the latter case in fact j ⊂ iaγ ,
hence j ⊆ i , and then z 6L ai[G] .

(v) As y 66L ai[G], by Lemma 10 there is j ∈ I such that j 6⊆ i and aj[G] 6L y . If
aj[G] <L y strictly then aj[G] 6L ai[G] by the true 6L -successor property, hence j ⊆ i by
(ii), contrary to the choice of j . Therefore in fact aj[G] ≡L y . Then we have i ⊂ j still by the
true 6L -successor property and (i), (ii). This implies j = iaγ for some γ < ωL

1 , because if
say j = iaγaδ then z = aiaγ[G] is strictly between ai[G] and aj[G] , contrary to the true
6L -successor property.

(vi) Similar to (iv). Recall that aΛ[G] = ∅ ∈ L . This implies aΛ[G] 6L a〈γ〉[G] . On the
other hand, a〈γ〉[G] 66L aΛ[G] holds by Lemma 8 with K = ∅. If now z <L a〈γ〉[G] then
z ∈ L or z ≡L aj[G] for some j ⊆ 〈γ〉 by (iii), and in the latter case in fact j = 〈γ〉, hence
then z ≡L a〈γ〉[G] , contrary to the choice of z .

(vii) As y 66L aΛ[G] ∈ L , by Lemma 10 (with K = ∅) there is j ∈ I such that
aj[G] 6L y . If aj[G] <L y strictly then aj[G] 6L aΛ[G] by the true 6L -successor property,
hence aj[G] ∈ L , contrary to Lemma 8 with K = ∅. Therefore in fact aj[G] ≡L y . This
implies j = 〈γ〉 for some γ < ωL

1 , because if, say, j = 〈γ, δ〉 then y = a〈γ〉[G] is strictly
between aΛ[G] and y ≡L aj[G] , contrary to the true 6L -successor property.

Now consider the following formula:
A(n, #”x ) := #”x = 〈x0, x1, . . . , xn〉 is a tuple of reals xk ⊆ ω such that x0 = ∅ and each

xk (0 < k ≤ n) is a true 6L -successor of xk−1 .
Thus A(n, #”x ) separates tuples of true successor iterations, of length n .

Remark 4. A(n, #”x ) is a Π1
3 relation, absolute for any transitive model of ZF containing the true

ω1 , and component-wise ≡L-invariant in the argument #”x = 〈x0, x1, . . . , xn〉 . Indeed to see that A
is Π1

3 note that ‘being a true 6L -successor’ is Π1
3 by direct estimation. To see the absoluteness note

that both ‘being a true 6L -successor’ and A are relativized to the lower 6L-cone of the arguments.
The invariance is obvious.

Corollary 3 (of Theorem 5). Let G ⊆ P be a set P-generic over L .

(i) If i = 〈γ1, γ2, . . . , γn〉 ∈ I , dom i = n ≥ 1, and

a⊆i[G] = 〈aΛ[G], a〈γ1〉[G], a〈γ1,γ2〉[G], . . . , a〈γ1,γ2,...,γn〉[G]〉, (1)

then A(n, a⊆i[G]) holds in L[G] .

(ii) Conversely if #”x = 〈x0, x1, . . . , xn〉 ∈ L[G] and A(n, #”x ) holds in L[G] then there is
i = 〈γ1, γ2, . . . , γn〉 ∈ I such that #”x ≡L a⊆i[G] component-wise, that is, x0 ≡L aΛ[G] ,
x1 ≡L a〈γ1〉[G] , x2 ≡L a〈γ1,γ2〉[G] , . . . , xn ≡L a〈γ1,γ2,...,γn〉[G] .

8. A Model in Which the Parameter-Free AC∗ω Fails

Here we prove Theorem 3(i). Let us fix a set G ⊆ P, P-generic over L and consider the
according P-generic array a[G] = 〈ai[G]〉i∈I and the P-generic extension L[G] = L[a[G]] .
The goal is to define a sub-extension of L[G] in which the parameter-free AC∗ω fails.

• Let Ω ∈ L be the set of all finite or L-countable initial segments ξ ⊆ I such that there
is a number n < ω satisfying dom i < n for all i ∈ ξ .

• Let W[G] ∈ L[G] be the set of all restrictions of the form a[G]� ξ , ξ ∈ Ω , of the generic
array a[G] .

• Let OD(W[G])L[G] be the class of all sets W[G]-ordinal-definable in L[G] . Thus x ∈
OD(W[G])L[G] iff x is definable in L[G] by a set-theoretic formula with parameters in
W[G] ∪Ord.

Here Ord is the class of all ordinals, as usual. See [20,25] on ordinal definability.
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• Let MG = HOD(W[G])L[G] be the class of all sets x ∈ L[G] , hereditarily W[G]-ordinal-
definable in L[G] , i.e., it is required that x itself, all elements of x , all elements of
elements of x , etc., belong to the above defined class OD(W[G])L[G] in L[G] .

The following theorem implies Theorem 3(i). Indeed the model MG is a cardinal-
preserving extension of L by Theorem 4.

Theorem 6. If a set G ⊆ P is P-generic over L then MG is a model of ZF in which the parameter-
free/ AC∗ω(Π1

3) fails.
It follows that MG ∩P(ω) is a model of PA2 + ¬AC∗ω(Π1

3) .

Proof. That classes of the form HOD(X) model ZF see [20], Chapter 13.
Note that if i ∈ I then ai[G] ∈ MG = HOD(W[G])L[G] via the initial segment

ξ = [⊆ a] = { j ∈ I : j ⊆ i} ∈ Ω , and hence a⊆i[G] ∈ MG as well. It follows by Corol-
lary 3(i) that ∃ x A(m, x) is true in MG , where m = dom i . Our goal will be to show that
the parameter-free formula ∃ x ∀mA(m, (x)m), the right-hand side of ACω , fails in MG ,
meaning that AC∗ω fails in MG for the formula A.

Suppose to the contrary that there is x ∈ MG satisfying ∀mA(m, (x)m). This obvi-
ously results in a sequence 〈 #”y m〉m<ω ∈ MG of tuples #”y m = 〈ym

0 , ym
1 , . . . , ym

m〉 ∈ MG of
reals ym

k ⊆ ω satisfying A(k, #”y k), that is, ym
0 = ∅ and each yk (0 < k ≤ m) is a true

6L -successor of yk−1 .
By definition there is an ∈-formula ϕ(m, k, y, a[G]� ξ) with free variables m, k, y , a

parameter of the form a[G]� ξ , where ξ ∈ Ω , and some ordinals as parameters — such that
if k ≤ m < ω and y ∈MG ∩P(ω) then ϕ(m, k, y, a[G]� ξ) is true in L[G] iff y = ym

k . (The
case of several parameters of the form a[G]� ξ , ξ ∈ Ω , can be easily reduced to the case of
one parameter.)

As ξ ∈ Ω , there is a number 1 ≤ m < ω such that dom i < m for all i ∈ ξ . Fix this m
and consider the tuple #”y m = 〈ym

0 , ym
1 , . . . , ym

m〉 ∈MG = HOD(W[G])L[G] . By Corollary 3(ii),
there is a tuple j = 〈γ1, γ2, . . . , γm〉 ∈ I , such that #”y m ≡L a⊆j[G] component-wise, that is,
ym

k ≡L aj[G] = a〈γ1,γ2,...,γk〉[G] for all k ≤ m .
Note that j /∈ ξ by the choice of m . There is a number n ≤ m such that still

i0 = 〈γ1, γ2, . . . , γn−1, γn〉 /∈ ξ but the shorter tuple i = 〈γ1, γ2, . . . , γn−1〉 belongs to ξ , and
hence a⊆i[G] ∈ HOD(W[G])L[G] . Then by Corollary 3 the L-degree [ai0 [G]]L = {a ⊆ ω :
a ≡L ai0 [G]} is definable in L[G] by the next formula, in which (a[G]� ξ)(i) = ai[G] .

ψ(a, a[G]� ξ) := a ⊆ ω is a true 6L -successor of (a[G]� ξ)(i).

To conclude, i0 /∈ ξ ∈ Ω and the L-degree [ai0 [G]]L is definable in L[G] by an ∈-
formula with a[G]� ξ and ordinals as parameters. But this contradicts Lemma 11 that
follows in the next Section. The contradiction refutes the contrary assumption above.

We finally note that A is a Π1
3 formula by Remark 4.

9. The Non-Definability Lemma

Here we prove the following lemma.

Lemma 11. If a set G ⊆ P is P-generic over L , ξ ∈ Ξ , and i0 ∈ I r ξ then the L-degree
[ai0 [G]]L = {a ⊆ ω : a ≡L ai0 [G]} cannot be defined in L[G] by an ∈-formula with a[G]� ξ and
ordinals as parameters.

Proof. Suppose to the contrary that ψ(x, a[G]� ξ) is a formula as indicated, and it holds
in L[G] that [ai0 [G]]L = {x ⊆ ω : ψ(x, a[G]� ξ)} . Then there is a “condition” X0 ∈ G
such that

X0 ‖− [ai0 [G]]L = {x ⊆ ω : ψ(x, a[G]� ξ)}, (2)

where ‖− is the P-forcing relation over L , and G is the canonical P-name for the generic
filter G . Let ζ = ‖X0‖ , so that X0 ∈ Pζ .
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We argue in L . Thus X ∈ Perfζ . See Section 5 on permutations of I .
As ξ, ζ are countable initial segments of I , it does not take much effort to define, in L ,

a permutation π ∈ Π satisfying the following:

(A) π� ξ is the identity

(B) π(i0) 6= i0 , and if i ∈ (ζ r ξ) then π(i) /∈ ζ r ξ .

Coming back to (2) above, we put Y0 = πX0 , j0 = π(i0). Note that Y0 ∈ Pζ ′ by
Lemma 6, where ζ ′ = πζ = π ”ζ . We claim that

Y0 ‖− [aj0
[G]]L = {x ⊆ ω : ψ(x, a[G]� ξ)} (3)

To prove the claim, let H′ ⊆ P be P-generic over L , and Y0 ∈ H′ . We have to check
that, in L[H′] , [aj0

[H′]]L = {x ⊆ ω : ψ(x, a[H′]� ξ)} .
The set H = π−1H′ is P-generic over L and obviously X0 ∈ H . It follows from

(2) that [ai0 [H]]L = {x ⊆ ω : ψ(x, a[H]� ξ)} in L[H] . Yet L[H] = L[H′] (since π ∈ L),
a[H′]� ξ = a[H]� ξ by (A), and finally aj0

[H′] = ai0 [H] by construction. Thus, indeed
[aj0

[H′]]L = {x ⊆ ω : ψ(x, a[H′]� ξ)} in L[H′] , as required. This completes the proof of (3).
The next step is to establish

(C) X0 and Y0 are compatible in P.

We check this claim arguing in L , so that X0 ∈ Perfζ and Y0 ∈ Perfζ ′ , where ζ ′ =
πζ = π′′ζ . It follows from (A), (B) that the set η = ζ ∩ ξ ∈ Ξ satisfies η = ζ ′ ∩ ξ = ζ ′ ∩ ζ ,
and in addition X0�η = Y0�η . Let ϑ = ζ ∪ ζ ′ . Then Z = (X0 �−1 ϑ) ∪ (Y0 �−1 ϑ) belongs
to Perfϑ by Corollary 1. Thus Z ∈ P, hence (C) holds. This implies (3) since Z 6 X0, Y0
is obvious.

But it follows from (2) and (3) that X0 and Y0 force contradictory statements (because
i0 6= j0 , and hence [ai0 [G]]L 6= [aj0

[G]]L ). The contradiction obtained completes the proof
of the lemma. This accomplishes the proof of Theorem 6 as well.

10. A Model in Which the Parameter-Free AC∗ω Holds But the Full ACω Fails

Here we prove Theorem 1(i). The model will be a modification of the model studied
in Section 8. We still fix a set G ⊆ P, P-generic over L and consider the P-generic array
a[G] = 〈ai[G]〉i∈I and the P-generic extension L[G] = L[a[G]]. We are going to define a
sub-extension of L[G] in which the parameter-free AC∗ω holds but the full ACω fails.

• Let Ω′ ∈ L be the set of all finite or L-countable initial segments ξ ⊆ I such that for
any γ < ω1 there is a number n = nγ < ω satisfying dom i < n for all i ∈ ξ satisfying
i(0) = γ .

• Let W ′[G] ∈ L[G] be the set of all restrictions of the form a[G]� ξ , ξ ∈ Ω′ , of the
generic array a[G] .

• Let OD(W ′[G])L[G] be the class of all sets W ′[G]-ordinal-definable in L[G] . Thus x ∈
OD(W ′[G])L[G] if and only if x is definable in L[G] by a set-theoretic formula with
sets in W ′[G] ∪Ord as parameters.

• Let M′G = HOD(W ′[G])L[G] be the class of all sets x ∈ L[G] , hereditarily W ′[G]-
ordinal-definable in L[G] .

The following theorem implies Theorem 1(i). Indeed it follows from Theorem 4 that
the model M′G is a cardinal-preserving extension of L .

Theorem 7. If a set G ⊆ P is P-generic over L then M′G is a model of ZF in which the parameter-
free/ AC∗ω holds, even ACω(OD) (with ordinals as parameters) holds, but the full ACω(Π1

3)
fails. It follows that M′G ∩P(ω) is a model of PA2 + AC∗ω + ¬ACω(Π1

3) .

Proof. Let A′(n, #”x ) be the formula ‘A(n, #”x ) ∧ x0 = a〈0〉[G]’. (See the definition of A in
Section 7). Note the parameter a〈0〉[G] in this formula. Similarly to the proof of Theorem 6,
if i ∈ I then ai[G] ∈M′G and a⊆i[G] ∈M′G . It still follows by Corollary 3(i) that ∃ x A′(n, x)
is true in MG , where n = dom i . Moreover, arguments similar to the proof of Theorem 6,
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which we leave for the reader, show that the formula ∃ x ∀mA(k, (x)m), the right-hand
side of ACω , fails in M′G . Thus ACω(Π1

3) (with real parameters) fails in M′G .
It remains to prove that ACω(OD) (with ordinals as parameters) holds in M′G . Sup-

pose towards the contrary that ϕ(k, x) is an ∈-formula with ordinals as parameters, such
that ACω fails for ϕ in M′G . Thus there exists a condition X∗ ∈ G satisfying

(†) X∗ ‖− “it holds in M′G = HOD(W ′[G])L[G] that ∀ k ∃ x ϕ(k, x) but ¬∃ x ∀ k ϕ(k, (x)k)”.

Here ‖− is the P-forcing relation over L , and G is the canonical P-name for the generic
filter G , as above.

As ∀ k ∃ x ϕ(k, x) holds in M′G , there is a sequence 〈xk〉k<ω ∈ L[G] of reals xk ∈M′G ,
xk ⊆ ω , satisfying ϕ(k, xk), ∀ k . By definition, for any k there is a set δk ∈ Ω′ such
that xk ∈ HOD[a[G]� δk]

L[G] (meaning that only a[G]� δk and ordinals are admitted as
parameters), and the sequence 〈δk〉k<ω belongs to L[G] as well. Furthermore, as the forcing
relation is definable in L , there exist sequences 〈Xk〉k<ω ∈ L of conditions Xk ∈ P (possibly
Xk /∈ G), and 〈τk〉k<ω ∈ L of sets τk ∈ Ω′ , such that

Xk ‖− ∃ x ∈ HOD[a[G]�τk]
(
M′G |= ϕ(k, x)

)
. (4)

Now, arguing in L , we let ξk = ‖Xk‖ , ηk = ξk ∪ τk , and ξ∗ = ‖X∗‖ . Thus ξ∗ and
all τk, ξk, ηk belong to Ξ . Clearly there exists a sequence of permutations πk ∈ Π (see
Section 5), k < ω , such that the sets η′k = πk ”ηk = {πk(i) : i ∈ ηk} ∈ Ξ are pairwise
disjoint and disjoint with ξ∗ .

Let X′k = πkXk , so that X′k ∈ Perfξ ′k
in L by Lemma 6, where ξ ′k = πk ”ξk = {πk(i) :

i ∈ ξk} ⊆ η′k . Define ζ = ξ∗ ∪ ⋃k ξ ′k ; ζ ∈ Ξ . It follows by Corollary 2 that the set
X′ = (X∗ �−1 ζ) ∩ ⋂k(X′k �

−1 ζ) belongs to Perfζ and X′ 6 X∗ , X′ 6 X′k for all k .
On the other hand, the sets τ′k = πk ”τk belong to Ω′ (because so do τk ) and are

pairwise disjoint (because so are the sets η′k = ξ ′k ∪ τ′k ). However Ω′ is closed in L under
countable disjoint union, hence τ′ =

⋃
k τ′k ∈ Ω′ .

We still work in L . Starting with (4) and arguing as in the proof of Lemma 11 (the
proof of 3 on page 13), we deduce that, for all k ,

X′k ‖− ∃ x ∈ HOD[a[G]�τ′k]
(
M′G |= ϕ(k, x)

)
,

and hence
X′ ‖− ∀ k ∃ x ∈ HOD[a[G]�τ′]

(
M′G |= ϕ(k, x)

)
, (5)

because X′ 6 X′k and τ′k ⊆ τ′ .
Finally, if H is P-generic then the class HOD[a[H]�τ′] has a well-ordering, say 4H ,

also {a[H]�τ′}-ordinal-definable in HOD[a[H]�τ′] . See e.g., [20], Section 13, the class
HOD[a[H]�τ′] is identical to HOD[a[H]�τ′] as in [20]. Therefore, if H is any P-generic
set over L containing X′ , then, arguing on the basis of (5), we can define y ⊆ ω in M′H
such that, for each k , (y)k is equal to the 4H-least set x ⊆ ω in HOD[a[H]�τ′] , satisfying
ϕ(k, x) . This proves that M′H |= ∃ y ∀ k ϕ(k, (y)k) for any such H , and hence

X′ ‖−
(
M′G |= ∃ y ∀ k ϕ(k, (y)k)

)
.

But this contradicts (†) above since X′ 6 X∗ .

11. Models in Which the Parameter-Free CA∗ Holds But the Full CA Fails

Here we sketch a proof of Theorem 2(i). See a full proof in our recent ArXiv preprint [8].
Thus the goal is to define a set X ⊆P(ω) in a cardinal-preserving generic extension of L ,
which is a model of PA∗2 (with the parameter-free Comprehension CA∗ ) in which the full
CA fails.

Following the arguments above, assume that G ⊆ P is a set P-generic over L , define
ai[G] ⊆ ω (i ∈ I ) and the array a[G] = 〈ai[G]〉i∈I as above, and consider the set

J[G] = {γa0n : γ < ω1 ∧ n < ω} ∪ {γa0na1 : γ < ω1 ∧ n ∈ aγa1[G]}.
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Here γa0n = 〈γ, 0, . . . , 0︸ ︷︷ ︸
n 0s

〉 , γa0na1 = 〈γ, 0, . . . , 0︸ ︷︷ ︸
n 0s

, 1〉 , γa1 = 〈γ, 1〉 .

Thus J[G] ⊆ I and J[G] ∈ L[G] . (Not necessarily J[G] ∈ L .) We put

MG = P(ω) ∩
⋃

i1,...,in∈J[G]

L[ai1 [G], . . . , ain [G]]; MG ⊆P(ω).

The next theorem implies Theorem 2(i) since it follows from Theorem 4 that the set
MG belongs to a cardinal-preserving extension of L .

Theorem 8. If a set G ⊆ P is P-generic over L then MG is a model of PA∗2 (with the parameter-
free Comprehension CA∗ ) in which the full CA(Σ1

2) holds but the full CA(Σ1
4) fails.

Proof (sketch, see [8] for a full proof). That MG is a model of CA(Σ1
2) (with parameters)

follows by the Shoenfield absoluteness theorem, because MG is Gödel-closed downwards
by construction. That the parameter-free AC∗ω holds in MG follows by the ordinary
permutation technique by a method rather similar to the verification of AC∗ω in the proof
of Theorem 7 above.

Finally, MG fails to satisfy the full CA. Indeed the reals aγ1[G] (γ < ω1 ) do not belong
to MG , since γa1 /∈ J[G] by construction. On the other hand, each aγa1[G] is analytically
definable in MG as the set containing the numbers n ≥ 1 such that the structure of true 6L -
successors above a〈γ〉[G] has a split at n-th level, and possibly containing or not containing
0. Note the role of a〈γ〉[G] ∈ MG as a parameter in this definition of aγa1[G] in MG . The
ensuing definability formula for aγa1[G] is Σ1

4 by direct estimation, because it is based on
the Π1

3 definability of the relation of ‘being a true 6L -successor’.

Another model of PA∗2 , in which CA fails even in the most elementary form of the
nonexistence of complements of some its members, is also presented in [8]. It has the form
M = (P(ω) ∩ L) ∪ {yn : n < ω} , where 〈yn〉n<ω is a Cohen-generic sequence over L .
Note that the complements y′n = ω r yn are not adjoined to M , so that CA is violated in
M even in the form ∃ x ∀ k (k ∈ x ⇐⇒ k /∈ yn) , with yn as a parameter. On the other hand,
the parameter-free CA∗ holds in M by ordinary permutation arguments.

12. Working on the Basis of the Consistency of PA2

This section is devoted to claims (ii) of our main Theorems 1–3. We recall that the
consistency of PA2 is a common assumption in claims (ii). As the proofs of claims (i) of the
theorems, given above, contain a heavy dose of the forcing technique, first of all we have to
adequately replace PA2 with a more ZFC-like, forcing-friendly theory. This will be ZFC− ,
a subtheory of ZFC obtained as follows:

(a) the Power Set axiom PS is excluded;

(b) the Axiom of Choice AC is replaced with the well-orderability axiom WA saying that
every set can be well-ordered;

(c) the Replacement schema, which is not sufficiently strong in the absence of PS, is
replaced with the Collection schema;

See, e.g., [26] for a comprehensive account of main features of ZFC− .
Two more principles are considered in the context of ZFC−, namely

HC: every set is finite or countable,

V = L: every set is Gödel-constructible, i.e., the axiom of constructibility.

Theorem 9. Theories PA2 and ZFC− + HC + (V = L) are equiconsistent. In fact they are
interpretable in each other.
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Proof. This has been a well-known fact since while ago, see e.g., Theorem 5.25 in [16]. A
more natural way of proof is as follows.

Firstly the theory Z− (i.e., ZFC− without WA and Collection) is interpreted in PA2
by the tree interpretation described e.g., in [16], § 5, especially Theorem 5.11, or in [17],
Definition VII.3.10 ff. Kreisel [1], VI(a)(ii), attributed this interpretation to the category
of “crude” results. Secondly the whole theory ZFC− + HC + (V = L) is interpeted in
Z− by means of the same tree interpretation, but restricted to only those trees that define
sets constructible below the first gap ordinal, see a rather self-contained proof in [27]. This
second part belongs to the category of “delicate” results of Kreisel [1], VI(b)(ii).

Theorem 9 allows us to replace the consistency of PA2 in claims (ii) of our Theorems 1–3
by the equivalent consistency of ZFC− , which is a much more forcing-friendly theory.

This makes it possible to argue in the frameworks of ZFC− in the following proof
of Theorem 3(ii). The proof is an adaptation of the proof of the statement (i) of the same
Theorem 3, on the basis of ZFC− + HC + (V = L) .

Proof of Claims (ii) of Theorems 1–3. We argue on the basis of ZFC− + HC + (V = L).
In other words, all sets are countable and constructible, so that the ground universe
behaves like Lω1 in many ways. Yet, to avoid unnecessary misunderstanding, we accept
the following.

Definition 2. The ground universe of ZFC− + HC + (V = L) is denoted by L− . Accordingly
ω−1 will be the collection (a proper L− -class) of all ordinals in L− .

Emulating the construction in Section 5, we define proper classes I = (ω−1 )<ω r {Λ}
and Ξ , and sets ISζ , ζ[⊂i] , ζ[ 6⊆i] , etc., similar to Section 5. But coming to Definition 1,
we face a problem. Indeed, each space P(ω)ξ and any homeomorphism H : P(ω)ξ →
P(ω)ξ is now a proper class, hence Perfξ as by Definition 1 is a class of proper classes,
which cannot be considered. Therefore we have to parametrize homeomorphisms by sets.

Definition 3 (ZFC− form of Definition 1).
Arguing in L− , let ξ ∈ Ξ . Define

Qξ = {x ∈P(ω)ξ : the set {〈i, k〉 : x(i)(k) = 1} is finite} ;

this is a countable dense subset of P(ω)ξ in ZFC− .
Let h : Qξ →P(ω)ξ be any map (a set in L− ). Let [h] be its extension defined on P(ω)ξ

by [h](x) = limy→x h(y) whenever the limit exists, so [h] : dom [h] → P(ω)ξ is a continuous
map defined on dom [h] , a topologically closed “subset” or rather subclass of P(ω)ξ (also a proper
class).

We define Hξ to be the class of all maps h : Qξ →P(ω)ξ such that dom [h] = P(ω)ξ , [h]
is 1− 1 and [h] is a projection–keeping homeomorphism.

Finally if h ∈ Hξ then let Xh = [h] ”P(ω)ξ = {[h](x) : x ∈P(ω)ξ } .
Then Perf−ξ = Hξ and Perf− =

⋃
ξ∈Ξ Perf−ξ are proper classes, of course.

It is quite obvious that in the ZFC setting Perfξ coincides with the collection of all sets
Xh , h ∈ Hξ . This allows us to use the map h → Xh as a parametrization of Perf in L− , so
that Perf− is the set of codes for the Perf and each particular Perf−ξ = Hξ is the set of codes
for Perfξ . We will use Perf− as a forcing notion, that is, put P− = Perf− , with the order
g 6 h if and only if Xg 6 Xh in the sense of Section 5.

Note that both (∗) and the order are definable proper classes in L− .
Conditions h ∈ P− should be informally identified with corresponding objects (para-

metrically defined proper classes) Xg .
The property (∗) in the proof of Theorem 4 transforms to the following property of

the forcing Perf− has a property in L− :
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(∗−) if a parametrized sequence of classes Dn ⊆ Perf− is such that each Dn is open dense
in Perf− , and X ∈ Perf , then there is a stronger condition Y ∈ Perf , Y 6 X , and
finite sets D′n ⊆ Dn pre-dense in Perf− below Y .

In other words, Perf− is a pretame forcing notion in L− in the sense of [28] or [29].
It follows (see e.g., [29]) that any Perf−-generic extension of L− is still a model of

ZFC− , and the forcing and definability theorems hold similar to the case of usual set-
size forcing. Furthermore all constructions and arguments involved in the proofs of
Theorems 6–8 above (i.e., claims (i) of Theorems 1–3), as well as the results of [21,22]
cited in the course of the proofs, can be reproduced mutatis mutandis on the basis of
the theory ZFC− + HC + (V = L). In particular, Theorem 6 takes the form asserting
that the P(ω)-part of a certain subextension of any P− -generic extension of L− satisfies
PA2 + ¬AC∗ω(Π1

3) .
Metamathematically, this means that the formal consistency of ZFC− +HC+ (V = L)

implies the consistency of PA2 + ¬AC∗ω(Π1
3). However the consistency of ZFC− + HC +

(V = L) is equivalent to the consistency of PA2 by Theorem 9. This concludes the proof of
Claim (ii) of Theorem 3.

Pretty similarly, Theorems 7 and 8 take appropriate forms sufficient to infer the
consistency of resp.

PA2 + AC∗ω + ¬ACω(Π1
3) , PA∗2 + CA(Σ1

2) + ¬CA(Π1
4) ,

from the consistency of PA2 , as required. This completes the proof of Claims (ii) of
Theorems 1–3.

13. Conclusions, Remarks, and Problems

In this study, the method of generalized arboreal iterations of the Sacks forcing is
employed to the problem of obtaining cardinal-preserving models of ZFC, and models of
ZFC− and the second-order Peano arithmetic PA2 , in which the parameter-free version
of the Comprehension or Choice schema holds but the full schema fails. These results
(Theorems 1–3 above) contribute to the ongoing study of both subsistems and extensions
of PA2 as in [13–15,17,30,31] among many others, as well as to modern studies of forcing
extensions in class theories and ZFC− -like theories as in [26,32–34].

From our study, it is concluded that the technique of generalized arboreal iterations
of the Sacks forcing succeeds to solve important problems in descriptive set theory and
second-order Peano arithmetic related to parameter-free versions of such crucial axiom
schemata as Comprehension and Choice, by our Theorems 1–3.

From the results of this paper, the following remarks and problems arise.

Remark 5. Identifying the theories with their deductive closures, we may present the concluding
statements of Theorems 1–3 as resp.

PA2 + AC∗ω $ PA2 + ACω, PA∗2 + CA(Σ1
2) $ PA2, PA2 $ PA2 + AC∗ω. (6)

Studies on subsystems of PA2 have discovered many cases in which S $ S′ holds for a given
pair of subsystems S, S′ , see e.g., [17]. And it is a rather typical case that such a strict extension is
established by demonstrating that S′ proves the consistency of S. One may ask whether this is the
case for the results in (6). The answer is in the negative: namely

the theories PA∗2 , PA∗2 + CA(Σ1
2) , and the full PA2 are equiconsistent

by a result in [18], also mentioned in [19]. This equiconsistency result also follows from a somewhat
sharper theorem in [35], 1.5.

Remark 6. There is another meaningful submodel of the basic model L[G] = L[a[G] . Namely,
consider the set W ′′ of all finite or countable well-founded initial segments ξ ∈ L , ξ ⊆ I , instead
of the sets W (as in Section 8) and W ′ (as in Section 10). Define a corresponding submodel M′′G
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accordingly. Then ACω holds in M′′G but DC(Π1
3) fails. Yet a better model is defined in [31], in

which ACω holds but even DC(Π1
2) (the best possible in this case) fails.

Remark 7. It will be interesting to study problems considered in this paper in the frameworks of
non-ZF-oriented set theories like Quine’s New Foundations NF [36], various non-well-founded and
anti-foundational theories (see [37]), or (as suggested by one of the anonymous reviewers) the ideal
set theory or the ideal calculus as in [38]—which is essentially a naïve set or class theory with a
rather vague axiomatic. Yet it seems to us that those theories haven’t so far developed an adequate
instrumentarium to study and answer such sort of questions.

We proceed with a list of open problems.

Problem 1. Is the parameter-free countable choice schema AC∗ω in the language L(PA2) true in
the models defined in Section 11?

We expect that AC∗ω fails in the first model in Section 11 via the relation Φ(k, x) :=
x ⊆ ω codes k 6L -incomparable reals minimal over L , and it’s a separate problem how to
modify this model to allow AC∗ω + ¬CA.

Problem 2. Can we sharpen the result of Theorem 8 by specifying that CA(Σ1
3) , rather than Σ1

4 ,
is violated? The combination CA(Σ1

2) plus ¬CA(Σ1
3) over PA∗2 would be optimal for Theorem 2.

Can we similarly sharpen the result of Theorems 6 and 7 by specifying that AC∗ω(Σ1
2), resp.,

ACω(Σ1
2) are violated?

As conjectured by V. Gitman, Jensen’s iterated forcing may lead to the solution of
Problem 2 by methods outlined in [31]. Such a construction makes use of the consecutive
“jensenness”, known to be a Π1

2 relation, instead of the consecutive “sacksness”, which can
help to define the counterexamples required at minimally possible levels.

Problem 3. As a generalization of Problem 2, prove that, for any n ≥ 2, PA∗2 + CA(Σ1
n) does

not imply CA(Σ1
n+1) . In this case, it would be possible to conclude that the full schema CA is not

finitely axiomatizable over PA∗2 . There are similar questions related to Theorems 6 and 7, of course.
Compare to Problem 9 in ([16], § 11).

We expect that methods of inductive construction of forcing notions in L that are
similar to the iterated Jensen forcing as in [31] but carry hidden automorphisms, recently
developed in our papers [39–43], may lead to the solution of Problem 3.

Problem 4 (Communicated by Ali Enayat). A natural question is whether the results of this note
also hold for second order set theory (the Kelley–Morse theory of classes), with suitable reformulations
of the Choice and Comprehension schemata.

This may involve a generalization of the Sacks forcing to uncountable cardinals,
as e.g., in Kanamori [44], as well as the new models of set theory recently defined by
Fuchs [45], on the basis of further development of the methods of class forcing introduced
by S. D. Friedman [28].
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