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Abstract: A model of set theory ZFC is defined in our recent research, in which, for a given n ≥ 3,
(An) there exists a good lightface ∆1

n well-ordering of the reals, but (Bn) no well-orderings of the
reals (not necessarily good) exist in the previous class ∆1

n−1 . Therefore, the conjunction (An)∧ (Bn) is
consistent, modulo the consistency of ZFC itself. In this paper, we significantly clarify and strengthen
this result. We prove the consistency of the conjunction (An) ∧ (Bn) for any given n ≥ 3 on the
basis of the consistency of PA2 , second-order Peano arithmetic, which is a much weaker assumption
than the consistency of ZFC used in the earlier result. This is a new result that may lead to further
progress in studies of the projective hierarchy.
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1. Introduction

The following theorem, devoted to the problem of “effective” well-orderability of the
real line R, was established in our recent paper [1].

Theorem 1 (= Theorem 1 in [1]). Let n ≥ 3. There is a generic extension of L , in which :

(An) there is a ∆1
n -good well-ordering of the set R of all reals, of length ω1;

(Bn) there are no ∆1
n−1 well-orderings of R, of any kind, i. e., not necessarily good.

Here ∆1
n are lightface projective classes. We refer to [1] for introductory material and

references to earlier research on this topic. Generally we refer to Moschovakis’ mono-
graph [2] in matters of modern notation in descriptive set theory. We recall that a ∆1

n -good
well-ordering is any ∆1

n well-ordering 4 such that the class ∆1
n is closed under 4-bounded

quantification, so that if P(y, x) is a binary ∆1
n relation on the reals, then the relations

Q(z, x) := ∃ y 4 x P(z, y) and R(z, x) := ∀ y 4 x P(z, y)

belong to ∆1
n as well. Gödel [3] proved that the axiom of constructibility V = L implies

the existence of a ∆1
2 -good well-ordering of R, and such well-orderings are behind some

crucial applications of constructibility in set theory, see Section 5A in [2].
The goal of this paper is to reprove Theorem 1 in the context of second-order Peano

arithmetic PA2 . This theory governs the interrelations between the natural numbers and
sets of natural numbers, and is widely assumed to lay down working foundations for
essential parts of modern mathematics, see, e.g., Simpson [4]. The specific version PA2 of
second-order Peano arithmetic considered here contains Peano’s axioms for numbers, the
axioms of Induction and Extensionality, and the Comprehension and Countable Choice
schemata resp. CA and ACω , see Section 8 for details.
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Note that claims (An) and (Bn) of Theorem 1 can be adequately presented by certain
formulas of the language of PA2 , based on suitable universal formulas for classes Σ1

n and
Σ1
n−1 . Therefore, for any given n ≥ 3, the conjunction (An)∧ (Bn) is essentially a formula,

say Φn , of the language of PA2 , and the theorem implies that Φn is consistent with
ZFC, and, hence, with PA2 as well. Thus, it becomes a natural problem to establish the
consistency result of Theorem 1 on the base of the PA2 tools rather than (much stronger)
ZFC tools. This problem is solved by the next theorem, which is the main result of
this paper.

Theorem 2. Let n ≥ 3. Assuming that PA2 is consistent, the conjunction of (An) and (Bn) of
Theorem 1 is consistent with PA2 .

2. Outline of the Proof

Given n ≥ 3 as in Theorem 1, a generic extension of L was defined in [1], in which
(An) and (Bn) of Theorem 1 hold. This model involves a product forcing notion P ∈ L ,
defined in L , the constructible universe, as the finite support product of ℵ1 -many forcing
notions similar to Jensen’s “minimal Π1

2 singleton” forcing as in [5]. This forcing notion P
depends on the index n in Theorems 1 and 2, of course, but we suppress this dependence,
assuming that n ≥ 3 is fixed once and for all.

The method of finite-support products of Jensen’s forcing, which we owe to Enayat [6],
has brought several results similar to Theorem 1 in our recent papers. Some of them are
mentioned in [1]. Some other results are as follows.

1. A model of ZFC in [7] with a Groszek–Laver pair (see [8]), which consists of two
OD-undistinguishable E0 classes X 6= Y , whose union X ∪Y is a Π1

2 set.
2. A model of ZFC in [9] in which, for a given n ≥ 3, ∆1

n reals = constructible reals.
3. Models in [10] with counterexamples to the separation theorem for both Σ1

3 and Π1
3 .

4. A model of ZFC in [11] in which the full basis theorem holds for the effective projective
hierarchy but there is no Σ1

∞ well-ordering of the reals.

We may also mention a very recent paper [12] related to this research line.
The factors of the product forcing P ∈ L in [1] are forcing notions that consist of perfect

trees in 2<ω. Therefore, P ⊆ Lω1 , and, in fact, P is a definable class in Lω1 , and a CCC
forcing. (We recall that a partially ordered set or class P satisfies CCC, or the countable
chain condition, if every antichain A ⊆ P is at most countable.) Thus, we may think about
treating P as a class-forcing over Lω1 . Yet, there is a serious obstacle noted in Section 31
in [1]: the construction of P involves a 3ω1 -sequence, which goes on in Lω2 rather than
Lω1 . We overcome this difficulty in this paper. We make use of a recent construction of
definable-3 sequences by Enayat and Hamkins [13], to obtain a definable-3ω1 sequence
inside Lω1 (Theorem 4), or rather by means of

ZFC−lc := ZFC− + all sets are constructible and countable , (1)

a theory known to be equiconsistent with PA2 and to have Lω1 (more exactly, LωL
1

) as a
natural model. The upper minus stands for the absence of the Power Sets axiom, whereas l
and c in the lower index stand for the constructibility (L) and countability.

Adapting the whole structure of the proof of Theorem 1 in [1], we introduce P here as a
definable class forcing in ZFC−lc satisfying the definable CCC. Then we use the class forcing
theory of S. D. Friedman [14,15], developed by Antos and Gitman [16] to be applicable over
ZFC− , and check that P-generic extensions of a ZFC−lc universe satisfy (An)∧ (Bn) above.

The final reduction to PA2 will be based on the equiconsistency of PA2 , ZFC− , and
ZFC−lc , see Section 8. This is how the proof of Theorem 2 is organized in this paper. We will
freely use the notation and results of the previous article [1] in the course of the proof.
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3. On Power-Less Set Theory

Recall that HC is the set of all hereditarily countable sets. Thus, X ∈ HC if the transitive
closure TC (X) is at most countable. Note that HC = Lω1 under V = L .

We recall that ZFC− is a subtheory of ZFC, obtained as follows:

(a) We exclude the Power Set axiom PS;
(b) The well-orderability axiom WA, which claims that every set can be well-ordered, is

substituted for the usual set-theoretic Axiom of Choice AC of ZFC;
(c) The Separation schema is preserved, but the Replacement schema (which happens

to be not sufficiently strong in the absence of PS) is substituted with the Collection
schema: ∀X ∃Y ∀ x ∈ X

(
∃ y Φ(x, y) =⇒ ∃ y ∈ Y Φ(x, y)

)
.

A comprehensive account of main features of ZFC− is given in, e.g., [16,17].
We may note that if HC ⊆ L holds, then the set Lω1 = HC is a natural model of the

theory ZFC−lc defined by (1) above. This motivates the following definition.

Definition 1. The ground set universe of ZFC−lc (not including classes) is denoted by Lω1 . Ac-
cordingly, ω1 will be the collection (a proper class) of all ordinals in Lω1 .

Remark 1. Arguing in ZFC−lc , we will often consider (definable) proper classes because they will
play a more essential role than is common in ZFC. We will also consider such things as class-size
collections of proper classes, e.g. class-long sequences 〈Xα〉α<ω1 of proper classes Xα , with the
understanding that the real thing considered in this case is some (definable) class Y ⊆ ω1 × Lω1

whose slices Yα = {x : 〈α, x〉 ∈ Y} are equal to the given classes Xα .

4. Some Preliminary Constructions in Power-Less Set Theory

The construction of the forcing notion PP for the proof of Theorem 1 in [1] goes on in
the universe Lω1 of ZFC−lc and involves the following principal elements.

(1) The collection PT of all perfect trees T ⊆ 2<ω.
Arboreal forcings, i. e., those P ⊆ PT satisfying s ∈ T ∈ P =⇒ T� s ∈ P , in § 3 of [1].
In the context of ZFC−lc , such a P can be either a set or a (definable) proper class. Let
AF be the class of all arboreal forcings P which are sets.

(2) By § 3 of [1], an arboreal forcing P is:

- regular, if, for any S, T ∈ P , the intersection [S] ∩ [T] of corresponding perfect sets
[S], [T] is clopen in [S] or in [T] ;

- special, if there is a finite or countable antichain A ⊆ P such that P = {T� s : s ∈ T ∈
A}— the antichain A is unique and P is countable in this case.

(3) The class MT of all multitrees, i.e., maps p : |p| → PT, such that |p| ⊆ ω1 is finite.
(4) Multiforcings, i.e., maps π : |π| → {arboreal forcings} , such that |π| ⊆ ω1 , in § 6 of [1].

A multiforcing π is:

- small, in case both |π| and each forcing π(ξ) , ξ ∈ |π| , are (countable) sets rather
than proper classes, or equivalently (in ZFC−lc ), π itself is a set;

- special, in case |π| is countable and each π(ξ) is special, as in (2);
- regular, in case all π(ξ) are regular, as in (2).

All special multiforcings are small and regular—hence, sets in ZFC−lc . Non-small
multiforcings are proper classes, of course. See Remark 1.

(5) If π is a multiforcing then MT(π) is a collection of all π -multitrees p , i.e., those
satisfying |p| ⊆ |π| and p(ξ) ∈ π(ξ) for all ξ ∈ |p| . Clearly, both MT(π) and
π itself are just different representations of the finite-support product ∏ξ∈|π| π(ξ) ,
see § 6 of [1]. If π is a set (equivalently, a small multiforcing), then MT(π) is a set
as well.

(6) The collection MFsp of all special (therefore small) multiforcings π , i. e., such that |π| ⊆
ω1 is at most countable and if α ∈ |π| , then π(α) is special in § 16 of [1].

(7) The operation
⋃cw of component-wise union of multiforcings, § 6 of [1].
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(8) The relation << of refinement of multiforcings, § 7 of [1]. The relation π <<D ϙ (sealing
refinement, § 8 of [1]) means that π << ϙ and D ⊆MT(π) is pre-dense in MT((π ∪cw
ϙ)) . Some related notions such as <<p (types of sealing refinements) are introduced
in § § 9–13 of [1], and summarized in the common sealing refinement relation π <<<<M ϙ

in § 14 of [1], meaning that π <<D ϙ holds for all D dense in MT(π) , which either
belong to M or are coded in some way by elements of M .

(9) For any ordinal, α ≤ ω1 — the collection
#    ”
MFα of all <<-increasing sequences #”π of special

multiforcings, of length lh( #”π) = α , in § 16 of [1]. If #”π ∈ #    ”
MFα , then the componentwise

union
⋃cw #”π =

⋃
γ<α

#”π(γ) is a multiforcing, and
⋃cw #”π a set in case α < ω1 and a

proper class in case α = ω1 .
(10) The collection

#    ”
MF =

⋃
α<ω1

#    ”
MFα of all <<-increasing sequences of special multiforcings,

of countable transfinite length. The relation #”π ⊂ #”
ϙ on

#    ”
MF means that a sequence #”

ϙ

is a proper extension of #”π . If M is any set, then #”π ⊂M
#”
ϙ means that #”π ⊂ #”

ϙ , and in
addition π <<<<M ϙ(λ) , where λ = lh( #”π) and π =

⋃cw #”π . See § 16 of [1].

Of those, perfect trees, special arboreal forcings, multitrees, special multiforcings,
sequences in

#    ”
MF are pretty legitimate objects (sets) in ZFC−lc . If π is a special multi-

forcing then MT(π) (all π -multitrees as in (5)) is a set in ZFC−lc . On the other hand,
collections PT, AF, MFsp,

#    ”
MF, as well as any sequence in

#    ”
MFω1 , and similar uncountable

objects are definable classes in ZFC−lc , and accordingly so that all associated results in
Sections 3–14 and 16 in [1] remain true in ZFC−lc , with the understanding that some objects
are proper classes, of course. In particular, the following results are true.

Theorem 3 (Theorem 4 in [1]). In ZFC−lc , if π is a small regular multiforcing and M a countable
set, then there is a special multiforcing ϙ satisfying |π| = |ϙ| and π <<<<M ϙ.

Lemma 1 (Lemma 21 in [1]). In ZFC−lc , assume that M is any (countable) set. Then :

(i) If κ < λ < ω1 and #”π ∈ #    ”
MFκ , then there exists a sequence #”

ϙ ∈ #    ”
MFλ such that #”π ⊂M

#”
ϙ ;

(ii) If κ < λ ≤ ω1 , #”π ∈ #    ”
MFκ , #”

ϙ ∈ #    ”
MFλ , #”π ⊂M

#”
ϙ , and a set D ∈ M is open dense in

MT( #”π) , then
⋃cw #”π <<D ϙ≥κ =

⋃cw
κ≤α<λ

#”
ϙ(α) , so that D is pre-dense in MT( #”

ϙ) .

Lemma 2 (Lemma 22 in [1]). In ZFC−lc , the following ternary relation belongs to the class

∆1 = ∆
Lω1
1 : “ #”π, #”

ϙ ∈ #    ”
MF∧M ∈ Lω1 ∧

#”π ⊂M
#”
ϙ ” .

Now we approach the construction of the forcing notion PP in § § 18–20 of [1]. The main
issue with this construction is that it involves a 3ω1 -sequence in [1]. The ZFC construction
of such a sequence (as, e.g., in [18]) formally can be maintained as a proper class in ZFC−lc .
However, unfortunately, the proof of the 3ω1 -property does not go through in ZFC−lc
because its ZFC proof involves ordinals beyond ω1 , and hence, does not directly translate
to the ZFC−lc setup. The next section provides an appropriate substitution.

5. Definable 3ω1 Sequence by Means of Power-Less Set Theory

It is established in a recent paper (Theorem 4.1 in [13]) that, under V = L , there is an
Ord-long class-sequence satisfying a 3-property for all definable classes. Inspired by this
result, we prove the following theorem using nearly the same method:

Theorem 4 (ZFC−lc ). There is a ∆1 sequence 〈Sα〉α<ω1 of sets Sα ⊆ α such that : for any definable
(with parameters) classes S, C ⊆ ω1 , if C is club in ω1 , then S ∩ α = Sα for some α ∈ C.

Any sequence of sets Sα as in the theorem can be seen as guessing sufficiently often initial
segments S ∩ α of any definable S ⊆ ω1 within any definable club (i.e., closed unbounded)
C ⊆ ω1 . This is the best possible result in ZFC−lc of such kind. But ZFC with the axiom
of constructibility, a stronger result is possible, in which the guessing property holds for
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arbitrary (not necessarily definable) sets S, C ⊆ ω1 . This is basically the fundamental
“diamond” theorem 3ω1 of Jensen, see, e.g., Theorem 13.21 in [18].

We use the standard notation ΣX
n , ΠX

n , ∆X
n (slanted lightface Σ, Π , ∆ ) for classes of

lightface definability over a given transitive set X , e.g., X = Lω1 (no parameters allowed),
and ΣX

n , ΠX
n , ∆X

n for boldface definability in X (parameters from X allowed). Simply Σn
means Σn definability in the whole universe, i.e., Lω1 when arguing under ZFC−lc , and Πn ,
∆n is understood similarly. We call Σn , Πn , ∆n and the like types rather than classes in
this paper since the word ‘class’ has a special technical meaning in the context of ZFC−lc ,
that is, a definable collection of sets.

Proof. We argue under ZFC−lc . As the axiom of constructibility is assumed by ZFC−lc , let
6L be the Gödel well-ordering of the universe, of definability type ∆1 . Define the sets
Sα by transfinite recursion. Suppose that Sα has been defined for all α < ϑ . We put
Sϑ = ∅ unless

(*) ϑ is a limit ordinal, and there is a set S′ ⊆ ϑ and a club (closed unbounded set) C′ ⊆ ϑ ,
with both S′ and C′ definable (allowing parameters) in the structure Lϑ = 〈Lϑ ; ∈〉 .
If (*) holds, then pick the least such pair 〈S′, C′〉, minimizing first on the Gödel codes of

the defining formulas of S′ and C′ , and then, using the well-order 6L �Lϑ , on the parameters
used in the definitions. For this minimal pair, let Sϑ = S′ . This completes the inductive
definition. The definition makes use of the truth predicate for the structure 〈Lϑ ; ∈〉.

We claim that the sequence 〈Sα〉α<ω1 is as required. First of all, the truth predicate is
known to be ∆1 , and so is the restricted order 6L �Lϑ , with ϑ as the only parameter. It
routinely follows that the class sequence 〈Sα〉α<ω1 is ∆1 in the universe of ZFC−lc .

Further, suppose towards the contrary that S, C ⊆ ω1 are counterexamples, so that C
is a club in ω1 , both S, C are classes definable by specific formulas resp. σ(·), κ(·) (with
some parameters not explicitly indicated), so that

C = {γ < ω1 : κ(γ)} , S = {γ < ω1 : σ(γ)} ,

and S ∩ α 6= Sα for all α < ω1 .
We may assume, without loss of generality, that these formulas are chosen so as to

be minimal in the sense of the construction, so that, successively, their Gödel codes are as
small as possible, and the the parameters involved form a 6L -minimal tuple, respectively.

Let m be a sufficiently large natural number, larger than the Gödel codes of the for-
mulas σ(·), κ(·) and their subformulas, and large enough so that the minimality condition
we just formulated is expressible by a Σm formula. Let ϑ be any limit ordinal such that
all the parameters used in the definitions belong to Lϑ , and such that Lϑ is an elementary
submodel of the whole universe Lω1 of the theory ZFC−lc considered, w.r. t. all Σm formulas.
It follows that the restrictions 6L �Lϑ , and also S ∩ Lϑ and C ∩ Lϑ are definable in Lϑ by
the same definitions and parameters as their counterparts in Lω1 .

Therefore, C ∩ ϑ is club in Lϑ , and S ∩ ϑ , C ∩ ϑ form a minimal pair using those
definitions S ∩ α 6= Sα for any α ∈ C ∩ ϑ . Thus, by the definition of Sϑ , it follows that
Sϑ = S ∩ ϑ . Since C ∩ ϑ is unbounded in ϑ and C is closed, it follows that ϑ ∈ C , and so
Sϑ = S∩ ϑ contradicts our assumption about S and C . So there are no such counterexample
classes, and we have finished.

Following § 18 in [1], we proceed to the next definition.

Definition 2 (ZFC−lc ). We fix a sequence 〈Sα〉α<ω1 given by Lemma 4.
As usual, let 6L be the Gödel ∆1 well-ordering of the set universe Lω1 under ZFC−lc .
We let cα = αth element of Lω1 in the sense of 6L ; thus, Lω1 = {cα : α < ω1} .
If Z ⊆ Lω1 and α < ω1 , then let (Z)<α = {cξ ∈ Z : ξ < α} .
If α < ω1 then let Aα = {cξ : ξ ∈ Sα} . Then, 〈Aα〉α<ω1 is still a ∆1 sequence.
Let An

α = {a : 〈n, a〉 ∈ Aα} .
Let M(α) = {An

α : n < ω} . Then, 〈M(α)〉α<ω1 is still a ∆1 sequence.
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6. The Key Sequence and Key Forcing Notion

The next theorem (Theorem 5) is a crucial step towards the construction of the forcing
notion that will prove Theorem 2. The theorem is a close version of Theorem 7 in [1]. The
construction employs some ideas related to definable generic transfinite constructions, and
it will go on by a transfinite inductive definition of a sequence #”

� ∈ #    ”
MFω1 in Lω1 from

countable subsequences. The result can be viewed as a maximal branch in
#    ”
MF, generic with

respect to all sets of a given complexity.

Definition 3 (in ZFC−lc ). From now on, a number n ≥ 3 as in Theorem 2, is fixed.
A sequence #”π ∈ #    ”

MF blocks a set or class W ⊆ #    ”
MF, if either #”π belongs to W (a positive

block) or no sequence #”
ϙ ∈W ∩ #    ”

MF extends #”π (a negative block).
Any sequence #”

� = 〈�α〉α<ω1 ∈
#    ”
MFω1 (that is, a definable proper class), satisfying the

following four conditions (A)–(D) for this n, will be called a key sequence:

(A) The set | #”� | = ⋃
α<κ |

#”
�(α)| is equal to ω1 .

(B) Every γ < ω1 is a crucial ordinal for #”
� , so that the relation (

⋃cw
α<γ �α) <<<<M(γ) �γ holds,

where M(γ) is introduced by Definition 2 and <<<<M by (8) of Section 4.
(C) If in fact n ≥ 4 and W ⊆ #    ”

MF is a boldface Σn−3 class (a definition with parameters), then
there exists an ordinal γ < ω1 such that the subsequence #”

� �γ blocks W —so that either
#”
� �γ ∈W , or there is no sequence ϙ ∈W extending #”

� �γ .
(D) The sequence #”

� belongs to the definability type ∆n−2 in Lω1 .

Theorem 5 (ZFC−lc ). There exists a key sequence #”
� = 〈�α〉α<ω1 ∈

#    ”
MFω1 .

Proof (sketch). Argue under ZFC−lc , with n ≥ 3 fixed, and strictly follow the proof of
Theorem 7 in [1], with Theorem 3 and Lemmas 1 and 2 as the principal references.

Definition 4 (ZFC−lc ). From now on, we fix a key sequence #”
� = 〈�α〉α<ω1 ∈

#    ”
MFω1 , given by

Theorem 5 for the number n ≥ 3 fixed by Definition 3. It satisfies (A)–(D) of Definition 3. We call
this fixed #”

� ∈ L the key sequence.

Based on Definition 4, we introduce some derived notions.

Definition 5 (ZFC−lc ). Using the key sequence #”
� = 〈�α〉α<ω1 , we define the regular multiforcing

� =
⋃cw

α<ω1
�α , and the forcing notion PP = MT(�) = MT( #”

�) .

We will call � the key multiforcing below. Technically, � is a class-long sequence of
proper classes; see Remark 1. Accordingly, PP = MT(�) will be our key forcing notion;
technically, a definable proper subclass of the class MT of all multitrees. The following
theorem presents the principal CCC property of PP in the ground universe Lω1 of ZFC−lc .

Theorem 6 (ZFC−lc , Theorem 7 in [1]). The forcing notion PP satisfies countable chain condition
CCC. Therefore, PP-generic extensions of L preserve cardinals.

7. Forcing Method over Power-Less Set Theory and the Key Model

The forcing engine does not necessarily work in ZFC−lc for an arbitrary class-size
forcing notion. But there is a type of forcing notions that admits adequate treatment of
forcing, similar to the standard ZFC case.

Definition 6 (S. D. Friedman, see [14,16]). A forcing notion (a partially ordered definable class)
P = 〈P ;≤〉 is pre-tame if for every class sequence 〈Dx〉x∈a of dense classes Dx ⊆ P, parametrized
by elements of a set a (so that D = {〈x, z〉 : x ∈ a ∧ z ∈ Dx} is a definable class), and every
condition p ∈ P, there is a condition q ≤ p and a sequence 〈dx〉x∈a of subsets of P such that each
dx ⊆ Dx is pre-dense below q in P.
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Theorem 7 (S. D. Friedman, see [14,16]). In ZFC− , let P = 〈P ;≤〉 be a pre-tame class-forcing
notion. Then P preserves ZFC− and satisfies the main forcing principles including the truth—
forcing and forcing definability theorems.

We recall that our key forcing PP, introduced by Definition 5, is a class forcing, satisfying
CCC by Theorem 6. Therefore, PP is pre-tame under ZFC−lc , as so obviously is any CCC
forcing. We conclude that Theorem 7 is applicable, and, hence, usual forcing theorems
are valid for PP-generic extensions of Lω1 , the ZFC−lc set universe. This justifies all forcing
results in Chapters III and IV of [1], including Theorems 9 and 13 there, on the basis of
ZFC−lc . This argument validates the following theorem:

Theorem 8 (ZFC−lc , Theorems 9 and 13 in [1]). Let n ≥ 3 (see Definition 3 on n). Any PP-
generic extension of Lω1 , the ZFC−lc universe of discourse, is still a model of ZFC− , in which
statements (An) and (Bn) of Theorem 1 hold for the index n.

In other words, any PP-generic extension of Lω1 , the ZFC−lc universe of discourse,
is still a model of ZFC− and a model of statements (An) and (Bn) of Theorem 1. The
following is a usual metamathematical corollary.

Corollary 1. If ZFC−lc is consistent, then so is the theory ZFC−+“(An)∧ (Bn) of Theorem 1”.

8. Reduction to Second-Order Peano Arithmetic

Following [4,19,20] the second order Peano arithmetic PA2 is a theory in the language
L(PA2) with two sorts of variables—for natural numbers and for sets of them. We use
j, k, m, n for variables over ω and x, y, z for variables over P(ω) , reserving capital letters
for subsets of P(ω) and other sets. The axioms are as follows in (1)–(5):

(1) Peano’s axioms for numbers.
(2) Induction as one sentence: ∀ x

(
0 ∈ x ∧ ∀ n (n ∈ x =⇒ n + 1 ∈ x) =⇒ ∀ n (n ∈ x)

)
.

(3) Extensionality for sets of natural numbers.
(4) The Comprehension schema CA: ∃ x ∀ k (k ∈ x ⇐⇒ Φ(k)) , for every formula Φ in

which x does not occur, and in Φ , we allow parameters—free variables other than k .
(5) The schema ACω of Countable Choice: ∀ k ∃ x Φ(k, x) =⇒ ∃ x ∀ k Φ(k, (x)k)) , for

every formula Φ with parameters allowed, where (x)k = { j : 2k(2j + 1)− 1 ∈ x} .

The theory PA2 is also known as A2 (see, e.g., an early survey [19]), az Z2 (in [21] or
elsewhere). See also [22]. We recall that the consistency of PA2 is the blanket assumption in
Theorem 2. Yet, we can use the following equiconsistency result:

Theorem 9. Theories PA2 and ZFC−lc are equiconsistent.

Proof. The theorem has been a well-known fact for some time, see, e.g., Theorem 5.25 in [19]. A
rather natural way of proof is as follows.

Step 1. Theory ZFC− + “all sets are countable” is interpreted in PA2 by the tree interpretation
described in [19], § 5, especially Theorem 5.11, or in [4], Definition VII.3.10 ff.
Kreisel [20], VI(a)(ii), attributed this interpretation to the type of “crude” results.

Step 2. Arguing in ZFC− + “all sets are countable”, we define the transitive class L of all
constructible sets, which models ZFC− + “all sets are constructible”.

Step 3. We argue in ZFC− + “all sets are constructible”. If every ordinal is countable,
then immediately all sets are countable, that is, we have ZFC−lc . If there exist
uncountable ordinals, then let ω1 be the least of them. Then, Lω1 is a transitive set
which models ZFC−lc .

We conclude from Steps 1–3 that PA2 and ZFC−LC are equiconsistent.

Combining Theorems 9 and 8, we accomplish the proof of Theorem 2.
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9. Conclusions and Problems

In this study, the method of definable 3ω1 sequences was employed to the construction
of a model in which, for a given n ≥ 3, there is a ∆1

n-good well-ordering of the reals, but no
well-orderings of the reals exist in the class ∆1

n−1 at the preceding level of the hierarchy, on
the basis essentially of the second-order Peano arithmetic PA2 . This considerably strengthens
and extends our earlier results, in which such a model was defined on the basis of a much
stronger theory ZFC typically assumed in for independence results by the forcing method.
This is a new result and a valuable improvement upon our earlier results in [1]. The technique
developed in this paper may lead to further progress in studies of different aspects of the
projective hierarchy. We hope that this study will contribute to the following fundamental
problem by S. D. Friedman: find a model for a given n, in which all Σ1

n sets of reals are
Lebesgue measurable and have the Baire and perfect set properties, and, at the same time,
there exists a ∆1

n+1 well-ordering of the reals, [14] (p. 209) and [15] (p. 602).
From our study, it is concluded that the technique of definable 3-sequences will lead to

similar consistency and independence results on the basis of the consistency of PA2 .
Some problems that arise from our study are mentioned in § 32 in [1]. We adjoin the

following problem specific to the research line of this article.

Problem 1. Reprove the consistency result in [9], related to the equality “∆1
n reals = constructible

reals” for any given n ≥ 3, on the basis of the consistency of theory PA2 .
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