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Abstract: The following two consequences of the axiom of constructibility V = L will be
established for every n ≥ 3: 1. Every linear Σ1

n set is the projection of a uniform planar
Π1

n−1 set. 2. There is a planar Π1
n−1 set with countable cross-sections not covered by a

union of countably many uniform Σ1
n sets. If n = 2 then claims 1 and 2 hold in ZFC alone,

without the assumption of V = L .
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1. Introduction
The following theorem is the main result of this paper. It relates to the problems of

uniform projection and countable uniform covering in descriptive set theory.

Theorem 1. Assume that n ≥ 2 and either (I) the axiom of constructibility V = L holds or
(II) n = 2 . Then, we have the following:

(a) (Uniform projection) any Σ1
n set X ⊆ ωω is the projection of a uniform Π1

n−1 set
P ⊆ (ωω)2;

(b) (Countable uniform non-covering) there is a Π1
n−1 set P ⊆ (ωω)2 with countable

cross-sections not covered by a union of countably many uniform Σ1
n sets.

For those not exactly versed in modern set theory, we recall that the axiom of con-
structibility was introduced by Gödel [1] as a statement saying that all sets are constructible,
i.e., all sets admit a certain type of direct transfinite construction. The class of all sets is
traditionally denoted by V , the class of all constructible sets — by L ; hence, the equality
V = L symbolically expresses the content of this axiom.

It is customary in modern descriptive set theory to consider sets in the Baire space ωω ,
identified with the irrationals of the real line R . Sets in the product spaces (ωω)m are also
considered. Sets X ⊆ ωω , resp., P ⊆ (ωω)2, are called linear, resp., planar for clear reasons.

As it is customary in texts on modern set theory, we use dom P for the projection
dom P = {x : ∃ y P(x, y)} of a planar set P to the first coordinate, and we use more compact
relational expressions like P(x, y) , Q(x, y, z) , etc., instead of ⟨x, y⟩ ∈ P , ⟨x, y, z⟩ ∈ Q , etc.

The uniform projection problem. By definition [2,3], a set X in the Baire space ωω

belongs to Σ1
n+1 iff it is equal to the projection dom P = {x : ∃ y P(x, y)} of a planar Π1

n
set P ⊆ (ωω)2; hence, in symbol, Σ1

n+1 = proj Π1
n . The picture drastically changes if we

consider only uniform sets P ⊆ (ωω)2, i.e., those satisfying P(x, y) ∧ P(x, z) =⇒ y = z .
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Proposition 1 (Luzin [4,5], see also Section 2 below). The following three classes coincide:

− Class ∆1
1 of all Borel sets in ωω;

− Class proj unif ∆1
1 of projections of uniform ∆1

1 (that is, Borel) sets in (ωω)2;
− Class proj unif Π1

0 of projections of uniform Π1
0 (that is, closed) sets in (ωω)2.

Thus, symbolically, proj unif Π1
0 = proj unif ∆1

1 = ∆1
1 ⫋ Σ1

1 = proj Π1
0.

In Luzin’s monograph [5], it is indicated that after constructing the projective hierarchy,
“we immediately meet” with a number of questions, the general meaning of which is as
follows: can some properties of the first level of the hierarchy be transferred to the following
levels? Luzin raised several concrete problems of this kind in ([5], pp. 274–276, 285) related
to different results on Borel (∆1

1 ), analytic (Σ1
1 ), and coanalytic (Π1

1 ) sets already known by
that time. In particular, in connection with the results of Proposition 1, Luzin asked a few
questions in [5], the common content of which can be formulated as follows.

Problem 1 (Luzin [5]). For any given n ≥ 2 , figure out the relations between the classes
∆1

n ⫋ Σ1
n = proj Π1

n−1 and proj unif Π1
n−1 ⊆ proj unif ∆1

n .

Proposition 1 handles case n = 1 of the problem, of course.
Case n = 2 in Problem 1 was solved with the Novikov–Kondo uniformization theorem [6,7],

which asserts that every Π1
1 set P ⊆ (ωω)2 is uniformizable by a Π1

1 set Q ; that is, Q ⊆ P
is uniform and domQ = dom P , and hence,

proj unif Π1
1 = proj unif ∆1

2 = Σ1
2 = proj Π1

1 , (1)

which, by the way, implies Theorem 1(a) in case n = 2.
Thus, we have a pretty different state of affairs in cases n = 1 and n = 2. In this

context, the result of our Theorem 1(a) answers Luzin’s problem under Gödel’s axiom of
constructibility in such a way that V = L implies

proj unif Π1
n−1 = proj unif ∆1

n = Σ1
n = proj Π1

n−1 . (2)

for all n ≥ 3, which is pretty similar to the solution in case n = 2 given by (1).
The countable uniform non-covering problem. Assertion (b) of Theorem 1 also has

its origins in some results of classical descriptive set theory. It concerns the following
important result.

Proposition 2 (Luzin [4,5], see also Section 2 below). Every planar ∆1
1 set P ⊆ (ωω)2 , with

all cross-sections Px = {y : ⟨x, y⟩ ∈ P} (where x ∈ ωω) being at most countable, is covered by
the union of a countable number of uniform ∆1

1 sets .

Luzin was also interested in knowing whether this result transfers to levels n ≥ 2.

Problem 2 (Luzin [5]). For any given n ≥ 2 , find out if it is true that every ∆1
n set P ⊆ (ωω)2

with countable cross-sections Px is covered by the union of countably many uniform ∆1
n sets .

Our Theorem 1(b) solves this problem in the negative, outright for n = 2, and under the
assumption of the axiom of constructibility for n ≥ 3. We may note that this solution seems
to be the strongest possible under assumption (I)∨ (II) of Theorem 1, since this assumption
implies that every planar Π1

n−1 set, and even Σ1
n set, with countable cross-sections can be

covered by a union of countably many uniform ∆1
n+1 sets.

On the other hand, even much stronger non-covering results are known in generic
models of ZFC . For instance, it is true in the Solovay model [8,9] that the Σ1

2 set
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P = {⟨x, y⟩ ∈ (ωω)2 : y ∈ L[x]} is a set with countable cross-sections not covered by
a countable union of uniform projective sets of any class, and even real-ordinal defin-
able sets. Different models containing a Π1

2 set with the same properties were defined
in [10,11], and, unlike the Solovay model, without the assumption of the existence of an
inaccessible cardinal.

The axiom of constructibility and consistency. As for the axiom of constructibility
in Theorem 1, it was proved by Gödel [1] that V = L is consistent with ZFC ; therefore,
all of its consequences, like (a) and (b) of Theorem 1, are consistent as well. We recently
succeeded ([12], [Theorem 74.1]) in proving that the negations of (a), in the forms Σ1

n ̸⊆
proj unif Π1

n and ∆1
n ̸⊆ proj unif Π1

n−1 , for any given n ≥ 3, hold in appropriate generic
models of ZFC .

Corollary 1. If n ≥ 3 , then each of the following three statements is consistent with and indepen-
dent of ZFC : Σ1

n = proj unif Π1
n−1 , Σ1

n ̸⊆ proj unif Π1
n , ∆1

n ̸⊆ proj unif Π1
n−1 .

No consistency result related to a positive solution of Problem 2 is known so far; in
particular, both V = L and generic models tend to solve the problem in the negative. This
raises the problem of the consistency of the positive solution (Problem 5 in the final section),
which can definitely inspire further research.

Outline of the proof. We will use a wide range of methods related to constructibility
and effective descriptive set theory. Section 3 contains a brief introduction to universal sets
and constructibility and presents some known results used in the proof of Theorem 1; it is
written for the convenience of the reader.

Section 4 contains a proof of Claim (a) of Theorem 1. To prove the result, we define
the class Γ as the closure of Σ1

n−1 ∪ Π1
n−1 under finite intersections and countable pairwise

disjoint unions. Then, we prove, under V = L , that every set in Γ is a uniform projection
of a Π1

n−1 set (Lemma 1, an easy result), and that every set in Σ1
n is a uniform projection

of a set in Γ . To prove the latter result (Lemma 2), we make use of such a consequence of
V = L as a ∆1

2 well-ordering <L of the reals, combined with an elaborate technique of
effective descriptive set theory due to Harrington [13].

Section 5 contains a proof of Claim (b) of Theorem 1. The proof revolves around the
set U = U[n] of all pairs ⟨x, f ⟩ ∈ ωω × 2ω such that f is the indicator function of a Σ1

n(x)
set u ⊆ ω . We prove that U is not covered by countably many uniform Σ1

n sets (Lemma 3,
rather elementary) and then prove that U is Σ1

n (Lemma 4) using quite a complex argument.
Finally, a Π1

n−1 set with necessary properties is obtained from U by Claim (a) of Theorem 1.
Section 6 presents alternative, shorter, and more transparent proofs of Claims (a) and

(b) of Theorem 1, suggested by an anonymous reviewer.
Section 7 contains some conclusions and offers several problems for further study.

2. Some References
This section is written to provide some exact references and comments related to the

problems and results discussed in Section 1.

Problem 1. In the following quote from Luzin ([5], p. 274), (Bn) is the early set theoretic
notation for ∆1

n (sometimes to the exclusion of lower classes), whereas “ensemble de classe <n”
means a set in Σ1

m ∪ Π1
m for some m < n .

Si E est un ensemble (Bn) plan uniforme relativement à l’axe OX , la projection E de E
sur cet axe est-elle nécessairement un (Bn) , ou un ensemble de classe < n? Un ensemble
uniforme plan de classe n − 1 a-t-il pour projection un (Bn) , ou un ensemble de classe
< n? [Our italic here and below]
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Thus, in modern terms, Luzin asks (1) whether the projection of any uniform ∆1
n set is

necessarily a ∆1
n set and (2) whether the projection of any uniform Π1

n−1 set is necessarily
a ∆1

n set. The question of inverse relations between linear sets and uniform projections is
formulated by Luzin ([5], p. 276) in somewhat different terms as follows:

Or, dès que cette analogie est constatée, il est naturel de se poser les questions suivantes:
peut-on trouver pour chaque ensemble (Bn) une représentation paramétrique régulière?

Here, a regular parametric representation of a ∆1
n = Bn set is its representation as a

1–1 continuous image of a set in Π1
n−1 , which is easily seen to be equivalent to a uniform

projection of a Π1
n−1 set. Thus, essentially, Luzin asks (3) whether any linear ∆1

n set is the
projection of a uniform Π1

n−1 set. We combine Luzin’s questions (1), (2), and (3) in the form
of Problem 1. Note that Theorem 1(a) answers (1) and (2) in the negative (assuming n ≥ 3
and V = L , or just n = 2) and answers (3) in the positive, even more, for Σ1

n instead of ∆1
n .

Problem 2. Here, we refer to the following excerpt from Luzin ([5], p. 274).

Nous avons vu que chaque ensemble analytique uniforme est contenu dans une courbe
uniforme mesurable B et que chaque ensemble E mesurable B qui est conpé par chaque
parallèle à l’axe OY en un ensemble de points au plus dénombrables est composé d’une
infinité dénombrable d’ensembles uniformes mesurables B . Il est très naturel de se poser
des questions analogues relativement aux ensembles projectifs (An) et (Bn) .

Thus, in particular, Luzin cites the result of Proposition 2 and asks if it also holds for
∆1

n for any n , that is, (4) whether every ∆1
n set P ⊆ (ωω)2 with countable cross-sections Px

is covered by the union of countably many uniform ∆1
n sets. We reformulate it as Problem 2.

Theorem 1(a) answers (4) in the negative (assuming n ≥ 3 and V = L , or just n = 2).

Proposition 1. Every linear ∆1
1 (i.e., Borel) set X ⊆ ωω is equal to the projection of a

uniform closed set P ⊆ (ωω)2 (see Luzin ([4], [§ 39]) and ([5], [p. 114])), and conversely, every
projection of a uniform closed or even ∆1

1 set P ⊆ ωω × ωω is a ∆1
1 set in ωω (see Luzin ([4],

[§ 47]) and ([5], [p. 166])). For a modern treatment, see Kechris ([2], [15.1, 15.3]) and
Moschovakis ([3], [2E.7, 2E.8, 4A.7]).

Proposition 2. See Luzin ([4], [§ 54]) (with a reference to Novikov’s research) and ([5],
[P. 243]), Kechris ([2], [18.15]), and Moschovakis ([3], [4F.17]). By the way, Moschovakis ([3],
[p. 195]) refers to Novikov [14] regarding Proposition 2, yet our inspection showed that
there is no such statement there, at least not in explicit form. Novikov, in fact, proves that
every Borel (= ∆1

1 ) set with countable sections has a Borel projection (§ 7 in [14]) and admits
Borel uniformization (§ 9).

3. Preliminaries
We make use of the modern notation [2,3,15] Σ1

n , Π1
n , and ∆1

n for classes of the
projective hierarchy (boldface classes), and Σ1

n , Π1
n , and ∆1

n for the corresponding effective
(or lightface) classes of sets in the spaces of the form (ωω)m × ωk , m, k < ω , which we call
product spaces. As usual, elements a, b, · · · ∈ ωω will be called reals. If a, b, . . . ∈ ωω is a
finite list of reals, then Σ1

n(a, b, . . . ) , Π1
n(a, b, . . . ) , and ∆1

n(a, b, . . . ) are the effective classes
relative to a, b, . . . . Every real x ∈ ωω is formally a subset of ω2; hence, it can belong to
one of the effective classes, say ∆1

n or ∆1
n(a) .

Proposition 3 (universal sets). (i) If n ≥ 1 , X is a product space, and K is a class of the form
Σ1

n or Σ1
n(a), a ∈ ωω, then there is a set U ⊆ ω × X universal in the sense that if X ⊆ X

belongs to K , then there exists an m such that X = Um = {x : ⟨m, x⟩ ∈ U} .

(ii) If n ≥ 1 , then there is a Σ1
n set W ⊆ ω × ωω × ω such that if x ∈ ωω and a set u ⊆ ω

belongs to Σ1
n(x) , then there is an m < ω satisfying u = Wxm = {k : ⟨m, x, k⟩ ∈ W} .
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Proof (sketch). (i) is a well-known standard fact; see, e.g., ([3], [3F.6]) or ([16], [Theorem 4.9
in Chapter C.8]). To prove (ii), let U ⊆ ω × (ωω × ω) be a universal Σ1

n set as in (i) for
X = ωω × ω . Then, set W = U .

Constructible sets were introduced by Gödel [1] as those that can be obtained by
a certain transfinite construction. The axiom of constructibility claims that all sets are
constructible, symbolically V = L , where V = all sets and L = all constructible sets.
See [15,17] as modern references on the theory of constructibility. The analytical representa-
tion of Gödel’s constructibility is well known since the 1950s; see, e.g., Addison [18,19] and
Simpson’s book ([20], [VII.4]). The next proposition gathers some facts on the Gödel well
ordering of ωω.

Proposition 4 (V = L ). There is a ∆1
2 well-ordering <L of ωω , of order type ω1 , such that we

have the following :

(i) The binary relation R(x, z) , iff {(z)m : m < ω} = {y : y <L x} , on ωω belongs to Σ1
2 ,

where (z)m ∈ ωω is defined by (z)m(k) = z(2m(2k + 1)− 1) , ∀ k ;
(ii) If n ≥ 2 , K is a class of the form Σ1

n(b) , b ∈ ωω, and P ⊆ (ωω)3 is a set in K , then

U = {⟨x, a⟩ : ∀ y <L x P(x, y, a)} and V = {⟨x, a⟩ : ∃ y <L x P(x, y, a)}

are still sets in K . The same is true for K = Π1
n(b) and ∆1

n(b) .

Proof (sketch). We let <L be the restriction of the Gödel well ordering of L , the con-
structible universe, to ωω ∩ L . When assuming V = L , <L is known to be a well ordering
of ωω, of length ω1 , and a relation of class ∆1

2 ; see, e.g., ([15], [Thm 25.26]).
Lemma 25.27 in [15] proves (i) for <L . Then, a simple argument, like that in the proof

of Corollary 25.29 in [15], yields (ii). Namely, if, say, P is Σ1
3 , then

U(x, a) ⇐⇒ ∃ z
(

R(x, z) ∧ ∀m P(x, (z)m, a)
)
,

which is easily reducible to Σ1
3 since the numerical quantifier ∀m can be eliminated by the

standard quantifier contraction rules.

Claim (ii) of Proposition 4 is known as the Σ1
2 -goodness of the order <L ; see ([3],

[Section 5A]). This property of <L was essentially singled out by Addison ([19],
[Theorem 1]). The next corollary gives several further consequences of V = L related
to projective hierarchy, also attributed to Addison [19] and rather well known in set theo-
retic studies; see, e.g., ([3], [Section 5A]) or ([16], [Section C.8.5]). Yet, we add proofs for the
convenience of the reader.

Corollary 2 (V = L ). Let n ≥ 2 and a ∈ ωω. Then, we have the following:

(i) If K is a class of the form ∆1
n , Σ1

n , ∆1
n(a) , or Σ1

n(a) , then every set P ⊆ ωω × ωω in K is
uniformizable by a set Q ⊆ P still in K ;

(ii) Any Σ1
n set X ⊆ ωω is the projection of a uniform ∆1

n set ;
(iii) Any non-empty Σ1

n , resp., Σ1
n(a) set X ⊆ ωω contains a ∆1

n , resp., ∆1
n(a) real x ∈ X ;

(iv) If x, y ∈ ωω and x <L y, then x ∈ ∆1
2(y) .

Proof. (i) If P ∈ ∆1
n(a) , then the set Q = {⟨x, y⟩ ∈ P : ∀ y′ <L y¬ P(x, y′)} obviously

uniformizes P , whereas Q ∈ ∆1
n(a) follows from Proposition 4(ii). Now, suppose that

P ∈ Σ1
n(a) . There is a Π1

n−1 set C ⊆ (ωω)3 satisfying P = {⟨x, y⟩ : ∃ z C(x, y, z)} . Using a

canonical homeomorphism H : (ωω)2 onto−→ ωω and the result for ∆1
n(a) already established,

we can uniformize C as a ∆1
n(a) subset of ωω × (ωω)2 via a ∆1

n(a) set D ⊆ C so that
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for any x ∈ ωω , ∃ y, z C(x, y, z) =⇒ ∃ ! y, z D(x, y, z) . It remains to define Q = {⟨x, y⟩ ∈ P :
∃ z D(x, y, z)} .

(ii) If X ∈ Σ1
n , then X ∈ Σ1

n(a) for some a ∈ ωω. By definition, X = dom P for some
Π1

n−1(a) set P ⊆ ωω × ωω . Let Q ⊆ P be a ∆1
n(a) set that uniformizes P by (i).

(iii) Define 0 ∈ ωω by 0(k) = 0, ∀ k . If X ∈ Σ1
n(a) , then the set P = {0} × X =

{⟨0, x⟩ : x ∈ X} is Σ1
n(a) as well, and hence, by (i), it can be uniformized by a Σ1

n(a)
set Q ⊆ P . In fact, Q = {⟨0, x0⟩} for some x0 ∈ X . To see that x0 is ∆1

n(a) , use the
equivalence

x0(j) = k ⇐⇒ ∃ x
(
Q(0, x) ∧ x(j) = k

)
⇐⇒ ∀ x

(
Q(0, x) =⇒ x(j) = k

)
.

(iv) If f ∈ ωω and m < ω , then define ( f )m ∈ ωω as in Proposition 4(i). The set
X = { f ∈ ωω : ∀ x′ <L y ∃m (x′ = ( f )m)} belongs to ∆1

2(y) by Proposition 4(ii). Thus, X
contains a ∆1

2(a) element f ∈ X by (iii). Then, x = ( f )m ∈ ∆1
2(y) for some m .

4. Proof of the Uniform Projection Theorem
Here, we prove Theorem 1(a). We may note that Case (II) (n = 2) of this statement is

covered by the Novikov–Kondo uniformization theorem, and hence, we can assume that
n ≥ 3 and Case (I), the axiom of constructibility V = L , hold.

Thus, we fix a number n ≥ 3 and assume V = L in the course of the proof.
Note that the result will be achieved not by a reference to the Π1

n−1 uniformization
claim, which actually fails for n ≥ 3 under V = L .

Definition 1. Let Γ be the closure of the union Σ1
n−1 ∪ Π1

n−1 under the operations (1) of finite
intersections and (2) of countable unions of pairwise disjoint sets — both operations for sets in one
and the same space, of course.

The proof of Theorem 1(a) consists of two lemmas related to this intermediate class.

Lemma 1. Every Γ set X ⊆ ωω is the projection of a uniform Π1
n−1 set.

Proof. The proof continues by induction on the construction of sets in Γ from the initial
sets in Σ1

n−1 ∪ Π1
n−1 . The result for Π1

n−1 sets is obvious, and for Σ1
n−1 sets, it follows from

Corollary 2(ii). Now, the induction step follows.
Assume that sets X0, X1, X2, X3, . . . ⊆ ωω are pairwise disjoint, and, by the inductive

hypothesis, Xk = dom Pk and Pk ∈ Π1
n−1 , Pk ⊆ ωω × ωω is uniform for each k < ω . Then,

the set X =
⋃

k Xk satisfies X = dom P , where P =
⋃

Pk is uniform and belongs to Π1
n−1

(since the class Π1
n−1 is closed under countable operations

⋃
and

⋂
.)

Now, assume that X0, X1 ⊆ ωω and, by the inductive hypothesis, Xk = dom Pk and
Pk ∈ Π1

n−1 , Pk ⊆ ωω × ωω is uniform for each k = 0, 1. We set

P = {⟨x, y, z⟩ : ⟨x, y⟩ ∈ P0 ∧ ⟨x, z⟩ ∈ P1} and Q = {⟨x, G(y, z)⟩ : ⟨x, y, z⟩ ∈ P},

where G : ωω × ωω onto−→ ωω is a homeomorphism. Then, the set X = X0 ∩ X1 satisfies
X = domQ , where Q is uniform and belongs to Π1

n−1 .

Lemma 2. Every Σ1
n set X ⊆ ωω is the projection of a uniform Γ set.

Proof. This is a much more involved argument. Consider a Σ1
n set X ⊆ ωω such that

X = dom P, where P ⊆ (ωω)2 is Π1
n−1 . We can w. l.o.g. assume that P ⊆ ωω × 2ω , where

2ω ⊆ ωω (all infinite dyadic sequences) is the Cantor discontinuum. (If this is not the case,
then replace P with P′ = {⟨x, F(y)⟩ : P(x, y)} , where F : ωω → 2ω is the injection defined
by F(y) = 1⌢0y(0)⌢1⌢0y(1)⌢1⌢0y(2)⌢ . . . .)
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Note that P belongs to Π1
n−1(a) for some a ∈ ωω. Assume that P is in fact lightface

Π1
n−1 , and hence, X is Σ1

n ; the general case does not differ. Then, there is a Σ1
n−2 set

C ⊆ ωω × 2ω × 2ω satisfying P = {⟨x, y⟩ ∈ ωω × 2ω : ∀ z ∈ 2ω C(x, y, z)} .
From now on, we assume that y, z, w, w′ ∈ 2ω in all quantifiers and other occurrences

in the course of the proof of Lemma 2.
Note that x ∈ X ⇐⇒ ∃ y ∀ z C(x, y, z) . Consider the set

W = {⟨x, w⟩ ∈ ωω × 2ω : ∀ y <L w ∃ z <L w¬C(x, y, z)}.

Quite obviously, if x ∈ ωω , then the cross-section Wx = {w : ⟨x, w⟩ ∈ W} ⊆ 2ω is
non-empty (contains the <L-least element of 2ω ), is closed in 2ω in the sense of the order
<L (that is, in the sense of the topology induced on 2ω by the order <L ), and satisfies
⟨x, y⟩ ∈ P ∧ w ∈ Wx =⇒ w ⩽L y . We conclude that if x ∈ X , then there exists a <L-largest
element wx ∈ Wx . The following follow from the above:

(A) If ⟨x, y⟩ ∈ P , then wx ∈ 2ω exists and wx ⩽L y .

Now, define the relation B(x, y, w) := w ∈ Wx ∧ ∀w′ ⩽L y (w <L w′ =⇒ w′ /∈ Wx).
We conclude the following from (A):

(B) If ⟨x, y⟩ ∈ P , then B(x, y, w) ⇐⇒ w = wx .

The next claim makes use of an idea presented in Harrington’s paper [13]:

(C) If x ∈ X , then there is a y ∈ ∆1
n−1(x, wx) such that ⟨x, y⟩ ∈ P .

To prove this crucial claim, we fix x ∈ X and let f ∈ 2ω be the <L-least element of the
difference 2ω ∖∆1

n−1(x, wx) . We assert the following:

(D) If z ∈ 2ω , then the equivalence z <L f ⇐⇒ z ∈ ∆1
n−1(x, wx) holds.

Indeed, in the nontrivial direction, suppose that the left-hand side fails, i.e., f ⩽L z .
Then, f ∈ ∆1

2(z) by Corollary 2(iv). We conclude that z /∈ ∆1
n−1(x, wx) . (Indeed, otherwise,

f ∈ ∆1
n−1(x, wx) , contrary to the choice of f ). This completes the proof of (D).

Taking z = wx in (D), we obtain wx <L f , and hence, f /∈ Wx . By definition, there
exists y ∈ 2ω , y <L f satisfying the following:

(E) ∀ z <L f C(x, y, z) .

Fix such a real y . We assert that ⟨x, y⟩ ∈ P. Suppose otherwise. Then, the Π1
n−2(x, y)

set Z = {z ∈ 2ω : ⟨x, y, z⟩ /∈ C} is non-empty, and hence, there is a ∆1
n−1(x, y) real z ∈ Z

by Corollary 2(iii). However, y <L f by construction. We conclude by (D) that y ∈
∆1

n−1(x, wx) . This implies that z ∈ ∆1
n−1(x, wx) , which contradicts (D), (E), and the choice

of z . The contradiction ends the proof of ⟨x, y⟩ ∈ P and thereby completes the proof of (C)
as well since y ∈ ∆1

n−1(x, wx) is already established.
Now, recall the following technical notation.

Definition 2. The indicator function χu ∈ 2ω of a set u ⊆ ω is defined by χu(k) = 1 in case
k ∈ u and χu(k) = 0 in case k /∈ u.

If h ∈ ωω, m < ω, then define (h)m ∈ ωω by (h)m(j) = h(2m(2j + 1)− 1) , ∀ j .

In continuation of the proof of Lemma 2, we note that Proposition 3(ii) yields a Σ1
n−1

set D ⊆ (ωω)2 × ω that is universal in the sense of the following:

(F) If x ∈ ωω , w ∈ 2ω, and a real y ∈ 2ω belongs to Σ1
n−1(x, w) , then there is an m < ω

such that y = ( f [x, w])m , where f [x, w] = χD[x,w] and D[x, w] = χ{k : D(x,w,k)} .
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The set Q = {⟨x, f [x, wx]⟩ : x ∈ X} is obviously uniform, and domQ = X by (A).
Thus, it remains to prove that Q ∈ Γ . This is the last step in the proof of Lemma 2. We
claim the following:

(G) Q = {⟨x, f ⟩ ∈ ωω × 2ω : ∃m P(x, ( f )m) ∧
∧ ∀ j

(
f (j) = 1 ⇐⇒ ∃w (B(x, ( f )m, w) ∧ D(x, w, j))

)
} .

Direction ⊆ in (G). Suppose that x ∈ X and f = f [x, wx] . By (C), take y ∈ ∆1
n−1(x, wx)

such that ⟨x, y⟩ ∈ P . Note that y ∈ 2ω as P ⊆ ωω × 2ω was assumed in the beginning of
the proof. Then, by (F), we have y = ( f )m for some m .

Finally, to check the equivalence ∀ j
(

. . .
)

in (G), let j < ω . Assume that f (j) = 1
(direction =⇒ ). Take w = wx . Then, j ∈ D[x, wx] ; that is, D(x, wx, j) holds, whereas
B(x, ( f )m, w) holds by (B) in the presence of P(x, ( f )m) . Now, assume that some w wit-
nesses B(x, ( f )m, w) ∧ D(x, w, j) (direction ⇐= ). Then, w = wx yet again by (B); hence,
j ∈ D[x, wx] and f (j) = 1 by construction. This ends the proof ∀ j

(
. . .

)
and completes the

direction ⊆ in (G).
Direction ⊇ in (G). Let ⟨x, f ⟩ belong to the right-hand side of equality (G); we have

to prove that ⟨x, f ⟩ ∈ Q , that is, that f = f [x, wx] . As P(x, ( f )m) holds for some m , (B)
implies B(x, ( f )m, w) ⇐⇒ w = wx once again, and hence, the second line in (G) takes the
form ∀ j

(
f (j) = 1 ⇔ D(x, wx, j)

)
, obviously meaning that f = f [x, wx] , as required.

The proof of (G) is accomplished. It remains to prove that Q is a set in Γ . We
recall that C is Σ1

n−2 ; hence, W is Π1
n−2 by Proposition 4(ii), and then B is ∆1

n−1 also
by Proposition 4(ii). Finally, D is Σ1

n−1 . Therefore, we can rewrite the subformula
∀ j

(
· · · ⇐⇒ . . .

)
in (G) as ∀ j

(
· · · =⇒ . . .

)
∧ ∀ j

(
· · · ⇐= . . .

)
, which yields the con-

junction of a Σ1
n−1 formula and a Π1

n−1 formula. Finally, P is Π1
n−1 . Thus, Q can be

represented in the form (*) Q =
⋃

m<ω(Sm ∩ Tm) , where Sm ∈ Σ1
n−1 and Tm ∈ Π1

n−1 , ∀m .
To obtain a representation in Γ , we let S−

m = ωω ∖ Sm and T−
m = ωω ∖ Tm . Then, (*)

implies that Q =
⋃

m<ω

(
(Sm ∩ Tm) ∩ [

⋂
j<m(S

−
j ∪ (Sj ∩ T−

j ))]
)

, where all unions on the
right-hand side are pairwise disjoint unions. Thus, Q ∈ Γ , as required.

Proof of Theorem 1(a), Case (I). Immediately from Lemmas 1 and 2.

5. Proof of the Uniform Covering Theorem
Here, we prove Theorem 1(b). An essential part of the arguments will be common

for both Case (I) and Case (II) of the theorem. Note that unlike Theorem 1(a), no classical
theorem is known to immediately imply the result for n = 2.

Our plan is to first define a Σ1
n (actually Σ1

n ) set U ⊆ (ωω)2 with the required
properties and then convert it into a Π1

n−1 set using claim (a) of Theorem 1, which is
already proved.

Thus, we fix n ≥ 2 and assume that either (I) V = L holds or (II) n = 2.
Let ϑ(m, x, k) be a Σ1

n formula that defines the universal set W as in Proposition 3(ii);
hence, for any x ∈ ωω and any Σ1

n set u ⊆ ω , there is an m < ω such that u = {k :
ϑ(m, x, k)} .

Let fmx ∈ 2ω be the indicator function (Definition 2) of the set umx = {k : ϑ(m, x, k)} .

Definition 3. We define U = U[n] := {⟨x, fmx⟩ : x ∈ ωω ∧ m < ω} . Thus,

(*) U = {⟨x, a⟩ ∈ ωω × 2ω : a = χu} is the indicator function of a set u ∈ Σ1
n(x), u ⊆ ω}

by the universality of ϑ .

Lemma 3. U ⊆ ωω × 2ω is a set with countable cross-sections not covered by a union of countably
many uniform Σ1

n sets.



Mathematics 2025, 13, 409 9 of 15

Proof. Suppose the contrary that U ⊆ ⋃
m Um , where all sets Um ⊆ ωω × 2ω are Σ1

n and
uniform. There is an x ∈ ωω such that every Um belongs to Σ1

n(x) . Then, every non-empty
cross-section Umx = {a : ⟨x, a⟩ ∈ Um} is a Σ1

n(x) singleton whose only element is ∆1
n(x) .

Thus, the whole cross-section Ux = {a : ⟨x, a⟩ ∈ U} contains only ∆1
n(x) elements. This

contradicts (*) above because there exist sets u ⊆ ω in Σ1
n(x)∖∆1

n(x) .

Lemma 4. U is a Σ1
n set.

Proof. This argument is somewhat different in the two cases considered.
Case (I): V = L. First of all, if φ is an analytic formula and z ∈ ωω , then let φz be the

formal relativization of φ to {y ∈ ωω : y <L z} so that all quantifiers ∃ y , ∀ y over ωω are
replaced with, resp. ∃ y <L z , ∀ y <L z .

Let f z
mx ∈ 2ω be the indicator function of {k : ϑz(m, x, k)} . Proposition 4(ii) implies

the following:

(1) The set {⟨m, x, z, f z
mx⟩ : m < ω ∧ x, z ∈ ωω} is ∆1

2 .

Indeed, by definition, the relativized formula ϑz(m, x, k) has all its real number quan-
tifiers of the form ∃ a <L b , ∀ a <L b . Therefore, {⟨m, x, k⟩ : ϑz(m, x, k)} is a ∆1

2 set by
Proposition 4(ii) applied enough times (equal to the number of quantifiers, ∃ a <L b ,
∀ a <L b in the prenex form). This immediately implies (1).

The Σ1
n formula ϑ(m, x, k) has the form ∃ y ψ(y, m, x, k) , where ψ is a Π1

n−1 formula.
The following set E belongs to ∆1

n by (1), the choice of ψ , and Proposition 4(ii):

E = {z ∈ ωω : ∀m, k ∀ x, y <L z (ψz(y, m, x, k) ⇐⇒ ψ(y, m, x, k))}.

Corollary 2(iii) implies the next claim:

(2) If k < ω, z ∈ E, x <L z and ∆1
n(x) ∩ ωω ⊆ Cz = {c ∈ ωω : c <L z} , then f z

mx = fmx.

In addition, we have the following standard claim:

(3) If C ⊆ ωω is countable, then there is a z ∈ ωω with C ⊆ Cz = {c ∈ ωω : c <L z} .

We now prove that

(4) U = {⟨x, a⟩ : ∃m ∃ z (z ∈ E ∧ x <L z ∧ a <L z ∧ a = f z
mx)} .

Indeed, suppose that ⟨x, a⟩ ∈ U so that a = fmx for some m . Let, by (3), z ∈ ωω

satisfy {a} ∪ (∆1
n(x) ∩ ωω) ⊆ Cz . Then, x, a <L z , and hence, we have a = f z

mx by (2).
Conversely, suppose that x, a <L z ∈ E and a = f z

mx . We have two cases, A and B:
A: ∆1

n(x)∩ωω ⊆ Cz . Then, f z
mx = fmx by (2) as above; hence, a = fmx and ⟨x, a⟩ ∈ U.

B: There is a ∆1
n(x) real y satisfying z ⩽L y . Then, a, x <L y ; hence, a ∈ ∆1

2(y) by
Corollary 2(iv). We conclude that a ∈ ∆1

n(x) by the choice of y . Now, ⟨x, a⟩ ∈ U easily
follows from (*). This ends the proof of (4).

We finally note that the right-hand side of (4) is definitely a Σ1
n set because E is ∆1

n ,
<L is Σ1

2 , and the equality a = f z
mx is ∆1

2 by (1). Thus, U is Σ1
n , and we are finished with

case V = L in Lemma 4.
Case (II): n = 2 , sketch. As the axiom of constructibility is not assumed any more in

this case, we are going to use the technique of relative constructibility. For any real w ∈ ωω

(and in principle, for any set x , but we do not need such a generality here), the class L[w]

is defined similarly to L itself; see ([15], [Chapter 12]). All major consequences of V = L
are preserved mutatis mutandis under the relative constructibility V = L[w] . In particular,
we have the following:

1◦ There exists a Σ1
2 formula ζ(w, x) such that for all w, x ∈ ωω : x ∈ L[w] ⇐⇒ ζ(w, x) .

2◦ For any w ∈ ωω , there is a well-ordering <L[w] of ωω ∩ L[w] of order type ω
L[w]
1

such that the ternary relation x, y ∈ L[w] ∧ x <L[w] y on (ωω)3 is Σ1
2 .
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3◦ If w, b ∈ ωω , V = L[w] holds, m ≥ 2, K is a class of the form Σ1
m(w, b) , and

P ⊆ (ωω)3 is a set in K , then similarly to Proposition 4(ii), the sets

U = {⟨y, z⟩ : ∀ x <L[w] y P(x, y, z)} and V = {⟨y, z⟩ : ∃ x <L[w] y P(x, y, z)}

are still sets in K . The same is true for K = Π1
m(w, b) and K = ∆1

m(w, b) .

After these remarks, let us prove that the set U = U[2] (Definition 3) belongs to Σ1
2

without any reference to the axiom of constructibility or anything beyond ZFC .
Indeed, the proof of Lemma 4 in Case (I): V = L with n = 2 can be compressed to

the existence of a Σ1
2 formula u(x, f ) such that U = {⟨x, a⟩ : u(x, a)} under V = L . The

relativized version, essentially with nearly the same proof based on 2◦ and 3◦ , yields a Σ1
2

formula u′(w, x, f ) such that

4◦ If w ∈ ωω and V = L[w] , then U = {⟨x, a⟩ : u′(w, x, a)} .

Now, let u′′(x, a) be the formula x, a ∈ ωω ∧ f ∈ L[x] ∧ u′(x, x, a) . Clearly u′′ is Σ1
2

by 1◦ and the choice of u′ . Thus, it suffices to prove that U = {⟨x, a⟩ : u′′(x, a)} (in ZFC
with no extra assumptions).

Suppose that ⟨x, a⟩ ∈ U . Then, a ∈ L[x] by the Shoenfield absoluteness theorem [21].
It follows from 4◦ (with w = x ) that u′(x, x, f ) holds in L[x] and hence holds in the
universe by the same Shoenfield’s absoluteness. Thus, we have u′′(x, a) , as required.

Conversely, assume u′′(x, a) so that a ∈ L[x] , and we have u′(x, x, a) . Then, u′(x, x, a)
holds in L[x] by Shoenfield, and hence, ⟨x, a⟩ ∈ U still by 4◦ (with w = x ), as required.

Proof of Theorem 1(b). As U is Σ1
n by Lemma 4, Theorem 1(a) implies that there exists a

Π1
n−1 set Q ⊆ (ωω)3 such that U = dom2 Q := {⟨x, y⟩ : ∃ z Q(x, y, z)} (the projection on

(ωω)2 ), and Q is uniform in (ωω)2 × ωω , i.e., Q(x, y, z) ∧ Q(x, y, z′) =⇒ z = z′ . Then,
each cross-section Qx = {⟨y, z⟩ : Q(x, y, z)} is at most countable by the choice of U and Q .

We claim that Q is not covered by a countable union of Σ1
n sets uniform in ωω × (ωω)2 .

Indeed, assume to the contrary that Q ⊆ ⋃
m Qm , where each Qm is Σ1

n and uniform in
ωω × (ωω)2, i.e., Q(x, y, z)∧Q(x, y′, z′) =⇒ y = y′ ∧ z = z′ . Then, each set Um = dom2 Qm

is still Σ1
n and is uniform in ωω × ωω by the uniformity of Qm . On the other hand,

U ⊆ ⋃
m Um by construction, which contradicts Lemma 3.

Finally, let P = {⟨x, H(y, z)⟩ : Q(x, y, z)} , where H : (ωω)2 onto−→ ωω is an arbitrary
homeomorphism. Then, P witnesses (b) of Theorem 1.

6. Alternative Proofs of the Main Results
This section contains alternative, shorter, and more transparent proofs of Theorem 1,

suggested by an anonymous reviewer and presented here with their recommendation. We
may note that these proofs also imply somewhat stronger results than the original ones; see
Remarks 1 and 2 below.

Alternative Proof of Theorem 1(a), case n ≥ 3 and V = L. Let Iz = {y ∈ ωω : y <L z}
for z ∈ ωω. Consider a Σ1

n set X ⊆ ωω. Then, X belongs to Σ1
n(a) for some a ∈ ωω.

Assume that X is in fact Σ1
n ; the general case does not differ. Then,

X = {x : ∃ y ∀ z C(x, y, z)} ,

where C ⊆ (ωω)3 is Σ1
n−2 . Now, let Φ(x, y, F) be the conjunction of the following:

(A) y ∈ ωω and F : Iy → ωω ;
(B) ∀ z C(x, y, z) ;
(C) ∀ y′ <L y¬C(x, y′, F(y′)) ;
(D) ∀ y′ <L y ∀ z <L F(y′)C(x, y′, z) .
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Lemma 5. If x ∈ ωω , then x ∈ X ⇐⇒ ∃ y ∃ F Φ(x, y, F) .

Proof. Indeed, if x ∈ X , then let yx be the <L -least y ∀ z C(x, y, z) , and then if y′ <L yx ,
then ¬∀ z C(x, y′, z) ; hence, let Fx(y′) be the <L -least z with ¬C(x, y′, z) . Thus, we have
Φ(x, yx, Fx) . Conversely, if Φ(x, y, F) , then x ∈ X by (B).

Lemma 6. If x ∈ X , then ⟨yx, Fx⟩ is a unique pair satisfying Φ(x, yx, Fx) .

Proof. Assume that some ⟨y, F⟩ satisfies Φ(x, y, F) . If y <L yx , then (B) for y is outright
impossible by the <L -minimality of yx . If yx <L y , then z = F(yx) satisfies ¬C(x, yx, z)
by (C), contrary to (B) for yx . Thus, y = yx .

To prove F = Fx , let y′ <L y = yx ; show that F(y′) = Fx(y′) . If z = Fx(y′) <L F(y′) ,
then C(x, y′, z) holds by (D), i.e., C(x, y′, Fx(y′)) , which contradicts (D) for yx and Fx . The
case F(y′) <L Fx(y′) leads to a contradiction in a similar manner.

It follows from the lemma that X is equal to the projection of a uniform set

B = {⟨x, ⟨y, F⟩⟩ : Φ(x, y, F)} .

To replace B with a Π1
n−1 set with the same projection, let Q be the set of all tuples

⟨x, y, f , h⟩ ∈ (ωω)4 satisfying the following five properties (I)–(V):

(I) ∀ z C(x, y, z) ;
(II) (a) If 1 ≤ k < j and ( f )k = ( f )j , then (h)k = (h)j ;

(b) The set S f := {( f )k : k ≥ 1}∖ {( f )0} is equal to Iy (see Definition 2 on ( f )k ; we
remove ( f )0 here to take care of the case when S f has to be the empty set) ;

(III) ∀ k ≥ 1
(
( f )k ̸= ( f )0 =⇒ ¬C(x, ( f )k, (h)k)

)
—compared to (C)—class Π1

n−2 ;
(IV) ∀ k ≥ 1 ∀ z <L (h)k

(
( f )k ̸= ( f )0 =⇒ C(x, ( f )k, z)

)
—compared to (D)—class Π1

n−2 ;
(V) ⟨ f , h⟩ is the <L -least pair satisfying (II), (III), and (IV) for given x, y .

Lemma 7. Q is Π1
n−1 .

Proof. (II)(b) is ∆1
2 by Proposition 4(ii); hence, the whole conjunction (II)∧ (III)∧ (IV) is

∆1
n−1 . Therefore, (V) is ∆1

n−1 as well also by Proposition 4(ii). We conclude that the whole
conjunction of (I)–(V) is Π1

n−1 , and such is the set Q .

Lemma 8. If x ∈ ωω , then x ∈ X ⇐⇒ ∃ y ∃ f ∃ h Q(x, y, f , h) . Moreover, if x ∈ X , then there
is a unique triple of y, f , and h with Q(x, y, f , h) .

Proof. Assume that x ∈ X. By Lemma 6, there is a unique pair of y and F satisfying
P(x, y, F) . Take any f ∈ ωω satisfying (II)(b). Define h ∈ ωω such that (h)k = F(( f )k) ,
∀ k . Then, (II)(b) holds, and (III) and (IV) follow from, resp. (C) and (D) so that ⟨ f , h⟩
satisfies (II), (III), and (IV). We can assume that ⟨ f , h⟩ is the <L -least such pair, which
yields Q(x, y, f , h) .

Conversely, suppose Q(x, y, f , h) . If k ≥ 1 and y′ = ( f )k ∈ Iy by (II)(b), then set
F(y′) = (h)k ; this is consistent with (II)(a). Items (C) and (D) follow from, resp. (III) and
(IV); hence, we have U(x, y, F) , and furthermore, y = yx by Lemma 6. We complete the
proof of the uniqueness claim by referring to (V).

Thus, Q is a Π1
n−1 set by Lemma 7, uniform in the sense of ωω × (ωω)3 by Lemma 8,

and its projection is equal to X by Lemma 8. It remains to obtain a set P ⊆ (ωω)2 with the
same properties via any recursive homeomorphism H : (ωω)3 onto−→ ωω .
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Remark 1. We may note that the alternative proof gives a stronger effective result than
Claim (a) of Theorem 1. Namely, under the assumptions of the theorem, any lightface Σ1

n set
X ⊆ ωω is the projection of a uniform lightface Π1

n−1 set P ⊆ (ωω)2, and the same is true for the
lightface classes Σ1

n(a) and Π1
n−1(a) for any parameter a ∈ ωω .

Alternative Proof of Claim (b) of Theorem 1. This proof deviates from the proof given in
Section 5 Lemma 4, which is established differently. The main ingredient of the proof is the
following proposition. (We refer to ([3], [5A.3]) in case V = L , and to ([3], [4B.3]) in case
n = 2.)

Proposition 5. If n = 2 or V = L and n ≥ 3 , then the pre-well-ordering property holds for Σ1
n ,

meaning that for any Σ1
1 set W , there is a map φ : W → ω1 such that the relations

a ≤∗
φ b iff a ∈ W ∧

(
b ∈ W =⇒ φ(a) ≤ φ(b)

)
;

a <∗
φ b iff a ∈ W ∧

(
b ∈ W =⇒ φ(a) < φ(b)

)
are both Σ1

n -definable.

Let W = {⟨m, x, k⟩ ∈ ω ×ωω ×ω : ϑ(m, x, k)} be a universal Σ1
n set as in Proposition 3(ii),

where ϑ(m, x, k) is a universal Σ1
n formula, as in Section 5.

Consider the set U = U[n] ⊆ ωω × 2ω introduced by Definition 3.

Alternative Proof of Lemma 4. Let, by Proposition 5, φ : W → ω1 be a map such that the
relations ⟨m, x, k⟩ ≤∗

φ ⟨m′, x′, k′⟩ and ⟨m, x, k⟩ <∗
φ ⟨m′, x′, k′⟩ are Σ1

n .
Let ⟨x, a⟩ ∈ ωω × 2ω . We claim that ⟨x, a⟩ ∈ U is equivalent to the following formula:

∃m ∀ k
[
a(k) = 1 =⇒ W(m, x, k) ∧ ∀ ℓ

(
a(ℓ) = 0 =⇒ ⟨m, x, k⟩ <∗

φ ⟨m, x, ℓ⟩
)]

. (3)

Indeed, assume that ⟨x, a⟩ ∈ U . By definition, this means that a ∈ 2ω , and for some
m0 , we have got a(k) = 1 ⇐⇒ W(m0, x, k) for all k . Now, if a(ℓ) = 0, then ⟨m0, x, ℓ⟩ /∈ W ;
hence, ⟨m0, x, k⟩ <∗

φ ⟨m0, x, ℓ⟩ by the definition of <∗
φ , so (3) holds for m = m0 .

To prove the converse, assume that (3) holds for some m = m0 . Let us show that
⟨x, a⟩ ∈ U . It suffices to prove that a(k) = 1 ⇐⇒ W(m0, x, k) for all k . Suppose to the
contrary that this is not the case. Then, as a(k) = 1 =⇒ W(m0, x, k) by (3), there are
numbers k such that a(k) = 0, but W(m0, x, k) holds—let us call such numbers k “bad”.
Let k0 be such a “bad” k for which the value φ(m0, x, k) is the least possible. We assert that

∀ k
(
a(k) = 1 ⇐⇒ ⟨m0, x, k⟩ <∗

φ ⟨m0, x, k0⟩
)
. (4)

Indeed, if a(k) = 1, then we have ⟨m0, x, k⟩ <∗
φ ⟨m0, x, k0⟩ by (3) with ℓ = k0 .

Conversely, assume that (**) ⟨m0, x, k⟩ <∗
φ ⟨m0, x, k0⟩ . However, W(m0, x, k0) holds by

the choice of k0 . Therefore, we have W(m0, x, k) as well by the definition of <∗
φ . Then,

a(k) = 1, since if a(k) = 0, then k is “bad”, so ⟨m0, x, k0⟩ ≤∗
φ ⟨m0, x, k⟩ by the choice of k0 ,

contrary to assumption (**). This ends the proof of (4).
Yet, it follows from (4) and the Σ1

n definability of <∗
φ that the set {k}a(k) = 1 is Σ1

n as
well, and hence, ⟨x, a⟩ ∈ U . This completes the proof of the claim above. In other words,
U is defined by formula (3). However, (3) is Σ1

n since so are both W and the relation <∗
φ .

We conclude that U is Σ1
n , and this completes the alternative proof of Lemma 4.

Given Lemma 4, the rest of the alternative proof of Claim (b) of Theorem 1 is finalized
exactly as in the end of Section 5.
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Remark 2. Similarly to Remark 1, the alternative proof gives a stronger effective result
than Claim (b) of Theorem 1. Namely, under the assumptions of the theorem, there is a lightface
Π1

n−1 set P ⊆ (ωω)2 with countable cross-sections not covered by a union of countably many
uniform Σ1

n sets.

7. Conclusions and Problems
In this study, methods of effective descriptive set theory and constructibility theory

are employed to obtain the solution of two old problems of classical descriptive set theory
raised by Luzin in 1930, under the assumption of the axiom of constructibility V = L
(Theorem 1). In addition, we established Corollary 1, an ensuing consistency and indepen-
dence result. These are new results, and they make a significant contribution to descriptive
set theory in the constructible universe. The technique developed in this paper may lead to
further progress in studies on different aspects of the projective hierarchy under the axiom
of constructibility.

The following problems arise from our study.

Problem 3. Find a “classical” proof of Theorem 1(b) in case n = 2 without any reference to
“effective” descriptive set theory.

Problem 4. Instead of the set U = U[n] as in Definition 3, one may want to consider a
somewhat simpler set U′[n] = {⟨x, f ⟩ ∈ (ωω)2 : f is ∆1

n(x)} . Does it prove Theorem 1(b) ?

Problem 5. Find a model of ZFC in which Problem 2 in Section 1 is solved in the positive,
at least in the following form: for a given n ≥ 3, every Π1

n−1 set P ⊆ (ωω)2 with countable
cross-sections is covered by a union of countably many uniform Σ1

n sets.
Accordingly, find a model of ZFC in which, for a given n ≥ 3, there exists a Σ1

n−1 set
X ⊆ ωω not equal to the projection of a uniform Π1

n set P ⊆ (ωω)2 .

As for Problem 5, we hope that it can be solved with the method of definable generic
forcing notions introduced by Harrington [22,23]. This method has been recently applied
for some definability problems in modern set theory, including the following applications :

− A generic model of ZFC , with a Groszek–Laver pair (see [24]) that consists of two
OD-indistinguishable E0 classes X ̸= Y , whose union X ∪ Y is a Π1

2 set, in [25];
− A generic model of ZFC , in which, for a given n ≥ 3, there is a ∆1

n real coding the
collapse of ωL

1 , whereas all ∆1
n reals are constructible, in [26];

− A generic model of ZFC that solves the Alfred Tarski [27] ‘definability of definable’
problem, in [28].

We hope that this study of generic models will contribute to the solution of the
following well-known problem by S. D. Friedman (see ([29], [p. 209]) and ([30], [p. 602])):
find a model of ZFC , for a given n, in which all Σ1

n sets of reals are Lebesgue measurable and have
the Baire and perfect set properties, and at the same time, there is a ∆1

n+1 well-ordering of the reals.
We also hope that this research can be useful in creating algorithms or computational

algorithmic models that represent the evolution of cell types and are related to the storage
and processing of genomic information.

Author Contributions: Conceptualization, V.K. and V.L.; methodology, V.K. and V.L.; validation, V.K.;
formal analysis, V.K. and V.L.; investigation, V.K. and V.L.; writing—original draft preparation, V.K.;
writing—review and editing, V.K. and V.L.; project administration, V.L.; funding acquisition, V.L. All
authors have read and agreed to the published version of the manuscript.



Mathematics 2025, 13, 409 14 of 15

Funding: The research was carried out at the expense of a grant from the Russian Science Foundation
No. 24-44-00099, https://rscf.ru/project/24-44-00099/ (accessed on 31 July 2024).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: The authors thank the anonymous reviewers for their thorough review and
highly appreciate the comments and suggestions, which have significantly contributed to improving
the quality of the publication.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gödel, K. The Consistency of the Continuum Hypothesis; Annals of Mathematics Studies, No. 3; Princeton University Press:

Princeton, NJ, USA, 1940. [CrossRef]
2. Kechris, A.S. Classical Descriptive Set Theory; Springer: New York, NY, USA, 1995; pp. xviii+402.
3. Moschovakis, Y.N. Descriptive Set Theory. In Studies in Logic and the Foundations of Mathematics; North-Holland: Amsterdam,

The Netherlands; New York, NY, USA; Oxford, UK, 1980; Volume 100, pp. xii+637. [CrossRef]
4. Lusin, N. Sur les ensembles analytiques. Fund. Math. 1927, 10, 1–95. [CrossRef]
5. Lusin, N. Leçons Sur les Ensembles Analytiques et Leurs Applications; Gauthier-Villars: Paris, France, 1930; pp. XVI+328.
6. Lusin, N.; Novikoff, P. Choix effectif d’un point dans un complémentaire analytique arbitraire, donné par un crible. Fundam.

Math. 1935, 25, 559–560. [CrossRef]
7. Kondô, M. L’uniformisation des complémentaires analytiques. Proc. Imp. Acad. 1937, 13, 287–291. [CrossRef]
8. Solovay, R.M. A model of set-theory in which every set of reals is Lebesgue measurable. Ann. Math. 1970, 92, 1–56. [CrossRef]
9. Kanovei, V. An Ulm-type classification theorem for equivalence relations in Solovay model. J. Symb. Log. 1997, 62, 1333–1351.

accessed on 31 July 2024. [CrossRef]
10. Kanovei, V.; Lyubetsky, V. Counterexamples to countable-section Π1

2 uniformization and Π1
3 separation. Ann. Pure Appl. Log.

2016, 167, 262–283. [CrossRef]
11. Kanovei, V.; Lyubetsky, V. Non-uniformizable sets of second projective level with countable cross-sections in the form of Vitali

classes. Izv. Math. 2018, 82, 61–90. [CrossRef]
12. Kanovei, V.; Lyubetsky, V. On the significance of parameters and the projective level in the Choice and Comprehension axioms.

arXiv 2024, arXiv:2407.20098.
13. Harrington, L. Π1

2 sets and Π1
2 singletons. Proc. Am. Math. Soc. 1975, 52, 356–360. [CrossRef]

14. Novikoff, P. Sur les fonctions implicites mesurables B. Fundam. Math. 1931, 17, 8–25. [CrossRef]
15. Jech, T. Set Theory, The Third Millennium Revised and Expanded ed.; Springer: Berlin/Heidelberg, Germany; New York, NY,

USA, 2003; pp. xiii+772. [CrossRef]
16. Barwise, J. (Ed.) Handbook of Mathematical Logic; Elsevier: Amsterdam, The Netherlands, 1978; Volume 90.
17. Devlin, K.J. Constructibility; Springer: Berlin/Heidelberg, Germany, 1984.
18. Addison, J.W. Separation principles in the hierarchies of classical and effective descriptive set theory. Fundam. Math. 1959,

46, 123–135. [CrossRef]
19. Addison, J.W. Some consequences of the axiom of constructibility. Fundam. Math. 1959, 46, 337–357. [CrossRef]
20. Simpson, S.G. Subsystems of Second Order Arithmetic, 2nd ed.; Cambridge University Press: Cambridge, UK; ASL: Urbana, IL,

USA, 2009; pp. xvi+444.
21. Shoenfield, J.R. The problem of predicativity. In Essays on the Foundation of Mathematics; Bar-Hillel, Y., Poznanski, E.I.J., Rabin,

M.O., Robinson A., Eds.; North-Holland: Amsterdam, The Netherlands, 1962; pp. 132–139.
22. Harrington, L. The Constructible Reals Can Be Anything. Preprint Dated May 1974 with Several Addenda Dated up to October

1975: (A1) Models Where Separation Principles Fail, May 74; (A2) Separation Without Reduction, April 75; (A3) The constructible
Reals Can Be (Almost) Anything, Part II, May 75. Available online: http://iitp.ru/upload/userpage/247/74harr.pdf (accessed
on 31 July 2024).

23. Harrington, L. Long projective wellorderings. Ann. Math. Log. 1977, 12, 1–24. [CrossRef]
24. Groszek, M.; Laver, R. Finite groups of OD-conjugates. Period. Math. Hung. 1987, 18, 87–97. [CrossRef]
25. Golshani, M.; Kanovei, V.; Lyubetsky, V. A Groszek—Laver pair of undistinguishable E0 classes. Math. Log. Q. 2017, 63, 19–31.

[CrossRef]
26. Kanovei, V.; Lyubetsky, V. Definable minimal collapse functions at arbitrary projective levels. J. Symb. Log. 2019, 84, 266–289.

[CrossRef]
27. Tarski, A. A problem concerning the notion of definability. J. Symb. Log. 1948, 13, 107–111. [CrossRef]

https://rscf.ru/project/24-44-00099/
http://doi.org/10.1515/9781400881635
http://dx.doi.org/10.1090/surv/155
http://dx.doi.org/10.4064/fm-10-1-1-95
http://dx.doi.org/10.4064/fm-25-1-559-560
http://dx.doi.org/10.3792/pia/1195579858
http://dx.doi.org/10.2307/1970696
http://dx.doi.org/10.2307/2275646
http://dx.doi.org/10.1016/j.apal.2015.12.002
http://dx.doi.org/10.1070/IM8521
http://dx.doi.org/10.1090/S0002-9939-1975-0373896-5
http://dx.doi.org/10.4064/fm-17-1-8-25
http://dx.doi.org/10.1007/3-540-44761-X
http://dx.doi.org/10.4064/fm-46-2-123-135
http://dx.doi.org/10.4064/fm-46-3-337-357
http://iitp.ru/upload/userpage/247/74harr.pdf
http://dx.doi.org/10.1016/0003-4843(77)90004-3
http://dx.doi.org/10.1007/BF01896284
http://dx.doi.org/10.1002/malq.201500020
http://dx.doi.org/10.1017/jsl.2018.77
http://dx.doi.org/10.2307/2267331


Mathematics 2025, 13, 409 15 of 15

28. Kanovei, V.; Lyubetsky, V. On the ‘definability of definable’ problem of Alfred Tarski. II. Trans. Am. Math. Soc. 2022, 375, 8651–8686.
[CrossRef]

29. Friedman, S.D. Fine Structure and Class Forcing. In De Gruyter Series in Logic and Its Applications; de Gruyter: Berlin, Germany,
2000; Volume 3, pp. x+ 222. [CrossRef]

30. Friedman, S.D. Constructibility and class forcing. In Handbook of Set Theory; Springer: Dordrecht, The Netherlands, 2010; Volume 3,
pp. 557–604. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1090/tran/8710
http://dx.doi.org/10.1515/9783110809114
http://dx.doi.org/10.1007/978-1-4020-5764-9_9

	Introduction
	Some References
	Preliminaries
	Proof of the Uniform Projection Theorem
	Proof of the Uniform Covering Theorem
	Alternative Proofs of the Main Results
	Conclusions and Problems
	References

