
ISSN 0026�8933, Molecular Biology, 2015, Vol. 49, No. 3, pp. 327–338. © Pleiades Publishing, Inc., 2015.
Original Russian Text © K.Yu. Gorbunov, R.A. Gershgorin, V.A. Lyubetsky, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 3, pp. 372–383.

327

INTRODUCTION

In [1–3] and other works, various tasks were inves�
tigated related to estimating the number of chromo�
some rearrangements in different genomic regions of
various species, determining the regions that are
unlikely or highly likely to be affected by rearrange�
ments, estimating the frequency of chromosome rear�
rangements at different stages of the evolution, and
identifying the periods of sharp increase in the rear�
rangement frequency. These problems were solved
based on the identification and comparison of homol�
ogous synteny blocks. The algorithm allows one to
obtain an heuristic solution to the problems men�
tioned above, to define the most significant events
related with chromosome rearrangements, and to per�
form an approximate reconstruction of the structure
of ancestral genomes. However, it does not allow one
to construct scenarios of evolutionary chromosome
rearrangement along a species tree. Thus, it is impor�
tant to develop effective exact algorithms for calculat�
ing the distances between chromosome structures and
use this information to construct a complete scenario
for chromosome rearrangements in genomes of vari�
ous species. The first problem requires definition of
the shortest sequence of rearrangement operations
leading to a transformation of one chromosome struc�
ture into another. The second problem allows one to
define the most likely chromosome rearrangement
scenarios, estimate the evolutionary proximity of dif�
ferent species, and reveal rearrangements related to
mobile elements and characteristic proteins.

This problem was solved in the case of equal rear�
rangement costs and constant gene content (see article
[4] and books that were published thereafter [5, 6]).
The historical development and biological motivation
of the problems are given in detail in [1–6]. An exten�
sive series of works by P. Pevzner and his school, in
which algorithms of chromosome rearrangements
included inversions and in part transversions and
translocations, are noteworthy (see review, chapter 4
in [6]). In our opinion, in this chapter the exact poly�
nomial algorithms were only discussed in the case of a
chromosome, a structure that consists of a single linear
chromosome with no paralogs and the operation
included the inversion of an interval. This is a special
case, i.e., a so�called double cut and join operation,
which is one of many operations that are discussed
below.

In this work, a novel, exact algorithm of a problem
with linear computational complexity is proposed that
is based on a method that is principally different from
those employed in [4–6]. We also present an heuristic
algorithm for the broader task of defining the shortest
sequence of chromosome rearrangements with unequal
operating costs when the total sequence costs were min�
imized. The task can also be solved with some limita�
tions using an exact linear algorithm; however, this
solution was submitted for publication in the journal
Problems of Information Transmission as its presenta�
tion requires the use of specific mathematical means.

An exact algorithm is defined as an algorithm that
always results in the global minimum of the corre�

Rearrangement and Inference of Chromosome Structures
K. Yu. Gorbunov, R. A. Gershgorin, and V. A. Lyubetsky

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute),
Moscow, 127051 Russia;
e�mail: lyubetsk@iitp.ru

Received December 17, 2014; in final form, December 24, 2014

Abstract—The chromosome structure is defined as a set of chromosomes that consist of genes assigned to
one of the DNA strands and represented in a circular or linear arrangement. A widely investigated problem
is to define the shortest algorithmic path of chromosome rearrangements that transforms one chromosome
structure into another. When equal rearrangement costs and constant gene content are considered, the solu�
tion to the problem is known. In this work, a principally novel approach was developed that presents an exact
algorithm with linear time complexity for both equal and unequal costs, in which chromosome structures
defined on the same set of genes were considered. In addition, to solve the problem of the inference of ances�
tral chromosome structures containing different sets of genes when the original structures are fixed in leaves,
exact and heuristic algorithms were developed.

DOI: 10.1134/S0026893315030073

Keywords: chromosome structure, chromosome rearrangement, effective exact algorithm, ancestral struc�
ture, species tree, evolution along a species tree, parsimony

MOLECULAR PHYLOGENETICS

UDC 575.852

328

MOLECULAR BIOLOGY Vol. 49 No. 3 2015

GORBUNOV et al.

sponding cost or some other functional defined in the
problem statement.

We also propose cubic exact algorithms, as well as
heuristic algorithms, for a new problem, i.e., the
reconstruction of chromosome structures (the struc�
tures were fixed in leaves) that consists of different sets
of genes on internal vertices of a species tree. These
two algorithms emphasize different definitions of
determining the distance between pairs of structures
corresponding to edge ending points in a species tree.
The precision of the algorithm was proved for one dis�
tance and is not proved for the other, which is likely to
be more significant from an evolutionary point of view.

All algorithms were computer tested, and examples
of the use of corresponding computer programs
(chromo and chrom_reconstruction) can be found at
<http://lab6.iitp.ru/ru/pr_chromo/>. Programming,
computing, data preparation and analysis were per�
formed by R. Gershgorin. Definitions and the results
described in the section “Problem�Solving Algorithm
and Its Justification” and subsections “Special Dis�
tance” and “Case of Unequal Operating Costs” were
prepared by K. Gorbunov and V. Lyubetsky. This work
represents an extended version of two plenary lectures
given by the authors at conferences [7, 8].

FORMULATION OF A PROBLEM
OF THE SHORTEST DISTANCE

OF CHROMOSOME REARRANGEMENTS

A chromosome structure was defined as a set of lin�
ear and circular chromosomes, where every gene is
assumed to have a head and a tail; the length of a gene,
its nucleotide composition, and the intergenic regions
of a chromosome, were not taken into account. In this
model, all genes in the chromosome were assumed to
have a linear localization in a linear or circular chro�
mosome and were connected to each other. When two
strands were considered, the following connection
options were possible for adjacent genes: the tail of one
gene coincided with the head of the other or the same
gene, or with the tail of another gene, and the head�to�

head connection of genes was also possible. A chro�
mosome structure can be looked at as a graph that
consists of components, each of which denotes a chro�
mosome. The names (numbers from one to n with no
overlap) of genes were ascribed to the edges; thus,
every gene was represented only by its name (number).
An example of two chromosome structures (а and b) is
given in Fig. 1 (left panel). The heads and/or tails of
two genes were equated in a vertex connecting the
genes (in accordance with arrows); the head or tail of
a gene were ascribed to the extreme vertex of a linear
chromosome. The head of a gene i (at j = 1) or its tail
(at j = 2) were denoted as ij; a loop in a vertex repre�
sented a gene, the head of which coincided with its
tail, e.g., gene 11 in the structure a as shown in Fig. 1
(left panel).

Let structures а and b defined on the same number
of genes n be fixed as shown, e.g., in Fig. 1 (left panel),
where n = 11.

Equating heads and tails (ends) of genes that corre�
spond to their adjacent positions on a chromosome
were denoted with a ~ symbol; see, e.g., cycle, where
52 ~ 61, 42 ~ 51, 31 ~ 41, 22 ~ 32, 12 ~ 21, and 11 ~ 62
(Fig. 1, left panel).

The novel approach proposed in this work is based
on the use of two definitions that possess nontrivial
properties, including a joint graphjoint graph and its
quality. A joint graph of structures а and b was defined
as a graph in which vertices were represented by the
ends ij of all genes that belong to а (or the same genes
in b), and the edges connect two vertices if they equate
in а or b. Every edge was denoted by the name of a
structure, in which equating gene ends occurred, i.e.,
with the structure names а or b. The edges of a graph
can be parallel to each other, that is, one edge from а
can be parallel to another one from b (cycles of length
two). The joint graph (denoted а + b) can be described
as alternating (a, b) paths and (a, b) cycles (Fig. 1,
right panel). Thus, the joint graph a + b defined the
ends of the gene that equate in structures а and b.
Equating is often referred to as joining the correspond�
ing ij ends.

Structure a Structure b

1

2

3

4

5

6 7

8

9

10 11

a

b

11 62

3212

21 22

82 91 92

102 111 112

101 71 81

72

51

31

41 52

42

61

1

2

3

4

5 6

7

8

9
10

11

aa

a

a

a

a

a

a

b

b
b

b

b
b

b b

Fig. 1. Two chromosome structures a and b consisting of n = 11 genes each (left panel) and their joint graph a + b (right panel).

MOLECULAR BIOLOGY Vol. 49 No. 3 2015

REARRANGEMENT AND INFERENCE OF CHROMOSOME STRUCTURES 329

The length of a path (or cycle) corresponds to its
number of edges; isolated vertices were considered to
be paths with zero length, taking zero as an even num�
ber. The quality of the joint graph was the number of
cycles summed with half of the numerical value of its
even paths (an even path consists of an even number of
edges, while odd paths are not taken into account).

The formal problem can be formulated in terms of
either а and b structures or its joint graph a + b. Let us
start with the first statement. For structures a and b, we
aimed to define the sequence consisting of a minimal
number of operations that transforms one structure
into the other, for example, structure a into the struc�
ture b (Fig. 1, left panel). We denoted both the
sequence path and its length as minimal. In other
words, we concentrated on searching for a structure c,
into which both structures a and b could be converted
via a minimal total number of operations. This follows
from a notion that a set of operations is closed with
respect to the inverse operation.

The set of operations on a chromosome or a pair of
chromosomes (and thus on a chromosome structure)
included the following: a cut of two joint vertices and a
join of the four loose ends in a different way (double
cut and join); the cut of a joint vertex and a join of its
one loose end with a disjoint end (sesqui cut and join);
the cut of a vertex and the inverse operation of joining
two disjoint ends (single cut and join, Fig. 2) [4].

We denoted a joint graph of two similar structures,
that is, the graph c + c of the structure c, as final (final
representation). The graph contained only cycles of
length two (one edge from structure a and another one
from structure b) and isolated vertices. These struc�
tures are further referred to as two�cycle.

Let us consider the second formulation of the prob�
lem, that is, the construction of a joint graph a + b, to
which natural analogs of the operations described
above can be applied. These operations included, e.g.,
removing two similarly labeled edges and joining its
four ends with two new nonincident edges with a sim�
ilar label; removing an edge and joining (with a simi�
larly labeled edge) one of its ends with a vertex that is
incident to no edges with this label; and removing any
edge and inserting an edge, e.g., labeled with a,
between two vertices that are nonincident to any other
edge with the label a. The task was to find the shortest
sequence of operations that brings a + b to its final rep�
resentation, i.e., to the form c + c for structure c. We
denoted this sequence of operations as minimal. The
quality of the final graph equals n, and n – k is the
length of the shortest sequence of operations, where k
represents the quality of the original joint graph a + b
and n is the number of genes in the original structure a
(or the same number in b). Thus, defining the shortest
operation sequence can be described as defining the
quality of the graph a + b.

It is noteworthy that the operation applied to a pair
of structures (when an operation was applied to one
structure, the other structure remained unaltered)
corresponds to an analogous operation applied to a
joint graph.

The two problem formulations that were described
above are equivalent to each other and this follows
from the equivalency of each of these formulations to
the task of defining structure c and two sequences of
operations, one of which transforms the structure a
into c, while the other transforms b into c so that the
total number of operations in both of these sequences
is minimized.

1. Double cut and join

2. Sesqui cut and join

3. Single cut and join

ik jl

i 'k ' j 'l '
or

or

ik ik

jl jli 'k '

i 'k 'j 'l '

j 'l '

jljljl

ik ik ik i 'k 'i 'k 'i 'k '

ik i 'k ' ik i 'k '

Fig. 2. Operations applied to a chromosome structure. A cross indicates a cut (disjoining of two joint vertices) and a double arrow
indicates the result of an operation. Operations were introduced in [4].

330

MOLECULAR BIOLOGY Vol. 49 No. 3 2015

GORBUNOV et al.

The quality of the joint graph did not change or is
changed by precisely one upon application of any
operation to it; this can be proved by considering all
pairs that consist of an operation and a type of joint
graph components to which the operation was applied.
Our approach was based on the following statements:
the quality of the final graph equals n, while the graph
is not final and the operation that increases its quality
can be applied; in the case of the final graph, an oper�
ation that can lead to an increase in its quality does not
exist. In other words, the quality of the joint graph of
two distinct structures is strictly below n, whereas the
highest quality is equal to n and is achieved in the case
of coincident structures, i.e., the final graph.

Note. It is important to note that the joint graph
a + b can be conveniently stored in the dataset M with
indexes ranging from –n to n; negative labels denote
the heads of corresponding genes, whereas positive
enumeration labels correspond to gene tails in struc�
tures a and b. The M[i] value represents a pair of end
labels, by which the end i is joined in structures a and
b (if it is not joint, the value equals zero). This way of
storing data provides linear time and memory of the
algorithm for constructing the graph a + b for struc�
tures a and b, as well as a quick assessment of its com�
ponents and a switch from operations with a + b to
operations with a and b.

PROBLEM�SOLVING ALGORITHM
AND ITS JUSTIFICATION

Let us describe an exact algorithm with linear time
complexity that solves the problem in its second for�

mulation, i.e., it brings the joint graph of two struc�
tures a + b to its final representation.

The algorithm modified a + b as follows (see
points 1–4):

(1) If the path’s length is greater than two, we
reduce it by removing a cycle of length two using a
double cut and join operation, which results in a cycle
and a path (Fig. 3a). Let us consider a sequence of type
..aba.. within a path in detail. We discard ba from the
path, leaving ..a.., and add a cycle ab (Fig. 3a); similar
operations were performed with a sequence of type
..bab…

(2) If the path’s length equals two, we use a sesqui
cut and join operation to split the path into a cycle and
a path of length zero (Fig. 3b).

(3) If the path’s length equals one, we split it into
two paths of length zero using a single cut operation or
use a single join operation to form a cycle (Fig. 3c).

(4) If there is a cycle with length greater than two,
we break it into two cycles using a double cut and join
operation (Fig. 3d). More precisely, we consider a
sequence of type ..aba.., for which we keep an edge a
that forms a shorter cycle with the rest of the original
cycle and add a two�cycle in the structure (Fig. 3d).
We perform similar operations with the sequence
..bab…

If in any order to apply these operations as long as
possible, then we obtain the required minimum
sequence of operations.

It is important that the algorithm only uses the
information about the graph type for constructing the
sequence, including the number of cycles in the graph

a b(a) (b)

(c) (d)

a

a

a
a

a

b

b

b

b bb

b

bb

b

a a

a

a

a a

a

a

a

…

……

…

Fig. 3. (a) Isolating a cycle from a path with a length that is greater than two. Head (before the cross) of the left edge of structure a is
glued to the tail (from the cross) of the right edge a. Tail (from the cross) of the left edge a is glued to the head (before the cross)
of the right edge a. Edge b does not change. (b) Isolating a cycle from a path of length two. (c) Operations removing a chain with
length one, resulting in two isolated dots (left) or a two�cycle (right). (d) Splitting a cycle with a length that is greater than two
into two cycles. As a result, heads (before the crosses) of edges of structure a connect to form a square; tails (from the crosses) of
edges a connect with b to form a cycle.

MOLECULAR BIOLOGY Vol. 49 No. 3 2015

REARRANGEMENT AND INFERENCE OF CHROMOSOME STRUCTURES 331

and their lengths, as well as the number and lengths of
paths.

Complexity and Correctness of the Algorithm

The algorithm obviously has a linear time com�
plexity. The quality of the joint graph increases by one
every time an operation described in the algorithm is
used. If the joint graph is not in its final representation,
one of the operations can be used again.

Let us note a new operation that also leads to an
increase in the quality of the joint graph by one. The
operation represents a cut of an odd path with a forma�
tion of two even paths using a single cut of an edge
labeled similarly to an extreme edge of the path, i.e., a
or b. More precisely, this edge is discarded whereas the
remaining edges form two new paths; alternatively, an
isolated vertex is formed instead of an edge. It is possi�
ble to add this operation and simultaneously limit the
use of the first operation to even paths only. Moreover,
any sequence of operations that strictly increases the
quality of the joint graph can be used in our algorithm,
and one of them can be applied until the graph
achieves its final representation.

The following sections are devoted to generaliza�
tions of the original problem formulated above.

PROBLEM IN THE CASE OF UNEQUAL
OPERATION COSTS

Let us assume a cost represented by a strictly posi�
tive number to every operation from the list given
above and every inverse operation. Genome structures
were defined on the same set of genes. The operations
that occur rarely in the evolution process were
assigned high costs, whereas frequently occurring
operations were assumed lower costs. The task was to
define a sequence of operations that transforms the
chromosome structure a into b and has a minimal total
cost. We denote the sequence of operations as the
shortest and its cost as minimal. The original task is a
special case with all operations assumed to be equal
costs. The question of whether a linear or at least a
polynomial algorithm for solving this general problem
exists remains open. To solve the general problem, an
heuristic algorithm was proposed in this work (see
notes at the end of this section).

Let us define a directed graph, for which the verti�
ces are the joint graphs and call it a digraph. More pre�
cisely, the only information assumed to its vertices was
the information about the type of joint graph of this
particular vertex, in other words, the information used
in the algorithm that was discussed above. In a
digraph, the edge drawn from vertex v1 to vertex v2 if
graph v1 can be transformed by one of the operations
into the graph v2; in this case, the edge was labeled
with the cost of the operation if it was applied to the
structure a or with the cost of the inverse operation if
it was applied to the structure b. The root of the

digraph assumed the joint graph a + b of the given a
and b structures. All paths start in the root and con�
tinue toward a leaf, which was assumed in the final
graph obtained on this walk (with a cost of n). Thus,
the task was to find the shortest path in the digraph
from the root into a leaf.

For each joint graph v, a minimal sequence
defined by the algorithm that was described above,
brings v to its final representation. We denote the cost
of the most expensive operation multiplied by the
minimal length as t(v); similarly, the lowest cost mul�
tiplied by the minimal length was denoted as l(v).

The following algorithm was then applied to the
digraph, which results in an heuristic solution to the
problem defined in this section. Only a small part of
the digraph was used in the algorithm; therefore, it did
not require to be constructed in full.

Let O be the set that includes the root of the digraph
and consists of vertices v; the shortest paths in the
digraph from the root to v that are located strictly
within O were defined, and every vertex in O was
ascribed the shortest path cost c(v). Let us designate α
as the minimum c(v) + t(v) value for all vertices v in
the set O. Let us label all the vertices v in O for which
c(v) + l(v) > α. Our aim was to extend O with a single
new vertex. To do this, let us consider a set O1 that
consists of vertices that do not belong to O, which are
connected by edges with unlabeled vertices from O.
Every vertex v in O1 was assumed a number с(v) that
represents the shortest path cost from the root to v
among all paths and the vertices of which belong to O,
except for v itself. A vertex w from O1 with the minimal
с(v) value, which results in a new neighborhood O ∪ {w},
was chosen.

Neighborhoods were enclosed into each other and
expanded for as long as possible. A vertex with the
minimal с(v) value was selected from the leaves that
were a part of the latter neighborhood. To construct
the shortest path from the root to the vertex, the
inverse of the algorithm was used.

Note. Let us designate c1, c1.5, and c2 the costs
of cut, join, sesqui cut and join, and double cut and
join operations. If the condition that the search for the
shortest path is carried out among minimal paths
(conventionally the shortest) is imposed, an effective
exact algorithm with linear time complexity can be
constructed for solving the problem in this section, at
least in the case of cost ratios of c2 ≤ c1 ≤ ≤ c1.5 and

c1 ≤ ≤ c1.5 ≤ c2. If the costs are relatively similar to
each other, e.g., they change within the δ to ε range
and δ/ε > n/(n + 1), the shortest path conventionally
coincides with the shortest path. In the general case,
they might be different.

c1' ,

c1'

c1'

332

MOLECULAR BIOLOGY Vol. 49 No. 3 2015

GORBUNOV et al.

RECONSTRUCTION OF CHROMOSOME
STRUCTURES ALONG A TREE: STATEMENT

OF THE PROBLEM, ALGORITHMS,
AND ARTIFICIAL EXAMPLES

Let us consider a new problem of reconstructing a
chromosome structure along a tree. For simplification
we assume equal operation costs. Given the evolution
species tree (that does not have to be binary), each leaf
of which was assigned a structure defined on a certain
set of genes, we aimed to reconstruct structures of
internal vertices of the tree (ancestral structures) so
that the functional, which equals the sum (over all
edges) of distances between structures at edge ends, is
minimized. Structures in the internal vertices can only
include genes that are represented in leaves, and we
assigned S to denote the set of these genes. Thus, the
reconstruction of structures defined in leaves was
based on the principle of parsimony.

Choosing this distance is a nontrivial task and
requires further discussion. We thus considered a
number of tasks depending on definition of the dis�
tance. In this work we consider two such definitions.
According to the first definition, the distance between
structures a and b (assumed to ends of edges of the
tree) was defined as the number of pairs of different
gene ends which are joint in one structure and absent
(one or both) or disjoint in the other structure,
summed with the number of genes that are present in
one structure and absent in the other. We designated
this distance as special. According to the second defi�
nition, which is more relevant biologically, distance
was a minimal length between a and b as defined by the
original problem statement. The argument of these
functionals was the distribution of the structures in all
internal vertices of the tree. Since the structures were
assumed in leaves, any distribution assigned a single
structure to every vertex of the tree. The value of the
functional for this distribution was called the cost.

In the case of the first distance definition, the prob�
lem was solved with an effective exact algorithm, the
complexity of which has an order of the product of |S|2

and a number of leaves, i.e., it is relatively low. The
algorithm can be applied to a tree partitioned with
time slices [9–11]. In addition, the algorithm extends
to a functional, every summand of which has a coeffi�
cient that reflects the evolutionary length of an edge.
In case of the second definition of the distance, which
we called biological, an heuristic algorithm with a
cubic complexity (in practice) was used to solve the
problem.

Special distance. For a given distribution, each tree
vertex, and each pair of different ends of genes in S, a
variable that equals one when the ends join in the
structure corresponding to the vertex and zero in any
other situation, was introduced. In addition, for each
gene in S, we introduce a variable that equals one
when the gene was absent from this structure and zero

otherwise. We do not distinguish between the vertex
and its structure.

The values of all variables were defined in the leaves
of the tree. We aimed to find the values for each vari�
able in internal vertices in order to minimize the func�
tional. The functional can be reformulated as the
number of edges where the values of the variable differ
at the ends; every edge is counted the number of times
that corresponds to the number of these variables. The
algorithm that we used to minimize the functional is
described below. We start with finding the minimum
for each variable separately; it is evident that this step
is characterized by a linear time complexity. As a
result, we obtain a set of values of all variables in all
vertices that we further refer to as the marking of the
tree. The marking obtained here may indicate joining
one end with two different ends in a vertex (type�1 vio�
lation) or joining the end of a gene that is absent in a
vertex (type�2 violation).

Therefore, the next step of the algorithm includes
the removal of all violations. This step also has a linear
time complexity of the product of a number of vari�
ables and the size of the tree; importantly, the cost of
the marking does not change during this step. Thus,
the algorithm finds a solution, i.e., a marking at which
the cost is minimized.

Step of the algorithm to remove violations. Let us
arrange the ends of all genes in S in a linear order, e.g.,
lexicographically. Next, we sort out the vertices of the
tree in arbitrary order; in each vertex, the ends of the
gene were sorted according to the mentioned order.
For each end, all of its join adjacencies in a given ver�
tex were discarded if there is an even number of them;
otherwise, a single joint adjacency was retained with
the end that is the largest in this order. These opera�
tions allow one to remove type�1 violations. The genes
were then placed in ascending order based on their
names. Here, for every end of an absent gene that is
joined with any other end (it is evident that it can only
be joined with one other end), this joint was discarded
and the gene was considered to be in the vertex. This
step removes type�2 violations.

Justification of violation removal. This step appar�
ently removes all violations; however, it is important to
demonstrate that the marking cost does not increase.
Type�1 violation in vertex v is a pair of variables that
take on the value one, which corresponds to two pairs
(a, b) and (a, c) of ends of genes in S; we denoted these
pairs as incident. An order at the gene ends induces the
order at incident pairs of variables. The procedure for
removing type�1 violations that was described above is
equivalent to the following steps. First, we sort inci�
dent pairs of variables in this order. For each pair, we
sort vertices of the tree and, in every vertex, we replace
both values with zero if the corresponding variables
take on a value of one. In this case, new violations for
other end pairs do not arise. Thus, it is sufficient to
show that the marking cost does not change for a fixed
pair of variables (x, y) during the procedure.

MOLECULAR BIOLOGY Vol. 49 No. 3 2015

REARRANGEMENT AND INFERENCE OF CHROMOSOME STRUCTURES 333

Let us call the difference between the marking cost
and the minimal marking cost a defect in marking. An
edge of the tree was considered inconsistent if its mark�
ing at one end was (1, 1), i.e., x = 1, y = 1, whereas its
marking at the other edge was (0, 0). By definition,
violations were inpossible in the leaves of the tree. The
internal vertices of the tree were then sorted in arbi�
trary order and if the marking in a vertex was found to
be (1, 1), it was replaced with (0, 0). Let defect of the
current marking be designated as d. Let us prove that
the two following conditions are always true: d is an
even number (zero is considered even) and there are at
least d/2 inconsistent edges in the tree. Indeed, the
marking defect is initially equal to zero and the condi�
tions are satisfied. Let us consider a vertex v. If there is
a violation in this vertex, then the marking (1, 1) is
replaced with (0, 0). Then, let us consider a vertex u
that is incident to the vertex v. The following three
cases should be considered. If the marking in u is (0, 1)
or (1, 0), then the marking cost of the edge (v, u) does
not change and this edge was and is consistent. If the
marking in u equals (0, 0), the marking cost of the edge
(v, u) decreases by two; thus, this edge was inconsis�
tent but became consistent. If the marking in u equals
(1, 1), the marking cost of the edge (v, u) increases by
two; this edge was consistent but became inconsistent.
Thus, the number of consistent edges increases
(decreases) by c if and only if the cost of the marking
increases (decreases) by 2c.

At the end of the procedure application, violations
and inconsistent edges will be removed and the mark�
ing defect would become equal to zero. Since the vari�
able values were always changed from one to zero, new
violations (for other variable pairs) would not arise. It
is noteworthy that the procedure for removing viola�
tions could also be used for a arbitrary graph.

A pair of variables that take on the value of one, the
first variable of which is an indicator of the absence of
a gene and the second variable of which corresponds to
a joint gene end, represent a type�2 violation in vertex
v; we designate pairs of the variable as incident. An

order at gene ends induces the order at incident pairs
of variables. The procedure for removing type�2 viola�
tions includes the following steps. First, we sort inci�
dent pairs of variables in this order. For each pair, we
sort vertices of the tree and, at every vertex, we replace
both values with zero if the corresponding variables
take on a value of one. We then precisely repeat the
steps used to remove type�1 violations.

Artificial Examples of the Evolution
of Chromosome Structures

Two examples using biological data are given below
(see examples 4 and 5).

Example 1. Every genome structure contains three
genes with names 1, 2, and 3 in leaves (Fig. 4a). The
following conditions are true in leaves: eighteen vari�
ables are equal to one, three of which correspond to a
joint adjacency of the head of a gene with its tail, and
two more variables in each leaf correspond to the ratio
of the other ends (Fig. 4a). The minimal marking of
the tree assumes the value of one to the first three vari�
ables in only one internal vertex of the tree, in the par�
ent of two corresponding leaves. All other variables are
assigned zero values in all internal vertices. There are
no violationes.

Example 2. This is the case of different gene sets in
leaves. A new gene with a name 4 was added in three
leaves of the tree in example 1 (cf., Figs. 4a, 4b). A
variable that describes the absence of this gene equals
zero in the root and two side vertices, and one in the
vertex in the middle.

Case of Unequal Operation Costs

The algorithm is valid in the case when the costs of
four events, i.e., joining two ends, cutting them, and
adding or removing a gene, are unequal. The step of
the algorithm constructing the minimal marking does
not change. Now, when violations are resolved, the
cost of marking may increase. However, at a cost ratio

(a) (b)1 2 3

1

1 1

1 1 11

11

2

2

2

2

22

22

3

33

333 3 2

3
3

1 2 3

1

1 1

1 1 11

11

2

2

2

2

22

22

3

33

333 3 2

33

4

4

4

4 4 4

Fig. 4. Mapping of structures in leaves and the mapping of ancestral structures along the tree solved by the algorithm are given:
(a) case of equal gene sets in leaves and (b) case of unequal gene sets in leaves.

334

MOLECULAR BIOLOGY Vol. 49 No. 3 2015

GORBUNOV et al.

that seems biologically relevant, i.e., the cost of joining
two ends does not exceed the cost of their cut and the
cost of a gene loss does not exceed that of its gain, the
marking cost also does not increase. In other words,
our algorithm remains the exact solving algorithm.

The following statement that is significantly stron�
ger is also true: no violations arise if the cost of 1 → 0
transformation is strictly below the cost of 0 → 1 trans�
formation. Indeed, let us designate d the difference of
costs of these transformations and fix an incident pair
of variables. The use of induction on the height of the
tree shows that, if there is a violation in the root of the
tree, its removal leads to a decrease in the marking cost
by at least 2d; otherwise, the cost does not change.
This is valid for any (not just minimal) marking. The
initial step of the induction is obvious; therefore, let us
define the inductive step. Consider a tree with the root
r and let us assume that the statement is true for all
children trees of the vertex r. If the marking in a chil�
dren’s vertex r' equals (1, 1), we call the edge (r, r') and
a tree with the root r ' singular. Let us sort the cases of
the marking (x, y) of the vertex r. Let (x, y) = (0, 0). It
is obvious that the marking cost would not increase
after resolving the violations. Let (x, y) = (0, 1) or
(x, y) = (1, 0). In this case the marking cost at every
singular edge increases by d but it decreases by 2d in
every singular tree. The total marking cost does not
change.

Let (x, y) = (1, 1). The cost decreases by at least d
at every nonsingular edge, it does not change in case of
a singular edge, and decreases by 2d in a singular tree.
Since the vertex contains at least two children, the
total marking cost decreases by at least 2d.

The next step is to prove the absence of any viola�
tions in the marking by contradiction. Let us consider
a maximum (by insertions) tree T with the root v
labeled with a pair (1, 1). If there were violations in the
marking, resolving them in T (marking cannot be
changed outside T) would have decreased the marking
cost in T by 2d, whereas the cost on the parent edge of
the vertex v could have increased by less than d (we use
here the fact that there is no marking (1, 1) above the
vertex v). The total marking cost decreases, which is
not true, since it is already minimal.

Biological Distance

Examples of the algorithm with the costs of joining
operations of three and the costs of cut operations of
two, which is different from the costs considered in
this section, are described in the following section.
The marking cost increases insignificantly as a result of
resolving all violations.

The following heuristic algorithm is considered.
Firstly, the ancestral structures were mapped using a
special distance, for which the values of costs are used.
In the case of long edges, the costs can be multiplied
by correcting factors that account for the length of
evolution. Thus, the obtained mapping serves as the

first step for the algorithm of minimizing the mapping
cost based on the biological distance. At every step of
the algorithm, all internal vertices of the tree and all
operations were sorted out. A step of the algorithm
included choosing a pair <vertex, operation>, which
minimizes the mapping cost, and further the opera�
tion was used in the vertex. We denote this algorithm as
the descent.

To allow multiple descent steps using different ini�
tial mappings, parameter p, which reflects the penalty
for disjoining the two ends of the gene, was introduced
to the functional with a special distance. The algo�
rithm described above is characterized by p = 0. The
descent approach was carried out at values of p ranging
from zero to three with a step of 0.1, resulting in a
number of different mappings. Among those, the best
mapping was selected that represents the final map�
ping of ancestral structures.

The given definition of the biological distance can
be corrected. In detail, if the structure consists of
mainly circular chromosomes, the double cut and join
operations are the most frequent ones; therefore, the
cost of the double cut and join operation, cdouble, was
equal to 0.8, whereas the cost of any other cut and join
operation, cother, was 1.2. Let us designate l the number
of edges in a component of the joint graph of two ini�
tial structures. Thus, the distance between these two
structures is equal to the total of the value 0.5cdouble(l – 2)
over all cycles summed with the total of 0.5cdouble(l – 1) +
cother over even paths and 0.5cdouble(l – 2) + cother over
odd paths. It is easy to demonstrate that this distance
is equal to the minimal total cost of operations among
the sequence of operations that transform one struc�
ture into another and have a minimal length.

We obtained a different mapping of ancestral struc�
tures based on the biological distance as compared
with similar approaches based on the use of special
distance (see, e.g., Fig. 4a). Precisely, the (1, 2, 3)
cycle is in the root, cycles (1) and (2, 3) are on the left,
cycles (2) and (1, 3) are in the center, and cycles (3)
and (1, 2) are on the right; all genes are located on the
same strand. Indeed, for the data in Fig. 4a, the evolu�
tionary scenario with a special distance contains
15 single joint adjacencies (one at upper edges and two
at lower edges), while the same scenario with the bio�
logical distance includes six double�cut and join events
(one at the upper edges and one at the three lower
edges).

Example 3. Sets of genes are given in leaves; the
solving algorithms using a special and biological dis�
tance are different (Fig. 5).

It is evident that, in the case of biological distance,
the scenario in Fig. 5a contains one single cut at two
upper edges and one deletion and one single join at
four lower edges. In Fig. 5b, one deletion at four lower
edges is observed.

MOLECULAR BIOLOGY Vol. 49 No. 3 2015

REARRANGEMENT AND INFERENCE OF CHROMOSOME STRUCTURES 335

Examples of the Reconstruction of the Chromosome
Structure Using Biological Data

Example 4. Original data are given as structures of
plastid genes from the following nine species of red algae:
NC_021618 Grateloupia taiwanensis, NC_021075 Cal�
liar throntuberculosum; NC_020795 Chondrus crispus,
NC_006137 Gracilaria tenuistipitata var. liui,
NC_023133 Porphyridium purpureum, NC_004799
Cyanidioschyzon merolae strain 10D, NC_001840
Cyanidium caldarium, NC_007932 Pyropia yezoensis,
and NC_000925 Porphyra purpurea. A genome of
every red algae consists of a single circular chromo�
some. In each genome, genes related with photosys�
tems I and II were selected. According to NCBI tax�
onomy, the species tree is polytomic, i.e., nonbinary
(Fig. 6a). Thus, the following chromosome structures,
each containing 25 genes, were given in leaves. Let us
list genes of plastids in the order given for the species
above. The order of genes reflects their location on the

chromosome, * indicates the complementary strand,
and symbol |C indicates a circular chromosome as fol�
lows:
psaK *psaC psaI *psbJ *psbL *psbF *psbE *psaM
psbA *psbV *psaJ *psaF psbD psbC psaE *psbH psbN
*psbT *psbB psbK *psaA psbI psaL |C;
psbA *psbV *psaJ *psaF psbD psbC psaE *psbH psbN
*psbT *psbB psbK *psaB *psaA *psaD psbI psaL
psaK *psaC psaI *psbJ *psbL *psbF *psbE *psaM |C;
psaF psaJ psbV *psbA psbD psbC psaE *psbH psbN
*psbT *psbB psbK *psaB *psaA *psaD psbI psaL
psaK *psaC psaI *psbJ *psbL *psbF *psbE *psaM |C;
psaF psaJ psbV *psbA psbD psbC psaE *psbH psbN
*psbT *psbB psbK *psaB *psaA *psaD psbI psaL
psaK *psaC psaI *psbJ *psbL *psbF *psbE *psaM |C;
psbD psbC *psbV *psaB *psaA *psbK *psaE psbA
*psaJ *psaF psaD *psbJ *psbL *psbF *psbE *psaI
*psaL psaM *psbI *psbH psbN *psbT *psbB *psaC
*psaK |C;

(a) (b)1

1 1

11 1

2

2 2

222

3

3 3

3

33

4

4

4

444

1

11 1

2

222

3

3

33

4

444

1 2

34

1 2

34

Fig. 5. Mapping of structures in leaves and the mapping of ancestral structures along the tree solved by the algorithm are given:
(a) case of a special distance and (b) case of a biological distance.

Grateloupia taiwanensis

Cyanidium caldarium

Porphyridium purpureum
Pyropia yezoensis

Porphyra purpurea

Calliarthron tuberculosum

Chondrus crispus

Gracilaria tenuistipitata var. liui

Cyanidioschyzon merolae strain

Grateloupia taiwanensis

Cyanidium caldarium

Porphyridium purpureum

Pyropia yezoensis

Porphyra purpurea

Calliarthron tuberculosum

Chondrus crispus

Gracilaria tenuistipitata var. liui

Cyanidioschyzon merolae strain 10D

1

2

3

4

5

6

7

8

(a) (b)

1

2

3 4

5

Fig. 6. Tree for given species with enumerated internal vertices: (a) original polytomic tree; (b) its binary resolution.

336

MOLECULAR BIOLOGY Vol. 49 No. 3 2015

GORBUNOV et al.

psaM psbA *psaK *psaC psbD psbC psbB psbT *psbN
psbH *psaE psaA psaB *psbK *psaD psaF psaJ psbV
psaI *psbJ *psbL *psbF *psbE psaL *psbI |C;
psbD psbC psaI *psbJ *psbL *psbF *psbE psaL *psbI
psbA psaK *psaC psaE *psbH psbN *psbT *psbB
*psaM psaF psaJ psbV psaD psbK *psaB *psaA |C;
psaF psaJ psbV *psbA psaL *psbI psaD psaA psaB
psbK psbB psbT *psbN psbH *psaE *psbC *psbD
psaK *psaC psaI *psbJ *psbL *psbF *psbE *psaM |C;
psaF psaJ psbV psbA psaL *psbI psaD psaA psaB psbK
psbB psbT *psbN psbH *psaE *psbC *psbD psaK
*psaC psaI *psbJ *psbL *psbF *psbE *psaM |C.

The algorithm was tested in two different scenarios,
i.e., it was applied directly to the polytomic tree and to
each of its binary solutions. The minimal solving cost
in the case of the polytomic tree is 27.9. The solution
is given in the order of vertex numbering.
psaL *psbIpsaDpsaApsaB *psbKpsbBpsbT *psbBpsbH
*psaE *psbC *psbDpsaK psaCpsaIpsbJ psbLpsbF
*psbE *psaMpsaFpsaJpsbVpsbA |C;
psaLpsaK *psaCpsaI *psbJ *psbL *psbF *psbE
*psaMpsaFpsaJpsbV *psbApsbDpsbCpsaE *psbHpsbN
*psbT *psbBpsbK *psaB *psaA *psaDpsbI |C;
psaL *psbIpsaDpsaApsaB *psbKpsbBpsbT *psbNpsbH
*psaE *psbC *psbDpsaK psaCpsaIpsbJ *psbL *psbF
*psbE *psaMpsaFpsaJpsbVpsbA |C;
psaL *psbIpsaDpsbK *psaB *psaApsbDpsbCpsaI
*psbJ *psbL *psbF *psbE |C and psbBpsbT *psbNpsbH
*psaEpsaC *psaK *psbA *psbV *psaJ *psaFpsaM |C;
psaL *psbIpsaDpsaApsaBpsbKpsbBpsbT *psbNpsbH
*psaE *psbC *psbDpsaK *psaCpsaI *psbJ *psbL
*psbF *psbE *psaMpsaFpsaJpsbVpsbA |C.

The minimal mapping indicates that, during evolu�
tion, a structure that consists of a single circular chro�
mosome, except for the vertex 4, in which the second
circular chromosome arose, was favored. The latter is
likely to be related to the necessity of faster replication
in unfavorable environmental conditions.

The algorithm gives the minimal cost of 25.2 for a
binary resolution shown in Fig. 6b of all polytomies in
the original tree. The solution is ordered according to
the vertex enumeration:
psaL *psbIpsaDpsaApsaB *psbKpsbBpsbT *psbNpsbH
*psaE *psbC *psbDpsaK *psaCpsaI*psbJ *psbL
*psbF *psbE *psaMpsaFpsaJpsbV *psbA |C;
psaLpsaK *psaCpsaI *psbJ *psbL *psbF *psbE
*psaMpsaFpsaJpsbV *psbApsbDpsbCpsaE *psbFIpsbN
*psbT *psbBpsbK *psaB *psaA *psaDpsbI |C;
psaL *psbIpsaDpsaApsaB *psbKpsbBpsbT *psbNpsbH
*psaE *psbC *psbDpsaK *psaCpsaI*psbJ *psbL
*psbF*psbE *psaMpsaFpsaJpsbV *psbA |C;
psaL *psbIpsaMpsaI *psbJ *psbL *psbF *psbEpsbK
*psaB*psaA *psbA *psbV *psaJ *psaFpsaD |C and
psbBpsbT *psbNpsbH *psaE *psbC *psbDpsaK
*psaC |C;
psaLpsaK *psaCpsaI *psbJ *psbL *psbF *psbE
*psaMpsbA *psbV *psaJ *psaFpsbDpsbCpsaE

*psbHpsbN *psbT *psbBpsbK *psaB *psaA
*psaDpsbI |C;
psaLpsaK *psaCpsaI *psbJ *psbL *psbF *psbE
*psaMpsaFpsaJpsbV *psbApsbDpsbCpsaE *psbHpsbN
*psbT *psbBpsbK *psaB *psaA *psaDpsbI |C; psaL
*psbIpsaMpsaI *psbJ *psbL *psbF *psbE |C and
psaDpsbK *psaB *psaApsbDpsbCpsbBpsbT *psbNpsbH
*psaEpsaC *psaK *psbA *psbV *psaJ *psaF |C;
psaL *psbIpsaDpsaApsaBpsbKpsbBpsbT *psbNpsbH
*psaE *psbC *psbDpsaK *psaCpsaI *psbJ *psbL
*psbF *psbE *psaMpsaFpsaJpsbV *psbA |C.

The minimal mapping of structures to the internal
vertices of the tree shown in Fig. 6b indicates that evo�
lution favored a structure consisting of a single circular
chromosome, except for vertices no. 4 and 7, in which
two chromosomes are present.

Example 5. Genes of ribosomal proteins and RNA�
polymerase subunits were selected from the plastids.
Chromosome structures, each consisting of 45 genes
(the order of the genes is similar to that given in Exam�
ple 1), were assigned to leaves of the same nonbinary
tree as follows:
rps4 *rps6 *rpl27 *rpl21 *rpl32 rpl34 rpsl6 *rpl12
*rpl1 *rpl11 rpl19 *rps10 *rps7 *rps12 *rpl31 *rps9
*rpl13 *rpoA*rps11 *rps13 *rp136 *ips5 *rpl18 *rpl6
*rps8 *rpl5 *rpl24 *rpl14 *rps17 *rpl29 *rpl16 *rps3
*rpl22 *rpl2 *rpl23 *rpl4 *rpl3 *rpsl4 rpl35 rpl20
*rps18 *rpl33 rpoBrps2 *rpl28 |C;
*rps6 *rpl27 *rpl21 *rpl32 rpl34 rps16 *rpl12 *rpl1
*rpl11 rpl19 *rps10 *rps7 *rps12 *rpl31 *rps9 *rpl13
*rpoA*rps11 *rps13 *rpl36 *rps5 *rpl18 *rpl6 *rps8
*rpl5 *rpl24 *rpl14 *rps17 *rpl29 *rpl16 *rps3 *rpl22
*rpl2 *rpl23 *rpl4 *rpl3 *rps14rpl35 rpl20 *rps18
*rpl33 rpoBrps2 *rpl28 rps4 |C;
*rpl34 rpl32 rpl21 rpl27 rps6 rps16 *rpl12 *rpl1 *rpl11
rpl19 *rps10 *rps7 *rps12 *rpl31 *rps9 *rpl13
*rpoA*rps11 *rps13 *rpl36 *rps5 *rpl18 *rpl6 *rps8
*rpl5 *rpl24 *rpl14 *rps17 *rpl29 *rpl16 *rps3 *rpl22
*rpl2 *rpl23 *rpl4 *rpl3 *rps14 rpl35 rpl20 *rps18
*rpl33 rpoBrps2 *rpl28 rps4 |C;
*rpl34 rpl32 rpl21 rpl27 rps6 rps16 rpl1 rpl1 rpl12 rpl19
*rps10 *rps7 *rps12 *rpl31 *rps9 *rpl13 *rpoA*rps11
*rps13 *rpl36 *rps5 *rpl18 *rpl6 *rps8 *rpl5 *rpl24
*rpl14 *rps17 *rpl29 *rpl16 *rps3 *rpl22 *rpl2 *rpl23
*rpl4 *rpl3 *rps14 rpl35 rpl20 *rps18 *rpl33 rpoBrps2
*rpl28 rps4 |C;
*rps6 rpl34 *rpl1 *rpl11 rpl12 rpl35 rpl20 *rps4 rpl21
rpl27 *rps18 *rpl33 rps16 rpl19 *rps5 *rpl18 *rpl6
*rps8 *rpl5 *rpl24 *rpl14 *rpsl7 *rpl29 *rpl16 *rps3
*rpl22 *rpl2 *rpl23 *rpl4 *rpl3 rps10 rps14 *rps7
*rps12 *rpl31 *rps9 *rpl13 *rpoA*rps11 *rps13 *rpl36
*rpl28 rpl32 *rpoBrps2 |C;
rps4 *rpl28 rpl21 rpl27 rpl32 rpl34 rps6 rps16 rpl11
rpl1 rpl12 rpl19 rps14 rpl35 rpl20 rpl3 rpl4 rpl23 rpl2
rpl22 rps3 rpl16 rpl29 rps17 rpl14 rpl24 rpl5 rps8 rpl6
rpl18 rps5 rpl36 rps13 rps11 rpoArpl13 rps9 rpl31
rps12 rps7 rps10 *rps18 *rpl33 rpoBrps2 |C;

MOLECULAR BIOLOGY Vol. 49 No. 3 2015

REARRANGEMENT AND INFERENCE OF CHROMOSOME STRUCTURES 337

*rps18 *rpl33 rpoBrps2 rpl21 rpl27 rpl32 rpl34 rps6
*rpl19 rpl11 rpl1 rpl12 *rps16 rps4 *rpl28 *rps10 *rps7
*rps12 *rpl31 *rps9 *rpl13 *rpoA*rps11 *rps13 *rpl36
*rps5 *rpl18 *rpl6 *rps8 *rpl5 *rpl24 *rpl14 *rpsl7
*rpl29 *rpl16 *rps3 *rpl22 *rpl2 *rpl23 *rpl4 *rpl3
*rpl20 *rpl35 *rps14 |C;
*rpl34 rpl32 rpl21 rpl27 *rps4 *rpl28 *rps2 *rpoBrpl33
rps18 *rpl20 *rpl35 *rps10 *rps7 *rps12 rpl31 *rps9
*rpl13 *rpoArps11 rps13 *rpl36 *rps5 *rpl18 *rpl6 *rps8
*rpl5 *rpl24 *rpl14 *rps17 *rpl29 *rpl16 *rps3 *rpl22
*rpl2 *rpl23 *rpl4 *rpl3 *rps14 *rpl19 rpl11 rpl1 rpl12
*rps16 *rps6 |C;
*rpl34 rpl32 rpl21 rpl27 *rps4 *rpl28 *rps2 *rpoBrpl33
rps18 *rpl20 *rpl35 *rps10 *rps7 *rps12 *rpl31 *rps9
*rpl13 rpoA*rps11 *rps13 *rpl36 *rps5 *rpl18 *rpl6
*rps8 *rpl5 *rpl24 *rpl14 *rpsl7 *rpl29 *rpl16 *rps3
*rpl22 *rpl2 *rpl23 *rpl4 *rpl3 *rps14 *rpl19 rpl11
rpl1 rpl12 *rps16 *rps6 |C.

The algorithm solves the problem with a minimal
cost of 31.5. All vertices, except for vertex no. 4, were
assumed a single circular chromosome; vertex no. 4
was assumed to be two circular chromosomes. The
solution is given below and arranged in the order of
vertex enumeration as follows:
rpl28 *rps2 *rpoBrpl33 rps18 *rpl20 *rpl35 rps14 rpl3
rpl4 rpl23 rpl2 rpl22 rps3 rpl16 rpl29 rps17 rpl14 rpl24
rpl5 rps8 rpl6 rpl18 rps5 rpl36 rps13 rps11 rpoArpl13
rps9 rpl31 rps12 rps7 rps10 *rpl19 rpl11 rpl1 rpl12
*rps16 *rps6 *rpl27 *rpl21 *rpl32 rpl34 *rps4 |C;
rpl28 *rps2 *rpoBrpl33 rps18 *rpl20 *rpl35 rps14 rpl3
rpl4 rpl23 rpl2 rpl22 rps3 rpl16 rpl29 rps17 rpl14 rpl24
rpl5 rps8 rpl6 rpl18 rps5 rpl36 rps13 rps11 rpoArpl13
rps9 rpl31 rps12 rps7 rps10 *rpl19 rpl11 rpl1 rpl12
*rps16 *rps6 *rpl27 *rpl21 *rpl32 rpl34 *rps4 |C;
rpl28 *rps2 *rpoBrpl33 rps18 *rpl20 *rpl35 *rps10
*rps7 *rps12 *rpl31 *rps9 *rpl13 *rpoA *rps11 *rps13
*rpl36 *rps5 *rpl18 *rpl6 *rps8 *rpl5 *rpl24 *rpl14
*rps17 *rpl29 *rpl16 *rps3 *rpl22 *rpl2 *rpl23 *rpl4
*rpl3 *rps14 *rpl19 rpl11 rpl1 rpl12 *rps16 *rps6
*rpl34 rpl32 rpl21 rpl27 *rps4 |C;
rpl28 *rps4 |C and rps2 rpl21 rpl27 rpl32 rpl34 rps6
rps16 *rpl12 *rpl1 *rpl11 rpl19 rps14 rpl35 rpl20 rpl3
rpl4 rpl23 rpl2 rpl22 rps3 rpl16 rpl29 rps17 rpl14 rpl24
rpl5 rps8 rpl6 rpl18 rps5 rpl36 rps13 rps11 rpoArpl13
rps9 rpl31 rps12 rps7 rps10 *rps18 *rpl33 rpoB |C;
rpl28 rps4 *rpl27 *rpl21 *rpl32 rpl34 rps6 rps16 *rpl12
*rpl1 *rpl11 rpl19 rps14 rpl3 rpl4 rpl23 rpl2 rpl22 rps3
rpl16 rpl29 rps17 rpl14 rpl24 rpl5 rps8 rpl6 rpl18 rps5
rpl36 rps13 rps11 rpoArpl13 rps9 rpl31 rps12 rps7
rps10 rpl35 rpl20 *rps18 *rpl33 rpoBrps2 |C.

Testing the algorithm with different binary resolu�
tions of the polytomic tree showed that the best result
was achieved at the same binary tree (Fig. 6b). A min�
imal cost of 29.6 was obtained. All vertices, except for
vertex no. 7, were assumed to be one circular chromo�
some, whereas the vertex no. 7 was assumed as two cir�
cular chromosomes. The mapping of structures to

internal vertices of the tree was ordered according to
their enumeration as follows:
rpl28 *rps2 *rpoBrpl33 rps18 *rpl20 *rpl35 *rps10
*rps7 *rps12 *rpl31 *rps9 *rpl13 *rpoA*rps11 *rps13
*rpl36 *rps5 *rpl18 *rpl6 *rps8 *rpl5 *rpl24 *rpl14
*rps17 *rpl29 *rpl16 *rps3 *rpl22 *rpl2 *rpl23 *rpl4
*rpl3 *rps14 *rpl19 rpl11 rpl1 rpl12 *rps16 *rps6
*rpl34 rpl32 rpl21 rpl27 *rps4 |C;
rpl28 *rps2 *rpoBrpl33 rps18 *rpl20 *rpl35 rps14 rpl3
rpl4 rpl23 rpl2 rpl22 rps3 rpl16 rpl29 rps17 rpl14 rpl24
rpl5 rps8 rpl6 rpl18 rps5 rpl36 rps13 rps11 rpoArpl13
rps9 rpl31 rps12 rps7 rps10 *rpl19 rpl11 rpl1 rpl12
*rps16 *rps6 *rpl27 *rpl21 *rpl32 rpl34 *rps4 |C;
rpl28 *rps2 *rpoBrpl33 rps18 *rpl20 *rpl35 *rps10
*rps7 *rps12 *rpl31 *rps9 *rpl13 *rpoA *rps11 *rps13
*rpl36 *rps5 *rpl18 *rpl6 *rps8 *rpl5 *rpl24 *rpl14
*rps17 *rpl29 *rpl16 *rps3 *rpl22 *rpl2 *rpl23 *rpl4
*rpl3 *rps14 *rpl19 rpl11 rpl1 rpl12 *rps16 *rps6
*rpl34 rpl32 rpl21 rpl27 *rps4 |C;
rpl28 *rps2 *rpoBrpl33 rps18 *rpl20 *rpl35 *rps10
*rps7 *rps12 *rpl31 *rps9 *rpl13 *rpoA *rps11 *rps13
*rpl36 *rps5 *rpl18 *rpl6 *rps8 *rpl5 *rpl24 *rpl14
*rps17 *rpl29 *rpl16 *rps3 *rpl22 *rpl2 *rpl23 *rpl4
*rpl3 *rps14 *rpl19 rpl11 rpl1 rpl12 *rps16 *rps6
*rpl34 *rpl32 rpl21 rpl27 *rps4 |C;
rpl28 *rps2 *rpoBrpl33 rps18 *rpl20 *rpl35 rps14 rpl3
rpl4 rpl23 rpl2 rpl22 rps3 rpl16 rpl29 rps17 rpl14 rpl24
rpl5 rps8 rpl6 rpl18 rps5 rpl36 rps13 rps11 rpoArpl13
rps9 rpl31 rps12 rps7 rps10 *rpl19 rpl11 rpl1 rpl12
*rps16 *rpl34 rpl32 rpl21 rpl27 rps6 *rps4 |C;
rpl28 *rps2 *rpoBrpl33 rps18 *rpl20 *rpl35 rps14 rpl3
rpl4 rpl23 rpl2 rpl22 rps3 rpl16 rpl29 rps17 rpl14 rpl24
rpl5 rps8 rpl6 rpl18 rps5 rpl36 rps13 rps11 rpoArpl13
rps9 rpl31 rps12 rps7 rps10*rpl19 rpl11 rpl1 rpl12
*rps16 *rps6 *rpl27 *rpl21 *rpl32 rpl34 *rps4 |C;
rpl28 *rps4 |C and rps2 rpl21 rpl27 rpl32 rpl34 rps6
rps16 *rpl12 *rp11 *rpl11 rpl19 rps14 rpl35 rpl20 rpl3
rpl4 rpl23 rpl2 rpl22 rps3 rpl16 rpl29 rps17 rpl14 rpl24
rpl5 rps8 rpl6 rpl18 rps5 rpl36 rpsl3 rps11 rpoArpl13
rps9 rpl31 rps12 rps7 rps10 *rps18 *rpl33 rpoB |C;
rpl28 rps4 *rpl27 *rpl21 *rpl32 rpl34 rps6 rps16 *rpl12
*rpl1 *rpl11 rpl19 rps14 rpl3 rpl4 rpl23 rpl2 rpl22 rps3
rpl16 rpl29 rps17 rpl14 rpl24 rpl5 rps8 rpl6 rpl18 rps5
rpl36 rps13 rps11 rpoArpl13 rps9 rpl31 rps12 rps7
rps10 rpl35 rpl20 *rps18 *rpl33 rpoBrps2 |C.

ACKNOWLEDGMENTS

We are grateful to A. V. Troitsky and S. A. Spirin for
their useful comments that significantly improved our
work. The study was supported by the Russian Scien�
tific Fund (project no. 14�50�00150).

REFERENCES

1. Donthu R., Lewin H.A., Larkin D.M. 2009. Synteny�
Tracker: A tool for defining homologous synteny blocks
using radiation hybrid maps and whole�genome

338

MOLECULAR BIOLOGY Vol. 49 No. 3 2015

GORBUNOV et al.

sequence. BMC Res. Notes. 23 (2), 148. doi 10.1186/
1756�0500�2�148

2. Romanov M.N., Farré�Belmonte M., Lithgow P.E.,
O’Connor B., Fowler K.E., Larkin D.M., Griffin D.K.
2014. In silico reconstruction of chromosomal rear�
rangements and an avian ancestral karyotype. In: XXII
International Plant and Animal Genome Conference,
January 11–16, 2014, San Diego, CA, USA.

3. Romanov M.N, Farré M., Lithgow P.E., Fowler K.E.,
Skinner B.M., O’Connor R., Fonseka G., Backström N.,
Matsuda Y., Nishida C., Houde P., Jarvis E.D.,
Ellegren H., Burt D.W., Larkin D.M., Griffin D.K.
2014. Reconstruction of gross avian genome structure,
organization and evolution suggests that the chicken
lineage most closely resembles the dinosaur avian
ancestor. BMC Genomics. 15, 1060. doi 10.1186/1471�
2164�15�1060

4. Bergeron A., Mixtacki J., Stoye J. 2006. A unifying view
of genome rearrangements. Algorithms Bioinform.
LNCS. 4175, 163–173.

5. Fertin G., Labarre A., Rusu I., Tannier E., Vialette S.
2009. Combinatorics of Genome Rearrangements. Cam�
bridge, MA: MIT Press.

6. Models and Algorithms for Genome Evolution. 2013. Eds.
Chauve C., El�Mabrouk N., Tannier E. Comput. Biol.
Series. London: Springer.

7. Lyubetsky V.A., Gorbunov K.Yu. 2013. Problems and
algorithms related to chromosomal rearrangements. In:
Sbornik izbrannykh trudov VIII Mezhdunarodnoi nauchno�
prakticheskoi konferentsii. MGU im. M.V. Lomonosova, 8–
10 noyabrya 2013 g. (Proc. 8th Int. Sci.�Pract. Conf.,
Moscow State Univ., November 8–10, 2013), Mos�
cow: INTUIT.RU, pp. 764–768.

8. Lyubetsky V.A., Gorbunov K.Yu. 2014. Chromosome
structures reconstruction. In: Sbornik materialov 4�i Mosk�
ovskoi mezhdunarodnoi konferentsii “Molekulyarnaya filo�
genetika MolPhy�4”. MGU im. M.V. Lomonosova, 23–
26 sentyabrya 2014 g.) (Proc. 4th Moscow Int. Conf. on
Molecular Phylogenetics, MolPhy�4, Moscow State Univ.,
September 23–36, 2014). Moscow: Torus Press, p. 42.

9. Gorbunov K.Yu., Lyubetsky V.A. 2009. Reconstruct�
ing the evolution of genes along the species tree. Mol.
Biol. (Moscow). 43 (5), 881–893.

10. Lyubetsky V.A., Rubanov L.I., Rusin L.Y., Gorbunov
K.Yu. 2012. Cubic time algorithms of amalgamating
gene trees and building evolutionary scenarios. Biol.
Direct. 7 (1), 1–20.

11. Rusin L.Y., Lyubetskaya E.V., Gorbunov K.Yu.,
Lyubetsky V.A. 2014. Reconciliation of gene and spe�
cies trees. Biomed. Res. Int. 642089. doi 10.1155/
2014/642089

Translated by S. Khoronenkova

