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Introduction 

T h e o r  e m l.3) Let E be a !Zt equivalence on reals. Assume that 

(*) 

Then a t  least one of the following two statements holds: 

each real belongs to a Boolean valued extension of L. 

(I) E admits a A?' reduction t o  the equality on 2<w1. 
(11) Eo C, E, i. e., Eo embeds in E continuously. 

Reals may be understood either as the true reals or as points of the Baire space 
N = w" or as points of the Cantor set 2) = 2". In fact the theorem is true for all 
Polish spaces since all of them are Bore1 isomorphic to each other. 

As usual L is the constructible universe. By a Boolean valued extension of a model 
M we always mean a Boolean valued extension M(') via a forcing notion P E M .  
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and interesting information on generic models and the classification of equivalence relations. 
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1995, that G .  HJORTH may have proved a similar theorem independently. 



288 Vladimir Kanovei 

.The statement that  a set S belongs to  a Boolean valued extension of L is adequately 
formalized as follows: 

there exists a Boolean valued extension of L [ q  in  which i t  i s  true that 
the universe i s  a set  generic extension of L .  

The hypothesis (*) follows e. g. from the assumption that the universe is a set generic 
extension of L. (But in principle the extensions can be different for different reals.) 
As a matter of fact the theorem remains true in the more broad hypothesis that  each 
real x belongs to  a Boolean valued extension of L[zo] for one and the same real zo 
which does not depend on x. 

(Boldface) A:' is the class of all subsets of HC (the family of all hereditarily 
countable sets) which are A, in HC by formulas which may contain sets in HC as 
parameters. 

A reduction of E t o  the equality on 2<"1 (the set of all countable binary sequences 
of any length X < w l )  is any function U : reals - 2<w1 such that x E y if and 
only if U ( z )  = U(y) holds for any pair of reals x, y. In other words such a function 
enumerates E-equivalence classes by elements of 2<"1 . 

Eo is the Vital i  equivalence relation on 'D = 2", defined by 

x Eo y iff x(n) = y(n) for all n E w bigger than some no = no(x ,  y). 

Statement (11) means, by definition, the existence of a continuous 1 - 1 function 
cp : 2" - reals such that 

z Eo y iff cp(x) E cp(y) for all x, y in 2". 

Such a function cp is called a (continuous) embedding of Eo in E. 
Intuitively, the Vitali relation Eo hardly admits a reasonable enumeration of the 

equivalence classes, definable in ZFC: at least a ROD (real-ordinal definable) enumer- 
ation of Eo equivalence classes by sets  of ordinals does not exist in the Solovay model. 
Thus the theorem says that any Xi equivalence relation on reals either admits a A?' 
enumeration of equivalence classes by elements of 2<"1 or contains a homeomorphic 
copy of Eo, a relation which admits such an enumeration only by occasional reasons 
like the axiom of constructibility. 

We refer the reader to  [2] in matters of the early history of "Glimm-Effros" the- 
orems - those of type: each equivalence relation of certain kind ei ther  admi t s  a rea- 
sonable enumerat ion of the equivalence classes o r  satisfies Eo Ec E - and relevant 
problems in probability and measure theory. 

The modern history of the topic began in HARRINGTON, KECHRIS and LOU- 
VEAU [2], where it is proved that each Borel equivalence relation on reals either admits 
a Borel enumeration of the equivalence classes by reals or satisfies Eo C, E.  The case 
of Xi relations is more complicated. HJORTH and KECHRIS [5] give examples which 
show that  reasonable results of the "Glimm-Effros" type hardly can be obtained for 
Xi relations by simply taking a non-Bore1 enumeration in (I) or discontinuous em- 
bedding in (11); it seems that the enumeration of equivalence classes by reals does not 
match the nature of Xi relations. 
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To fix the problem, HJORT and KECHRIS suggested an adequate idea: enumerate 
the equivalence classes by elements of 2<w1. (This approach is referred to as the Ulm- 
type  classification in [5], in connection with an Ulm classification theorem in algebra.) 
They proved that the dichotomy (I) vs. (11) holds for each Xi equivalence relation on 
Teals, assuming the existence of (‘sharps” .4) 

Theorem 1 establishes the same result (apart of the possible compatibility of (I) 
and (11)) in the completely different environment of generic models. It is a principal 
problem to get the result in ZFC alone.5) 

Another problem is to generalize the theorem on the case of A: equivalence rela- 
tions. (A generalization on or is hardly possible 6, ’).) 

O r g a n i z a t i o n  of  t h e  p r o o f .  

First of all, we shall consider only the case when E is a lightface Ci relation; if in fact 
E is C:(ZO) in a real 20, then this 20 simply enters the reasoning in a uniform way, 
not influenting substantially any of the arguments.8) 

The splitting point between the statements (I) and (11) of Theorem 1 is determined 
in Section 1. It occurs that we have (I) in the assumption that the E equivalence class 
[z]E of every real z is determined by intersections with OD (ordinal definable) sets 
in an appropriate collapse extension of the universe. ( C a s e  1 in Subsection 1.2.) 
Otherwise ( C a s e  2) we have (11). 

Both sides of the proof depend on properties of reals in collapse extensions close 
to those of the Solovay model. The facts we need are reviewed in Section 2. 

Section 3 proves assertion (I) of Theorem 1 in C a s e  1. The principal idea is 
based on the fact that the collapse generic models are regular enough to  reduce the 
collection of all OD sets to essentially Souslin sets with constructible code, which 
yields a characterization in terms of elements of 2<w1. An absoluteness argument 
allows to extend this fact to the universe of Theorem 1. 

‘)The latter was eliminated in (51 in the case when the C: equivalence relation of considera- 
tion occasionally has only Bore1 equivalence classes. The method introduced by S. FRIEDMAN and 
B. VELICKOVIC [l] allows to weaken the “sharps” hypothesis to the assumption that each class &[I], 
I being a real, contains a weakly compact cardinal. 

’)HJoRTH [3] found one more theorem on C: equivalence relations. true in both the “sharps” and 
the ‘‘forcing’’ case, but still open for ZFC. 

‘)In an appropriate iterated Sacks extension of L (with “ill”founded length of iteration) there are 
C: and I7: equivalence relations which neither admit a ROD enumeration of the equivalence classes 
by sets of ordinals nor satisfy Eo Lc E, see KANOVEI [7]. 

7)More complicated relations can be successfully investigated in strong extensions of ZFC or in 
special models. HJORTH [4] proved, assuming AD in L[reals], that every ROD equivalence relation 
on reals either admits a ROD enumeration of the equivalence classes by sets of ordinals, or satisfies 
Eo Ec E. KANOVEI [6] proved even a stronger result (enumeration by elements of 2<w1) in the 
Solovay model. 

‘)It suffices to check that condition (*) of Theorem 1 implies its relativized form, for L[zo] rather 
than t. To see this, let I, zo be reals; we have to prove that I belongs to a Boolean valued extension 
of L[z,]  assuming (*). First of all, by (*), there is a Boolean valued extension V of L [ z ,  201 in which 
it is true that the universe is a set-generic extension of L. Then, by Lemma 5 below, it is also true 
in V that the universe is a generic extension of L[zo].  Therefore V is a Boolean valued extension of 
L[ZO] containing I. 
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Sections 4 and 5 prove (11) of Theorem 1 in C a s e  2. The assumption suffices to  
check that Eo Ec E in a collapse extension of the universe; moreover, Eo embeds in 
E in a special sense which can be expressed by a El formula. (The existence of an 
embedding in general needs EA.) We conclude that Eo embeds in E in the universe 
by the Shoenfield absoluteness theorem. 

The construction of an embedding of Eo into E follows the pattern given in [2], yet 
associated with another topology (the topology generated by OD sets), and arranged 
in a different way. 

1 Approach to the proof of the main theorem 

It will be more convenient to consider ’D = 2”, the Cantor set, rather than 3- = ww 
as the basic Polish space for which Theorem 1 is being proved. Thus by “reals” we 
shall understand points of ’D. (Just because points of ’D admit a very simple coding 
in collapse generic universes.) 

We shall prove only the “lightface” version of the theorem, so that E is supposed 
to be a Ci equivalence relation on reals in the course of the proof. (See footnote 8.) 

The purpose of this section is to describe the factor which determines the dicho- 
tomy of Theorem 1. 

1.1 Collapse extensions 

Let a be an ordinal. Then a<w = UnEw an is the ordinary forcing notion to collapse 
a down to w .  We shall understand that, for conditions p ,  q E aCw, p 5 q iff p C q ,  so 
that bigger forcing conditions are stronger.  

If G C a<w is aCw-generic over a transitive model M ( M  is a set or a class), 
then f = U G  maps w onto a ,  so a is countable in M[G]  = M [ f ] .  Functions f E aW 
obtained this way will be called a<w-gener i c  over  M .  Let Clps,(M) denote the set 
of all a<w-generic over M functions f E aW. 

The R-collapse universe hypothesis will be the assumption: 

R-CUH R i s  a l imit  cardinal in  L and there exists a funct ion fo E Clpsn(L) 
such that V = L[fo] in  the universe.  

The notion of the R<”-valued extension of a model M is understood in the usual 
way, that is, as a certain inner class in M the truth in which takes values in the 
complete Boolean algebra over Rz<w in M .  

D e f i n i t  i o n. Let R be a limit L-cardinal. We say that a set S belongs t o  an W w -  
valued eztension of L iff there is a Boolean valued extension of L[q where R-CUH 
holds. 

The collapse models are not so nice as the Solovay model, but they contain reals 

D e f i n i t i on .  A set is R-weak  over  M (where 52 is an ordinal in a model M )  iff 
which behave approximately like all reals in the Solovay model. 

it belongs to an acw-generic extension of M for some a < 0. We define 

Weakn(M) = {x E ’D = 2w : 2: is R-weak over M}. 
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P r o p o s i t i o n  2 .  Assume (*) of Theorem 1. Then f o r  each real z there is a limit 
L-cardinal  R such that z belongs t o  an a<"-valued extension of L where at as true 
that z E Weakn(L). 

P r o o f .  By (*) there are forcing notions P, Q E L such that in M = L[Z] (~ )  it 
is true that the universe is a &-generic extension of L .  Let a = (card&)+ in L and 
R be the least L-cardinal bigger than a. We consider the model MI = M ( n < w )  = 
L [ Z ] ( ~ ) ( " < ~ ) ,  so that it is true in MI that the universe is an R<"-generic extension of a 
Q-generic extension of L .  It is a standard fact (and an easy corollary of Proposition 4 
below) that in this case R-CUH is true in MI.  Furthermore one easily sees that 

0 z E Weakn(L) in MI.  

1.2 The dichotomy 

In ZFC let 7 be the topology generated on the set ID = 2" by all OD nonempty 
subsets of I>. This topology plays the same role in our consideration as the Gandy- 
Harrington topology in the proof of the classical Glimm-Effros theorem (for Borel 
relations) in [2]. 

We define E to be the 72-closure of E in D2. In other words, 

Z E y  * v x [ x  is o D * ( Z E [ X ] E e y E [ X ] E ) ] ,  
where [XI ,  = { y  : (32 E X ) ( z E y ) }  (the E-saturation of X ) .  Thus E is an OD 
equivalence relation on ID. 

The dichotomy in [2] is determined by the equality E = E (where E is defined via 
the Gandy-Harrington topology): if E = E, then E admits a Borel enumeration of the 
equivalence classes by reals, otherwise Eo embeds in E .  Here the splitting condition 
is a bit more complicated: the essential domain of the equivalence is now a proper 
subset Weakn(L) 5 ID. 

C a s e  1.  For each real z there is a limit L-cardinal R such that z belongs to an 
a<"-valued extension V of L, where (in V )  the following is true: 

z E Weakn(L) and E coincides with E on Weakn(L). 
(Notice that,  for a C: binary relation E ,  the assertion that E is an equivalence relation 
is n;, and therefore absolute for all models with the same ordinals, in particular for 
L and all generic extensions of L.) 

C a s e  2. Otherwise. 
T h e o r e m  3 .  Suppose (*) of Theorem 1, a .  e . ,  each real belongs t o  a Boolean 

- assertion (I) of Theorem 1 in Case 1, 
- assertion (11) of Theorem 1 an Case 2 .  
This will be the form in which we prove Theorem 1. Section 3 proves the first part 

valued extension of L. Then f o r  a given C: equivalence relation E we have 

of Theorem 3, the second part is proved in Sections 4 and 5. 

2 On collapse extensions 

In this section, we fix a limit L-cardinal R .  The purpose is to establish some properties 
of R-collapse generic extensions (= the universe under the hypothesis S2-CUH), mostly 
connected with weak reals. 



292 Vladimir Kanovei 

2.1 Basic properties of collapse extensions 

The hypothesis R-CUH will be assumed during the reasoning, but we shall not forget 
to  specify R-CUH in all formulations of theorems. 

P r o p o s i t i o n  4. Assume R-CUH. Let S C_ Ord be R-weak over L.  Then the 
universe V of all  sets is an R<"'-generic extension of L [ q ,  and moreover we have: 

1. If is a sentence containing only sets in L[SJ as parameters, then A decides @ 
in the sense of W" as a forcing notion over L [ q .  

2. I f a  set X 5 L [ q  is 0 D [ q I  then X E L[S]. 

(A is the empty function, the weakest condition in any forcing notion of the form 
R<"'. OD[q  means S-ordinal definable, i.e., definable by an E-formula having S 
and ordinals as parameters.) The proof (a copy of the proof of Theorem 4.1 in 
SOLOVAY [ S ] )  is based on the following crucial lemma: 

Suppose that P E L is a partially ordered set, and G 5 P is a 
P-generic set over L. Let S E L[G],  S Then there exists a set C C P ,  
C E L[SJ, such that G C C and G is C-generic over L [ q .  

L e m m a  5. 
Ord. 

P r o o f  of the lemma (extracted from the proof of Lemma 4.4 in [ S ] ) .  
We argue in L [ q .  Let S be the name for S in the P-forcing language. Define a 

sequence of sets A ,  C_ P (a E Ord) by induction on a. 

or u 4 S but p P-forces u E S over L. 
(Al)  p E A0 iff there is 

(A2) p E A,+1 iff there exists a dense over p set D E L,  D C_ A,. 
(A3) If a is a limit ordinal, then A ,  = up<, Ap. 

One easily verifies the following (see SOLOVAY [S]): if p E A ,  and p _< q E P ,  then 
q E A,; if /? < a, then Ap C A,.  Evidently A6 = for some ordinal 6. We put 
C = P \ Aa. Thus C can be thought of as the set of all conditions p E P which do 
not force something about S which contradicts a factual information about S.  

We prove, following [S], that C is as required. This involves two facts. 

E Ord such that either u E S but p P-forces u 4 5 over L,  

(El) G c  C. 

(Assume on the contrary that G n A, # 0 for some y.  Let y be the least such an 
ordinal. Clearly y is not limit and y # 0. Let y = LY + 1 and let p E A,  n G. Since G 
is generic, Definition (A2) implies G n A ,  # 0, contradiction.) 

(C2) 

(If p E C, then p 4 Aa+l. Hence by (A2) there is q E D \ Aa, q 2 p . )  
We prove that G is C-generic over L [ q .  Let D E L[S] be a dense subset of C. 

Suppose towards a contradiction that D n G = 0. Since D E L[S],  there exists an 
E-formula @(z, y) containing only ordinals as parameters and such that @(S,  y) holds 
in L[SJ iffy = D. Let 4(G') be the conjunction of the following formulas: 

(1) S' = s[G']  (the GI-interpretation of the "term" s )  is a set of ordinals, and there 
is a unique D' E L[S'] such that @(S',  D') holds in L[S']; 

If D E L is a dense subset of PI then D n C is dense in C .  
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(2) this D' is a dense subset of C', where C' = C(S') is the set obtained by applying 

(3) D'n G' = 0. 
our definition of C = C(S) for S = S'; 

Then \k(G) is true in L[G] by our assumptions. Let p E G P-force 9(G) over L .  
Then p E C by (El). By the density there exists a condition q E D,  q 2 p .  Consider 
a C-generic over L[q set G' c C containing q .  Then G' is also P-generic over L 
by (C2). We observe that S[G'] = S because G' c C. Therefore D' and C' (as 
in the description of Q) coincide with resp. D and C. In particular q E D' n G', a 

0 

P r o o f  of Proposition 4. By Lemma 5 (for P = R<") we have that the universe 
is a C-generic extension of L[SI for a tree C C a<", C E L [ q .  Note that R is a 
cardinal in L[q  by the choice S. On the other hand, R is countable in the universe 
by R-CUH, therefore the collapse of R is C-forced by some u E G. Now obviously 
the set of all R-branching points of C is cofinal over u in C. It  follows that the set 
{ v  E C : u C v }  includes in L[SJ a cofinal subset order isomorphic to W w .  

For the items 1. and 2. argue as in the proofs of Lemma 3.5 and Corollary 3.5 
0 

contradiction, because p forces (3). 

in [8 ]  for L[SI as the initial model. 

2.2 Coding reals and sets of reals in collapse extensions 

The following definitions intend to introduce a useful coding system for reals ( i .e. ,  
points of 2) = 2" in this paper) and sets of reals in the collapse extensions. 

By T, we denote the set of all indexed sets t of the form 
(a, ( 2 ,  : n E w ) )  - the "terms" - such that t, E a<" for each R.  

Let a E Ord. 

We put T<n = UaCn Ti, for any ordinal R .  
"Terms" t E T, are used to code functions C : a" - D. Given f E a", we 

define z = C,(f) E 2) by z ( n )  = 1 iff frm E t, for some m. 
Assume that t E T,, u E a<", and M is an arbitrary model. We introduce the 

sets X,, , (M) = (Ct(f) : u c f E Clps,(M)} and X t ( M )  = X t , * ( M ) =  the Ct-image 
of Clps,(M), where, we recall, Clps,(M) is the set of all functions f E R" which are 
a<"-generic over M .  (A is the empty sequence.) 

P r o p o s i t i o n  6 .  Assume R-CUH. Let S 5 Ord be R-weak over L. Then ev- 
ery OD[q set X E Weakn(L[q) is a union of sets of the fo rm X , ( L [ q ) ,  where 
t E T,n f l  L [ q .  Moreover, if t E Tan L[S],  a < R, and u E a<", then every OD[S] 
set X c X t , , ( L [ q )  is a union of sets o f t h e  form X t , " ( L [ S ] ) ,  where u C v E 

P r o o f .  Every 20 E X belongs to an &<"-generic extension of L [ q  for some 
Q < R.  Thus E L [ S , f o ] ,  where f o  E Clps,(L[q). Let 2 be a name of zo in the 
&<"-forcing language. Put t, = {u E : u forces Z ( R )  = 1 in L[S]}  for all n,  and 
t = (a ,  ( t ,  : R E w ) ) ,  so that t E T, n L[SI and 20 = C,(fo). 

Suppose that X = {z : @(S,z)} in the universe, where the formula Q, contains 
only S and ordinals as parameters. Let Q(S, f )  denote the formula: "A R<"-forces 
@(S,  C,(f)) over the universe" , so S(S, f o )  holds in L[S,  f o ]  by Proposition 4. Since fo 
is generic, there exists u E R<", u c fo, such that 4 ( S ,  f )  holds in L[S,  f ]  whenever 
f E Clps,(L[SI) satisfies u c f .  It follows that X t , , ( L [ S ] )  X by Proposition 4, and, 
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we recall, xo = Ct(fo) E X,,,(L[q). Finally the set Xt,,(L[q) is equal to  Xtl(L[q) 
for some other t’ E T, n L [ q .  

0 The “moreover” part is proved similarly. 

3 The case of closed relations: classifiable reals 

In this section, we prove the “Case 1” of Theorem 3. Thus E continues to  be a C: 
equivalence relation on reals. 

3.1 Classifiable reals 

Assuming R-CUH, there is a constructible AFc enumeration {.[[I : [ < w1)  of 
T<wl n L such that each “term” t E T<n n L has uncountably many numbers < < R 
satisfying t = .[<I. The following lemma gives a special characterization for E, the 
72-closure of E, based on this enumeration. 

L e m m a  7. A s s u m e  R-CUH. Let z, y be reals in  Weakn(L). T h e n  z E y  if and 
only if for each < < R w e  have 

E [x~[C](L€)lE * Y E [Xs[t](L€)IE. 
P r o o f .  The “only if” part is clear, since the sets X,[C](L,) are OD. Let us 

prove the ‘5f” direction. Assume that not x E y. Then there exists an OD set X such 
that x E [XI, but y 4 [XI,. By Proposition 6 we have z E Xt(L) 5 [XI,, where 
t = (a ,  ( t ,  : n E w ) )  E T, n L ,  a < R. Since R is a limit cardinal in L ,  there is an 
L-cardinal y, a < y < R,  such that Clps,(L) = Clps,(L,). As t = .[[I for some [, 

0 

Let x E ’D. We define, for all < < R,  c p x ( [ )  = 1 iff x E [X,[.C](L()]E. Thus c p x  E 2n, 
and x E y iff cpx = cpy for all z, y E Weakn(L) by the lemma. 

This is a nice point: we have defined a very straightforward enumeration of 
E-equivalence classes of “weak” reals, essentially by reals, under the assumption 
R-CUH. However the enumeration is too complicated to  be reproduced in the original 
universe. Another idea enters the reasoning. 

D e f i n i t i o n  (extracted from HJORTH and KECHRIS [5]). Let DefE be the set of 
all triples (2, $ , t )  such that z E D, $ E 27 and t E T, n L,[$] ’), where a < y < w1 

and the following conditions are satisfied: 

(a) L-,[$] models ZFC- (ZFC minus the Power Set Axiom) so that $ can occur as 
an extra class parameter in Replacement and Separation. 

(b) In L7[$I], (A ,A)  forces Ct ( f )  ECt(g) in the sense of a<w x a<”’ as the forcing, 
where f and g are the names for the generic functions in aW in the (a<w x a<W)-forcing 
language. 

(c) For each [ < y,  $(<) = 1 iff I E [x,[(](&t)]E (i.e., $ = cpx 17, provided y 5 a). 

7 5 < < R,  we have Xt(L) = X,[€](Lt). 

(d) 2 belongs to  [xt (L-y [$I)] E. 

A real 2: is E-classifiable iff there are $ and t such that (2, $, t )  E DefE 

’)By L,[$J] we understand the result of the Godel construction of length y arranged so that only 
the restriction $J ly‘ is available at each step 7‘ < y. Note that $J 4 &-,[+I. 
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L e m m a  8. DefE is a AFc set (provided E is c:). 
P r o o f  . The requirements (a) and (b) are AFc because they are relativized to  

L,[$] and the enumeration T[<]  was chosen in A:'. 
Condition (d) is obviously Cpc, so it remains to  convert it to  Dpc form. Notice 

that in the assumption of (a) and (b) the set X = X t ( L , [ $ ] )  consists of mutually 
E-equivalent reals. (Consider a pair of a<"-generic over L,[$J] functions f ,  g E a", 
not necessarily a generic p a i r .  Let h E aW be an a<"-generic over both L,[$, f] and 
L,[$, g] function. Then by (b) the formula Ct(h) E Ct( f )  holds in L,[$, f ,  h] ,  hence in 
the universe by the Shoenfield absoluteness. Similarly, Ct(h) E Ct(g). It follows that  
Ct( f )  E Ct(g), as required.) Therefore (d) is equivalent to  (Vy E X t ( L , [ $ ] ) )  (x E y), 
and this is clearly f l yc .  

Consider (c). The right-hand side of the equivalence "iff" in (c) is 22; with inserted 
0 AFc functions, therefore AFc. It follows that (c) itself is AFc. 

3.2 Getting enumeration of the equivalence classes 

The following lemma will allow to  define a AYc enumeration of the equivalence classes 
for the given Ct equivalence relation E by elements of 2<w1. 

L e m m a  9. Assuming  Case  1 of Subsection 1.2, all reals x are E-classifiable. 
P r o o f .  Let x E D. By the assumption of Case 1,  there is a limit L-cardinal 

R such that x belongs to  an R<"-valued extension V of L where it is true that E 
coincides with E on Weakn(L) and x E Weakn(L). By Lemma 8 and the Shoenfield 
absoluteness, i t  suffices to prove that x is E-classifiable in V .  

Thus R-CUH will be assumed. We 
observe that (p, is R-weak over L: indeed, p, E L[x] by Proposition 4 as (p, is 
OD[x]. On the other hand [x]E is OD[p,]. (Clearly [ x ] ~  is the E-saturation of the 
set Y = [Z]E fl Weakn(L) = [ x ] ~  f l  Weakn(L). However Y is OD[cp,] by Lemma 7.) 
Therefore by Proposition 6,  x E X t ( L [ ( p , ] )  g [ x ] ~  for some t E T, n L [ p ] ,  where 
a < R .  There is an ordinal y, a < y < R, such that the model L,[p, ry] contains 1 
and satisfies (a). We put $ = (p, ry and prove that (2, $, t )  E DefE. We have (c) by 
definition, while (d) holds because x E Xt(L[(p,]) c [Xt(L,[$])]~. 

Now we check (b). Otherwise there exist conditions u, v E a<w such that ( u , v )  
x a<")-forces that not Ct(f) E Ct(g) in L,[$].  Consider an a<" x dW-generic  

over L[p,] pair ( f , g )  E a" x aW such that u c f and v c g. Then both y = Ct(f) 
and z = Ct(g) belong to  Xt(L[p,]), so y E z as Xt(L[(p,]) E [ x ] ~ .  On the other hand, 
( f ,g)  also is generic over L,[$], therefore y E z is false in L,[$J, f ,  g] (this is forced 
by (u ,  v ) ) ,  hence in the universe as E is Ci, which is a contradiction with the above. 

Let 7, denote the least 
ordinal y < w1 such that DefE(z, (p, 17, t )  for some t .  We put $, = pX 17, and define 
v, as the least ordinal Y < 7,  such that the vth,  in the sense of the Godel OD[$,] 
wellordering, element of L,,[$,] is a "term" t = t ,  E T<,= n LYl[$,] which satisfies 
DefE(x,$,,t). Finally we set UE(X) = ($,,Y,). 

L e m m a  10. If every  x E D is  E-classifiable, then the m a p  UE i s  a AFc enumer-  
at ion of the E-eqivalence classes.  

We argue in the "auxiliary" universe V .  

This ends the proof of (b). 0 

D e f i n i t i o n .  Suppose that x E D is E-classifiable. 
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P r o o f .  First of all, U = UE is AFc by Lemma 8. If z E y, then U ( z )  = U(y) since 
the definition is E-invariant for z. We prove the converse. Assume that U(x) = U(y), 
so $J, = $Jy = $J E 2<"1 and t ,  = t ,  = t E Ta n &[$I, where a < y = d o m 4  < w1. 

By (d) we have Ct(f)  E z and C t ( g )  E y for some a<w-generic over L,[$J] functions 
0 

C o r o l l a r y  11. In  the assumption of Case 1 of Subsection 1.2, E admits a A?' 

P r o o f  . The range of the function U is covered by a subset R C HC (all pairs 
0 

This completes the proof of the "Case 1" part of Theorem 3. 

f ,  g E aW. However C,(f) ECt(g) (see the proof of Lemma 8). 

enumeration of the equivalence classes b y  elements of 2<"1. 

(I), v )  such that ...) which admits a 1 - 1 A?' correspondence with 2<"1. 

4 OD forcing 

This section starts the proof of the "Case 2" part of Theorem 3. At the beginning, 
we reduce the problem to a more elementary form. 

4.1 Explanation 

Suppose that each real z belongs to a Boolean valued extension of L ((*) of Theo- 
rem l ) ,  but the assumption of Case 1 in Subsection 1.2 fails. 

Let zo E 'D witness that the assumption of Case 1 fails. By Proposition 2, there 
is a limit L-cardinal R such that zo belongs to an R<"-valued extension V of L (so 
that R-CUH holds in V )  and 20 E Weakn(L) in V .  By the choice of zo we have E $ E 
on the set Weakn(L) in V .  

This is our starting position in the proof of the "Case 2" part of Theorem 3. The 
general plan will be first to prove that Eo continuously embeds in E in the auxiliary 
Boolean valued universe V ,  and second, to get the result in the universe of Theorem 3 
by the Shoenfield absoluteness theorem. 

The second part does not seem easy: the existence of a continuous embedding 
of Eo into E is a CA statement. To fix the problem, we introduce a special type of 
embeddings the existence of which is expressed by a Ci formula. Recall that any 
C: set E has the form E = Ua<wl E", where E" are Bore1 sets - the approximations, 
satisfying E" C E Y  whenever a < y < w1, and uniquely defined as soon as a set 
P which projects onto E is fixed. 

D e f i n i t i o n  . A function p : B 5 2, is a special embedding of Eo into E iff 

(1) for all z, y E 'D, not z EO y implies not p(z) E p(y); 

(2) there exists an ordinal a < w1 such that (p (Ok-0-~ ) ,p (Ok-1-z ) )  E E" for all 
z E ID and R E w .  (Ok is the sequence of R zeros.) 

We prove that this is an embedding, i.e., xEoy implies cp(z)Ep(y). Suppose 
z Eo y. One easily proves that then z is connected with y by a finite chain of pairs of 
the form x' = Ok-O-z, y' = Ok-l^z .  We have cp(z) E p(y) by (2). 

The existence of a continuous special embedding of Eo into E is obviously a C; 
property. Thus, by the Shoenfield absoluteness, the following theorem (applied in V )  
suffices to complete the proof of the "Case 2" part of Theorem 3. 
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T h e o r e m  12. Assume R-CUH. Suppose that the set Weakn(L) is  nonempty, 
E is a C: equivalence relation, and E 5 E on Weakn(L). Then Eo admits a special 
continuous embedding into E. 

The proof of this theorem takes this and the next section. We assume R-CUH and 
fix a C: equivalence E satisfying E $ E on the set Weakn(L) # 0. 

4.2 Three forcing notions 

In the course of the proof we shall make use of the following three forcing notions 
associated with the topology generated by OD sets: 

X = { X  c Weakn(L) : X is OD and nonempty}; 

X2 = { P  c Weakg)(L) : P is OD and nonempty}, 

where Weakg)(L) = { (2, y) E B2 : (2, y) is R-weak over L } ;  

P = { P  E X2 : P = (ptl  P x pt2 P )  n E} ,  

where pr, P = {z  : 3 y P ( z , y ) }  and p t z P  = { y  : 3zP(z,y)} for any P 9’. 

All three sets are nonempty as the set Weakn(L) is OD and nonempty. 
Smaller sets will all the time be stronger forcing conditions. 
It occurs that,  assuming R-CUH, the forcing notions include dense subsets of 

D e f i n i t i o n .  A set X is R-small iff there exist an ordinal X < 52 and an OD 
X .  A forcing condition X E X is X-primitive if and only if the set 

L e m m a  13. Assume R-CUH. Let X be R-small. Then X is countable, X OD, 

P r o o f .  To see that YoD(X) is R-small recall that R is a limit L-ordinal in the 

L e m m a  14. Assume R-CUH. The set of all X-primitive conditions X E X is 
dense in X, and analogously for X2 and P. 

P r o o f .  Note that every set of the form X = X,(L), where t E Ta n L and 
a < R ,  is X-primitive. (Indeed, by Proposition 6 every OD subset of X is uniquely 
determined by an OD subset of a<w. Now use Lemma 13.) This implies the result 
for X, since the set of all sets of the form Xt(L) is dense in X by Proposition 6. 
X2 is simply a two-dimentional copy of X. 

As for P, one easily proves that any condition P E JF’ is P-primitive whenever both 

Let us consider X as a forcing notion over OD. We say that a set G C X is 
The notions of 

remarkably simple nature. 

function f : X 
Xcx - = { Y E X : Y 

and the “OD power set ” tPoD(X) = OD n ?(X) is also R-small. 

X }  is 0-small, and analogously for X2 and P. 

assumption R-CUH, and use Proposition 4. 

ptl  P and p t 2  P are X-primitive. 

X-generic iff it nonempty intersects each dense OD subset of X. 
X2-generic and P-generic sets have the analogous meaning. 

G is X2-generic or P-generic, then n G is a singleton { ( a ,  b ) } .  
L e m m a 15. Assume R-CUH. J’f G is X-generic, then n G is a singleton { a } .  If 
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P r o o f .  We prove the result for X; the results for X, and P can be obtained 
by an analogous argument. Assume, towards contradiction, that  n G  = 0. (Clearly 
r)G cannot contain more than one real.) Note that X is OD order isomorphic to  a 
p.0.  set in L .  (Indeed, it is known that there is an OD map 6 of Ord onto the class 
of all OD sets. Since X is OD, X is a 1-1 OD image of an OD set X' of ordinals 
via 6. By Proposition 4 both X' and the 6-preimage of the order on X belong to  L.)  
Now, using Proposition 4, one easily proves that the assumption n G  = 0 is forced, so 
that there is X E X such that n G  = 0 for every X-generic set G X containing X.  
We can assume that  X = Xt(L), where t E T, n L and Q < R,  in particular X 
is X-primitive. Let {X, : R E w }  be an enumeration of all OD dense subsets of 
XCX - (Lemma 13 is applied). Proposition 6 yields an increasing a<w-generic over L 
sequence uo C u1 C u, C . . .  with u, E such that X ,  = Xt,un(L) E X, for 
every n. We obtain an X-generic set G c X containing X and all sets X,. Now let 
f = UnEw u,, so that f E aw is acw-generic over L.  Then c = Ct(f) belongs to  X ,  

0 

R e m a r k  16. Surprisingly enough every real c E Weakn(L) is X-generic in the 
sense that the associated set G, = { X  E X : c E X }  is X-generic. (Otherwise take 
the nonempty OD set X of all c which witness the opposite. Then X E X. Take an 
X-primitive Y X .  By the primitivity there exists an X-generic set G containing Y .  
To get a contradiction apply Lemma 15.) 

for all R ,  so c E n G ,  which is a contradiction. 

Similarly X2-generic pairs are simply all pairs (c, y) E Weakn ( 2 )  ( A ) .  

The question is not so clear for P which is a very interesting product-like forcing. 
If G c P is a P-generic set so that  n G  is a singleton, let n G  = { ( a ~ ,  b G ) } .  The pairs 
( U G ,  b G )  of this form will be called P-generic .  

4.3 The key set 

We recall that ,  by the assumption of Theorem 12, E 5 E on Weakn(L). This means 
that there exist E-classes of reals in Weakn(L) which include more than one E-class. 
We call the union of all those E-classes, 

H = {c E Weakn(L) : (3y E Weakn(L)) (c E y but not c E y)}, 

the key set  from the title. 
Weakn(L), and moreover H 2  n E # 8, so that in particular H 2  n E E P. 

that E rH is meager in E H .  

addition a ,  b E H ,  then not a E b .  

Clearly H is OD, nonempty, and E-invariant inside 

The following theorem is a counterpart of the proposition in HARRINGTON e. a. [2] 

T h e  o r  e m  17. A s s u m e  R-CUH. If (a ,  b )  is  a P-generic  pair ,  ihen a E b .  If tn  

P r o o f .  
Part 1. Suppose on the contrary that not a E b .  Then there exists an OD set 

C such that c E A = [C], and y E B = 'D \ A .  By the genericity of ( a ,  b )  there 
exists a condition P E G (where G c P is a P-generic set which defines the pair 
( a ,  b )  in the sense that { ( a ,  b ) }  = G )  such that prl P c A and pr, B c B ,  therefore 
P c ( A  x B )  n E = 8, which is impossible. 

Part 2. The proof that not a E b  is not so easy. Assume otherwise. As in the 
proof of Lemma 15 there is a set PO E IP, Po c H x H ,  such that a E  b holds for 
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each P-generic pair (a ,  b)  E PO. We observe that E 5 E on the OD nonempty set 
X o  = p t l  PO c H .  (Otherwise E = E even on [XO],. This implies [xO]E fl H = 8, 
which contradicts the above.) Let us fix reals a,  a’ E XO such that a Ea’ but not 
a E d .  

C 1 a i m .  There is a real b such that both ( a ,  b )  and (a’, 6 )  belong to  PO and are 
P-generzc pairs. 

This ends the proof of Theorem 17 (Part 2): Indeed, we have a E b and a’ E b by 
0 

P r o o f  of the Claim. For sets X and Y and a binary relation R let us write X R Y 
iff (Vz E X)(3y  E Y )  (z Ry) and (Vy 6 Y ) ( 3 z  E X )  (z Ry).  It follows from Remark 16 
and Lemma 14 that there exists a P-primitive condition PI E P, PI 5 PO, such that 
a E X I  = pr, PI .  Define Y1 = pr, PI.  Then X 1  EY1 and PI = ( X I  x Y1) n E. We 
let P’ = {(z,y) E PO : y E Yl}.  Then PI c P’ c Po and P‘ E P. Furthermore 
a’ E X’ = ptl P’. (Indeed, since u E X1 and X1 EY1, there exists y E Y1 such that 
a E y; then a’ E y as well because a E a‘, therefore (u‘ ,  y) E P’.) As above there exists a 
P-primitive set P: E P, P: c P’, such that a’ E X {  = p t l  Pi. Then Y: = pt, Pi c Y1. 
By Lemma 15 P admits only countably many dense OD sets below PI and below P:. 
Let {P, : n 2 2) and {!$I; : n 2 2)  be enumerations of both families of dense sets. 
We define sets P,, P,!, E P ( n  2 2),  satisfying 

(i) a E X ,  = p c ,  P, and a’ E XA = ptl P,!,; 
(ii) YA = p t ,  PA c Y, = p t z  P, and Yn+l 

(iii) Pn+i c Pn, P,!,+l 

the choice of Po, contradicting not a E a’. 

Yi;  
P,!,, Pn E ‘Pn, and PA E Pk. 

By (iii) both sequences { P, : n 2 1) and {PA : n 2 1) are P-generic, so by Lemma 15 
they result in two generic pairs, (a ,  b )  E PO and (a’, b )  E PO, having the first terms 
equal to a and a’ by (i) and second terms equal to each other by (ii). Thus it suffices 
to execute the construction of P, and PA. 

The construction goes on by induction on n. Assume that P, and P,!, have been 
defined. We define P,+l. By (ii), the set P’ = ( X ,  x Y,!,) n E P, belongs to  P and 
satisfies a E X’ = ptl P’. (Indeed, (a, y) E P’, where y satisfies (a’, y) E PA, because 
a E a’.) However P n + 1  is dense in P below P’ PO, SO 

Pn+l = ( ~ 1  P‘ : P’ E Pn+l} 
is a dense OD set in X below X’ = p t l  P’. Accordingly to Remark 16, we have 
a E p t ,  P’ for some PI E ‘&+I, P’ c P’. It remains to put P,+l = P’, and then 
Xn+l = pt, Pn+l and Y,+1 = pt, Pn+1. To define PA+, we set P’ = (XA x Y,+l) n E l  
etc. 0 (Claim) 

We end the section with one more property related to the key set H .  
L e m m a  18. Assume R-CUH. Suppose that X ,  Y E X and X EY. Then we have: 

- 

(A) X x Y contains a pair (z, y) E Weakg)(L) such that z E y. 
(B) If X U Y C H ,  then there exist sets X’, Y’ E X such that X’ X ,  Y’ c Y ,  

still X’ E Y‘ and X’ n Y‘ = 0- 
P r o o f .  
(A) By Proposition 6 we have sets X’ = X,(L) C X and Y’ = X v ( L )  C Y ,  where 

t ,  t’ E T, n L for some a < R, such that P = E n (X’  x Y’) is still nonempty. Then 
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Q = P n E # 0 as well by the definition of €. Since $2 is a limit L-cardinal, we 
have X = X t ( L p )  and Y = X t l ( L p )  for a suitable p, a 5 p < $2. Take an arbitrary 
p<"-generic over L function f E p". The statement Q # 0 becomes a E; formula 
with reals in L[fJ (those coding f , t , t ' )  as parameters. Since all sets in L [ f ]  are 
$2-weak over L ,  it remains to apply the Shoenfield absoluteness theorem. 

(B) There are reals 3: E X and y E Y such that 3: E y  and x # y. (Otherwise E 
is the equality on X = Y ,  hence E = E on X, which is impossible, see the proof of 
Theorem 17.) Let e.g. z(k) = 0 and y(k) = 1. Define 

X ' = { x ' E X  : ~'(k)=O&(3y'EY)(x'Ey'&y'(k)= l)}, 
and Y' accordingly. 0 

5 Embedding Eo into E 

In this section we complete the proof of Theorem 12. We prove, assuming R-CUH 
and E $ E on Weakn(L) # 0, that Eo continuously specially embeds in E. 

5.1 Generic splitting systems 

By the assumption the set H of Subsection 4.3 is nonempty; obviously H is OD. 
By Lemma 14 there exists an X-primitive set X O  E X, X O  H .  Then the set 
PO = ( X o  x XO) n E belongs to P and is P-primitive. We observe that 

ptl Po = ptzPo = X O  2 H E Weakn(L). 
We shall define a family of sets Xu (u E 2<#) satisfying 

(a) XA = X O ,  Xu E X and Xu-i 2 Xu for all u and i = 0 , l .  
In addition to the sets Xu we shall define relations Ru,u 2 Xu x Xu for some pairs 
(u, v), to provide important connections between branches in 2<". 

Let u ,  v E 2". We say that (u ,  v) is a crucial pa i r  iff u = Ok^O-w and v = Ok- l^w 
for some k < n ( O h  is the sequence of k terms equal to 0) and some w E 2n-k-1 
(possibly k = n - 1, that is, w = A ,  the empty sequence). 

Thus we define binary relations Ru,u C Xu x X u  for all crucial pairs (u ,  v ) ,  so that 
the following requirements will be satisfied: 

(b) RU,,, E XZ, ptl RU,,, = Xu, ptz RU+ = X u ,  and R u - i , u - i  E RU,,, for every crucial 
pair (u ,v> and each i = 0 , l .  

(c) For any k, ROk-o,ok-l is an Xz-primitiveset satisfying ROk-O,Ok-l  E E" for some 
ordinal Q = a ( k )  < w1. (Recall that E" denotes the a t h  approximation of E, a Bore1 
subset of E, see Subsection 4.1.)  
Take notice that if (u ,v)  is a crucial pair, then (u- i ,v*i)  is crucial as well, but 
(u-i ,  v - j )  is not crucial for i # j, unless u = u = ok for some I C .  

R e m a r k  19. Cond i t ions  (b) and (c) i m p l y  Xu Ru,u X,, hence Xu E Xu, for 
all crucial  pa i r s  u ,  v.  Moreover,  t h e n  we have Xu E X u  and Xu EX, for  all  pa i r s  

(7 

Recall that X R Y means (Vx E X)(3y E Y )  (3: R y) and (Vy E Y) (3z  E X) (x R y). 
Three more requirements will concern genericity. 

u ,  v E 2" a s  each pa i r  in 2" i s  t ied by a chain of crucial  pairs.  
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In order to guarantee that the sequence {X,I, : m E w }  is X-generic for any 
branch a E 2w, we require 

( g l )  Xu E X, whenever u E 2"+l, 

where {X, : n E w }  is a fixed (maybe not OD) enumeration of all OD dense subsets 
of Xsx,. Then for any a E 2w the intersection nnEw Xoln contains a single real 
p(a) E H by Lemma 15 and the map 'p is Polish-continuous. 

We now want to arrange matters so that ( 'p(a) , 'p (b) )  is P-generic whenever not 
a Eo b .  Let {p,, : n E w }  be a fixed enumeration of all OD dense sets in Pep,. - It 
may be assumed that c p,,. We require that 

(g2) If u ,  u E 2"+' and u(n)  # u ( n )  (that is, the last terms of u, v are different), 

If this holds and not a Eo b (so that a(.) # b(n) for infinitely many numbers n) ,  then 
( 'p(a), ' p ( b ) )  is P-generic, therefore not ~ ( a )  E ' p ( b )  by Theorem 17. Moreover if simply 
a # b,  then 'p(a) # cp(b), so p is a bijection. 

On the other hand, we need some Q < w1 to witness item (2) in the Definition in 
Subsection 4.1. Let {an(&) : n E w }  be a fixed enumeration of all OD dense subsets 
of (XZ)CQ, for any W2-primitive set Q E Xz. We shall assume that rln+l(Q) 5 On(&) 
for all Q and n. The last genericity requirement is 

then Xu n Xu = 0 and P,,,, = (Xu x Xu) n E E pn. 

(g3) If k 5 12 and W E 2n-k,  then ROk-O-w,Ok-l-w E 5 & , ( R o k - O , O k - 1 ) .  

Assume this holds and consider a pair of reals a = O"0-c and b = O k - l ^ c  for some k 
and c E 2w. The sequence of sets R, = RO~-O-ctm,Ok-l -e tm ( m  E w )  is then Xz-ge- 
neric, so that by Lemma 15 the intersection n, R, is a singleton - which can be only 
equal to (p(a), ' p ( b ) ) .  Therefore we have 'p(Ok-0-c) E"(k) 'p(Ok^l-c)  by (c). Now set 

Thus, assuming A-CUH, requirements (a), (b), (c), (gl) ,  (g2), (g3) suffice for 'p to 
be a special continuous 1-1 embedding Eo in E. Therefore Theorem 12 is reduced to 
the construction of sets Xu and R,,, satisfying (a), (b), (c), (gl) ,  (g2), (g3). Before 
the construction starts, we prove 

L e m m a  20. Assume $2-CUH. Let n E w and let Xu be a nonempty OD set for 
each u E 2" while, for every crucial pair u ,  v E 2", Ru,, 5 D2 is an OD set satisfying 
Xu R,,,, Xu. Then we have: 

1. If uo E 2" and X' Xu, is OD and nonempty, then there exists a system of 
OD nonempty sets Y, c Xu (u  E 2") such that still Y, R,,, Y, holds for all crucial 
pairs u ,  v, and in  addition Y,, = XI. 

2. If U O ,  vo E 2" is a crucial pair and nonempty OD sets X' c Xu, and 
XI' C X u ,  satisfy X'R,,,,, X", then there exists a system of OD nonempty sets 
Y, C_ Xu (u  E 2") such that still Y, R,,, Y, holds for all crucial pairs u ,  u ,  and  in 
addition Y,, = X', Y,, = XI'. 

P r o o f  . Item 1 easily follows from item 2. To prove item 2, we use induction on n. 
We prove the lemma for n+ 1 provided it is proved for some n 2 1. The principal idea 
is to divide 2"+' on two copies of 2", UO = {s-0 : s E 2") and U1 = { s - 1  : s E 2"}, 

a = supk a ( k ) .  
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connected by the only crucial pair of u = 0"-0 and 8 = 0"-1,  and handle them 
separately using the induction hypothesis. 

If uo = u and vo = 6, then we apply the induction hypothesis (item 1) indepen- 
dently for the families { X u  : u E U O }  and { X u  : u E U l }  and the given sets X'  c X u ,  
and X" X u , .  Assembling the results, we get nonempty OD sets Y, E X u  (u E 2"+') 
such that Y, R,,, Y, for all crucial pairs u ,  v,  possibly with the exception of the pair 
of = uo = u and v = 210 = 8, and Y,, = X I ,  Y,, = XI'. However Ye Re,$ Yi, by the 
choice of XI and Y'.  

Otherwise uo and vo belong to one and the same domain, say to UO. First apply the 
induction hypothesis (item 2) to the family { X u  : u E U O }  and the sets X'  c Xu,  and 
X" c X u , ,  getting a system of nonempty OD sets Y, c X u  (u E U O ) ,  in particular an 
OD nonempty set Yc X S .  Now put Ye = {y E Xc  : (32 E Ye)  (x Rc,c y)}, so that 
YS Ro,c Yi, holds, and apply the hypothesis (item 1) to the family { X u  : u E U , }  and 
the set Yi, Xi,. 0 

5.2 The construction 

To begin with, we put X A  = Xo.  
Assume that the sets X ,  (s 2") and relations R,,t for all crucial pairs of s, t E 2k 

(k 5 a) are defined, and expand the construction at  level n + 1. 
We first put A , - ,  = X ,  for all s E 2" and i = 0 , l .  We also define Q,,, = Rs,t for 

any crucial pair of u = s-i, v = t-a in 2"+' other than the pair u = O"^O, 6 = 0"-1. 
For the latter one we put Qe,$ = E, so that A, Q,,, A, holds for all crucial pairs (u ,  v) 
in 2"+l. 

The sets A, and relations Q,,, will be reduced in several steps to  meet require- 
ments (a), (b), (c). and ( g l ) ,  (g2), (g3) of Subsection 5.1. 

P a r t  1 .  After 2"+l steps of the procedure of Lemma 20 (item 1) we obtain a 
system of nonempty OD sets B, C_ A ,  (u E 2"+') such that B, E X, for all u and 
B, Q,,, B, for all crucial pairs u, v in 2"+l. Thus (gl) is fixed. 

P a r t  2 .  To fix (g2), consider a pair of uo = SO-0, vo = to-1 ( S O ,  t o  E 2"). Then 
B,, E B,, (see Remark 19) ,  therefore Q = (B,, x B,,) n E E P. We observe that 
by the density of p,, there is a set P E p,,, P c Q. Then B' = ptl P c B,, and 
B" = pt2 P g B,, are nonempty OD sets satisfying B' E B". We may assume, by 
Lemma 18, that B' f l  B" = 0. We apply Lemma 20 (item 1) for the two systems 
of sets {B,-o : s E 2") and {Bt - l  : t E 2n} separately (compare with the proof of 
Lemma 20!), and the sets B' B,o-o, B" Bt,-l ,  respectively. This results in 
a system of nonempty OD sets BL & B, (u E 2"+') with BL, = B', B;, = B", so 
that (BL, x BL0) n E = P E pn, and still BL Q,,, BI for all crucial pairs u ,  v E 2"+l, 
perhaps with the exception of the pair of u = O"-O, 8 = 0"-1, which is the only 
one connecting the domains. To handle this pair, note that BB E BL, and Bk E BI0 
(Remark 19 is applied in each of the two domains), so BL E BL , since B' E B". Finally 
we observe that Qc,c is so far equal to E. After 4" steps (the number of pairs uo, vo 
to  be considered) we obtain a system of nonempty OD sets C, & B, (u E 2"+') such 
that the set (C, x C,) n E belongs to  pn whenever u(n) # v(n), and still C, Q,,, C, 
for all crucial pairs u, v E 2"+l. Thus (g2) is fixed. 
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P a r t  3 .  We fix (c) for the exceptional crucial pair of u = O"-O,  6 = 0"-1. Since 
we have Cc E 15'6, the set R = (Cc x Cc) n E n Weakff)(L) is nonempty by Lemma 18. 
Then, as R C E, the set R n E a  is nonempty for some a < w1. (E" is the a t h  
approximation of the Cj-set E.) There is an I2-primitive set Q E I,, Q C R n E", by 
Lemma 14. We consider the OD sets C' = ptl Q (C Cc),  C" = pr, Q (c  Cc); obviously 
C'QC", so that C'Qe,c C". (Recall that at the moment Qc,c = E.) Lemma 20 yields 
nonempty OD sets Y, C, ( u  E 2"+l) still satisfying Y, Q,,, Y, for all crucial pairs 
u ,  v in 2"+l, and Ye = C', Ye = C". We re-define Qc,c by Qc,c = Q (then Qc,c G E m ) ,  
but this keeps Ye Qc,c Yc. 

P a r t  4 .  To fix (g3) consider a crucial pair uo, 00 in 2"+'. Then uo = Ok-O-w, 
vo = Ok^l^w for some k 5 n and w E 2"-k.  It follows that Q' = Q,,,,, n (Y,, x Y,,) 
is a nonempty (since Y,, Q,,,,, Y,,) OD subset of R O ~ - O ,  o k - 1  by the construction. Pick 
ase t  QEQn(RO~-O,O~-l), Q C  Q',put Y ' = p t l Q a n d Y " = p t 2 Q ( t h e n Y ' Q Y ' ' a n d  
Y'QUo,uo Y") ,  and apply Lemma 20 (item 2) for the system of sets Yu (u  E 2"+l) and 
the sets Y' C Y,,, Y" G Y,,. After this we define the "new" Q,,,,, by Quo,,, = Q. 

Repeat this consecutively for all crucial pairs; the finally obtained sets - let them 
be Xu (u E 2"+l) - and the final relations R,,, (u, v E 2"+') defined as the restrictions 
of the relations Q,,, to Xu x X u  are as required. 

This ends the construction. 
This also ends the proof of Theorems 12 and 3, and Theorem 1. 
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