A theorem on ROD-hypersmooth equivalence relations in the Solovay model

Vladimir Kanovei* and Michael Reeken **

1 Moscow Center for Continuous Mathematical Education, Bol. Vlasevski 11, Moscow, 121002, Russia**
2 Department of Mathematics, University of Wuppertal, Wuppertal, 42097, Germany

Received 20 April 2002, revised 19 August 2002, accepted 23 August 2002
Published online 10 March 2003

Key words Solovay model, ROD sets, equivalence relation, hypersmooth.
MSC (2000) 03E15, 03A15

It is known that every Borel hypersmooth but non-smooth equivalence relation is Borel bi-reducible to \(E_1 \). We prove a ROD version of this result in the Solovay model.

1 Introduction

It is known since [5] that classical theorems on Borel and analytic sets tend to generalize to all projective, generally, all real-ordinal definable (ROD) sets in the Solovay model. In particular, as one of the authors demonstrated in [2], the fundamental theorem of Glimm-Effros classification for Borel equivalence relations admits such a generalization (although not straightforward). In this note we prove the following theorem:

Theorem 1 (Main Theorem) In the Solovay model, if \(E \) is a ROD-hypersmooth equivalence relation, then either \(E \leq_{\text{ROD}} E_0 \) or \(E \sim_{\text{ROD}} E_1 \). The two cases are incompatible.

This is a partial generalization of a fundamental result on the Borel reducibility, saying that any Borel hypersmooth equivalence relation \(E \) satisfies either \(E \leq_B E_0 \) or \(E \sim_B E_1 \) (Theorem 2.1 in [4], also known as “the third dichotomy theorem”). The generalization is not complete: due to a simple counterexample, we cannot claim that \(E \) is ROD-hyperfinite in the “or” case.

2 Notation

ROD means: real-ordinal-definable. OD\((p)\) means: ordinal-definable in a real \(p \), i.e., definable with \(p \) and any ordinals as parameters.

We consider ROD equivalence relations on (also ROD) sets. If \(E, F \) are ROD equivalence relations on sets \(X, Y \), respectively, then, by analogy with the Borel reducibility, \(E \leq_{\text{ROD}} F \) means that there exists a ROD map \(\vartheta : X \rightarrow Y \) such that \(xE_x' \text{ iff } \vartheta(x)F\vartheta(x') \). (In principle, it is not assumed here that \(X, Y \) carry any topological or other structure.) As usual, \(E \sim_{\text{ROD}} F \text{ iff } E \leq_{\text{ROD}} F \text{ and } F \leq_{\text{ROD}} E \) (ROD bi-reducibility), while \(E <_{\text{ROD}} F \text{ iff } E \leq_{\text{ROD}} F \text{ but } F \nleq_{\text{ROD}} E \) (strict ROD-reducibility).

An equivalence relation \(E \) on \(X \) is ROD-finite iff it is ROD and every \(E \)-class \([x]_E = \{ y : xEy \} \), \(x \in X \), is finite. A ROD-hyperfinite equivalence relation is any one of the form \(\bigcup_n E_n \), where \(\{ E_n \}_{n \in \mathbb{N}} \) is an increasing chain of ROD-finite equivalence relations.

An equivalence relation \(E \) on a set \(X \) is ROD-smooth iff \(E \leq_{\text{ROD}} D(2^{2^X}) \), i.e., there is a ROD map \(\vartheta : X \rightarrow 2^{2^X} \) such that \(xEy \text{ iff } \vartheta(x) = \vartheta(y) \). A ROD-hypersmooth equivalence relation is an increasing union of ROD-smooth equivalence relations. Obviously all ROD-hyperfinite and all ROD-hypersmooth equivalence relations are ROD.

* Corresponding author: e-mail: kanovei@math.uni-wuppertal.de
** reeken@math.uni-wuppertal.de
*** Current address: Institute for Information Transmission Problems, Sector 1.1, GSP-4 Bol. Karetnyj Per. 19, Moscow 101447, Russia.
Recall that E_0 is an equivalence relation on 2^ω defined as follows: $x E_0 y$ iff $x_n = y_n$ for almost all n: here we assume that $x = \{x_n\}_{n \in \mathbb{N}}$ and $y = \{y_n\}_{n \in \mathbb{N}}$ belong to 2^ω. This is a ROD-hyperfinite, moreover, Borel-hyperfinite equivalence relation. Further, E_1 is an equivalence relation on $P(\mathbb{N})^\omega$ defined similarly, i.e., $x E_1 y$ iff $x_n = y_n$ for almost all n. E_1 is a typical example of a ROD-hypersmooth equivalence relation, indeed, even Borel-hypersmooth equivalence relation.

Lemma 2 An equivalence relation E is ROD-hypersmooth iff $E \leq_{\text{ROD}} E_1$.

Proof. Similar to the Borel case, see [4, 1.3] for the nontrivial direction. \qed

By the Solovay model we mean a \mathbb{P}^\sharp-generic extension of L, the constructible universe\(^1\), where Ω is an inaccessible cardinal in L. $\mathbb{P}^\sharp = \prod_{\gamma < \Omega} \mathbb{P}_\gamma$ (the product with finite support), and $\mathbb{P}_\gamma = \mathbb{P}^{\mathbb{P}_\gamma} = \bigcup_n \gamma^n$ for every $\gamma < \Omega$.

Assume that $\gamma < \Omega$. Let $T_\gamma[p]$ be the set of all terms $t = (\gamma, \{t_n\}_{n \in \mathbb{N}}) \in L[p]$ such that $t_n \subseteq \mathbb{P}_\gamma$ for all n. If $f \in \gamma^n$ (an infinite sequence), then let $t[f] = \{n : \exists m (f \upharpoonright m \in t_n)\}$.

Let $\mathbb{P}_\gamma[p]$ be the set of all over $L[p] \mathbb{P}_\gamma$-generic functions $f \in \gamma^n$. Put $t[w] = \{t[f] : w \subseteq f \in \mathbb{P}_\gamma[p]\}$ for any $w \in \mathbb{P}_\gamma$ and $t \in T_\gamma$. The following result is established, e.g., in [2, Proposition 5].

Proposition 3 (In the Solovay model) Let p be a real. Then

(i) If $\emptyset \neq X \subseteq P(\mathbb{N})$ is OD(p), then there exist $\gamma < \Omega$, $w \in \mathbb{P}_\gamma$, and $t \in T_\gamma[p]$ such that $t[w] \subseteq X$.

(ii) If $\gamma < \Omega$, $w \in \mathbb{P}_\gamma$, and $\emptyset \neq X \subseteq t[w]$ is OD(p), then there exists $w' \in \mathbb{P}_\gamma$ such that $w \subseteq w'$ and $t[w'] \subseteq X$. \qed

3 Incompatibility in the main theorem

It suffices to show that $E_1 \not\leq_{\text{ROD}} E_0$ in the Solovay model. The proof that $E_1 \not\leq_{\text{B}} E_0$, moreover, $E_1 \not\leq_{\text{B}} F$ for any countable Borel equivalence relation F in [4, 1.4 and 1.5] actually gives non-reducibility even via Baire measurable functions, i.e., those continuous on a dense G_δ set. However, it is known (see [5]) that in the Solovay model any ROD function is Baire measurable.

4 The partition into cases

This section begins the essential part of the proof of Theorem 1.

We argue in the Solovay model.

Let E be a ROD equivalence relation on a set X. Suppose that E is ROD-hypersmooth. We have $E \leq_{\text{ROD}} E_1$ by Lemma 2. Let this be witnessed by a ROD map $\vartheta : X \rightarrow P(\mathbb{N})^\omega$. We put $P = \text{ran } \vartheta$, the full image of ϑ. This is still a ROD set, hence, there is a real p such that P is OD(p).

The real p is fixed until the end of the proof.

To define the partition into two cases, we need the following notation. If $x \in P(\mathbb{N})^\omega$, then $x|_{\geq n}$ is the restriction of x (a function defined on \mathbb{N}) to the domain $[n, \infty)$. If $X \subseteq P(\mathbb{N})^\omega$, then let $X|_{\geq n} = \{x|_{\geq n} : x \in X\}$. Define $X|_{> n}$ and $X|_{> n}$ similarly. In particular, $P(\mathbb{N})|_{\geq n} = P(\mathbb{N})|_{\leq n} = P(\mathbb{N})^n = P(\mathbb{N})|_{n, \infty}$. For a sequence $x \in P(\mathbb{N})^\omega$, let $\text{dep } x$ (the depth of x) be the number (finite or ∞) of elements of the set

$$J(x) = \{j \geq n : x(j) \notin \text{OD}(p, x|_{> j})\}.$$

Recall that, in the Solovay model, $x \in \text{OD}(y)$ iff $x \in L[y]$ for any two reals x, y.

Case 1. All $x \in P = \text{ran } p$ satisfy $\text{dep } x < \infty$.

Case 2. There exist $x \in P$ with $\text{dep } x = \infty$.

The content of the remainder will be to prove $E \leq_{\text{ROD}} E_0$ in Case 1 and $E_1 \leq_{\text{ROD}} E$ in Case 2.

\(^1\) Theorem 1 is true, with some rather clear adjustments of the proof, for the Solovay extensions not necessarily of the constructible universe.
4.1 Case 1

As obviously $E \leq_{\text{ORD}} E_1 \uparrow P$, it suffices to show that $E_1 \uparrow P \leq_{\text{ORD}} E_0$.

Suppose that $x \in P$. If $\text{dep} x = \emptyset$, then let $f(x) = x$. If $\text{dep} x \neq \emptyset$, then (as $\text{dep} x$ is finite) let n_x be the largest n in $\text{dep} x$. Define $f(x) = y \in \mathcal{P}(N)^{\aleph_0}$ so that $x_{\geq n_x} = y_{\geq n_x}$ while $y(j) = \emptyset$ for all $j \leq n_x$. Easily f is a ROD reduction of $E_1 \uparrow P$ to $E_1 \uparrow Q$, where $Q = \text{ran} f$, thus, it suffices to show that $E_1 \uparrow Q \leq_{\text{ORD}} E_0$. The set Q belongs to $\text{OD}(p)$ together with P.

Note that by definition any point $x \in Q$ satisfies $\text{dep} x = \emptyset$, so that $x(n) \in \text{OD}(p, x_{\geq n})$ for any $n \in \mathbb{N}$ and $x \in Q$. It follows that $x(n) \in L[p, x_{\geq n}]$ for any $n \in \mathbb{N}$ and $x \in Q$, by known properties of the Solovay model. In other words, $Q \subseteq T = \{x \in \mathcal{P}(N)^{\aleph_0} : \forall n (x(n) \in L[p, x_{\geq n}])\}$, hence, it suffices to prove that $E_1 \uparrow T \leq_{\text{ORD}} E_0$. Note that $T = \text{OD}(p)$.

Fix $x \in T$. For any $n \in \mathbb{N}$ let $\xi_n(x)$ be the order of $x(n)$ in the sense of the canonical well-ordering of $\mathcal{P}(N)^{\aleph_0}$, then $\xi_n(x) < \omega_1^{L[p, x_{\geq n}]}$. Note that still $\xi(x) = \sup_n \xi_n(x) < \omega_1^{L[p, x]}$, because the map $n \mapsto \xi_n(x)$ is $\text{OD}(p, x)$. Now define $\mu(x) = \inf \{\xi(y) : y \in T \wedge y E_1 x\}$. This is E_1-invariant, i.e., $\mu(x) = \mu(y)$ whenever $x, y \in T$ and $x E_1 y$; moreover, $\mu(x) < \omega_1^{L[p, x]}$.

Let $W = \{x \in T : \xi(x) = \mu(x)\}$. This is an $\text{OD}(p)$ subset of T, and there is a ROD reduction of $E_1 \uparrow T$ to $E_1 \uparrow W$. (Indeed: Let $x \in T$. By definition there is an m such that $\xi(x) \leq \mu(x)$ for all $j \geq m$; let m_x be the least of such numbers m. Define $y = g(x) \in \mathcal{P}(N)^{\aleph_0}$ so that $x_{\geq m_x} = y_{\geq m_x}$ while $y(j) = \emptyset$ for all $j > m_x$. Then $y \in W$, under the natural assumption that \emptyset has order 0 in any relevant well-ordering, and $y E_1 x$. Thus, g is a ROD reduction of $E_1 \uparrow T$ to $E_1 \uparrow W$.) It suffices to prove that $E_1 \uparrow W \leq_{\text{ORD}} E_0$.

By definition, $\xi_n(x) \leq \mu(x) < \omega_1^{L[p, x]}$ for all $x \in W$ and $n \in \mathbb{N}$, hence, if $a \subseteq W_{\geq n}$, then the set $S_W(a) = \{x(n) : x \in W \wedge a = x_{\geq n}\} \subseteq L[p, x]$ is countable in $L[p, x] = L[p, a]$. Thus there exists an $\text{OD}(p)$ map F with $S_W(a) = F(a, k) : k \in \mathcal{P}(N)$ whenever $a \in A = \bigcup_{m \in \mathbb{N}} W_{\geq m}$. Assuming w.l.o.g. that $\mu(x) \geq \omega$ for any x. All sets $S_W(a)$, $a \in A$, are strictly countable, hence, we can assume that for any $a \in A$ the partial map $F_a(k) = F(a, k)$ is a bijection of $\mathcal{P}(N)$ onto $\mathcal{P}(N)$. Then for any $x \in W$ and n there is a unique $k = \kappa_n(x)$ such that $x(n) = F(x_{\geq n}, k)$. Let $\kappa(x) = \{\kappa_n(x) : n \in \mathbb{N}\}$. Note that if $x \neq y \in W$ and $x E_1 y$, then $\kappa(x) \neq \kappa(y)$.

The next step is to uniformly define an ordering of any set of the form $[x]_{E_1} \cap W$, $x \in W$, similar to Z. Define $\sigma_n(x) = \max\{n, \max_{j \leq n} \kappa_j(x)\}$ for all $x \in W$ and n. Define the infinite sequence

$$\sigma(x) = \{\kappa_0(x), \sigma_0(x), \kappa_1(x), \sigma_1(x), \ldots, \kappa_n(x), \sigma_n(x), \ldots\}$$

of natural numbers. Easily if $x, y \in \mathcal{P}(N)^{\aleph_0}$ satisfy $x \leq_{\text{lex}} y$, i.e., $x_{\geq n} = y_{\geq n}$ for some n, then still $\sigma(x) \leq \sigma(y)$, i.e., $\sigma(x)_{\geq k} = \sigma(y)_{\geq k}$ for some $k \geq n$. Define, for $x, y \leq_{\text{lex}} y$, $x \leq_{\text{lex}} y$ if $\sigma(x) < \sigma(y)$ (the antilexicographical ordering), meaning that $\sigma(x) < \sigma(y)$, where k is the least number such that $\sigma(x)_{\geq k} = \sigma(y)_{\geq k}$. Easily σ_{lex} orders any E_0-class of an element of $\mathcal{P}(N)^{\aleph_0}$ similarly to Z, with the only exception of the E_0-class of the constant 0 which is ordered similarly to N. It follows that any E_1-class $[x]_{E_1} \cap W$, $x \in W$, is ordered by \leq_{lex} similarly to either Z or $\mathcal{P}(N)^{\aleph_0}$. As a matter of fact, any class ordered similarly to $\mathcal{P}(N)^{\aleph_0}$ can be rearranged, in some trivial manner, to that its order is now Z instead of $\mathcal{P}(N)^{\aleph_0}$. This way we obtain an $\text{OD}(p)$ binary relation \leq_{lex} which orders every set of the form $[x]_{E_1} \cap W$, $x \in W$, similarly to Z. In other words, we have defined an $\text{OD}(p)$ action of Z on whose orbits are exactly E_1-classes $[x]_{E_1} \cap W$, $x \in W$.

The rest of the argument involves a construction given in [1]. For any $x \in W$ define $\zeta(x) \in W^Z$ so that $\zeta(x)(0) = x$ and, for any $c \in Z$, $\zeta(x)(c + 1)$ is the $<_{\text{lex}}$-next element of $[x]_{E_1} \cap W$ after $\zeta(x)(c)$. Thus, ζ is an $\text{OD}(p)$ map $W \rightarrow Z = (\mathcal{P}(N)^{\aleph_0})^Z$. For $\zeta \in Z$ define ζ_{lex} iff there is an integer $z \in Z$ such that $\zeta(c) = \eta(c + z)$ for all $c \in Z$. Thus, F is the equivalence relation $E(Z, \mathcal{P}(N)^{\aleph_0})$ on $Z = (\mathcal{P}(N)^{\aleph_0})^Z$, in the sense of [1].

The map ζ is obviously a reduction of $E_1 \uparrow W$ to F, hence, it suffices to show that $F \leq_{\text{ORD}} E_0$. But $[1, 7.1]$ yields a stronger result: $F \leq_{\text{B}} E_0$. \hfill \Box

Case 1
4.2 Case 2

Thus, assume that the OD(p) set \(R = \{ x \in P : \text{dep } x = \infty \} \) is non-empty. Our goal is to define an OD(p) subset \(X \subseteq R \) with \(E_1 \leq_B E_1 \upharpoonright X \).

We continue to argue in the Solovay model.

We begin with a reduction to the case when \(J(x) = \{ n : x(n) \not\in L[p, x_{>n}] \} \) is equal to \(\mathbb{N} \) for any \(x \in R \).

Fix, for any \(k \), a recursive bijection \(b_k : \mathcal{P}(\mathbb{N})^{k+1} \times \mathbb{N}^2 \overset{\text{onto}}{\longrightarrow} \mathcal{P}(\mathbb{N}) \). Now let \(x \in R \). Then \(J(x) \subseteq \mathbb{N} \) is infinite; let \(J(x) = \{ j_0, j_1, j_2, \ldots \} \) in the increasing order. For any \(m \), put

\[y(m) = b_{j_{m+1}}(j_m - j_{m+1} - 1, x \restriction (j_m, j_{m+1}]) \]

(with \(j_{-1} = -1 \) for \(m = 0 \)). The map \(x \mapsto y \) is OD(p), \(x_{E_1} \upharpoonright y_{E_1} \) if \(y \in \mathcal{P}(\mathbb{N}) \), and also \(J(y) = \mathbb{N} \). This observation justifies to assume w.l.o.g. \(x(n) \not\in \text{OD}(p, x_{>n}) \) for any \(x \in R \) and \(n \).

The following construction uses the basic idea of [4, Theorem 2.1], in the form of a splitting construction developed in [3] for the study of “ill”-founded Sacks iterations. Fix a recursive map \(G : \mathbb{N}^2 \to \mathbb{N} \) as assumed in [3] for the study of “ill”-founded Sacks iterations. Fix a recursive map \(\nu : \mathbb{N} \to \mathbb{N} \) such that \(\nu(k) = \max \{ \nu' : k < n \land \nu(k) \neq \nu' \} \).

Let us demonstrate how such a system of sets accomplish Case 2. According to (iii) and (iv), for any \(a \in 2^{\mathbb{N}} \), the intersection \(\bigcap_n X_a \cap a \) contains a single point, let it be \(F(a) \), so that \(F : 2^{\mathbb{N}} \to \mathcal{P}(\mathbb{N})^N \) is continuous and one-to-one.

Define a parallel system of sets \(Y_u \), \(u \in 2^{\mathbb{N}} \), as follows. Put \(Y_\emptyset = \mathcal{P}(\mathbb{N})^N \). Suppose that \(Y_u \) has been defined, \(u \in 2^{\mathbb{N}} \), and \(\phi(n) = j \). Let \(\ell \) be the number of all indices \(k \) with \(\phi(k) = j \), perhaps \(\ell = 0 \). Put \(Y_{u \upharpoonright i} = \{ x \in Y_u : x(\ell) = i \} \) for \(i = 1 \). Each of \(Y_u \) is a clopen set and \(\mathcal{P}(\mathbb{N}) \), and one easily verifies that conditions (i) – (iv) are satisfied for the sets \(Y_u \) (instead of \(X_u \), in particular, for any \(a \in 2^{\mathbb{N}} \), the intersection \(\bigcap_n Y_{a \cap n} = \{ G(a) \} \) is a singleton, and the map \(G \) is continuous and one-to-one. We can define \(G \) explicitly:

\[G(a) : \ell \mapsto \nu(\ell) \]

We conclude that the map \(\theta(x) = F(G^{-1}(x)) \) is a continuous bijection, hence, a homeomorphism by the compactness of the spaces considered, of \(\mathcal{P}(\mathbb{N}) \) onto the set \(X = \{ F(a) : a \in 2^{\mathbb{N}} \} = \bigcap_n \bigcup_{u \in 2^{\mathbb{N}}} X_u \).

We further assert that \(\theta \) satisfying the following: for each \(y, y' \in \mathcal{P}(\mathbb{N})^N \) and \(m \),

\[(*) \quad y \upharpoonright \geq m = y' \upharpoonright \geq m \quad \text{iff} \quad \theta(y) \upharpoonright \geq m = \theta(y') \upharpoonright \geq m. \]

Indeed: Let \(y = G(a) \) and \(x = F(a) = \theta(y) \), and similarly \(y' = G(a') \) and \(x' = F(a') = \theta(y') \), where \(a, a' \in 2^{\mathbb{N}} \). Suppose that \(y \upharpoonright \geq m = y' \upharpoonright \geq m \). According to (i)(b) for \(\nu \) and the sets \(Y_u \) we then have \(m \geq \nu(\ell) \) for any \(a \), hence, \(X_{a \cap n} \upharpoonright \geq m = X_{a' \cap n} \upharpoonright \geq m \) for any \(n \) by (i)(a). Assuming now that Polish metrics on all spaces \(X \in \mathcal{P}(\mathbb{N})^N \) are chosen so that \(\text{diam}(Z) \leq \text{diam}(Z) \upharpoonright j \) for all \(Z \subseteq \mathcal{P}(\mathbb{N}) \) and \(j \), we easily obtain that \(x \upharpoonright \geq m = x' \upharpoonright \geq m \), i.e., the right-hand side of \((*) \). The inverse implication in \((*) \) is proved similarly.

Thus we have \((*) \), but this means that \(\theta \) is a continuous reduction of \(E_1 \) to \(E_1 \upharpoonright X \), thus, \(E_1 \leq_B E_1 \upharpoonright X \), as required.

\[\Box \] Theorem 1 modulo the construction (i) – (iv)

5 The construction

We continue to argue in the Solovay model.

Recall that \(R \subseteq \mathcal{P}(\mathbb{N})^N \) is a fixed non-empty OD(p) set such that \(J(x) = \mathbb{N} \) for each \(x \in R \). According to Proposition 3(i), there is \(\gamma < \Omega \), \(w_0 \in \mathcal{P}_\gamma \), and \(t \in T_\gamma[p] \) such that \(X_\Lambda = t[w_0] \subseteq R \). Let us fix an enumeration

(not OD (p)) \{D_n\}_{n \in \mathbb{N}} of all dense subsets of \(\mathbb{P}_n\), which belong to \(L[p]\). We define, along with sets \(X_u\), a system \(\{w_u\}_{u \in 2^{\omega}}\) of finite sequences \(w_u \in 2^{<\omega}\) satisfying

(v) \(w_u \in D_{\text{dom} u}\) and, for any \(i, w_u \subset w_{u^{-i}}\) and \(t[w_{u^{-i}}] \subseteq X_u \subseteq t[w_u]\).

Prove that this implies (iv). Let \(a \in 2^{\mathbb{N}}\). Then there is \(f \in \gamma^n\) such that \(w_{a^n} \subseteq f\) for any \(n\). This map \(f\) is generic over \(L[p]\), because for all \(n, w_{a^n} \in D_n\) that, \(f \in \mathbb{F}_n[p]\). It follows that \(t[f] \in \cap_n t[w_{a^n}] = \cap_n X_{a^n}\), as required.

To begin with, let a system \(X_u\) of all dense subsets of \(\mathbb{P}_n\) which belongs to \(D_0\). Put \(X_A = t[w_{u}]\). Now suppose that the sets \(X_u \subseteq X_u\) with \(u \in 2^n\) have been defined and satisfy the applicable part of (i)–(iii) and (v).

Lemma 4 If \(u_0 \in 2^n\) and \(X' \subseteq X_{u_0}\) is a non-empty OD\((p)\) set, then there is a system of OD\((p)\) sets \(\emptyset \neq X'_u \subseteq X_u\) with \(X'_0 = X'\), still satisfying (i).

Proof. For any \(u \in 2^n\), let \(X_u' = \{x \in X_u : x \upharpoonright n(u) \in X' \upharpoonright n(u)\}\), where \(n(u) = \nu_p[u, u_0]\). In particular, this gives \(X'_0 = X'\) because, \(\nu_p[0, 0] = -1\). The sets \(X'_u\) are as required, via a routine verification. Q.E.D. Lemma

Step 1. Put \(j = \varphi(n)\) and \(Y_u = X_u \upharpoonright j\). Take any \(u_1 \in 2^n\). Under our assumptions, any element \(x \in X_u\) satisfies \(j \in J(x)\), so that \(x(j) \notin OD\((p, x \upharpoonright j)\)\). Since \(X_u\) is an OD\((p)\) set, it follows that the set \(X_u \upharpoonright (j) = \{x \upharpoonright j : x \in X_u \land x \upharpoonright j = x(j)\}\) is not a singleton, in fact is uncountable. Then there is a number \(l_{u_1}\) having the property that the set

\[Y'_u = \{y \in Y_{u_1} : (\exists x, x' \in X_u) (x \upharpoonright j = y \land l_{u_1} \in x(j) \land l_{u_1} \notin x'(j))\}\]

is non-empty. We now put \(X' = \{x \in X_{u_1} : x \upharpoonright j \in Y'_u\}\) and define OD\((p)\) sets \(\emptyset \neq X'_u \subseteq X_u\) as in the lemma, in particular, \(X'_0 = X'\), \(X'_u \upharpoonright j = Y'_u\), still (i) is satisfied, and in addition

(1) \((\forall y \in X'_u \upharpoonright j)(\exists x, x' \in X_{u_1})\ (x \upharpoonright j = y \land l_{u_1} \in x(j) \land l_{u_1} \notin x'(j))\)

Now take some other \(u_2 \in 2^n\). Let \(\nu = \nu_p[u_1, u_2]\). If \(j > \nu\), then \(X_u \upharpoonright j = X_u \upharpoonright j\), so that we already have, for \(l_{u_2} = l_{u_1}\).

(2) \((\forall y \in X'_u \upharpoonright j)(\exists x, x' \in X_{u_2})\ (x \upharpoonright j = y \land l_{u_2} \in x(j) \land l_{u_2} \notin x'(j))\),

and can pass to some \(u_3 \in 2^n\). Suppose that \(\nu \geq j\). Now things are somewhat nastier. As above there is a number \(l_{u_3}\) such that

\[Y''_{u_3} = \{y \in Y_{u_3} : (\exists x, x' \in X_{u_1}) (x \upharpoonright j = y \land l_{u_3} \in x(j) \land l_{u_3} \notin x'(j))\}\]

is a non-empty OD\((p)\) set, thus, we can define \(X'' = \{x \in X_{u_1} : x \upharpoonright j \in Y''_{u_2}\}\) and maintain the construction of Lemma 4, getting non-empty OD\((p)\) sets \(X''_u \subseteq X'_u\) still satisfying (i) and \(X''_0 = X''\), therefore, we still have (2) for the set \(X''_u\).

Yet it is most important in this case that (1) is preserved, i.e., it still holds for the set \(X''_u\) instead of \(X'_u\) ! Indeed: According to the construction in the proof of Lemma 4, we have \(X''_u = \{x \in X'_u : x \upharpoonright \nu \in X'' \upharpoonright \nu\}\). Thus, although, in principle, \(X''_u\) is smaller than \(X'_u\), for any \(y \in X'' \upharpoonright j\) we have

\[\{x \in X''_u : x \upharpoonright j = y\} = \{x \in X'_u : x \upharpoonright j = y\},\]

simply because now we assume \(\nu \geq j\). This implies that (1) still holds.

Iterating this construction so that each \(u \in 2^n\) is eventually encountered, we obtain, in the end, a system of non-empty OD\((p)\) sets, let us call them “new” \(X_u\) but they are subsets of the “original” \(X_u\), still satisfying (i), and, for any \(u \in 2^n\) a number \(l_u\) such that \(j > \nu_p[u, v]\) implies \(l_u = l_v\)

\((*) (\forall y \in X_u \upharpoonright j)(\exists x, x' \in X_u)\ (x \upharpoonright j = y \land l_u \in x(j) \land l_u \notin x'(j))\).

Step 2. We define the \((n + 1)\)th-level by \(X_{u^{-1}} = \{x \in X_u : l_u \notin x(j)\}\) and \(X_{u^{-1}} = \{x \in X_u : l_u \notin x(j)\}\) for all \(u \in 2^n\), where still \(j = \varphi(n)\). It follows from (*) that all these OD\((p)\) sets are non-empty.

Lemma 5 The system of sets \(\{X_u\}_{u \in 2^{n+1}}\) just defined satisfies (i).

Proof. Let \(s = u^{-i} \land t = v^{-i'}\) belong to \(2^{n+1}\), so that \(u, v \in 2^n\) and \(i, i' \in \{0, 1\}\). Let \(\nu = \nu_p[u, v]\) and \(\nu' = \nu_p[s, t]\).
Case 1. \(\nu \geq j = \varphi(n) \). Then easily \(\nu = \nu' \), so that (i)(b) immediately follows from (i)(b) at level \(n \) for \(X_u \) and \(X_v \). As for (i)(a), we have \(X_u^{> \nu} = X_u^{> \nu'} \) (because by definition \(X_u^{> j} = X_u^{> j} \)), and similarly \(X_u^{> \nu} = X_u^{> \nu'} \), therefore, \(X_u^{> j} = X_u^{> j} \) since \(X_u^{> \nu} = X_u^{> \nu} \) by (i)(a) at level \(n \).

Case 2. \(j > \nu \) and \(i = i' \). Then still \(\nu = \nu' \), thus we have (i)(b). Further, \(X_u^{> \nu} = X_u^{> \nu} \) by (i)(a) at level \(n \), hence, \(X_u^{> j} = X_u^{> j} \) and \(l_u = l_v \) as above. Assuming that, say, \(i = i' = 1 \) and \(l_u = l_v = l \), we conclude that \(X_u^{> \nu} = \{ y \in X_u^{> \nu} : l \in y(j) \} = \{ y \in X_u^{> \nu} : l \in y(j) \} = X_u^{> \nu} \).

Case 3. \(j > \nu \) and \(i \neq i' \), say, \(i = 0 \) and \(i' = 1 \). Now \(\nu' = j \). Yet by definition \(X_u^{> j} = X_u^{> j} \) and \(X_u^{> j} = X_u^{> j} \), so it remains to apply (i)(a) for level \(n \). As for (i)(b), note that by definition \(\ell \not\in x(j) \) for any \(x \in X_u^{> 0} \) while \(l \in x(j) \) for any \(x \in X_u^{> 1} \), where \(l = l_u = l_v \). □ Lemma

Step 3. In addition to (i), we already have (ii) at level \(n + 1 \). To achieve the remaining properties (iii) and (v), consider, one by one, all elements \(s \in 2^{n+1} \), finding, at each such a substep \(s = u \upharpoonright i \) (\(u \in 2^n \) and \(i = 0, 1 \)), a non-empty OD(\(p \)) subset of \(X_u \), and also an extension \(w_x \in 2^{<\omega} \) of \(w_u \), consistent with (iii) and (v). As for (iii), just take a subset whose diameter is \(\leq 2^{-n} \). As for (iv), choose, using Proposition 3(ii), \(w_x \in \mathcal{P}_\gamma \) such that the following holds: \(w_x \in D_{n+1} \), \(w_u \subseteq w_s \), and the set \([w_x] \) is a subset of the “current value” of \(X_u \). Finally, define the “new” value of \(X_u \) to be \([w_x] \). Then reduce all other sets \(X_t, t \in 2^{n+1} \), as in Lemma 4 at level \(n + 1 \). Thus ends the substep \(s \). We have to pass to another \(s' \in 2^{n+1} \) and carry out substep \(s' \). And so on, with the consideration of all \(s \in 2^{n+1} \) one by one.

□ Construction and Theorem 1

Acknowledgements The first author was supported by DFG.

References