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If A ⊆ ω1, then there exists a cardinal preserving generic extension �[A][x] of �[A] by a real x such that
1) A ∈ �[x] and A is ΔHC

1 (x) in �[x];
2) x is minimal over �[A], that is, if a set Y belongs to �[x], then either x ∈ �[A, Y ] or Y ∈ �[A].

The forcing we use implicitly provides reshaping of the given set A.
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1 Introduction

The following is our main result.
Theorem 1.1 Suppose that A ⊆ ω1 and � = �[A]. Then there exists a cardinal preserving generic exten-

sion �[x] of the ground universe � by a generic real x such that
(i) A ∈ �[x] – this implies �[x] = �[x], and A ∈ ΔHC

1 (x) in �[x],
(ii) x is a minimal real over �, that is, x �∈ �, and if a set Y belongs to �[x], then x ∈ �[Y ] or Y ∈ �, 1)

(iii) there is a club C ∈ �[x], C ⊆ ω1, that reshapes A, i.e., if α ∈ C, then α < ω
�[A∩α]
1 .

We may compress the properties (i) and (ii) of a real x in the theorem by saying that x minimally codes the set
A ⊆ ω1. Jensen and Solovay [12] proposed a method of coding of uncountable sets by reals by means of almost
disjoint forcing. In the context of Theorem 1.1, this coding method consists of two parts. The first part is the
reshaping of A by means of a generic club (closed and unbounded set) C ⊆ ω1 with the properties that

1) C does not add new reals to �[A], and

2) if ξ ∈ C is a limit ordinal, then ξ < ω
�[A∩ξ]
1 (see Theorem 14.1 below).

After this is done, a type of almost-disjoint ccc forcing is employed to produce a generic real x over �[A][C] such
that A and C belong to �[x], that is, x codes those two sets. These methods were expanded to a greatly more
complicated technique of coding the universe [5].

The almost-disjoint forcing technique does not provide minimal reals. The first result on minimal coding was
published in [13]: a generic minimal upper bound of the constructibility degrees of any model satisfying CH,
with the minimality understood only in the sense of reals (weak minimality in discussions below). The coding
technique in [13] involves a subforcing of the Sacks forcing close to a forcing notion introduced in [11]. 2)

∗ Corresponding author: e-mail: joan.bagaria@icrea.cat
∗∗ e-mail: kanovei@googlemail.com
1) One may want to strengthen the minimality requirement in (ii) of Theorem 1.1 as follows: x ∈ �[Y ] or Y ∈ �. But this is, generally

speaking, impossible, see Section 16.
2) Sy Friedman informed us that similar results were independently obtained by M. Groszek; but her relevant studies are unpublished.

According to the anonymous referee, similar results (a generic minimal real, but only in the sense of reals) were also obtained by P. Welch,
also unpublished.
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Leaving aside coding results of less relevance, let us mention that Sy Friedman developed the minimal coding
technique to a very powerful method of minimal coding of the universe, so that basically any universe � of
ZFC + GCH can be extended by adding a class generic cardinal-preserving and cofinalities-preserving real x
so that �[x] = �[x] and x is minimal over � in the sense of (ii) of Theorem 1.1. See [6, Section 1] or, with a
sketchy proof and further references, [7, Theorem 8.21]. As we were informed by Sy Friedman, a certain (still
rather complicated) reduction of methods involved in the proof of [7, Theorem 8.21] also yields the proof of
Theorem 1.1, (i) and (ii), of this paper. (See also [8] for another application of this version of the minimal coding
technique.)

The goal of this paper is to present a self-contained proof of Theorem 1.1 by means of a more elementary
coding that involves a technique going back to [11, 13]. The forcing we employ will consist of perfect trees
T ⊆ 2<ω , that is, it will be a subforcing of the Sacks forcing. That the Sacks forcing itself does not suffice,
generally speaking, to prove the theorem, will be shown in Section 12.

Before the proof starts, let us briefly discuss the reshaping problem already mentioned above. (The importance
of this issue was revealed by Sy Friedman in a broad context, see for example [7, Ch. 8].) The reshaping in this
context means a reduction of the general case of Theorem 1.1 to the case when

(∗) ξ < ω
�[A∩ξ]
1 for all limit ξ < ω1.

If this is the case, then Theorem 1.1 can be proved by means of a ccc forcing, as in Section 13 below. On the
other hand, if the true ω1 = ω

�[A]
1 is not a Mahlo cardinal in �, then there is a set A′ ∈ �[A], A′ ⊆ ω1, with

�[A] = �[A′], and satisfying (∗), so that the reshaping can be done internally in the non-Mahlo case. However if
� = �[A], with A ⊆ ω1 coding a generic filter over � for the Levy collapse of a weakly compact cardinal, then
by some results of Kunen, any ccc-generic real x over �[A] satisfies ω

�[x]
1 < ω1, and hence x cannot code A.

Thus the reshaping is not always doable internally.
But if (ii) of Theorem 1.1 is weakened to the form when Y ⊆ ω (essentially, the minimality among reals),

then the reshaping by a generic set C satisfying 1) and 2) above, as in [12], is innocuous in the sense that a real
x minimal in the weak sense over �[A][C] will remain minimal in the weak sense over �[A] as well. But the
general minimality fails as C is a set of intermediate degree.

2 On perfect trees

Consider the set 2ω of all x : ω −→ 2 = {0, 1}, the Cantor space.
If s ∈ 2<ω (a finite binary string), then put [s] = {x ∈ 2ω : s ⊂ x} and let lh s be the length of s.
If X ⊆ 2ω is a perfect set, then S = treeX = {s ∈ 2<ω :X ∩ [s] �= ∅} is a perfect tree in 2<ω and

X = [S] = {a ∈ 2ω : ∀m (a �m ∈ S)}. Let Perf be the set of all perfect trees S ⊆ 2<ω . Define, for S ∈ Perf ,

diamS =
1

m0 + 1
, where m0 is the largest such m that a �m = b �m for all a, b ∈ [S].

A set E ⊆ Perf is an antichain if and only if [S] ∩ [T ] = ∅ for all S �= T in E. 3)

A set D ⊆ � is dense in � ⊆ Perf if and only if for each S ∈ � there exists T ∈ D such that T ⊆ S. Note
that if S, T ∈ Perf , then S ⊆ T is equivalent to [S] ⊆ [T ].

If t ∈ S ∈ Perf , then put S � t = {s ∈ S : s ⊆ t∨ t ⊂ s}; this is still a tree in Perf and [S � t] = [S]∩ [t]. Say
that a set � ⊆ Perf is CO-dense if and only if for any t ∈ S ∈ � there exists a tree T ∈ � such that [T ] ⊆ [S � t].
In this case, we have even more: if S ∈ � and a set ∅ �= U ⊆ [S] is open in [S], then there exists a tree T ∈ �

such that [T ] ⊆ U .

Lemma 2.1 If � ⊆ Perf is CO-dense and S1, . . . , Sn ∈ �, then there are trees T1, . . . , Tn ∈ � satisfying
Ti ⊆ Si for all i and [Ti] ∩ [Tj ] = ∅ for i �= j.

P r o o f. Let, say, n = 2. Pick x1 ∈ [S1], x2 ∈ [S2], x1 �= x2. There is m ∈ ω with x1 �m = u �= v = x2 �m.
The trees T ′

1 = S1 � u and T ′
2 = S2 � v satisfy [T ′

1] ∩ [T ′
2] = ∅. By the CO-density there exist trees T1, T2 ∈ �

with Ti ⊆ T ′
i , i = 1, 2.

3) This is somewhat stronger than the usual notion of antichain in a poset.
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If S ∈ Perf and � ⊆ Perf , then S ⊆fin ⋃
� means that there is a finite set �′ ⊆ � such that [S] ⊆ ⋃

T∈�′ [T ],
or, which is equivalent, simply S ⊆ ⋃

�
′.

Lemma 2.2 Let � ⊆ Perf be a countable CO-dense set and {Dn :n ∈ ω} a family of sets Dn ⊆ � dense
in �. Then there is a countable antichain E ⊆ Perf \ � such that

1) T ⊆fin ⋃
Dn for all n and all T ∈ E, and

2) for each S ∈ � there is T ∈ E with T ⊆ S.

P r o o f. Let � = {Sn :n ∈ ω}. It suffices to define a family of trees Tn
s ∈ �, where n ∈ ω and s ∈ 2<ω ,

such that
(i) Tn

Λ = Sn for all n, where Λ is the empty string;
(ii) Tn

s∧0 ∪ Tn
s∧1 ⊆ Tn

s , but Tn
s∧0 ∩ Tn

s∧1 = ∅, where s ∧i is the extension of s by i as the rightmost term;

(iii) diamTn
s ≤ 1

lh s
;

(iv) the sets Xn
k =

⋃
lh s=k[T

n
s ] satisfy Xn

n ∩Xm
n = ∅ for m < n;

(v) if n ∈ ω, k ≥ 1, lh s = k, then Tn
s ⊆ T for some T ∈ Dk−1;

(vi) if n, k ∈ ω, then either there is s ∈ 2<ω such that lh s = k and [Tn
s ] ∩ [Sk] = ∅, or Xn

k � [Sk].
Details (rather elementary) are left to the reader; in particular Lemma 2.1 is applied to fix (iv). After the con-
struction is accomplished define the trees Tn =

⋂
k∈ω

⋃
lh s=k T

n
s and E = {Tn :n ∈ ω}. Note that (vi) implies

E ∩ � = ∅.

3 Coding

The goal is to uniformly define, for any perfect set X ⊆ 2ω and any real b in a rather large set B ⊆ 2ω ,
a countable family of perfect sets Xnb ⊆ X , CO-dense in X , and also a uniform decoding map f such that
f(X,x) = b for all x ∈ ⋃

n Xnb. (The notation will be changed.)
If x ∈ 2ω and n ∈ ω, then let (x)n(k) = x(2n(2k + 1)− 1), so that (x)n ∈ 2ω .
Define xeven ∈ 2ω so that xeven(n) = x(2n) for all n ∈ ω. Consider the sets

R0 = {b ∈ 2ω : ∀n ((b)n = (b)0)} and R = {x ∈ 2ω : (∃ b ∈ R0) (b E0 x)} ,
where, for x, y ∈ 2ω, x E0 y if and only if x(n) = y(n) for all but finitely many n. The set R will be the B in
the explanation above. For every x ∈ R there is a unique b = b(x) ∈ R0 with x E0 b. Let dif(x) be the least
natural n such that x(i) = b(i) for all i ≥ n. If x ∈ Rev = {x ∈ 2ω :xeven ∈ R}, then let bev(x) = b(xeven)
and u(x) = x � (2 dif(xeven)).

If b ∈ 2ω and n ≥ 1, then let U(b, n) be the set of all strings s ∈ 2<ω of length lh s = 2n such that
s(2n− 2) �= b(n− 1). Separately let U(b, 0) = {Λ}. Put U(b) =

⋃
n∈ω U(b, n). If u ∈ U(b, n), then define

Ŷ (b, u) = {x ∈ [u] : (∀ k ≥ n) (x(2k) = b(k))} and T (b, u) = tree Ŷ (b, u) .

The trees T (b, u), u ∈ U(b), belong to Perf , and the sets [T (b, u)] = Ŷ (b, u) ⊆ 2ω are pairwise disjoint:
[T (b, u)] ∩ [T (b, v)] = ∅ for any u �= v in U(b) (of equal or non-equal length). The following is obvious.

Lemma 3.1 Rev =
⋃

b∈R0

⋃
u∈U(b)[T (b, u)].

If x ∈ Rev, then b = bev(x) ∈ R0, u = u(x) ∈ U(b), and x ∈ [T (b, u)].
If s ∈ 2<ω , then there exists u ∈ U(b) such that [T (b, u)] ⊆ [s].

Now relativize the construction to any P ∈ Perf . Let hP : 2ω
onto−→ [P ] be a canonical homeomorphism. If

x ∈ Rev
P = {x ∈ [P ] :h−1

P (x) ∈ Rev}, then put

bevP (x) = bev(x′) and uP (x) = u(x′) , where x′ = h−1
P (x) .

Accordingly if b ∈ R0 and u ∈ U(b), then let

ŶP (b, u) = {hP (y) : y ∈ Ŷ (b, u)} and T P (b, u) = tree (ŶP (b, u)) .
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Corollary 3.2 (of Lemma 3.1) Suppose that P ∈ Perf . Then the following hold:
(i) Rev

P =
⋃

b∈R0

⋃
u∈U(b)[T P (b, u)], and if x ∈ Rev

P , then b = bevP (x) ∈ R0, u = uP (x) ∈ U(b), and
x ∈ [T P (b, u)].

(ii) If b ∈ R0, then NextP (b) = {T P (b, u) :u ∈ U(b)} ⊆ Perf is an antichain: [T P (b, u)] ∩ [T P (b, v)] = ∅
for all u �= v in U(b).
(iii) If s ∈ P , then there is u ∈ U(b) such that [T P (b, u)] ⊆ [P ] ∩ [s].

4 An auxiliary sequence ϕ

The forcing construction for Theorem 1.1 involves a certain sequence ϕ ∈ (2ω)ω1 .
Fix a recursive enumeration � = {rn :n ∈ ω} of the rationals. If ξ < ω1, then let WOξ be the set of all x ∈ 2ω

such that {rn :x(n) = 1} ⊆ � is wellordered by the natural order of � similarly to ξ. Put WO =
⋃

ξ<ω1
WOξ

(codes of ordinals) and |x| = ξ for x ∈ WOξ. If x ∈ WO and |x| = ξ ≥ ω, then one can concretely define a
bijection βx : ω

onto−→ ξ. If |x| < ω, put βx(n) = n for all n.
Definition 4.1 Suppose that ϕ ∈ (2ω)λ, λ ≤ ω1.

(1) Put Ω1[ϕ] = {0} ∪ {ξ + 1 : ξ + 1 < λ} (all successor ordinals ≤ λ = domϕ).

(2) Let Ω2[ϕ] be the set of all ordinals ξ ≤ λ, ξ �∈ Ω1[ϕ], such that ξ < ω
�[ϕ�ξ]
1 .

(3) Assume that ξ ∈ Ω2[ϕ]. Let μξ[ϕ] = μξ[ϕ � ξ] be the least ordinal μ > ξ such that �μ[ϕ � ξ] is a model
of ZFC− (ZFC minus the Power Set Axiom) and ξ is countable already in �μ[ϕ � ξ].

(4) Put Mξ[ϕ] = �μξ[ϕ][ϕ � ξ]. Then ξ < μξ[ϕ] < ω
�[ϕ�ξ]
1 , and Mξ[ϕ] is a countable transitive model of ZFC−.

(5) Finally define Ω3[ϕ] = {ξ : ξ ≤ λ} \ (Ω1[ϕ] ∪ Ω2[ϕ]).
Lemma 4.2 Suppose that ξ ≤ λ ≤ ω1, ϕ ∈ (2ω)λ, ξ ∈ Ω2[ϕ], and M is a transitive model of ZFC−

containing ϕ � ξ and the ordinal μξ[ϕ]. Then the set Mξ[ϕ] belongs to M and is countable in M .

P r o o f. Let κ = M∩Ord. We may assume without loss of generality that M = �κ[ϕ�ξ]. If all ordinals ϑ < κ
are countable in M , then the result is obvious. Otherwise let ϑ = ωM

1 be the least ordinal uncountable in M .
Then ξ < ϑ since μξ[ϕ] ∈ M . Using the same condensation argument as in the proof that � = � implies CH,
one can prove that ξ is countable in �ϑ[ϕ � ξ], therefore μξ[ϕ] < ϑ.

Let R+
0 consist of all b ∈ R0 such that ((b)0)0 and ((b)0)1 belong to WO. With every b ∈ R+

0 we associate
a sequence χb ∈ (2ω)λ+1, where λ = |((b)0)0|, by χb(λ) = b, and if η < λ, then χb(η) = ((b)0)k+2, where
k ∈ ω satisfies β((b)0)0(k) = η. The role of ((b)0)1 will be clear a few lines below.

If λ ≤ ω1, then let Φλ be the set of all functions ϕ ∈ (R+
0 )

λ such that ϕ(0) is the real x(n) = 0 for all n, and
in addition for any ξ, 0 < ξ < λ, we have:

1) |((ϕ(ξ))0)0| = ξ and ϕ � (ξ + 1) = χϕ(ξ), so that ϕ(ξ) codes ϕ � (ξ + 1),

2) if ξ ∈ Ω2(ϕ), then ((ϕ(ξ))0)1 ∈ WOμξ[ϕ], so that the real ϕ(ξ) also codes the ordinal μξ[ϕ] = μξ[ϕ � ξ] in
this case.

Put Φ =
⋃

λ≤ω1
Φλ.

Lemma 4.3 If λ ≤ ω1, ϕ ∈ Φλ, and ξ ∈ Ω3[ϕ], then ξ = ω
�[ϕ�ξ]
1 .

On the other hand, if ξ ∈ Ω2[ϕ] ∪ Ω1[ϕ], then ξ < ω
�[ϕ�ξ]
1 .

P r o o f. If ϕ ∈ Φλ, then each value ϕ(ξ), ξ < λ, codes the countability of ξ, therefore ξ > ω
�[ϕ�ξ]
1 is

impossible. This proves the first claim. The second claim holds by definition.

Definition 4.4 Coming back to Theorem 1.1, fix a set A ⊆ ω1 such that � = �[A]. The definition of Φλ

leaves a lot of freedom as to how to define ϕ(ξ), ξ ∈ Ω1[ϕ]. This makes it possible to define ϕ ∈ Φω1 such that
A ∈ �[ϕ], so that � = �[ϕ] in the ground universe �.

Moreover it can be guaranteed, by a suitable choice of ϕ, that in any generic extension of �, if x ∈ 2ω and
ϕ is ΔHC

1 (x), then A is ΔHC
1 (x) as well.

Fix ϕ̂ ∈ Φω1
with all these properties.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org



Math. Log. Quart. 56, No. 4 (2010) / www.mlq-journal.org 413

5 The forcing

Suppose that ϕ ∈ Φω1 . Define a forcing notion �[ϕ] =
⋃

ξ<ω1
�ξ[ϕ] satisfying the following conditions:

(A) If ξ < ω1, then �ξ[ϕ] ⊆ Perf and �ξ[ϕ] is countable.
(B) If η < ξ and S ∈ �η[ϕ], then there is a tree T ∈ �ξ[ϕ], T ⊆ S.
(C) If ξ ≤ ω1, then the subsequence {�η[ϕ]}η<ξ, hence �<ξ[ϕ] =

⋃
η<ξ �η[ϕ] as well, belong to �[ϕ � ξ].

(D) If ξ ∈ Ω2[ϕ], then �ξ[ϕ] is an antichain and T ⊆fin ⋃
D holds for any T ∈ �ξ[ϕ] and any set D ⊆ �<ξ[ϕ],

D ∈ Mξ[ϕ], dense in �<ξ[ϕ].

Definition 5.1 The construction goes on by induction on ξ.
1∗ �0[ϕ] consists of a single tree 2<ω .
2∗ If ξ = η + 1, then �ξ[ϕ] =

⋃
P∈�η [ϕ] NextP (b), where b = ϕ(ξ),

3∗ If ξ ∈ Ω3[ϕ], then �ξ[ϕ] =
⋃

P∈�<ξ[ϕ] NextP (b), where b = ϕ(ξ).

4∗ Suppose that ξ ∈ Ω2[ϕ], that is, ξ < ω1 is a limit ordinal and ξ < ω
�[ϕ�ξ]
1 . In this case the definition of �ξ[ϕ]

takes more time. We require, following (C), that �<ξ[ϕ] ∈ �[ϕ � ξ]. If this fails, then let �ξ[ϕ] = �<ξ[ϕ], yet in
fact (see below) this condition will always be satisfied. Consider Mξ[ϕ], a countable transitive model of ZFC−

(see Definition 4.1). The set D of all sets D ⊆ �<ξ[ϕ], D ∈ Mξ[ϕ], dense in �<ξ[ϕ], is countable too, and,
under the assumption �<ξ[ϕ] ∈ �[ϕ � ξ] as above, D belongs to the class �[ϕ � ξ] and is countable there by
Lemma 4.2. Using Lemma 2.2 in �[ϕ � ξ], we get an antichain E ∈ �[ϕ � ξ], E ⊆ Perf \ �<ξ[ϕ], countable
in �[ϕ � ξ] and satisfying:

1) T ⊆fin ⋃
D for all D ∈ D and T ∈ E, and

2) the set E is dense in �<ξ[ϕ] ∪ E, that is, for each S ∈ �<ξ[ϕ] there is T ∈ E with T ⊆ S.
Let �ξ[ϕ] be the least of such sets E in the sense of the Gödel wellordering ≤G

ϕ�ξ of �[ϕ � ξ]. This completes
Step 4∗ and the inductive definition of �ξ[ϕ].

Remark 5.2 Note that (B), the density of �ξ[ϕ] in �≤ξ[ϕ], is guaranteed by the construction in 4∗ in the
nontrivial case ξ ∈ Ω2[ϕ]. (C) follows from a rather obvious absoluteness: if ξ < ω1, then the initial segment
{�η[ϕ]}η<ξ can be defined in �[ϕ � ξ]. (D) is also guaranteed by the construction in 4∗.

Definition 5.3 Choose ϕ̂ ∈ Φω1
as in Definition 4.4. Put �̂ξ = �ξ[ϕ̂] for all ξ, and �̂ = �[ϕ̂] =

⋃
ξ<ω1

�̂ξ.

This will be our forcing notion, and we order it so that a condition (a perfect tree) S ∈ �̂ is stronger than T ∈ �̂

if and only if S ⊆ T , or equivalently, if [S] ⊆ [T ].

Proposition 5.4

(a) The set �̂ = �[ϕ̂] is CO-dense in the sense of Section 2.

(b) If ϑ < ω1, then the set �̂≥ϑ =
⋃

ϑ≤ξ<ω1
�̂ξ is dense in �̂.

(c) If ϑ < λ < ω1, then the set �̂ϑ,λ =
⋃

ϑ≤ξ<λ �̂ξ is dense in �̂<λ.

P r o o f. Use Corollary 3.2(ii).

It follows from the first claim of Proposition 5.4 that any �̂-generic set G ⊆ �̂ defines a real xG ∈ 2ω , the
only element of the intersection

⋂
T∈G[T ], and then G = {T ∈ �̂ :xG ∈ [T ]}, so that �[G] = �[xG]. Reals of

the form xG (G ⊆ �̂ being a �̂-generic set) are called �̂-generic reals themselves.

Lemma 5.5 Suppose that M is a countable transitive model of ZFC−, λ ∈ M is an ordinal, and ϕ ∈ Φλ∩M .
Then, for any ξ < λ, �ξ[ϕ] = (�ξ[ϕ])

M . If moreover μλ[ϕ] ∈ M , then �λ[ϕ] = (�λ[ϕ])
M as well.

P r o o f. Note that if ξ < λ and ξ ∈ Ω2[ϕ], then the ordinal μξ[ϕ] is coded by ϕ(ξ) by the definition of Φξ. It
follows that μξ[ϕ] ∈ M , and hence the model Mξ[ϕ] belongs to M and is countable in M by Lemma 4.2. This
obviously implies the absoluteness required.
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6 Cardinal preservation

We claim that the forcing �̂ = �[ϕ̂] just defined preserves cardinals.
Under the assumptions of Theorem 1.1, it suffices to prove that ω�[ϕ̂]

1 remains uncountable in any �̂-generic
extension of �[ϕ̂]. (Indeed, as � = �[A] = �[ϕ̂], the GCH holds in �, the ground universe, and hence the forcing
notion �̂ is a set of cardinality just ℵ1 in �.) The next lemma contains a well known sufficient condition for ω1 to
remain uncountable.

Lemma 6.1 Suppose that {Dn :n ∈ ω} is a family of dense subsets of �̂, and S ∈ �̂. Then there is a tree
T ∈ �̂, T ⊆ S, such that T ⊆fin ⋃

Dn for all n.

P r o o f. We prove a more general result: If λ ∈ Ω3[ϕ̂]∪ {ω1}, then the set �̂<λ (it belongs to �[ϕ̂ � λ] by (C)
of Section 5) satisfies the requirement of the lemma inside �[ϕ̂ �λ]. We prove this by induction, i.e., we prove the
result for some λ ∈ Ω3[ϕ̂] ∪ {ω1} assuming that for all λ′ ∈ Ω3[ϕ̂], λ

′ < λ, it has been established. This holds,
for instance, if λ is the least ordinal in Ω3[ϕ̂], or if λ = ω1 and Ω3[ϕ̂] = ∅. Thus let λ ∈ Ω3[ϕ̂] ∪ {ω1}.

Then λ = ω
�[ϕ̂�λ]
1 by Lemma 4.3. Suppose that S ∈ �̂<λ, all sets Dn ⊆ �̂<λ are dense in �̂<λ, and

{Dn}n∈ω ∈ �[ϕ̂ �λ]. This statement then will be true in �δ[ϕ̂ �λ] as well, where δ = ω
�[ϕ̂�λ]
2 . Consider, arguing

in �[ϕ̂ � λ], a countable transitive submodel of �δ[ϕ̂ � λ], containing S and the sequence of sets Dn. Applying
the Mostowski collapse to such a submodel, we obtain ordinals ξ < ζ < λ such that S ∈ �̂<ξ, while all sets
D′

n = Dn ∩ �̂<ξ are dense in �̂<ξ and belong to N = �ζ [ϕ̂ � ξ]. We have two cases.
C a s e 1. ξ ∈ Ω3[ϕ̂]. By the inductive hypothesis the result holds for ξ, and hence a required tree

T ⊆ S, T ⊆fin ⋃
D′

n for all n, exists in �̂<ξ.
C a s e 2. ξ ∈ Ω2[ϕ̂]. Note that ξ is uncountable in N since λ = ω

�[ϕ̂�λ]
1 is uncountable in �[ϕ̂ � λ] and then

in �δ[ϕ̂ � λ]. It follows that ζ < μξ[ϕ̂]. Therefore N ⊆ Mξ[ϕ̂] = �μξ[ϕ̂][ϕ̂ � ξ], so that the sets D′
n belong

to Mξ[ϕ̂]. Now, by (B) of Section 5, there exists T ∈ �̂ξ satisfying T ⊆ S. And by (D) of Section 5, we have
T ⊆fin D′

n for all n, therefore T ⊆fin Dn.

7 Decoding

The following procedure of decoding the values ϕ̂(ξ) is based on the fact that if P ∈ Perf, b ∈ R0, u ∈ U(b)
and x ∈ [T P (b, u)], (see Section 3), then b = bevP (x) and uP (x) = u. In other words, if we know a tree P ∈ Perf
and a point x ∈ [T P (b, u)], then the values of b, u, [T P (b, u)] can be restored by simple absolute operations.

Definition 7.1 Suppose that x ∈ 2ω . We define the following objects by induction on α < ω1:
(1) a tree Qα(x) ∈ Perf with x ∈ [Qα(x)] and an ordinal λα(x) < ω1;
(2) a sequence ψα(x) ∈ Φλα(x) such that α < β implies ψα(x) ⊂ ψβ(x).

The construction may involve all ordinals ξ < ω1 or stop on some ξ∗ < ω1.
B e g i n n i n g. Put Q0(x) = 2<ω , so that [Q0(x)] = 2ω , definitely x ∈ [Q0(x)], and ψ0(x) = Λ (the empty

sequence), so that λ0(x) = 0.
S t e p α → α+ 1. Let P = Qα(x), λα(x), ψα(x) be defined and satisfy (1) and ψα(x) ∈ Φλα(x) in (2). In

particular, x ∈ [P ]. Suppose that

(∗) x ∈ Rev
P , b = bevP (x) ∈ R+

0 , and the sequence χb belongs to Φλ+1,
where λ = |((b)0)0| ≥ λα(x), and satisfies ψα(x) ⊂ χb.

If this fails, then the construction stops. If (∗) holds, then u = uP (x) ∈ U(b) and x ∈ [T P (b, u)] by Corol-
lary 3.2. Put Qα+1(x) = T P (b, u), ψα+1(x) = χb, and λα+1(x) = λ+ 1 = domψα+1(x).

L i m i t s t e p. Let γ < ω1 be a limit ordinal. Assume that the values Qα(x), ψα(x) and λα(x) have been
defined for all α < γ and satisfy (1) and (2). Put ψγ(x) =

⋃
α<γ ψα(x). Then clearly ψ = ψγ(x) ∈ Φλ, where

λ = λγ(x) := supα<γ λα(x). Suppose that

(†) the sequence ψ = ψγ(x) satisfies ω�[ψ]
1 > λ, where λ = domψ = λγ(x),

that is, formally, λ ∈ Ω2[ψ].

If this fails, then the construction stops. If (†) holds, then go ahead.
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Arguing in �[ψ], carry out the construction of Definition 5.1 up to the step λ. That is, define sets �α[ψ] ⊆ Perf
for all ordinals α < λ, define �<λ[ψ], and proceed to 4∗ of Definition 5.1 (as λ ∈ Ω2[ψ]). Define an antichain
�λ[ψ] according to 4∗. Now, if

(‡) there is a unique tree T ∈ �λ[ψ] such that x ∈ [T ],

then take this T as Qγ(x), otherwise the construction stops.

Lemma 7.2 Suppose that M is a countable transitive model of ZFC−, x ∈ 2ω ∩M , and α ∈ M is an ordinal
countable in M . If (ψα(x))

M and (Qα(x))
M are defined, then (ψα(x))

M = ψα(x) and (Qα(x))
M = Qα(x).

P r o o f. Arguing by induction, the step α → α + 1 is entirely trivial, so we can focus on the limit step.
Thus suppose that γ ∈ M is a limit ordinal countable in M and (ψγ(x))

M , (Qγ(x))
M exist in M – and

then, of course, (ψα(x))
M and (Qα(x))

M exist in M for any ordinal α < γ and, by the inductive hypothesis,
(ψα(x))

M = ψα(x) and (Qα(x))
M = Qα(x) for α < γ.

Clearly enough we have (ψγ(x))
M = ψγ(x) =

⋃
α<γ ψα(x). Therefore ψ = ψγ(x) belongs to M . On the

other hand, ψ ∈ Φλ, where λ = λγ(x). Then the sequence {�ξ[ψ]}ξ<λ belongs to M as well and coincides with
({�ξ[ψ]}ξ<λ)

M by Lemma 5.5. As (Qγ(x))
M exists in M , we conclude that (†) holds in M , so that λ ∈ Ω2[ψ]

in M , and hence λ ∈ Ω2[ψ] in the universe.
That (Qγ(x))

M exists in M means that (�λ[ψ])
M exists in M as well – basically, (Qγ(x))

M is a unique tree
T ∈ (�λ[ψ])

M satisfying x ∈ [T ]. And by definition, in M , (�λ[ψ])
M is the Gödel-least countable antichain

in Perf in a certain collection of antichains. Then it is quite clear that (�λ[ψ])
M coincides with the true �λ[ψ],

so finally (Qα(x))
M = Qα(x), as required.

8 The decoding is correct

The following key lemma shows that the decoding procedure of Definition 7.1 restores ϕ̂ assuming that the
given x belongs to sets of the form [T ], where T belongs to suitably high levels �̂λ of the set �̂ = �[ϕ̂].

Lemma 8.1 Suppose that λ < ω1, T ∈ �̂λ = �λ[ϕ̂] and x ∈ [T ]. Then there is an ordinal α ≤ λ such
that Qα(x) and ψα(x) are defined by Definition 7.1, T = Qα(x), and we have domψα(x) = λα(x) = λ′ and
ϕ̂ � λ′ = ψα(x), where λ′ = λ+ 1 whenever λ ∈ Ω1[ϕ̂] ∪ Ω3[ϕ̂], but λ′ = λ whenever λ ∈ Ω2[ϕ̂].

P r o o f. We argue by induction on λ. If λ = 0, then by definition ϕ̂ � 0 = Λ = ψ0(x). Now we prove the
lemma for some λ > 0 assuming the result holds already for all ξ < λ.

C a s e 1. λ ∈ Ω1[ϕ̂] ∪ Ω3[ϕ̂]. Then by Definition 5.1 there exists an ordinal ξ < λ and a tree P ∈ �̂ξ,
such that T = T P (b, u) for some u ∈ U(b), where b = ϕ̂(λ). (In particular, λ = ξ + 1 in the case when
λ ∈ Ω1[ϕ̂].) We have T ⊆ P , and hence x ∈ [P ], so that the inductive assumption can be applied. It gives an
ordinal α ≤ ξ such that Qα(x) = P and ψα(x) = ϕ̂ � ξ′ are well-defined by Definition 7.1, and ξ′ ∈ {ξ, ξ + 1}.
As x ∈ [T ] and T = T P (b, u), we have x ∈ Rev

P by Corollary 3.2, and b = ϕ̂(λ) = bevP (x) ∈ R+
0 . Then

by the construction Qα+1(x) = T . In addition, as b = ϕ̂(λ), we have χb = ϕ̂ � (λ+ 1) by the choice of ϕ̂
(Definition 4.4). Therefore ψα(x) ⊂ χb holds, and this implies ψα+1(x) = χb = ϕ̂ � (λ+ 1).

C a s e 2. λ ∈ Ω2[ϕ̂]. Then �̂λ is an antichain in Perf , �̂λ ∈ �[ϕ̂ � λ], �̂λ is countable in �[ϕ̂ � λ], and each
T ∈ �̂λ satisfies T ⊆fin ⋃

D, whenever D ⊆ �̂<λ is dense in �̂<λ and belongs to Mλ[ϕ̂] = �μλ[ϕ̂][ϕ̂ �λ]. Recall
that μλ[ϕ̂] < ω1 is equal to the least ordinal ζ such that λ is countable in �ζ [ϕ̂ � λ] and �ζ [ϕ̂ � λ] satisfies ZFC−.
However all sets of the form �̂ϑ,λ =

⋃
ϑ≤ξ<λ �̂ξ,ϑ < λ, are dense in �̂<λ by Proposition 5.4. And all these sets

belong to Mλ[ϕ̂]. (Indeed the sequence {�̂ξ}ξ<λ itself belongs to Mλ[ϕ̂] by Lemma 5.5.)
We conclude that T ⊆fin ⋃

�̂ϑ,λ for all ϑ < λ. Therefore, as x ∈ [T ], for any ϑ < λ there is an ordinal ξ,
ϑ ≤ ξ < λ, and a condition S ∈ �̂ξ satisfying x ∈ [S]. Then by the inductive hypothesis there is an ordinal
α(ξ) ≤ ξ such that Qα(ξ)(x) = S and ψα(ξ)(x) = ϕ̂ � ξ′, where ξ′ ∈ {ξ, ξ + 1}. It follows that there is a limit
ordinal γ ≤ λ, such that ψγ(x) = ϕ̂ � λ ∈ Φλ.

Now come back to the last paragraph of Definition 7.1 where, naturally, ψ = ψγ(x) = ϕ̂ � λ. The set �<λ[ψ]

is then equal to �̂<λ = �<λ[ϕ̂], while the antichain �λ[ψ] is equal to �̂λ = �λ[ϕ̂]. Recall that T ∈ �̂λ and
x ∈ [T ]. Then by definition Qγ(x) = T , as required.
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Corollary 8.2 Suppose that x = xG is a �̂-generic real over the universe �[ϕ̂] = �[A]. Then Qα(x), ψα(x)

and λα(x) are defined for every ordinal α < ω
�[ϕ]
1 in accordance with Definition 7.1, and we have

ϕ̂ =
⋃

α<ω
�[ϕ]
1

ψα(x) ∈ �[x].

It follows that ω�[ϕ]
1 = ω

�[ϕ,x]
1 = ω

�[x]
1 .

P r o o f. In �[ϕ̂], the sets �̂≥ϑ =
⋃

ϑ≤ξ<ω1
�̂ξ, ϑ < ω1, are dense in �̂. It follows that for every ϑ < ω1

there is an ordinal ξ, ϑ ≤ ξ < ω
�[ϕ]
1 , and a tree T ∈ �̂ξ such that x ∈ [T ]. We conclude by Lemma 8.1 that

ϕ̂ =
⋃

α<ω
�[ϕ]
1

ψα(x). Yet the decoding construction of ψα(x) is absolute for �[x], therefore ϕ̂ ∈ �[x].

9 The proof of Theorem 1.1 without minimality and reshaping

Our goal is to prove the following lemma:

Lemma 9.1 If x = xG is �̂-generic over �[A] = �[ϕ̂], then x satisfies part (i) of Theorem 1.1.

P r o o f. The forcing �̂ preserves all cardinals, see Section 6. Furthermore, ϕ̂, and then A, belong to �[x] by
Corollary 8.2. To prove that ϕ̂, and then A as well (see Definition 4.4) are ΔHC

1 (x) in �[x], note that ϕ̂(ξ) = r is
equivalent to either of the two following formulas:

∃M ∃α (
α < ωM

1 ∧ ξ ∈ M ∧ r ∈ M ∧M � ψα(x)(ξ) = r
)
,

∀M ∀α (
α < ωM

1 ∧ ξ ∈ M ∧ r ∈ M ⇒ M � (!ψα(x)(ξ) ⇒ ψα(x)(ξ) = r)
)
,

where M runs over all countable transitive models of ZFC−, α over ordinals in M , and !ψα(x)(ξ) means that
ψα(x)(ξ) is defined. The equivalence follows from Lemma 7.2 and Corollary 8.2. The first displayed formula
shows that ϕ̂ is ΣHC

1 (x), while the second one shows that ϕ̂ is ΠHC
1 (x).

10 The minimality

By a certain modification of the construction we can achieve the minimality of �̂-generic reals, as required
by Theorem 1.1. First of all, rather straightforward cardinality estimations reduce the problem (that is, getting (ii)
of Theorem 1.1) to the particular case when Y ⊆ ω2 in the extension. (Recall that the forcing �̂ preserves
cardinals, Section 6.)

Now we start a rather long argument in the ground universe � = �[A] = �[ϕ̂] of Theorem 1.1 related to
names for subsets of ω2. Suppose that � ⊆ Perf is any forcing notion, not necessarily equal to the forcing �̂ of
Definition 5.3.

Definition 10.1 For any ordinal κ let Name�[κ] be the set of all sets τ ⊆ � × κ. Each τ ∈ Name�[κ] is a
�-name for a subset of κ.

If τ ∈ Name�[κ], ξ < κ and T ∈ �, then say that T “�-forces ξ �∈ τ” if and only if T is incompatible in
� with every condition S ∈ τ”ξ = {S ∈ � : 〈S, ξ〉 ∈ τ}, and say that T “�-forces ξ ∈ τ” if and only if every
condition T ′ ∈ �, T ′ ⊆ T , is compatible in � with at least one condition S ∈ τ”ξ.

Put τ [G] = {ξ < κ : (∃T ∈ G) (〈T, ξ〉 ∈ τ)} for each �-generic set G ⊆ � and τ ∈ Name�[κ]. It is known
that for any set Y ∈ �[G], Y ⊆ κ, there is τ ∈ Name�[κ] in � such that Y = τ [G].

A splitting system in � will be any family {Ts}s∈2<ω of trees Ts ∈ � satisfying the following two conditions:
(i) Ts∧0 ∪ Ts∧1 ⊆ Ts, but Ts∧0 ∩ Ts∧1 = ∅;

(ii) diamTs ≤ 1

lh s
.

In this case, S =
⋂

n

⋃
lh s=n Ts ∈ Perf , moreover even S∩Ts ∈ Perf for any string s ∈ 2<ω , but not necessarily

S ∈ �. If indeed S ∈ �, then say that the system {Ts}s∈2<ω converges (to S) in �. In this case it is still not
necessary that S ∩ Ts ∈ � for any string s ∈ 2<ω , but if � is CO-dense in the sense of Section 2, then at least
there is a tree P = Ps ∈ � such that [P ] ⊆ [S] ∩ [Ts].
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Definition 10.2 Suppose that � ⊆ Perf is CO-dense, κ ∈ Ord, and n ∈ ω.
Say that a splitting system {Ts}s∈2<ω of trees Ts ∈ � breaks a name τ ∈ Name�[κ] in � at n, if for each

s ∈ 2<ω with lh s = n:

– either τ is �-constant on Ts in �, that is, for any ξ < κ: either Ts “�-forces ξ ∈ τ”, or Ts “�-forces
ξ �∈ τ” in the sense of Definition 10.1;

– or the system is τ -bijective in � above s, that is, for any string u ∈ 2<ω with s ⊆ u there exists an
ordinal ξ < κ such that either Tu∧0 “�-forces ξ ∈ τ” and Tu∧1 “�-forces ξ �∈ τ”, or the other way around
Tu∧0 “�-forces ξ �∈ τ” and Tu∧1 “�-forces ξ ∈ τ”.

In this case, if the system {Ts}s∈2<ω converges to some S ∈ �, then S �-forces that either τ ∈ � (where
� = �[A] is the ground universe, as above), or ẋ ∈ �[τ ], where ẋ is a canonical name for xG, the �-generic real.

Therefore if the forcing �̂ of Definition 5.3 has the following additional property (E), then �̂-generic reals are
minimal in the sense of (ii) of Theorem 1.1:

(E) If P ∈ �̂ and τ ∈ Name
̂�
[ω2], then there is a splitting system {Ts}s∈2<ω in �̂ with TΛ ⊆ P ,

which converges in �̂ and breaks τ in �̂ at some n ∈ ω.

Thus what we have to do is to modify the construction of Definition 5.1 so that the additional requirement (E) is
satisfied. This is based on the following lemma:

Lemma 10.3 If a set � ⊆ Perf is CO-dense, P ∈ �, and, for every n < ω, we have κn ∈ Ord and
τn ∈ Name�[κn], then there is a splitting system {Ts}s∈2<ω in � with TΛ ⊆ P , which breaks each τn in � at n.

Note that the convergence of the system in � is not required by the lemma.
P r o o f (sketch). Suppose that n ∈ ω and all trees Ts ∈ � with lh s = n have been defined. Split each Ts into

two trees T ′
s∧0 ∈ � and T ′

s∧1 ∈ � arbitrarily.
For any s ∧i (lh s = n and i = 0, 1), if there is P ∈ � such that P ⊆ T ′

s∧i and τn+1 is �-constant on P in �,
then let Ts∧i be equal to any such P . Otherwise put Ts∧i = T ′

s∧i. In the latter case it is clear that for any pair of
trees P,Q ∈ � with P ∪ Q ⊆ Ts∧i there exist trees P ′, Q′ ∈ � with P ′ ⊆ P and Q′ ⊆ Q, such that, for some
ξ < κn+1, either P ′ “�-forces ξ ∈ τn+1” and Q′ “�-forces ξ �∈ τn+1”, or vice versa P ′ “�-forces ξ �∈ τn+1”
and Q′ “�-forces ξ ∈ τn+1”. This allows us to continue the construction of the splitting system at higher levels,
so that the system will be τn+1-bijective in � above s ∧i.

To make use of Lemma 10.3 in the construction of �̂, let us come back to step 4∗ in Definition 5.1, where �ξ[ϕ]
is defined, in the case when ξ ∈ Ω2[ϕ], as the ≤G

ϕ�ξ-least antichain E ∈ �[ϕ � ξ], E ⊆ Perf , satisfying certain
properties. From this point on in Section 10, we modify the definition of �ξ[ϕ] (that is, step 4∗ in Definition 5.1)
as follows:

Definition 10.4 Let E ∈ �[ϕ�ξ], E ⊆ Perf\�<ξ[ϕ], still be the ≤G
ϕ�ξ-least antichain as indicated. Recall that

Mξ[ϕ] = �μξ[ϕ][ϕ � ξ] is a transitive model of ZFC− countable in �[ϕ � ξ] by Lemma 4.2. Applying Lemma 10.3
in �[ϕ � ξ] for � = �<ξ[ϕ] and the collection C of all sets τ ∈ Mξ[ϕ] such that τ ∈ Name�<ξ[ϕ][κ] for some
κ < μξ[ϕ], we find, for every P ∈ E, a splitting system σP = {TP

s }s∈2<ω in �<ξ[ϕ] with TP
Λ ⊆ P which

breaks each τ ∈ C in �<ξ[ϕ] at some n = n(τ).
Suppose that the collection {σP }P∈E is chosen as the ≤G

ϕ�ξ-least among all of them of this sort in �[ϕ � ξ].
Put P ′ =

⋂
n∈ω

⋃
lh s=m TP

s for every P ∈ E, and �ξ[ϕ] = E′ = {P ′ :P ∈ E}. This ends the modified
construction of �ξ[ϕ].

We summarize the key property of the modified definition as follows:

Lemma 10.5 If ϕ ∈ Φω1
, ξ ∈ Ω2[ϕ], κ < μξ[ϕ], τ ∈ Mξ[ϕ] ∩ Name�<ξ[ϕ][κ], and P ∈ �<ξ[ϕ], then,

in �[ϕ � ξ], there is a splitting system {Ts}s∈2<ω in �<ξ[ϕ] with TΛ ⊆ P that converges in T ∈ �ξ[ϕ] and breaks
τ in �<ξ[ϕ] at some n.
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Lemma 10.6 The modified forcing notion �̂ = �[ϕ̂] satisfies (E), therefore all �̂-generic reals are minimal in
the sense of (ii) of Theorem 1.1.

P r o o f. Let us show, by induction on λ, that if λ ∈ Ω3[ϕ̂]∪{ω1}, then the forcing �̂<λ = �<λ[ϕ̂] satisfies (E)
in �[ϕ̂ � λ]. Let λ be as indicated; λ = ω

�[ϕ̂�λ]
1 by Lemma 4.3. Consider, arguing in �[ϕ̂ � λ], arbitrary P ∈ �̂<λ

and τ ∈ Name
̂�<λ

[κ], where κ = ω
�[ϕ̂�λ]
2 . This is true then in �ϑ[ϕ̂ � λ], where ϑ = ω

�[ϕ̂�λ]
3 . Take a countable

elementary submodel N ⊆ �ϑ[ϕ̂ � λ], containing ϕ̂ � λ. P, �̂<λ, τ , and let h : N
onto−→ N ′ be the Mostowski

collapse onto a transitive set N ′ = �ϑ′ [ϕ̂ � λ′], where λ′ < ϑ′ < λ = ω
�[ϕ̂�λ]
1 . Standard arguments show that

h(ϕ̂ � λ) = ϕ̂ � λ′, h(P ) = P ∈ �̂<λ′ and τ ′ = h(τ) ∈ N ′ ∩ Name
̂�<λ′ [κ

′], where κ′ = h(κ), and also

λ′ < κ′ < ϑ′. Finally λ′ = ωN ′
1 and κ′ = ωN ′

2 .
C a s e 1. λ′ ∈ Ω3[ϕ̂]. Then λ′ = ω

�[ϕ̂�λ′]
1 by Lemma 4.3. By the inductive hypothesis, the forcing �̂<λ′

satisfies (E) in �[ϕ̂ � λ′], and hence there is a splitting system {Ts}s∈2<ω ∈ �[ϕ̂ � λ′] in �̂<λ′ with TΛ ⊆ P ,
which converges in �̂<λ′ and breaks τ ′ in �̂<λ′ at some n. Then, as h−1 is an elementary embedding, the same
splitting system breaks τ in �̂<λ at n. That is, �̂<λ satisfies (E), as required.

C a s e 2. λ′ ∈ Ω2[ϕ̂]. In this case λ′ < ω
�[ϕ̂�λ′]
1 . Recall that by definition λ′ is countable in the model

Mλ′ [ϕ̂] = �μλ′ [ϕ̂][ϕ̂ �λ′]. On the other hand, still λ′ = ωN ′
1 , where N ′ = �ϑ′ [ϕ̂ �λ′]. It follows that ϑ′ < μλ′ [ϕ̂],

N ′ ∈ Mλ′ [ϕ̂] and τ ′ ∈ Mλ′ [ϕ̂]. By Lemma 10.5, there is, in �[ϕ � λ′], a splitting system {Ts}s∈2<ω in �<λ′ [ϕ̂]
with TΛ ⊆ P which converges to some T ∈ �λ′ [ϕ̂] and breaks τ ′ in �<λ′ [ϕ̂] at some n. Then, as h−1 is an
elementary embedding, the same splitting system breaks τ in �̂<λ, and obviously T ∈ �̂<λ.

On the other hand, the modification as in Definition 10.4 does not affect the cardinal preservation result in
Section 6. Moreover, after a related modification in the decoding procedure of Section 7, Lemmas 8.1 and 9.1
remain correct.

11 Getting a reshaping club

Here we sketch the proof of (iii) of Theorem 1.1. Let C(x) = {λα(x) :α < ω1 and λα(x) is defined}, coming
back to Section 7. Recall that the sequence of ordinals λα(x) is strictly increasing and continuous at limit steps.
On the other hand, it follows from Corollary 8.2 that if x is a �̂-generic real, then λα(x) is defined for all α < ω1,
and hence C(x) is a club in �[x] = �[A][x].

On the other hand, at least all limit-position elements of C(x) (those λα(x) with limit indices α) by definition
belong to Ω2[ϕ̂] by (†) in Section 7. In other words, C ′(x) ⊆ Ω2[ϕ̂], where C ′(x) is the club of all limit-position
elements of C(x) (x continues to be a �̂-generic real). It remains to note this: the construction of ϕ̂ can be
amended so that in addition to everything above, we have A ∩ γ ∈ �[ϕ̂ � γ] for all ordinals γ. And then we
get (iii) of Theorem 1.1.

12 Which forcing notions don’t do it

The forcing we apply to prove Theorem 1.1 was obtained as the result of a complicated inductive construction of
length ω1. Therefore one can ask whether a more naturally defined forcing notion can code a given subset of ω1

by a generic real as in Theorem 1.1 even in the absence of the minimality claim.
We begin with a simple theorem which shows that the Sacks forcing, generally speaking, does not produce the

extensions as in Theorem 1.1.
Theorem 12.1 Suppose that ϑ is an inaccessible cardinal in �, and A ⊆ ϑ codes over � the Levy collapse of

all uncountable cardinals < ϑ. Let x be a Sacks-generic real over �[A]. Then ω
�[x]
1 < ϑ, and therefore A �∈ �[x].

P r o o f. Suppose that a tree T ∈ Perf ∩ �[A] Sacks-forces the opposite. Then T is essentially a real in �[A],
hence ω

�[T ]
1 < ω1 = ϑ in �[A], and moreover ω�[T ]

2 < ϑ as well. Therefore the set of all sets D ⊆ Perf ∩ �[T ],
D ∈ �[T ], dense in Perf ∩ �[T ], is countable in �[A]. This allows to define, by means of a known splitting
construction (see for example the proof of Lemma 2.2 above), a tree S ∈ Perf ∩ �[A], S ⊆ T , such that any real
x ∈ [S] is Perf ∩ �[T ]-generic, that is, Sacks-generic, over �[T ]. Therefore ω

�[T,x]
1 = ω

�[T ]
1 < ϑ = ω

�[A]
1 for

any x ∈ [S] ⊆ [T ], which contradicts the choice of T .
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The next theorem contains a more general outlook of the negative side. For the definitions of the notions
involved in the statement of the theorem, please refer to the quoted papers in the theorem’s proof.

Theorem 12.2 Suppose that ϑ and A are as in Theorem 12.1. Let � be a forcing notion in �[A]. Suppose also
that at least one of the following six assumptions holds in �[A]:

(1) ϑ is a remarkable cardinal in �, there are no inaccessible cardinals above ϑ, and � is semiproper;
(2) ϑ is a remarkable cardinal in �, and � is proper;
(3) ϑ is a weakly-compact cardinal in �, and � is ccc;
(4) ϑ is a Mahlo cardinal in �, and � is σ-linked;
(5) � is strongly-Σ1

3 and absolutely-ccc;
(6) � is Σ1

3 and Π1
2-strongly proper.

Let x be a real that belongs to a �-generic extension of �[A]. Then ω
�[x]
1 < ϑ = ω

�[A]
1 , and therefore A �∈ �[x].

The class of forcing notions satisfying (6) includes a variety of arboreal forcing notions such as Sacks forcing,
Miller forcing, Mathias forcing, Laver forcing, etc. (see [3]), so, accordingly, this theorem includes the previous
one.

P r o o f. The theorem follows from several results which show, under each respective assumption, from (1) to
(6), that �[A] has the property that every real x that belongs to a forcing extension of �[A] by � is small-generic
over �. This means that that there is a forcing notion Q ∈ � of cardinality strictly less than ϑ such that x belongs
to a Q-generic extension of �. Hence ω

�[x]
1 < ϑ.

For (1) and (2), the theorem follows from results of Schindler [15] and [16], respectively.
For (3) this is a consequence of a result of Kunen (see [10]).
In the case of (4), the theorem follows from Bagaria and Bosch [2]. And for � satisfying (5) or (6), it follows

from the results of Bagaria and Bosch [1], and Bagaria and Di Prisco [3], respectively.

The results just quoted show, in fact, that the theory of �(�) is absolute under forcing with �. Thus we have
the following, somewhat more general, result:

Theorem 12.3 Suppose ϑ is an inaccessible cardinal in �, and G is Coll(ω;< ϑ)-generic over �. In �[G],
let Γ be the class of forcing notions for which the following holds: For every � ∈ Γ and every set H �-generic
over �[G], �[G] ≡Σ1

4
�[G][H], that is, lightface-Σ1

4 -sentences are absolute between �[G] and �[G][H]. Then
no � ∈ Γ can force �[G][H] ⊆ �[x], for x a real.

P r o o f. Suppose � ∈ Γ forces �[G][H] = �[x], where x is a real. Clearly �[x] satisfies the sentence

(∃ a ∈ ωω)(∀ b ∈ ωω)(b ∈ �[a]),

which is easily seen to be Σ1
4 . Hence, �[G] must also satisfy it. But this is clearly not the case.

13 The “non-Mahlo” case and ccc coding

Coming back to the definition of �̂, one may note that while the set of ordinals Ω2[ϕ̂] is unbounded in ω1 for any
ϕ̂ ∈ (2ω)ω1 , the nature of the set Ω3[ϕ̂] is somewhat less clear, and it can be even empty provided the true ω1 is
not a Mahlo cardinal in �! This leads to the following ccc version of our main theorem:

Theorem 13.1 Suppose that A ⊆ ω1, � = �[A], and we have:

(†) there is a club C ⊆ ω1 such that α < ω
�[A∩α]
1 for all α ∈ C.

Then we can strengthen Theorem 1.1 by the claim: the forcing notion is ccc.

P r o o f. If ξ < ω1, then let αξ be the ξ-th ordinal in C. And by (†) let xξ be the Gödel-least real in �[A∩αξ]

which effectively codes the set A∩αξ. The sequence σ = {xξ}ξ<ω1
obviously satisfies ξ ≤ αξ < ω

�[σ�ξ]
1 for all

limit ξ < ω1. In other words, Ω3[σ] = ∅. And still �[σ] = �[A]. Now it does not take much effort to transform σ

into a sequence ϕ̂ ∈ Φω1 as in Definition 4.4, and with the additional property that ξ < ω
�[ϕ̂�ξ]
1 for all ξ < ω1,

that is, Ω3[ϕ̂] = ∅. Then all limit ordinals ξ < ω1 belong to Ω2[ϕ̂].
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Let us use this intermediate result to prove that the forcing �̂ = �[ϕ̂] is ccc.
Let E ⊆ �̂ be a maximal antichain. Clearly E ∈ �ω2 [A] = �ω2 [ϕ̂]. By a condensation argument, there are

limit ordinals ξ < λ < ω1 such that the set E′ = E ∩ �̂<ξ is a maximal antichain in �̂<ξ, E′ ∈ �λ[ϕ̂ � ξ], and ξ
is uncountable in �λ[ϕ̂ � ξ], so that λ < μξ[ϕ̂] and accordingly E′ ∈ Mξ[ϕ̂] = �μξ[ϕ̂][ϕ̂ � ξ]. However ξ ∈ Ω2[ϕ̂]

(see above). It follows by definition that any condition P ∈ �̂ξ satisfies P ⊆fin ⋃
E′ by (D) of Section 5, thus

P ⊆fin ⋃
E as well.

It remains to show that if ξ < λ < ω1 and T ∈ �̂λ, then T ⊆fin ⋃
�̂ξ; then T ⊆fin ⋃

E by the above, and
E = E′ is countable.

We prove this last claim by induction on λ. The step λ → λ+1 is trivial since by definition for any T ∈ �̂λ+1

there exists a tree S ∈ �̂λ with T ⊆ S. Thus suppose that λ > ξ is a limit ordinal, and the result holds for any λ′

satisfying ξ < λ′ < λ. Once again, λ ∈ Ω2[ϕ̂]. Therefore (see Case 2 in the proof of Lemma 8.1) any T ∈ �̂λ

satisfies T ⊆fin ⋃
�̂ϑ,λ for all ϑ, ξ ≤ ϑ < λ, and hence it satisfies T ⊆fin ⋃

�̂ξ by the inductive hypothesis, as
required.

Let us remark that if A ⊆ ω1, V = �[A] and (†) holds for A, then A can be coded by a real using the
Jensen-Solovay almost-disjoint forcing, which is σ-centered, hence ccc. (See, e.g., [4, Section 2] for details.)

The status of (†) with respect to other large cardinal hypotheses is not fully known. To avoid trivialities, note
that if there is a real x such that ω�[x]1 = ω1, then (†) holds for every A ⊆ ω1 with x ∈ �[A]. Thus it can be
assumed that the true ω1 is inaccessible in �[x] for any real x, in brief “inaccessible to reals”. Then one may
consider the following question:

Suppose that κ is an inaccessible cardinal in �. Let �[G] be a Levy-collapse extension of � (then κ = ω
�[G]
1 ,

and in �[G] it is true that there is a set A ⊆ ω1 such that � = �[A]). Is it true then in �[G] that there is a set
A ⊆ ω1 such that � = �[A] and (†)?

The following simple lemma shows that a sufficient condition for the positive answer is that κ is not too large.
Lemma 13.2 If the true ω1 is not a Mahlo cardinal in �, then (†) holds for every set A ⊆ ω1.

P r o o f. The non-Mahlo assumption means that there is a club C0 ∈ �, C0 ⊆ ω1, which consists of
�-singular limit ordinals, that is, limit ordinals which are not regular cardinals in �. Now, given A ⊆ ω1,
let CA be the club subset of ω1 consisting of all α such that α ≤ ω

L[A∩α]
1 . Then, letting C = C0 ∩ CA, we have

that every α ∈ C remains singular, and therefore countable, in �[A ∩ α]. Hence (†) holds.

It is natural to ask if the converse also holds, that is, suppose that A ⊆ ω1, � = �[A], and (†) holds for A. Is
then κ necessarily non-Mahlo in �? The answer is no. For suppose A ⊆ ω1 codes the Levy-collapse of a Mahlo
cardinal over �. Then, as the next theorem shows, one can force over �[A] while preserving ω1 and add a set
X ⊆ ω1 such that ξ < ω

�[A∩ξ,X∩ξ]
1 for all ξ < ω1. Thus, if A′ codes A and X so that for every limit ξ, A′ ∩ ξ

codes A ∩ ξ and X ∩ ξ, then we have that, in �[A′], (†) holds for A′, and ω1 is Mahlo in �.
The same argument shows that κ may have any other large-cardinal property compatible with V = �. Notice

however that, as a consequence of Theorems 13.1 and 15.4, if �[A], with A ⊆ ω1, is the result of collapsing a
weakly-compact cardinal over �, then (†) cannot hold for A in �[A].

Suppose now that V = �[A] for some A ⊆ ω1, and ω1 is a Mahlo cardinal in �. If (†) holds for A, then by
Theorem 13.1 we can code A by a real satisfying (i) – (iii) of Theorem 1.1 by means of a ccc forcing. However,
if (†) does not hold for A, then (†) cannot hold either in any forcing extension that preserves stationary subsets
of ω1. Thus we have the following corollary:

Corollary 13.3 Assume V = �[A] for some A ⊆ ω1. Then the following are equivalent:
1. (†) holds for A.
2. A can be coded by a real satisfying Theorem 1.1 (i) – (iii) by means of a ccc (stationary preserving) forcing.

14 Reshaping

For the sake of completeness, we present here a proof of the reshaping theorem, which follows the same inductive
argument as in several proofs above. The result, originally due to Jensen, is given in two slightly different
versions, (i) and (ii) of the following theorem.
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Theorem 14.1 Suppose that A ⊆ ω1 and � = �[A]. For each of the following two (incompatible) conditions,
there is a cardinal preserving generic extension �[A][X] of �[A] by a generic set X ⊆ ω1 which does not add
new reals to �[A].

(i) (strong reshaping) X is a club and ξ < ω
�[A∩ξ]
1 for any limit ξ ∈ X;

(ii) (weak reshaping) ξ < ω
�[A∩ξ,X∩ξ]
1 for any ξ < ω1, and X preserves stationarity of sets S ∈ �[A],

S ⊆ ω1.

P r o o f.
(i) Let P (the forcing) be the set of all closed, at most countable sets p ⊆ ω1 such that ξ < ω

�[A∩ξ]
1 for any limit

ordinal ξ ∈ p. The order p ≤ q (p is stronger than q) if and only if q ⊆ p and max q < min (p \ q). We have to
prove that P does not add new reals. Note by the way that P is not necessarily ω-closed!

Let τ be a P -name for a real in 2ω . Thus τ ⊆ P × ω × {0, 1}, and 〈p, n, i〉 ∈ τ if and only if p forces
τ(n) = i. If γ ≤ ω1, then put

P � γ = P ∩ �γ [A ∩ γ] and τ � γ = {〈p, n, i〉 ∈ τ : p ∈ P � γ};
thus P � ω1 = P and τ � ω1 = τ . Let Ω3(A) = {ξ < ω1 :ω

�[A∩ξ]
1 = ξ}. We claim that for any ordinal

γ ∈ Ω3(A) ∪ {ω1}, if τ � γ belongs to �[A ∩ γ], then P � γ decides τ � γ over �[A ∩ γ]. Taking γ = ω1,
we get the result required.

The proof of the claim uses the same type of induction as in the proofs of Lemmas 6.1 and 10.6. Thus, one
proves the claim for γ = ω1, assuming it holds for every ordinal γ ∈ Ω3(A). Let p∗ ∈ P . The sets A,P, τ, p∗

belong to �ω2
[A]. Let M ≺ �ω2

[A] be a countable elementary submodel containing these sets. Let f : M
onto−→ N

be an ∈-isomorphism onto a transitive set N . Then γ = f(ω1) is a countable limit ordinal, and N = �δ[A ∩ γ],
where δ is the least ordinal not in N . Moreover, f(ξ) = ξ for any ξ ∈ M ∩ω1, f(p∗) = p∗ ∈ N , f(A) = A∩ γ,
f(P ) = P � γ, and f(τ) = τ � γ ∈ �δ[A ∩ γ] = N .

C a s e 1. γ < ω
�[A∩γ]
1 . Let {ξ0 < ξ1 < ξ2 < · · · } ∈ �[A ∩ γ] be an arbitrary increasing cofinal sequence

in γ. Note that for any p ∈ P � γ and n there is a condition q ∈ P � γ, q ≤ p, which decides τ(n) (i.e., one of
the triples 〈q, n, 0〉, 〈q, n, 1〉 belongs to τ ) and has sup q > ξn. Arguing in �[A∩ γ] (where γ is countable by the
Case 1 assumption!), this allows us to define, by induction, a decreasing sequence p∗ ≥ p0 ≥ p1 ≥ p2 ≥ · · · of
conditions pn ∈ P � γ such that each pn decides τ(n) and satisfies sup pn > ξn. Then q =

⋃
n pn ∪ {γ} is a

condition in P which decides all values τ(n).
C a s e 2. γ ∈ Ω3(A). Then by the inductive hypothesis there is a condition q ∈ P � γ which decides all

values τ(n) and satisfies q ≤ p∗.
(ii) In this case the forcing notion P ⊆ 2<ω1 consists of all maps p : dom p → {0, 1} defined on an ordinal

δ = dom p < ω1 and satisfying γ < ω
�[A∩γ,p�γ]
1 for all γ ≤ δ, ordered by inclusion. We prove first that P does

not add new reals. Once again, let τ ⊆ P × ω × {0, 1} be a P -name for a real. Define P � γ, τ � γ, Ω3(A) as
above. It suffices to prove that for any ordinal γ ∈ Ω3(A)∪{ω1}, if τ �γ belongs to �[A∩γ], then P �γ decides
τ � γ over �[A ∩ γ].

The proof goes on by induction on γ, as above. Thus, we prove the claim for γ = ω1, assuming it holds for
every ordinal γ ∈ Ω3(A). Let p∗ ∈ P . The sets A,P, τ, p∗ belong to �ω2 [A]. Let M ≺ �ω2 [A] be a countable
elementary submodel containing these sets. Define f, γ = f(ω1), δ, and N = �δ[A ∩ γ] as in the proof of (i).

C a s e 1. γ < ω
�[A∩γ]
1 . Let {ξ0 < ξ1 < ξ2 < · · · } ∈ �[A ∩ γ] be any increasing cofinal sequence in γ. For

any p ∈ P � γ and n there is a condition q ∈ P � γ, q ≤ p, which decides τ(n) and has sup q > ξn. Arguing in
�[A ∩ γ], define a decreasing sequence p∗ ≥ p0 ≥ p1 ≥ p2 ≥ · · · of conditions pn ∈ P � γ such that each pn
decides τ(n) and satisfies sup pn > ξn. Then q =

⋃
n pn is a condition in P which decides all values τ(n).

C a s e 2. γ ∈ Ω3(A). Then by the inductive hypothesis there is a condition q ∈ P � γ, q ≤ p∗, which decides
all values τ(n) and satisfies q ≤ p∗.

In continuation of the proof of (ii), let S ⊆ ω1 be a stationary set in �[A]. We shall see that S remains stationary
in the extension. Suppose that C ⊆ P ×ω1 is a P -name for a closed unbounded subset of ω1. Let p∗ ∈ P . Con-
sider the set M of all countable elementary submodels M ≺ �ω2 [A] containing A,P,C, p∗. For any M ∈ M ,
let γM = M ∩ ω1; then γM = fM (ω1), where fM is the collapse function from M onto a transitive set. Once
again it suffices to prove that for any ordinal γ ∈ (Ω3(A) ∩ M ) ∪ {ω1}, P � γ forces “C � γ ∩ (S ∩ γ) �= ∅
over �[A ∩ γ]”.
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The proof of this claim goes on by the same type of induction on γ. We prove the claim for γ = ω1, assuming
it holds for every ordinal γ ∈ Ω3(A) ∩ M . Quite obviously, F = {γM :M ∈ M } is a club in ω1, and hence
there is an ordinal γ = γM ∈ F ∩ S for some M ∈ M , such that p∗ ∈ P � γ.

C a s e 1. γ < ω
�[A∩γ]
1 . Let {ξ0 < ξ1 < ξ2 < · · · } ∈ �[A ∩ γ] be an arbitrary increasing cofinal sequence

in γ. For p ∈ P � γ and α < γ there exist a condition q ∈ P � γ, q ≤ p, and an ordinal β, α < β < γ, such that
q forces β ∈ C and sup q > ξn. Arguing in �[A∩ γ], define a decreasing sequence p∗ ≥ p0 ≥ p1 ≥ p2 ≥ · · · of
conditions pn ∈ P � γ and an increasing sequence of ordinals βn such that each pn forces βn ∈ C, sup pn > ξn,
and ξn < βn < γ. Then q =

⋃
n pn is a condition in P which forces βn ∈ C for all n, and hence forces

γ = supn βn ∈ C. On the other hand, γ ∈ S.
C a s e 2. γ ∈ Ω3(A). Then by the inductive hypothesis there exist a condition q ∈ P � γ, q ≤ p∗, and an

ordinal ϑ ∈ F ∩ S ∩ γ such that q P � γ-forces ϑ ∈ C. Then obviously q P -forces ϑ ∈ C, as required.

15 When the coding forcing is proper

Here we prove the following version of Theorem 1.1. For the definition and basic properties of remarkable
cardinals see [15] or [16].

Theorem 15.1 Suppose that A ⊆ ω1, � = �[A], and the true ω1 is not a remarkable cardinal in �. Then in
Theorem 1.1 we may require the forcing to be proper, with the minimality condition (ii) only in the weak sense,
that is, for sets Y ⊆ ω (that is, reals) only. We cannot guarantee that (iii) of Theorem 1.1 holds, for since the
forcing preserves stationary subsets of ω1, a club C as in (iii) exists in �[x] if and only if it exists in �[A].

P r o o f (sketch). The ideas of the proof are from Schindler [15, 16]. By collapsing some ordinal to ω1 by
σ-closed forcing, if necessary, we may assume that the non-remarkability of ω1 in � is witnessed by some
ϑ < ω2.

Further, since 0� does not exist – as otherwise every Silver indiscernible is remarkable in � – we can collapse
a singular strong limit δ of uncountable cofinality to ω1 by means of a σ-closed forcing, and then again with
σ-closed forcing we can produce a subset W of ω1 such that �ω2

[W ] = H(ω2).
In this forcing extension the set of all X ∈ [�ω2

[W ]]ω such that

(�β [W ∩ α],∈,W ∩ α) ∼= (X,∈ W ∩X) � (�ω2 [W ],∈,W ),

where β is not a cardinal in �[W ∩ α], contains a club C.
Let � be the weak reshaping forcing, as above. The following lemma is proved in [16].

Lemma 15.2 � is proper.
P r o o f . Note that since � ∈ �ω2 [W ] = H(ω2), it will be enough to show that for every X ∈ C and every

p ∈ X ∩ �, there is a condition q ≤ p such that for every �-name α̇ for an ordinal, if α̇ ∈ X , then q � α̇ ∈ X .
So fix X and let {α̇i : i < ω} be an enumeration of all �-names for ordinals that belong to X . We have

an isomorphism π : (�β [W∩α],∈,W∩α) ∼= (X,∈ W∩X), given by the transitive collapse of X , where β is not
a cardinal in �[W ∩ α]. Fix a condition p ∈ � in X . Note that p ∈ �β [W ∩ α]. We will define a
sequence {pi}i<ω of conditions, all in �β [W ∩ α], such that p0 = p, pi+1 ≤ pi, and pi � α̇i ∈ X . We will then
see that q :=

⋃
i<ω pi is a condition, thus completing the proof.

Suppose first that α = ω
�β [W∩α]
1 . Note that in �[W ∩ α], β has cardinality α, because β is not a cardinal

in �[W ∩ α]. Hence there are α-many club subsets of α in �β [W ∩ α]. Let E be a diagonal intersection of all
these clubs. Let us fix a sequence {ᾱi}i<ω cofinal in α. Now suppose pi is already given, and pi ∈ �β [W ∩ α].
Thus dom(pi) < α. Working inside �β [W ∩ α], for each dom(pi) ≤ δ < α we choose a pδ ≤ pi such that
(i) pδ � π−1(α̇i) ∈ �β [W ∩ α], (ii) dom(pδ) > max {ᾱi, δ}, (iii) pδ(λ) = 0 for all limit ordinals λ with
dom(pi) ≤ λ < δ, and (iv) pδ(δ) = 1. Let D ∈ �β [W ∩ α] be a club subset of α such that for every η ∈ D, if
δ < η, then dom (pδ) < η.

Now back in �[W ∩ α], since D ∈ �β [W ∩ α] there is some δ ∈ E such that E \ D ⊆ δ. Set pi+1 = pδ ,
and let for future reference δi+1 = δ. Then we have that pi+1 � α̇i ∈ X . Moreover, since every ordinal
in E greater than δ belongs to D, we have dom(pi+1) < min {γ ∈ E : γ > δ}. So, for all limit ordinals λ in
E ∩ (dom(pi+1) \ dom(pi)) we have that pi+1(λ) = 1 if and only if λ = δi+1, since all such λ are ≤ δ.
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Now let q :=
⋃

i<ω pi. We will show that q is a condition. The construction of the pi clearly gives that
dom(q) = α. So it only remains to show that �[W ∩ α, q] � “α is countable”. By the construction of the pi’s,
we have that the set of all limit λ ∈ E∩(dom(q)\dom(p)) such that q(λ) = 1 is precisely the set {δi+1 : i < ω},
which is a cofinal subset of E. But since E, {δi+1 : i < ω} ∈ �[W ∩ α, q], this witnesses the countability of α.

If α < ω
�β [W∩α]
1 , then the definition of q is much simpler. Indeed, we can take any q :=

⋃
i<ω pi with p0 = p

and pi+1 ≤ pi for all i < ω, such that pi � α̇i ∈ X , and with dom(q) = α. Since α is countable in �[W ∩ α], it
is also countable in �[W ∩ α, q], and so q is a condition. � [Lemma 15.2]

Now force with �, and then with the coding forcing, which is ccc. Thus, the whole extension is a proper
extension of �. � [Theorem 15.1]

Corollary 15.3 The following are equiconsistent, modulo ZFC:

(i) There exists a remarkable cardinal.

(ii) For some A ⊆ ω1, in �[A] there is no semiproper (proper) forcing notion coding A by a real.

P r o o f. Suppose κ is remarkable. Then it is remarkable in �. Let λ be the least inaccessible cardinal
above κ, if any such cardinal exists. Force with the Levy collapse Coll(ω,< κ) over �λ, or over � if there
are no inaccessible cardinals above κ. So the forcing extension is of the form �λ[A] or �[A], for some A ⊆ ω1.
Now by (1) of Theorem 12.2 above, (ii) follows.

For the converse, fix A as in (ii) and suppose ω1 is not remarkable in �. Then the previous theorem shows that
one can force with a proper forcing notion over �[A] to code A by a real, thus contradicting (ii).

Theorem 15.4 The following are equiconsistent, modulo ZFC:

(i) There exists a weakly-compact cardinal.

(ii) For some A ⊆ ω1, in �[A] there is no ccc (satisfying property K) forcing notion coding A by a real.

P r o o f. Suppose κ is weakly-compact. Then it is weakly-compact in �. Let A ⊆ κ code a generic for the
Levy-collapse Coll(ω,< κ) over �. By a result of Kunen (see [10] or [2]), in �[A] the theory of the reals is
absolute under ccc forcing. Thus, by Theorem 12.3, A cannot be coded by a real using a ccc forcing notion.

For the converse, fix A as in (ii) and suppose ω1 is not weakly-compact in �. By Theorem 13.1 and Lemma 13.2
we may assume, without loss of generality, that ω1 is Mahlo in �. But now by a result of Harrington and
Shelah [10], we can code A by a real using an Aronszajn tree in �, so that the forcing is ccc (and in fact it has
property K), thus contradicting (ii).

Theorem 15.5 The following are equiconsistent, modulo ZFC:

(i) There exists a Mahlo cardinal.

(ii) For some A ⊆ ω1, in �[A] there is no σ-linked (σ-centered) forcing notion coding A by a real.

P r o o f. Suppose κ is Mahlo and A ⊆ κ codes a generic for the Levy-collapse Coll(ω,< κ) over �. Then
by [2], in �[A] the theory of the reals is absolute under σ-linked forcing. Hence, by Theorem 12.3, A cannot be
coded by a real using a σ-linked forcing notion.

Conversely, suppose A is as in (ii) and ω1 is not Mahlo in �. By Lemma 13.2, (†) holds for A. So one
can use almost-disjoint forcing, which is σ-centered, to code A by a real (see our remark after the proof of
Theorem 13.1).

16 Remarks and questions

One may want to strengthen the minimality requirement in (ii) of Theorem 1.1 as follows: x ∈ �[Y ] or Y ∈ �.
Such a strong minimality would mean that x, a generic real, adds only one (its own) degree of constructibility to
the ground universe �. But this is, generally speaking, impossible.
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Indeed, suppose that, in Theorem 1.1, ω�1 < ω1 holds in the ground universe �. Then the set C of all reals
y ∈ 2ω Cohen-generic over � is an uncountable Π0

2 set. Therefore there exists a continuous bijective map
f : 2ω −→ C. Now, suppose that x ∈ 2ω, x �∈ �, is a cardinal-preserving generic real over �. Identifying f
with its extension in �[x], we conclude that y = f(x) ∈ �[x] \ �. Thus if x is strongly minimal in the sense just
defined, then we have �[x] = �[y], not merely �[x] = �[y] as with the original minimality of Theorem 1.1(ii).
Yet y is Cohen-generic over � while x collapses ω�1 under the assumptions above, a contradiction.

On the other hand, there is a nontrivial case in which such a strengthening of minimality is possible. Indeed
let � be an iterated Sacks extension of �, of length ω1 and with countable support. This is still a universe of the
form � = �[A], where A ⊆ ω1 = ω�1 . Now, let x ∈ 2ω be a real Sacks-generic over �, so that �[x] = �[A, x]
is an iterated Sacks extension of � of length ω1 + 1. It is known (see, for instance, [14]), that in this case x adds
just one �-degree to � (its own degree), so that x is strongly minimal over �.

We finish with a couple of open problems.
Question 16.1 (inspired by Theorem 12.1) If a is a real Cohen-generic over a model M and b Sacks-generic

over M[a], is it necessary that a ∈ M[b]?
Question 16.2 Can Theorem 1.1 be improved by the requirement x is lightface Δ1

3 in �[x] = �[A, x]?
A positive answer may lead to further studies in the direction of [9].
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