On effective σ-boundedness and $\boldsymbol{\sigma}$-compactness

Vladimir Kanovei* and Vassily Lyubetsky**
Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny pereulok 19, Moscow, 127994, Russia

Received 4 January 2012, revised 4 July 2012, accepted 5 September 2012
Published online 18 April 2013
Key words σ-boundedness, σ-compactness.
MSC (2010) 03E15
We prove several dichotomy theorems which extend some known results on σ-bounded and σ-compactpointsets. In particular we show that, given a finite number of Δ_{1}^{1} equivalence relations F_{1}, \ldots, F_{n}, any Σ_{1}^{1} set A of the Baire space either is covered by compact Δ_{1}^{1} sets and lightface Δ_{1}^{1} equivalence classes of the relations F_{i}, or A contains a superperfect subset which is pairwise F_{i}-inequivalent for all $i=1, \ldots, n$. Further generalizations to Σ_{2}^{1} sets A are obtained.

1 Introduction

Effective descriptive set theory appeared in the 1950s as a useful technique of simplification and clarification of constructions of classical descriptive set theory (cf., e.g., [5] or [18]). Yet it has become clear that development of effective descriptive set theory leads to results having no direct analogies in classical descriptive set theory. As an example we recall the following basis theorem: any countable Δ_{1}^{1} set A of the Baire space $\mathscr{N}=\omega^{\omega}$ consists of Δ_{1}^{1} points. Its remote predecessor in classical descriptive set theory is the Luzin-Novikov theorem on Borel sets with countable sections.

We shall focus on effectivity aspects of the properties of σ-compactness and σ-boundedness of pointsets in this paper. Our starting point will be a pair of classical dichotomy theorems on pointsets, together with their effective versions obtained in the end of 1970s.

The first of them deals with the property of σ-boundedness. Recall that a pointset is σ-bounded iff it is a subset of a σ-compact set. For subsets of the Baire space $\mathscr{N}=\omega^{\omega}$, the property of σ-boundedness is equivalent to being bounded in \mathscr{N} with the eventual domination order. Saint Raymond [15] proved that if X is a $\boldsymbol{\Sigma}_{1}^{1}$ set then one and only one of the following two (obviously incompatible) conditions holds:
(I) the set X is σ-bounded;
(II) there is a superperfect set $Y \subseteq X$ (i.e., a closed set homeomorphic to \mathscr{N}).

This result can be compared with an older theorem by Hurewicz [3], which deals with the property of σ-compactness instead of σ-boundedness. It says that if X is a Σ_{1}^{1} set then again one and only one of the following two (incompatible) conditions (I^{\prime}), (II^{\prime}) holds:
(I^{\prime}) the set X is σ-compact;
(II^{\prime}) there is a set $Y \subseteq X$ homeomorphic to \mathscr{N} and relatively closed in X.
There is an effective version of the first result: Theorem 3.1 below, by Kechris. It says that if X is a Σ_{1}^{1} set then condition 1 can be strengthened to Δ_{1}^{1}-effective σ-boundedness, so that a given set X is covered by a Δ_{1}^{1} sequence of compact sets. Accordingly, an effective version of the second result, Theorem 3.2 below by Louveau,

[^0]asserts that if X is a lightface Δ_{1}^{1} set then condition (I^{\prime}) can be strengthened to Δ_{1}^{1}-effective σ-compactness, so that a given set is equal to the union of a Δ_{1}^{1} sequence of compact sets.

It occurs that Theorem 3.2 fails for Σ_{1}^{1} sets, but we prove a similar more complicated dichotomy theorem on Σ_{1}^{1} sets in Section 4. Several counterexamples with sets outside of Σ_{1}^{1} will be outlined in Section 5.

Section 6-8 contain a generalization of Theorem 3.1 (Theorem 8.1) which replaces σ-bounded sets by $\left\{F_{1}, \ldots, F_{n}\right\}-\sigma$-bounded sets, where F_{1}, \ldots, F_{n} are given Δ_{1}^{1} equivalence relations and being $\left\{F_{1}, \ldots, F_{n}\right\}$ -σ-bounded means being covered by the union of a σ-bounded set and countably many equivalence classes of F_{1}, \ldots, F_{n}. Accordingly the condition of existence of a superperfect set strengthens by the requirement that the superperfect set is pairwise F_{i}-inequivalent for $i=1, \ldots, n$. Section 6 develops a necessary technique while the proof of the generalized dichotomy is presented in Section 8. In the classical form, the case of a single equivalence relation F in this dichotomy was earlier obtained by Zapletal, cf. [7].

In parallel to this, we prove in Section 7 that a σ-bounded set and a countable union of equivalence classes as above can be defined so that they depend only on a given set X (and the collection of equivalence relations F_{j}), but are independent of the choice of a parameter p such that X is $\Sigma_{1}^{1}(p)$ and the relations are $\Delta_{1}^{1}(p)$.

In the remaining parts of the paper, we prove a generalization of another Kechris's result of [8], related to Σ_{2}^{1} sets, which by necessity involves uncountable unions of equivalence classes and σ-bounded sets.

2 Preliminaries

We use standard notation $\Sigma_{1}^{1}, \Pi_{1}^{1}, \Delta_{1}^{1}$ for effective classes of points and pointsets in \mathscr{N}, as well as $\boldsymbol{\Sigma}_{1}^{1}, \boldsymbol{\Pi}_{1}^{1}$, $\boldsymbol{\Delta}_{1}^{1}$ for corresponding projective classes.

Let $\omega^{<\omega}$ be the set of all finite strings of natural numbers, including the empty string Λ. If $u, v \in \omega^{<\omega}$ then $\operatorname{lh} u$ is the length of u, and $u \subset v$ means that v is a proper extension of u. If $u \in \omega^{<\omega}$ and $n \in \omega$ then $u^{\curvearrowright} n$ is the string obtained by adding n to u as the rightmost term. Let, for $u \in \omega^{<\omega}$,

$$
\mathscr{N}_{u}=\{x \in \mathscr{N}: u \subset x\} \quad(\text { a Baire interval in } \mathscr{N}) .
$$

If a set $X \subseteq \mathscr{N}$ contains at least two elements then there is a longest string $u=\operatorname{stem}(X)$ such that $X \subseteq \mathscr{N}_{u}$. We put $\operatorname{diam}(X)=\frac{1}{1+\operatorname{stem}(X)}$ in this case, and additionally $\operatorname{diam}(X)=0$ whenever X has at most one element.

A set $T \subseteq \omega^{<\omega}$ is a tree if $u \in T$ holds whenever $u^{\curvearrowleft} n \in T$ for at least one n, and a pruned tree iff $u \in T$ implies $u^{\frown} n \in T$ for at least one n. Any non-empty tree contains Λ. A string $u \in T$ is a branching point of T if there are $k \neq n$ such that $u^{\wedge} k \in T$ and $u^{\wedge} n \in T$; let $\operatorname{bran}(T)$ be the set of all branching points of T. The branching height $\mathbf{B H}_{T}(u)$ of a string $u \in T$ in a tree T is equal to the number of strings $v \in \operatorname{bran}(T), v \subset u$. For instance, if $T=\omega^{<\omega}$ then $\mathbf{B H}_{\omega<\omega}(u)=\operatorname{lh} u$ for any string u.

A tree $T \subseteq \omega^{<\omega}$ is compact, if it is pruned and has finite branchings, i.e., if $u \in \operatorname{bran}(T)$ then $u^{\curvearrowright} n \in T$ holds for finitely many n. Then

$$
[T]=\{x \in \mathscr{N}: \forall m(x \upharpoonright m \in T)\}
$$

the body of T, is a compact set. Conversely, if $X \subseteq \mathscr{N}$ is compact then

$$
\operatorname{tree}(X)=\{x \upharpoonright n: x \in X \wedge n \in \omega\}
$$

is a compact tree. Let $\mathbf{C T}$ be the Δ_{1}^{1} set of all non-empty compact trees.
A pruned tree $T \subseteq \omega^{<\omega}$ is perfect, if for each $u \in T$ there is a string $v \in \operatorname{bran}(T)$ with $u \subset v$. Then $[T]$ is a perfect set. A perfect tree T is superperfect, if for each $u \in \operatorname{bran}(T)$ there are infinitely many numbers n such that $u^{\curvearrowright} n \in T$. Then $[T]$ is a superperfect set. Conversely, if $X \subseteq \mathscr{N}$ is a perfect set then $\operatorname{tree}(X)$ is a perfect tree, while for any superperfect set $X \subseteq \mathscr{N}$ there is a superperfect tree $T \subseteq \operatorname{tree}(X)$.

If \mathbb{X}, \mathbb{Y} are any sets and $P \subseteq \mathbb{X} \times \mathbb{Y}$ then

$$
\operatorname{proj} P=\{x \in \mathbb{K}: \exists y(\langle x, y\rangle \in P)\} \text { and }(P)_{x}=\{y \in \mathbb{Y}:\langle x, y\rangle \in P\}
$$

are, respectively, the projection of P to \mathbb{K}, and the ("vertical") section of P corresponding to $x \in \mathbb{K}$. A set $P \subseteq \mathbb{X} \times \mathbb{V}$ is uniform if every section $(P)_{x}(x \in \mathbb{X})$ contains at most one element. Let a product space be any finite product of factors $\omega, \omega^{<\omega}, \mathscr{N}, \mathscr{P}\left(\omega^{<\omega}\right)$. A discrete product space is a finite product of $\omega, \omega^{<\omega}$.

We'll make use of several known results of effective descriptive set theory. They are listed below, with a few proofs (of claims which are not in common use in this area) attached to make the text self-contained.

Fact 2.1 (Kreisel selection) If \mathbb{X} is a discrete product space, $P \subseteq \mathscr{N} \times \mathbb{X}$ is a Π_{1}^{1} set, and $A \subseteq \operatorname{proj} P$ is a Σ_{1}^{1} set, then there is a Δ_{1}^{1} map $f: \mathscr{N} \rightarrow \mathbb{K}$ such that $\langle x, f(x)\rangle \in P$ for all $x \in A$ [14, 4B.5].

Fact 2.2 If $P(x, y, z, \ldots)$ is a Π_{1}^{1} relation on a product space then the following derived relations belong to Π_{1}^{1} as well:

$$
\exists x \in \Delta_{1}^{1} P(x, y, z, \ldots) \quad \text { and } \quad \exists x \in \Delta_{1}^{1}(y) P(x, y, z, \ldots)
$$

[14, 4D.3].
Fact 2.3 (enumeration of Δ_{1}^{1} sets) Let \mathbb{K} be a product space. There exist Π_{1}^{1} sets $E \subseteq \omega$ and $W \subseteq \omega \times \mathbb{X}$, and $a \Sigma_{1}^{1}$ set $W^{\prime} \subseteq \omega \times \mathbb{K}$ such that
(i) if $e \in E$ then $(W)_{e}=\left(W^{\prime}\right)_{e} \quad\left(\right.$ where $\left.(W)_{e}=\{x \in \mathbb{X}:\langle e, x\rangle \in W\}\right)$;
(ii) a set $X \subseteq \mathbb{X}$ is Δ_{1}^{1} iff there is $e \in E$ such that $X=(W)_{e}$
[14, 4D.2].
There is a useful uniform version of Fact 2.3.
Fact 2.4 Let \mathbb{K} be a product space. There exist Π_{1}^{1} sets $\mathbf{E} \subseteq \mathscr{N} \times \omega$ and $\mathbf{W} \subseteq \mathscr{N} \times \omega \times \mathbb{X}$, and a Σ_{1}^{1} set $\mathbf{W}^{\prime} \subseteq \mathscr{N} \times \omega \times \mathbb{X}$ such that
(i) if $\langle p, e\rangle \in \mathbf{E}$ then $(\mathbf{W})_{p e}=\left(\mathbf{W}^{\prime}\right)_{p e}$ (where, as above, $(\mathbf{W})_{p e}=\{x \in \mathbb{K}:\langle p, e, x\rangle \in \mathbf{W}\}$);
(ii) if $p \in \mathscr{N}$ then a set $X \subseteq \mathbb{K}$ is $\Delta_{1}^{1}(p)$ iff there is a number $e \in E$ such that $T=(\mathbf{W})_{p e}=\left(\mathbf{W}^{\prime}\right)_{p e}$.

This result implies the following stronger version of Fact 2.1.
Fact 2.5 Suppose that \mathbb{X} is a product space, $Q \subseteq \mathscr{N} \times \mathbb{K}$ is $\Pi_{1}^{1}, A \subseteq \operatorname{proj} Q$ is Σ_{1}^{1}, and for each $a \in A$ there is a point $x \in \Delta_{1}^{1}(a)$ such that $\langle a, x\rangle \in Q$. Then there is a Δ_{1}^{1} map $f: \mathscr{N} \rightarrow \mathbb{X}$ such that $\langle a, f(a)\rangle \in Q$ for all $a \in A$ [14, 4D.6].

Proof. Assume that $\mathbb{K}=\mathscr{N}$, for the sake of brevity. Then any $x \in \mathbb{X}$ satisfies $x \subseteq \mathbb{Y}=\omega \times \omega$. Making use of the sets $\mathbf{E} \subseteq \mathscr{N} \times \omega$ and $\mathbf{W}, \mathbf{W}^{\prime} \subseteq \mathscr{N} \times \omega \times \mathbb{Y}$ as in Fact 2.4, we let

$$
P=\left\{\langle a, e\rangle \in \mathbf{E}:(\mathbf{W})_{a e} \in \mathscr{N} \wedge\left\langle a,(\mathbf{W})_{a e}\right\rangle \in Q\right\} .
$$

Easily the set P and its projection proj P both are Π_{1}^{1}, and $A \subseteq \operatorname{proj} P$. By Fact 2.1, there is a Δ_{1}^{1} map $f: \mathscr{N} \rightarrow \omega$ such that $\langle a, f(a)\rangle \in P$ for all $a \in A$. It remains to define $f(a)=(\mathbf{W})_{a, f(a)}$ for $a \in A$; to prove that f is Δ_{1}^{1} use both sets \mathbf{W} and \mathbf{W}^{\prime}.

Fact 2.6 If $X \neq \varnothing$ is a countable Δ_{1}^{1} set then there exists a Δ_{1}^{1} map defined on ω such that $X=\{f(n)$: $n<\omega\}$ [14, 4F.17].

In addition, Facts 2.1, 2.2, 2.3, and 2.5, remain true for relativized classes $\Sigma_{1}^{1}(p), \Pi_{1}^{1}(p), \Delta_{1}^{1}(p)$, where $p \in \mathscr{N}$ is any fixed parameter.

3 Two effective dichotomy theorems

The following two theorems were briefly discussed in the introduction.
Theorem 3.1 If $A \subseteq \mathscr{N}$ is a Σ_{1}^{1} set then one and only one of the following two claims (I), (II) holds:
(I) A is Δ_{1}^{1}-effectively σ-bounded, in the sense that there is a Δ_{1}^{1} sequence $\left\{T_{n}\right\}_{n \in \omega}$ of compact trees $T_{n} \subseteq \omega^{<\omega}$ satisfying $A \subseteq \bigcup_{n}\left[T_{n}\right] ;$
(II) there is a superperfect set $Y \subseteq A$
[8, p. 198].

Theorem 3.2 If $A \subseteq \mathscr{N}$ is a Δ_{1}^{1} set then one and only one of the next two claims holds:
($\left.\mathrm{I}^{\prime}\right) A$ is Δ_{1}^{1}-effectively σ-compact, in the sense that there is a Δ_{1}^{1} sequence $\left\{T_{n}\right\}_{n \in \omega}$ of compact trees $T_{n} \subseteq \omega^{<\omega}$ satisfying $A=\bigcup_{n}\left[T_{n}\right] ;$
(II') there is a set $Y \subseteq A$ homeomorphic to \mathscr{N} and relatively closed in A
(cf. [10] and [14, 4F.18]).
Corollary 3.3 If $A \subseteq \mathscr{N}$ is a σ-bounded Σ_{1}^{1} set then it is Δ_{1}^{1}-effectively σ-bounded in the sense of condition 3.1 of Theorem 3.1. Accordingly, if $A \subseteq \mathscr{N}$ is a σ-compact Δ_{1}^{1} set then it is Δ_{1}^{1}-effectively σ-compact in the sense of condition (I) of Theorem 3.2.

In spite of certain differences between the theorems, both of them easily follow from the next much more general result (which was actually extended by Louveau and Saint Raymond to all levels of the Borel hierarchy).

Theorem 3.4 (Louveau, Saint Raymond [11, 12]) If $A, B \subseteq \mathscr{N}$ are disjoint Σ_{1}^{1} sets then one and only one of the next two claims holds:
(I) there exists a Δ_{1}^{1} real p such that A is separated from B by a $\Sigma_{2}^{0}(p)$ set S-then S is Δ_{1}^{1}, and moreover, there is a Δ_{1}^{1} sequence $\left\{T_{n}\right\}_{n \in \omega}$ of trees $T_{n} \subseteq \omega^{<\omega}$ such that $S=\bigcup_{n}\left[T_{n}\right]$;
(II) there is a set $C \subseteq A \cup B$ homeomorphic to 2^{ω} (hence by necessity closed) and such that $C \cap B$ is a countable set dense in C.
Let's show how this result implies Theorems 3.1 and 3.2.
Proof of Theorem 3.1. Recall that the Baire space \mathscr{N} is homeomorphic to the Π_{2}^{0} set \mathscr{N}^{\prime} of all points $x \in 2^{\omega}$ with infinitely many terms $x(k)$ equal to 1 , via the map $H: \mathscr{N} \xrightarrow{\text { onto }} \mathscr{N}^{\prime}$ sending each $a \in \mathscr{N}$ to

$$
H(a)=1, \underbrace{0, \ldots, 0}_{a(0) \text { zeros }}, 1, \underbrace{0, \ldots, 0}_{a(1) \text { zeros }}, 1, \underbrace{0, \ldots, 0}_{a(2) \text { zeros }}, \ldots .
$$

Let $A^{\prime}=H[A]=\{H(a): a \in A\} \subseteq \mathscr{N}^{\prime}$ and $B^{\prime}=2^{\omega} \backslash \mathscr{N}^{\prime}$.
Assume that (I) of Theorem 3.4 holds, via a Δ_{1}^{1} sequence of trees T_{n}^{\prime}. We can assume that $T_{n}^{\prime} \subseteq 2^{<\omega}$, of course. Then $\left[T_{n}^{\prime}\right] \subseteq \mathscr{N}^{\prime}$ by the choice of B^{\prime}, so that the sets $X_{n}=H^{-1}\left(\left[T_{n}^{\prime}\right]\right) \subseteq \mathscr{N}$ are compact, the trees $T_{n}=\operatorname{tree}\left(X_{n}\right)$ are compact, too, which leads us to (I) of Theorem 3.1.

Assume that (II) of Theorem 3.4 holds, via a (closed) set $C \subseteq A^{\prime} \cup B^{\prime}$ homeomorphic to 2^{ω}. Then $C^{\prime}=$ $C \backslash B^{\prime}=C \cap A^{\prime}=C \cap \mathscr{N}^{\prime}$ is a relatively closed subset of A^{\prime} homeomorphic to \mathscr{N}. We may note in passing by that (I) of Theorem 3.4 fails, and moreover A is not even $\boldsymbol{\Sigma}_{2}^{0}$-separated from B-as otherwise C^{\prime} would be a relative Σ_{2}^{0} subset of C, which is impossible.

Further, $C=H^{-1}(C) \subseteq \mathscr{N}$ is a relatively closed subset of A and a Σ_{1}^{1} set, of course. It remains to prove that C is not σ-bounded-then it contains a superperfect subset by a Saint Raymond's theorem mentioned in the introduction. Suppose, to the contrary, that $C \subseteq F$, where $F \subseteq \mathscr{N}$ is σ-compact. The set $F^{\prime}=H[F] \subseteq \mathscr{N}^{\prime}$ is then σ-compact, too, and hence $\boldsymbol{\Sigma}_{2}^{0}$, thus A is $\boldsymbol{\Sigma}_{2}^{0}$-separated from B, contrary to the above.

Proof of Theorem 3.2. Let $A^{\prime}=H[A] \subseteq \mathscr{N}^{\prime}$, as above, and now $B^{\prime}=2^{\omega} \backslash A^{\prime}$. If 3.4 of Theorem 3.4 holds, via a Δ_{1}^{1} sequence of trees $T_{n}^{\prime} \subseteq 2^{<\omega}$, then just $A^{\prime}=\bigcup_{n}\left[T_{n}^{\prime}\right]$, so that, pulling this back to \mathscr{N} via H^{-1}, we easily get (I') of Theorem 3.2. If (II) of Theorem 3.4 holds, then the set $C^{\prime}=C \cap A$ is a relatively closed subset of A^{\prime} homeomorphic to \mathscr{N}, thus pulling it back to \mathscr{N} via H^{-1}, we get (II') of Theorem 3.2.

The original proof of Theorem 3.4 in [11] was based on determinacy ideas and technique. A proof by methods of effective descriptive set theory is also known to those working in this field. It combines two rather independent results and techniques. One of them is the famous effective separation theorem by Louveau [10]. The other one is (essentially) Hurewicz's [3] result cited in the introduction-in a more advanced form of Theorem 21.22 (by Kechris, Louveau, Woodin) in [9], given there with a proof involving some game. The original Hurewicz proof was purely topological, and a more transparent version of this proof is given in [16, Lemma 7].

4 Effective σ-compactness dichotomy for Σ_{1}^{1} sets

There is a difference between Theorem 3.1 and Theorem 3.2: the first theorem deals with Σ_{1}^{1} sets while the other one-with Δ_{1}^{1} sets. The proof of Theorem 3.2 in Section 3 does not work in the case when A is a Σ_{1}^{1} set, and in fact Theorem 3.2 fails for Σ_{1}^{1} sets A, as the next counterexample shows.

Example 4.1 Let $\{y\}$ be a Π_{1}^{1} singleton such that $y \in 2^{\omega}$ is not Δ_{1}^{1}. The set $A=2^{\omega} \backslash\{y\}$ is then Σ_{1}^{1} and an open subset of 2^{ω}, hence, σ-compact. Suppose towards the contrary that Theorem 3.2 holds for A. Then (I^{\prime}) of Theorem 3.2 must be true. Let $\left\{T_{n}\right\}_{n \in \omega}$ be a Δ_{1}^{1} sequence of compact trees such that $A=\bigcup_{n}\left[T_{n}\right]$. Therefore y is Δ_{1}^{1}, as the only point in 2^{ω} which does not belong to $\bigcup_{n}\left[T_{n}\right]$, a contradiction.

The next theorem is our best result so far, in the direction of Theorem 3.2 for Σ_{1}^{1} sets, with still some amount of effectivity in condition (I^{\prime}).

Theorem 4.2 If $A \subseteq \mathscr{N}$ is a Σ_{1}^{1} set then one and only one of the following two claims holds:
(I) A is Δ_{3}^{1}-effectively σ-compact, so that there exists a Δ_{3}^{1} sequence $\left\{T^{n}\right\}_{n<\omega}$ of compact Δ_{3}^{1} trees $T^{n} \subseteq$ $\omega^{<\omega}$ such that $A=\bigcup_{n<\omega}\left[T^{n}\right]$;
(II) there is a set $Y \subseteq A$ homeomorphic to \mathscr{N} and relatively closed in A.

The following proof is essentially the classical proof of the Hurewicz theorem, at least as presented in [16] (while in his original proof in [3], Hurewicz deletes in one step all open sets whose images are contained in some σ-compact subset of the given set). We only add the computation of the complexity of this classical construction.

Proof. Given a tree $S \subseteq(\omega \times \omega)^{<\omega}$, define a derived tree $S^{\prime} \subseteq S$ so that
(*) S^{\prime} consists of all nodes $\langle u, v\rangle \in S$ such that $\overline{\operatorname{proj}[S\lceil\langle u, v\rangle]} \nsubseteq A$, where $S \upharpoonright\langle u, v\rangle=\left\{\left\langle u^{\prime}, v^{\prime}\right\rangle \in S\right.$: $\left.\left(u \subset u^{\prime} \wedge v \subset v^{\prime}\right) \vee\left(u^{\prime} \subseteq u \wedge v^{\prime} \subseteq v\right)\right\}$.

Note that S^{\prime} can contain maximal nodes even if S contains no maximal nodes. Yet if $\langle u, v\rangle$ is a maximal node in S, or generally a note in the well-founded part of S (so $\left[S\lceil\langle u, v\rangle]=\varnothing\right.$), then definitely $\langle u, v\rangle \notin S^{\prime}$.

Lemma 4.3 The set $\left\{\langle S, u, v\rangle:\langle u, v\rangle \in S^{\prime}\right\}$ is Σ_{2}^{1}. In addition, $S^{\prime} \subseteq S$, and if $S \subseteq T$ then $S^{\prime} \subseteq$ T^{\prime}. Moreover, if \mathfrak{M} is a countable transitive model of a large enough fragment of ZFC and $S \in \mathfrak{M}$ then $\left(S^{\prime}\right)^{\mathfrak{M}} \subseteq S^{\prime}$.

Proof. As A is Σ_{1}^{1}, the key condition $\overline{\operatorname{proj}[S\lceil\langle u, v\rangle]} \nsubseteq A$ is Σ_{2}^{1}.
Beginning the proof of Theorem 4.2, we w.l.o.g. assume, by Theorem 3.1, that A, the given set, is σ-bounded, and hence if $F \subseteq A$ is an arbitrary closed set then F is σ-compact. Let $P \subseteq \mathscr{N} \times \mathscr{N}$ be a Π_{1}^{0} set such that $A=\operatorname{proj} P$. We define

$$
S=\left\{\langle x \upharpoonright n, y\lceil n\rangle: n \in \omega \wedge\langle x, y\rangle \in P\} \subseteq \omega^{<\omega} \times \omega^{<\omega}\right.
$$

so that $P=[S]$. A decreasing sequence of derived trees $S^{(\alpha)}, \alpha \in$ Ord, is defined by transfinite induction so that $S^{(0)}=S$, if λ is a limit ordinal then naturally $S^{(\lambda)}=\bigcap_{\alpha<\lambda} S^{(\alpha)}$, and $S^{(\alpha+1)}=\left(S^{(\alpha)}\right)^{\prime}$ for any α.

Obviously there is a countable ordinal λ such that $S^{(\lambda+1)}=S^{(\lambda)}$.
Case 1: $S^{(\lambda)}=\varnothing$. Then, if $x \in A=\operatorname{proj} P$ then by construction there exist an ordinal $\alpha<\lambda$ and a node $\langle u, v\rangle \in S^{(\alpha)}$ such that

$$
x \in A_{u v}^{(\alpha)} \subseteq \overline{A_{u v}^{(\alpha)}} \subseteq A, \quad \text { where } \quad A_{u v}^{(\alpha)}=\operatorname{proj}\left[S^{(\alpha)} \upharpoonright\langle u, v\rangle\right],
$$

and hence A is a countable union of sets $F \subseteq A$ of the form $\overline{A_{u v}^{(\alpha)}}$, where $\alpha<\lambda$ and $\langle u, v\rangle \in S^{(\alpha)}$, closed, therefore σ-compact by the above.

Let us show how this leads to (I) of the theorem.

It easily follows from Lemma 4.3 that both the ordinal λ, and each ordinal $\alpha<\lambda$, and the sequence $\left\{S^{(\alpha)}\right\}_{\alpha<\lambda}$ itself, are Δ_{3}^{1}. Therefore there is a Δ_{3}^{1} sequence $\left\{U^{(n)}\right\} n<\omega$ of the same trees, i.e.,

$$
\left\{S^{(\alpha)}: \alpha<\lambda\right\}=\left\{U^{(n)}: n<\omega\right\}
$$

Each tree $U^{(n)}, n<\omega$, is Δ_{3}^{1} either, as well as all restricted subtrees of the form $U^{(n)} \upharpoonright\langle u, v\rangle$ (where $\langle u, v\rangle \in$ $U^{(n)}$) and their "projections"

$$
T_{u v}^{(n)}=\left\{u: \exists v\left(\langle u, v\rangle \in U^{(n)} \upharpoonright\langle u, v\rangle\right)\right\} \subseteq \omega^{<\omega}
$$

On the other hand, if $\alpha<\lambda$ and $\langle u, v\rangle \in S^{(\alpha)}$ then we have $\overline{A_{u v}^{(\alpha)}}=\left[T_{u v}^{(n)}\right]$ for some $n=n(\alpha)$ by construction.
To conclude, if $x \in A$ then there is a Δ_{3}^{1} tree $T_{u v}^{(n)} \subseteq \omega^{<\omega}$ such that $x \in\left[T_{u v}^{(n)}\right] \subseteq A$-and $\left[T_{u v}^{(n)}\right]$ is σ-compact in this case. Then by Theorem 3.2 (relativized version) there is a $\Delta_{1}^{1}\left(T_{u v}^{(n)}\right)$ sequence of compact trees $T_{u v}^{(n)}(k)$ such that $\left[T_{u v}^{(n)}\right]=\bigcup_{k}\left[T_{u v}^{(n)}(k)\right]$. This easily leads to (I) of the theorem. ${ }^{1}$

Case 2: $S^{(\lambda)} \neq \varnothing$, and then $S^{(\lambda)} \subseteq S$ is a pruned tree and $\langle\Lambda, \Lambda\rangle \in S^{(\lambda)}$.
Lemma 4.4 If $\langle u, v\rangle \in S^{(\lambda)}, u^{\prime} \in \omega^{<\omega}, u \subset u^{\prime}$, and $A_{u v}^{(\lambda)} \cap \mathscr{N}_{u^{\prime}} \neq \varnothing$ then there is a string $v^{\prime} \in \omega^{<\omega}$ such that $v \subset v^{\prime}$ and $\left\langle u^{\prime}, v^{\prime}\right\rangle \in S^{(\lambda)}$.

We'll define a pair $\langle u(t), v(t)\rangle \in S^{(\lambda)}$ for each $t \in \omega^{<\omega}$, such that
(1) if $t \in \omega^{<\omega}$ then $t \subseteq u(t)$;
(2) if $s, t \in \omega^{<\omega}$ and $s \subseteq t$ then $u(s) \subseteq u(t)$ and $v(s) \subseteq v(t)$;
(3) if $t \in \omega^{<\omega}$ and $k \neq n$ then $u\left(t^{\wedge} k\right)$ and $u\left(t^{\wedge} n\right)$ are \subseteq-incomparable;
(4) if $s \in \omega^{<\omega}$ then there exists a point $y_{s} \in \overline{A_{u(s) v(s)}^{(\lambda)}} \backslash A$ such that any sequence of points $x_{k} \in$ $A_{u\left(s _k\right) v\left(s _k\right)}^{(\lambda)}$ converges to y_{s}.

Suppose that such a system of pairs is defined. Then the associated map $f(a)=\bigcup_{n} u(a \upharpoonright n): \mathscr{N} \rightarrow A$ is 1-1 and is a homeomorphism from \mathscr{N} onto its full image $Y=\operatorname{ran} f=\{f(a): a \in \mathscr{N}\} \subseteq A$.

Let's prove that Y is relatively closed in A. Consider a sequence of points $a_{n} \in \mathscr{N}$ such that the corresponding sequence of points $y_{n}=f\left(a_{n}\right) \in Y$ converges to a point $y \in \mathscr{N}$; we have to prove that $y \in Y$ or $y \notin A$. If the sequence $\left\{a_{n}\right\}$ contains a subsequence convergent to $b \in \mathscr{N}$ then $\left\{y_{n}\right\}$ converges to $f(b) \in Y$. So suppose that the sequence $\left\{a_{n}\right\}$ has no convergent subsequences. Then there exist a string $s \in \omega^{<\omega}$, an infinite set $K \subseteq \omega$, and for each $k \in K$-a number $n(k)$, such that $s^{\wedge} k \subset a_{n(k)}$. Then $y_{n(k)} \in A_{u\left(s _k\right) v\left(s _k\right)}^{(\lambda)}$ by construction. Therefore the subsequence $\left\{y_{n(k)}\right\}_{k \in \omega}$ converges to a point $y_{s} \notin A$ by (4), as required.

Finally, on the construction of pairs $\langle u(t), v(t)\rangle$. Put $\langle u(\Lambda), v(\Lambda)\rangle=\langle\Lambda, \Lambda\rangle$. Suppose that a pair $\langle u(t), v(t)\rangle \in$ $S^{(\lambda)}$ is defined. Then $\overline{A_{u(t) v(t)}^{(\lambda)}} \nsubseteq A$ by the choice of λ. There is a sequence of pairwise different points $x_{n} \in A_{u(t) v(t)}^{(\lambda)}$ which converges to a point $y_{s} \in \overline{A_{u(t) v(t)}^{(\lambda)}} \backslash A$. We can associate a string $u_{n} \in \omega^{<\omega}$ with each x_{n} such that $u(t) \subset u_{n} \subset x_{n}$, the strings u_{n} are pairwise \subseteq-incompatible, and $\operatorname{lh} u_{n} \rightarrow \infty$. Then, by Lemma 4.4, for each n there is a matching string v_{n} such that $v(t) \subset v_{n}$ and $\left\langle u_{n}, v_{n}\right\rangle \in S^{(\lambda)}$. Put $u\left(t^{\wedge} n\right)=u_{n}$ and $v\left(t^{\wedge} n\right)=v_{n}$ for all n.

5 Counterexamples above Σ_{1}^{1}

Here we outline several counterexamples to Theorems 3.1 and 3.2 with sets A more complicated than Σ_{1}^{1}.
Example 5.1 Suppose that the universe is a Cohen real extension $\mathbf{L}[a]$ of the constructible universe \mathbf{L}. The set $A=\mathscr{N} \cap \mathbf{L}$ is Σ_{2}^{1} and it is not σ-bounded in $\mathbf{L}[a]$. On the other hand, it is known from [2] that A has no perfect

[^1]subsets, let alone superperfect ones. Thus A is a Σ_{2}^{1} counterexample to both Theorem 3.1 and Theorem 3.2 in $\mathbf{L}[a]$. We then immediately obtain a similar Π_{1}^{1} counterexample, using the Π_{1}^{1} uniformization theorem.

Example 5.2 Suppose that the universe is a dominating real extension $\mathbf{L}[d]$ of \mathbf{L}. The set $A=\mathscr{N} \cap \mathbf{L}$ is then σ-bounded in $\mathbf{L}[d]$. The dominating forcing is homogeneous enough for any OD (ordinal-definable) real in $\mathbf{L}[d]$ to be constructible, and hence it is true in $\mathbf{L}[d]$ that A cannot be covered by a countable union of OD compact sets in $\mathbf{L}[d]$. Thus A is a Σ_{2}^{1} counterexample to Corollary 3.3.

Yet we don't know whether there exists a similar definable counterexample to Corollary 3.3.
Example 5.3 Let $A=\{y\}$ be a Π_{1}^{1} singleton such that y is not a Δ_{1}^{1} real. Then conditions (I), (II) of Theorem 3.1 obviously fail for A. The same for Theorem 3.2. Moreover, A is a Π_{1}^{1} counterexample to Corollary 3.3 as well, although not in the same strong sense as in Example 5.2.

It is known that there is a countable Π_{1}^{1} set $A \subseteq \mathscr{N}$ containing at least one non- Δ_{2}^{1} element. Can it serve as a more profound Π_{1}^{1} counterexample than the singleton A of Example 5.3 ?

6 Generalization of the $\boldsymbol{\sigma}$-bounded dichotomy: preliminaries

Below, in Section 8, we establish a generalization of Theorem 3.1 for a certain system of pointset ideals which include the ideal of σ-bounded sets along with equivalence classes of a given finite or countable family of equivalence relations. The next definition introduces a necessary framework.

Definition 6.1 Let \mathscr{F} be a family of equivalence relations on a set $X_{0} \subseteq \mathscr{N}$. A set $X \subseteq X_{0}$ is \mathscr{F} - σ bounded, iff it is covered by a union of the form $B \cup \bigcup_{n \in \omega} Y_{n}$, where B is a σ-bounded set and each Y_{n} is an F-equivalence class for an equivalence relation $\mathrm{F}=\mathrm{F}(n) \in \mathscr{F}$ which depends on n.

A set $X \subseteq X_{0}$ is \mathscr{F}-superperfect, if it is a superperfect pairwise F -inequivalent set (i.e., a partial F-transversal) for every $\mathrm{F} \in \mathscr{F}$.

Clearly $\mathscr{F}-\sigma$-bounded sets form a σ-ideal containing all σ-bounded sets, and no \mathscr{F} - σ-bounded set can be \mathscr{F} superperfect. What are properties of these ideals? Do they have some semblance of the superperfect ideal itself? We begin with a lemma and a corollary afterwards, which show that this is indeed the case w.r.t. the property of being $\boldsymbol{\Pi}_{1}^{1}$ on $\boldsymbol{\Sigma}_{1}^{1}$. The lemma is a generalization of Corollary 3.3, of course.

Lemma 6.2 Suppose that $\left\{\mathrm{F}_{n}\right\}_{n<\omega}$ is a Δ_{1}^{1} sequence of equivalence relations on \mathscr{N}, and a Σ_{1}^{1} set $X \subseteq \mathscr{N}$ is $\left\{\mathrm{F}_{n}\right\}_{n<\omega}-\sigma$-bounded. Then X is Δ_{1}^{1}-effectively $\left\{\mathrm{F}_{n}\right\}_{n<\omega}-\sigma$-bounded, in the sense that there exist:
(1) $a \Delta_{1}^{1}$ sequence of compact trees T_{k},
(2) a Δ_{1}^{1} sequence of numbers n_{k}, and
(3) $a \Delta_{1}^{1}$ set $H \subseteq \omega \times \mathscr{N}$
such that, for every $k<\omega$ the section $(H)_{k}=\{a:\langle k, a\rangle \in H\}$ is an $\mathrm{F}_{n_{k}}$-equivalence class and $X \subseteq$ $\bigcup_{k}\left[T_{k}\right] \cup \bigcup_{k}(H)_{k}$.

In particular, if a Σ_{1}^{1} set $X \subseteq \mathscr{N}$ is $\left\{\mathrm{F}_{n}\right\}_{n<\omega}-\sigma$-bounded then X is covered by the union of all $\Delta_{1}^{1} \mathrm{~F}_{0}$-classes, all $\Delta_{1}^{1} F_{1}$-classes, all $\Delta_{1}^{1} F_{2}$-classes, et cetera, and all Δ_{1}^{1} compact sets.

Proof. The set $C=\mathbf{C T} \cap \Delta_{1}^{1}$ of all Δ_{1}^{1} compact trees is Π_{1}^{1}, and hence so is $K=\bigcup_{T \in C}[T]$. If $n<\omega$ then let U_{n} be the union of all $\Delta_{1}^{1} \mathrm{~F}_{n}$-classes. Let's show that $U=\bigcup_{n} U_{n}$ is Π_{1}^{1} either. We make use of sets $E \subseteq \omega$ and $W, W^{\prime} \subseteq \omega \times \mathscr{N}$ as in Fact 2.3. The Π_{1}^{1} formula

$$
\varphi(e, n):=e \in E \wedge \forall y, z \in\left(W^{\prime}\right)_{e}\left(y \mathrm{~F}_{n} z\right) \wedge \forall y \in\left(W^{\prime}\right)_{e} \forall z\left(y \mathrm{~F}_{n} z \Longrightarrow z \in(W)_{e}\right)
$$

says that $e \in E$ and $\left(W^{\prime}\right)_{e}=(W)_{e}$ is a F_{n}-equivalence class. Moreover

$$
x \in U \Longleftrightarrow \exists n \exists e\left(\varphi(e, n) \wedge x \in(W)_{e}\right)
$$

Case 1: $X \subseteq K \cup U$. Then the set S of all pairs $\langle x, h\rangle$ such that

- either $h=T \in C$ and $x \in[T]$,
- or $h=\langle e, n\rangle \in \Phi=\{\langle e, n\rangle \in E \times \omega: \varphi(e, n)\}$ and $x \in(W)_{e}$,
is a Π_{1}^{1} set satisfying $X \subseteq \operatorname{proj} S$. By Fact 2.5 there is a Δ_{1}^{1} map f defined on \mathscr{N} and such that $\langle a, f(a)\rangle \in S$ for each $a \in X$. The sets

$$
X^{\prime}=\{x \in X: f(x) \in \mathbf{C T}\} \quad \text { and } \quad X^{\prime \prime}=\{x \in X: f(x) \in \Phi\}
$$

are Σ_{1}^{1} as well as their images

$$
R^{\prime}=\left\{f(x): x \in X^{\prime}\right\} \subseteq C \text { and } R^{\prime \prime}=\left\{f(x): x \in X^{\prime \prime}\right\} \subseteq \Phi,
$$

and $X^{\prime} \cup X^{\prime \prime}=X, R^{\prime} \cup R^{\prime \prime}=\{f(x): x \in X\}$. By the Σ_{1}^{1} Separation theorem there is a Δ_{1}^{1} set τ such that $R^{\prime} \subseteq \tau \subseteq C$, and by Fact 2.6 we have $\tau=\left\{T_{k}: k<\omega\right\}$, where $k \longmapsto T_{k}$ is a Δ_{1}^{1} map. By similar reasons, there is a Δ_{1}^{1} map $k \longmapsto\left\langle e_{k}, n_{k}\right\rangle$ such that $R^{\prime \prime} \subseteq \rho=\left\{\left\langle e_{k}, n_{k}\right\rangle: k<\omega\right\} \subseteq \Phi$. To finish the proof in Case 1 , it remains to define

$$
H=\left\{\langle k, x\rangle \in \omega \times \mathscr{N}: x \in(W)_{e_{k}}\right\}=\left\{\langle k, x\rangle \in \omega \times \mathscr{N}: x \in\left(W^{\prime}\right)_{e_{k}}\right\}
$$

Case 2: $A=X \backslash(K \cup U) \neq \varnothing$. Then A is a non-empty Σ_{1}^{1} set. We are going to derive a contradiction. By definition, we have $X \backslash A \subseteq \bigcup_{k} C_{k} \cup \bigcup_{n} \bigcup_{k} E_{n k}$, where each C_{k} is compact and each $E_{n k}$ is an F_{n}-class. Let M be a countable elementary substructure of a sufficiently large structure, containing, in particular, the whole sequence of covering sets C_{k} and $E_{n k}$. Below "generic" will mean Gandy-Harrington generic over M.

As $A \neq \varnothing$ is Σ_{1}^{1}, there is a perfect set $P \subseteq A$ of points both generic and pairwise generic. It is known that then P is a pairwise F_{n}-inequivalent set for every n, hence, definitely a set not covered by a countable union of F_{n}-classes for all $n<\omega$. Thus to get a contradiction it suffices to prove that $P \cap C_{k}=\varnothing$ for all k. In other words, we have to prove that if $k<\omega$ and $x \in A$ is any generic real then $x \notin C_{k}$.

Suppose towards the contrary that a non-empty Σ_{1}^{1} condition $Y \subseteq A$ forces that a $\in C_{k}$, where a is a canonical name for the Gandy-Harrington generic real. We claim that Y is not σ-bounded. Indeed otherwise we have $Y \subseteq \bigcup_{n}\left[T_{n}\right]$ by Theorem 3.1, where all trees $T_{n} \subseteq \omega^{<\omega}$ are Δ_{1}^{1} and compact, which contradicts the fact that A does not intersect any compact Δ_{1}^{1} set.

Therefore $Y \nsubseteq C_{k}$. Then there is a point $x \in Y$ and a number m such that the set $I=\{y \in \mathscr{N}$: $y\left\lceil m=x\lceil m\}\right.$ does not intersect C_{k}. But then the Σ_{1}^{1} condition $Y^{\prime}=Y \cap I$ forces that a $\notin C_{k}$, a contradiction.

Corollary 6.3 If $\left\{\mathrm{F}_{n}\right\}_{n<\omega}$ is a Δ_{1}^{1} sequence of equivalence relations on \mathscr{N} then the ideal of $\left\{\mathrm{F}_{n}\right\}_{n<\omega}-\sigma$ bounded sets is Π_{1}^{1} on Σ_{1}^{1} and $\boldsymbol{\Pi}_{1}^{1}$ on $\boldsymbol{\Sigma}_{1}^{1}$.

Cf. [23, Section 3.8] on Π_{1}^{1} on Σ_{1}^{1} and Π_{1}^{1} on $\boldsymbol{\Sigma}_{1}^{1}$ ideals.
Proof. Consider a Σ_{1}^{1} set $P \subseteq \mathscr{N} \times \mathscr{N}$. We have to prove that

$$
X=\left\{x \in \mathscr{N}:(P)_{x}=\{y:\langle x, y\rangle \in P\} \text { is }\left\{\mathrm{F}_{n}\right\}_{n<\omega}-\sigma \text {-bounded }\right\}
$$

is a Π_{1}^{1} set. By the relativized version of Lemma 6.2, $x \in X$ iff
$(*)$ there exist $\Delta_{1}^{1}(x)$ sequences $\left\{T_{k}\right\}_{k<\omega}$ (of compact trees) and $\left\{n_{k}\right\}_{k<\omega}$ and a $\Delta_{1}^{1}(x)$ set $H \subseteq \omega \times \mathscr{N}$ such that, for every $k<\omega$ the section $(H)_{k}$ is an $\mathrm{F}_{n_{k}}$-equivalence class and $(P)_{x} \subseteq \bigcup_{k}\left[T_{k}\right] \cup \bigcup_{k}(H)_{k}$.
A routine analysis (as in the proof of Lemma 6.2) shows that this is a Π_{1}^{1} description of the set X.

7 Digression: another look on the effectivity

As usual, Lemma 6.2 and Corollary 6.3 remain true for relativized classes. In particular, if $p \in \mathscr{N}, \mathrm{~F}_{n}$ are $\Delta_{1}^{1}(p)$ equivalence relations, and a $\Sigma_{1}^{1}(p)$ set $X \subseteq \mathscr{N}$ is $\left\{\mathrm{F}_{n}\right\}_{n<\omega}-\sigma$-bounded then X is covered by the union of all $\Delta_{1}^{1}(p) \mathrm{F}_{n}$-classes, $n=0,1,2, \ldots$, and all $\Delta_{1}^{1}(p)$ compact sets. If now $p \neq q \in \mathscr{N}$ is a different parameter, but still F_{n} are $\Delta_{1}^{1}(q)$ and X is $\Sigma_{1}^{1}(q)$ and $\left\{\mathrm{F}_{n}\right\}_{n<\omega}-\sigma$-bounded then accordingly X is covered by the union of all $\Delta_{1}^{1}(q) \mathrm{F}_{n}$-classes, $n=0,1,2, \ldots$, and all $\Delta_{1}^{1}(q)$ compact sets. Those two countable coverings of the same set X can be different, of course. This leads to the question: is there a covering of X of the type indicated, which depends on X and F_{n} themselves, but not on the choice of a parameter p such that X is $\Sigma_{1}^{1}(p)$ and F_{n} are $\Delta_{1}^{1}(p)$. We are able to answer this question in the positive at least in the case of finitely many equivalence relations. The next theorem will be instrumental in the proof of a theorem in Section 10.

Theorem 7.1 Suppose that $n \geq 1, \mathrm{~F}_{1}, \ldots, \mathrm{~F}_{n}$ are Borel equivalence relations on \mathscr{N}, and a $\mathrm{\Sigma}_{1}^{1}$ set $X \subseteq \mathscr{N}$ is $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded. Then there exist Borel sets $Y_{1}, \ldots, Y_{n}, X_{n+1} \subseteq \mathscr{N}$ such that
(i) $X \subseteq Y_{1} \cup \cdots \cup Y_{n} \cup X_{n+1}$,
(ii) each set Y_{j} is a countable union of F_{j}-equivalence classes while the set X_{n+1} is σ-bounded,
(iii) if $w \in \mathscr{N}, X$ is $\Sigma_{1}^{1}(w)$, and all relations F_{m} are $\Delta_{1}^{1}(w)$, then there is a parameter $\bar{w} \in \mathscr{N}$ in $\Delta_{2}^{1}(w)$ such that both X_{n+1} and all sets Y_{j} are $\Delta_{1}^{1}(\bar{w})$, hence $\Delta_{2}^{1}(w)$.
Thus, under the assumptions of the theorem, there is a Borel covering of the set X satisfying (i) and (ii), and effective as soon as X and F_{j} are granted some effectivity. Note that the covering (i.e., the sets $Y_{1}, \ldots, Y_{n}, X_{n+1}$) depends only of X and $\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}$, but does not depend on w in the context of (iii). It is a challenging problem to get rid of \bar{w} in (iii) (so that the sets X_{n+1} and Y_{j} are just $\Delta_{1}^{1}(w)$ with the same parameter w), but this remains open.

Proof. We define sets $X=X_{1} \supseteq X_{2} \supseteq X_{3} \supseteq \ldots \supseteq X_{n} \supseteq X_{n+1}$ so that $X_{j+1}=X_{j} \backslash Y_{j}$, where

$$
\begin{equation*}
Y_{j}=\left\{x \in \mathscr{N}: \text { the set } X_{j} \cap[x]_{\mathrm{F}_{j}} \text { is not }\left\{\mathrm{F}_{j+1}, \ldots, \mathrm{~F}_{n}\right\}-\sigma \text {-bounded }\right\} \tag{1}
\end{equation*}
$$

by induction. In particular,

$$
\begin{aligned}
Y_{1} & =\left\{x \in \mathscr{N}: \text { the set } X_{1} \cap[x]_{\mathrm{F}_{1}} \text { is not }\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n}\right\}-\sigma \text {-bounded }\right\}, \\
Y_{2} & =\left\{x \in \mathscr{N}: \text { the set } X_{2} \cap[x]_{\mathrm{F}_{2}} \text { is not }\left\{\mathrm{F}_{3}, \ldots, \mathrm{~F}_{n}\right\} \text { - } \sigma \text {-bounded }\right\}, \\
& \ldots \\
Y_{n-1} & =\left\{x \in \mathscr{N}: \text { the set } X_{n-1} \cap[x]_{\mathrm{F}_{n-1}} \text { is not }\left\{\mathrm{F}_{n}\right\} \text { - } \sigma \text {-bounded }\right\}, \\
Y_{n} & =\left\{x \in \mathscr{N}: \text { the set } X_{n} \cap[x]_{\mathrm{F}_{n}} \text { is not } \varnothing \text { - } \sigma \text {-bounded }\right\},
\end{aligned}
$$

where \varnothing - σ-bounded is the same as just σ-bounded.
Lemma 7.2 If $1 \leq j \leq n$ then Y_{j} is a countable union of F_{j}-equivalence classes and the set $X_{j+1}=X_{j} \backslash Y_{j}$ is $\left\{\mathrm{F}_{j+1}, \ldots, \mathrm{~F}_{n}\right\}-\sigma$-bounded.

Proof. Let \mathscr{G}_{j} be the family of all sets Y such that Y is a union of at most countably many F_{j}-classes and $X_{j} \backslash Y$ is $\left\{\mathrm{F}_{j+1}, \ldots, \mathrm{~F}_{n}\right\}-\sigma$-bounded. Note that \mathscr{Y}_{j} is a non-empty (since X_{j} is $\left\{\mathrm{F}_{j}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded by induction) σ-filter (since the collection of all $\left\{\mathrm{F}_{j+1}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded sets is a σ-ideal). Therefore $Y_{j}^{\prime}=\bigcap \mathscr{Y}_{j}$ is a set in \mathscr{Y}_{j}, in fact, the \subseteq-least set in \mathscr{Y}_{j}.

It remains to show that $Y_{j}=Y_{j}^{\prime}$. We claim that if C is an F_{j}-class then $C \subseteq Y_{j}^{\prime}$ iff $C \subseteq Y_{j}^{\prime}$. Indeed if $C \cap Y_{j}=\varnothing$ then $X_{j} \cap C$ is $\left\{\mathrm{F}_{j+1}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded, thus $Y_{j}^{\prime} \backslash C$ is still a set in \mathscr{Y}_{j}, therefore $C \cap Y_{j}^{\prime}=\varnothing$. Conversely if $C \cap Y_{j}^{\prime}=\varnothing$ then $\left(X_{j} \cap C\right) \subseteq\left(X_{j} \backslash Y_{j}^{\prime}\right)$, and hence $X_{j} \cap C$ is $\left\{\mathrm{F}_{j+1}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded, so $C \cap Y_{j}=\varnothing$, as required.

Thus by the lemma the sets Y_{j} and X_{n+1} satisfy (i) and (ii). To verify (iii), assume that $w \in \mathscr{N}, X$ is $\Sigma_{1}^{1}(w)$, and all F_{m} are $\Delta_{1}^{1}(w)$. The main issue is that the sets Y_{j}, albeit Borel (as countable unions of Borel equivalence classes) do not seem to be $\Delta_{1}^{1}(w)$, at least straightforwardly. For instance, Y_{1} is $\Sigma_{1}^{1}(w)$ by Corollary 6.3 (relativized), and accordingly X_{2} is $\Pi_{1}^{1}(w)$ (instead of $\Delta_{1}^{1}(w)$), which makes it very difficult to directly estimate the class of Y_{2} at the next step. This is where a new parameter appears.

We precede the last part of the proof of the theorem with the following auxiliary fact on equivalence relations, perhaps, already known.

Lemma 7.3 Let E be a Δ_{1}^{1} equivalence relation on \mathscr{N}, and $X \subseteq \mathscr{N}$ be a Σ_{1}^{1} set which intersects only countably many E-classes. Then all E-classes $[x]_{\mathrm{E}}, x \in X$, are Δ_{1}^{1} sets, and there is an E -invariant Δ_{1}^{1} set $Y \subseteq \mathscr{N}$ such that $X \subseteq Y$ and all E -classes $[y]_{\mathrm{E}}, y \in Y$, are Δ_{1}^{1} sets (therefore Y still contains only countably many E-classes).

Proof. The union C of all Δ_{1}^{1} E-classes is an E-invariant Π_{1}^{1} set. (Cf., e.g., [6, Claim 10.1.2].) Thus, if $X \nsubseteq C$ then $H=X \backslash C$ is a non-empty Σ_{1}^{1} set which does not intersect Δ_{1}^{1} E-classes. Then (see, e.g., Case 2
in the proof of [6, Theorem 10.1.1]) the set H contains a perfect pairwise E-inequivalent set, which contradicts our assumptions. Therefore $X \subseteq C$, so indeed all E-classes $[x]_{\mathrm{E}}, x \in X$, are Δ_{1}^{1}. To prove the second claim apply the invariant Σ_{1}^{1} separation theorem (cf., e.g., $[6,10.4 .2]$), which yields an E-invariant Δ_{1}^{1} set Y satisfying $X \subseteq[X]_{\mathrm{E}} \subseteq Y \subseteq C$.

We continue the proof of Theorem 7.1. The next goal is to find a parameter $q_{1} \in \mathscr{N}$ in $\Delta_{2}^{1}(w)$ such that the $\Sigma_{1}^{1}(w)$ set Y_{1} is $\Delta_{1}^{1}\left(q_{1}\right)$. Let Π_{1}^{1} sets $\mathbf{E} \subseteq \mathscr{N} \times \omega$ and $\mathbf{W} \subseteq \mathscr{N} \times \omega \times \mathscr{N}$, and a Σ_{1}^{1} set $\mathbf{W}^{\prime} \subseteq \mathscr{N} \times \omega \times \mathscr{N}$ be as in Fact 2.4. If $w \in \mathscr{N}$ then let $E(w)=\{e:\langle w, e\rangle \in \mathbf{E}\}$ and, for $e<\omega$,

$$
W_{e}(w)=\{x:\langle w, e, x\rangle \in \mathbf{W}\} \quad \text { and } \quad W_{e}^{\prime}(w)=\left\{x:\langle w, e, x\rangle \in \mathbf{W}^{\prime}\right\},
$$

so that $W_{e}(w)=W_{e}^{\prime}(w)$ for all $e \in E(w)$.
Assume that $w \in \mathscr{N}$ and X is $\Sigma_{1}^{1}(w)$, as in (iii) of the theorem. Let $Q_{1}(w)$ contain all numbers $e \in E(w)$ such that the set $W_{e}(w)$ is an F_{1}-class, and the set $W_{e}^{\prime}(w) \cap X_{1}$ is not $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded. Then

$$
x \in Y_{1} \Longleftrightarrow \exists e \in Q_{1}(w)\left(x \in W_{e}(w)\right) \Longleftrightarrow \exists e \in Q_{1}(w)\left(x \in W_{e}^{\prime}(w)\right)
$$

holds for all $x \in \mathscr{N}$ by Lemma 7.3 (relativized). Thus the set Y_{1} is $\Delta_{1}^{1}\left(q_{1}\right)$, where $q_{1}=Q_{1}(w)$, and accordingly the set $X_{2}=X_{1} \backslash Y_{1}$ is $\Sigma_{1}^{1}\left(w, q_{1}\right)$.

If $e \in E(w)$ (and this is a Π_{1}^{1} formula), then using $W_{e}(w)$ and $W_{e}^{\prime}(w)$ interchangeably, we express " $W_{e}(w)$ is an F_{1}-class" as a Π_{1}^{1} property

$$
\begin{equation*}
\forall x, y\left(x \mathrm{~F}_{1} y \Longrightarrow\left(x \in W_{e}^{\prime}(w) \Longrightarrow y \in W_{e}(w)\right) \wedge\left(y \in W_{e}^{\prime}(w) \Longrightarrow x \in W_{e}(w)\right)\right) \tag{2}
\end{equation*}
$$

Finally, " $W_{e}^{\prime}(w) \cap X_{1}$ is not $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded" is a Σ_{1}^{1} property by Corollary 6.3. It follows that $e \in$ $Q_{1}(w)$ is a Δ_{2}^{1} relation (more precisely, a conjunction of Π_{1}^{1} and Σ_{1}^{1}).

Arguing the same way, we let $Q_{2}\left(w, q_{1}\right)$ contain all $e \in E(w)$ such that $W_{e}(w)$ is an F_{2}-class and $W_{e}^{\prime}(w) \cap X_{2}$ is not $\left\{\mathrm{F}_{3}, \ldots, \mathrm{~F}_{n}\right\}-\sigma$-bounded. Then, by the same reasons, $e \in Q_{2}\left(w, q_{1}\right)$ is a Δ_{2}^{1} relation, Y_{2} is $\Delta_{1}^{1}\left(q_{2}\right)$, where $q_{2}=Q_{2}\left(w, q_{1}\right)$, and accordingly $X_{3}=X_{2} \backslash Y_{2}$ is $\Sigma_{1}^{1}\left(w, q_{1}, q_{2}\right)$.

Iterating this construction, we define parameters $q_{1}, q_{2}, \ldots, q_{n}$ such that each Y_{j} is $\Delta_{1}^{1}\left(q_{j}\right)$ and each q_{j+1} is $\Delta_{2}^{1}\left(w, q_{1}, q_{2}, \ldots, q_{j}\right)$, and hence $\Delta_{2}^{1}(w)$ by induction. The concatenation $Q^{\prime}(w) \in \mathscr{N}$ of the reals $w, q_{1}, q_{2}, \ldots, q_{n}$ is then $\Delta_{2}^{1}(w)$, therefore $\bar{w}=Q^{\prime}(w)$ implies (iii).

We don't know whether the theorem still holds for countably infinite sequences of equivalence relations. Yet the proof miserably fails in this case. Indeed, let, for any $n, \mathrm{~F}_{n}$ be an equivalence relation on \mathscr{N} whose classes are $I_{k}=\{x \in \mathscr{N}: x(0)=k\}, k=0,1, \ldots, n$, and all singletons outside of these large classes. The whole space $\mathscr{N}=\bigcup_{n} I_{n}$ is $\left\{\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2}, \ldots\right\}$ - σ-bounded, of course. But running the construction as above, we'll obviously have $Y_{0}=Y_{1}=Y_{2}=\cdots=\varnothing$ (as each F_{n}-class is covered by an appropriate F_{n+1}-class), which results in nonsense.

There is another interesting problem. Under the assumptions of the theorem, the covering of X by sets $Y_{1}, \ldots, Y_{n}, X_{n+1} \subseteq \mathscr{N}$ depends on X but is independent of the choice of a parameter p as in (iii). On the other hand, if such a parameter p, and accordingly \bar{p} as in (iii), is given then not only each Y_{j} but also a representation of $Y_{j}=\bigcup_{m} Y_{j m}$ as a countable union of F_{j}-classes $Y_{j m}$, can be obtained in $\Delta_{1}^{1}(\bar{p})$ by Lemma 6.2. One may ask whether such a decomposition of each Y_{j} is available in a way independent of the choice of p (as the sets Y_{j} themselves). The answer in the negative is expected, but it may likely take a lot of work.

8 Generalization of the σ-bounded dichotomy: the theorem

Coming back to the content of Section 6, we'll prove the following theorem in this section.
Theorem 8.1 Suppose that $n<\omega, \mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}$ are Δ_{1}^{1} equivalence relations on \mathscr{N}, and $A \subseteq \mathscr{N}$ is a Σ_{1}^{1} set. Then one and only one of the following two claims holds:
(I) the set A is $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded-and therefore Δ_{1}^{1}-effectively $\left\{\mathrm{F}_{n}\right\}_{n<\omega}-\sigma$-bounded as in Lemma 6.2;
(II) there exists an $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}$-superperfect set $P \subseteq A$.

If $n=0$ then this theorem is equivalent to Theorem 3.1: indeed, if $\mathscr{F}=\varnothing$ then \varnothing - σ-bounded sets are just σ-bounded, while \varnothing-superperfect sets are just superperfect.

The following key result of Solecki and Spinas [20, Corollary 2.2] will be an essential pre-requisite in the proof of Theorem 8.1.

Proposition 8.2 Let $E \subseteq \mathscr{N} \times \mathscr{N}$ be a Σ_{1}^{1} set such that every section $(E)_{x}, x \in \mathscr{N}$, is σ-bounded. Then there is a superperfect set $P \subseteq \mathscr{N}$ free for E in the sense that if $x \neq y$ belong to P then $\langle x, y\rangle \notin E$.

Note that if E is an equivalence relation then a set free for E is the same as a pairwise E-inequivalent set.
Proof of Theorem 8.1. We argue by induction on n. The case $n=0$ (then $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}=\varnothing$) is covered by Theorem 3.1. Now the step $n \rightarrow n+1$.

Let $\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}, \mathrm{~F}_{n+1}$ be Δ_{1}^{1} equivalence relations on \mathscr{N}, and $A \subseteq \mathscr{N}$ be a Σ_{1}^{1} set. The set

$$
\boldsymbol{U}=\left\{x \in A:[x]_{\mathrm{F}_{1}} \cap A \text { is non- }\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}-\sigma \text {-bounded }\right\}
$$

is Σ_{1}^{1} by Corollary 6.3.
Case 1: the Σ_{1}^{1} set \boldsymbol{U} has only countably many F_{1}-classes. Then by Lemma 7.3, there is an F_{1}-invariant Δ_{1}^{1} set D such that $\boldsymbol{U} \subseteq D, D$ contains only countably many F_{1}-classes, and all of them are Δ_{1}^{1}.

Subcase 1.1: the complementary Σ_{1}^{1} set $B=A \backslash D$ is $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}$ - σ-bounded. Then the whole domain $A=D \cup B$ is $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n+1}\right\}-\sigma$-bounded, hence we have (I) for $\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}, \mathrm{~F}_{n+1}$.

Subcase 1.2: B is non- $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}$ - σ-bounded. By the inductive hypothesis there is an $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}$ superperfect set $P \subseteq B$. Let $x \in P$. Then the class $[x]_{\mathrm{F}_{1}}$ is $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}$ - σ-bounded. We claim that the set $P_{x}=[x]_{\mathrm{F}_{1}} \cap P$ is just σ-bounded. Indeed by definition $P_{x} \subseteq Y \cup \bigcup_{k} X_{k}$, where Y is σ-bounded while each X_{k} is an $\mathrm{F}_{n(k)}$-equivalence class for some $n(k)=2,3, \ldots, n+1$. By construction P has at most one common point with each X_{k}. Therefore the set $P_{x} \backslash Y$ is at most countable, hence, σ-bounded, and we are done.

Thus all F_{1}-classes inside P are σ-bounded. By Proposition 8.2, there is a superperfect pairwise F_{1}-inequivalent set $Q \subseteq P$-then the set Q is $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n+1}\right\}$-superperfect by construction. Thus (II) holds.

Case 2: \boldsymbol{U} has uncountably many F_{1}-classes. Then by Silver there exists a perfect pairwise F_{1}-inequivalent set $X \subseteq \boldsymbol{U}$. If $x \in X$ then by definition the set $[x]_{\mathrm{F}_{1}} \cap A$ is not $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}$ - σ-bounded. Therefore by the inductive hypothesis there exists an $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}$-superperfect set $Y \subseteq[x]_{\mathrm{F}_{1}} \cap A$, and hence a superperfect tree $T \subseteq \omega^{<\omega}$ such that $[T]=Y$. The next step is to get such a tree T by means of a Borel function.

Lemma 8.3 In our assumptions, there is a perfect set $X^{\prime} \subseteq X$ and a Borel map $x \longmapsto T_{x}$ defined on X^{\prime}, such that if $x \in X^{\prime}$ then T_{x} is a superperfect tree, $\left[T_{x}\right] \subseteq[x]_{\mathrm{F}_{1}} \cap A$, and $\left[T_{x}\right]$ is $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}$-superperfect.

Proof. Let $p \in \mathscr{N}$ be a parameter such that X is $\Pi_{1}^{0}(p)$.
Let \mathbf{V} be the set universe considered, and let \mathbf{V}^{+}be a generic extension of \mathbf{V} such that $\omega_{1}^{\mathbf{L}[p]}$ is countable in \mathbf{V}^{+}. Let X^{+}be the \mathbf{V}^{+}-extension of X, so that X^{+}is $\Pi_{1}^{0}(p)$ in \mathbf{V}^{+}and $X=X^{+} \cap \mathbf{V}$. Let A^{+}and F_{i}^{+} be similar extensions of resp. $A, \mathrm{~F}_{i}$. It is true then in \mathbf{V}^{+}by the Shoenfield absoluteness that each F_{i}^{+}is a Δ_{1}^{1} equivalence relation on \mathscr{N}, and X^{+}is a perfect set in $\Pi_{1}^{0}(p)$. Moreover, it is true in \mathbf{V}^{+}by Shoenfield that
$(*)$ if $x \in X^{+}$then the set $[x]_{\mathrm{F}_{1}^{+}} \cap A^{+}$is not $\left\{\mathrm{F}_{2}^{+}, \ldots, \mathrm{F}_{n+1}^{+}\right\}$- σ-bounded

- simply because the formula

$$
\forall x \in X\left([x]_{\mathrm{F}_{1}} \cap A \text { is not }\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}-\sigma \text {-bounded }\right)
$$

is essentially Π_{2}^{1} by Corollary 6.3, and is true in \mathbf{V}. It follows by the inductive hypothesis (applied in \mathbf{V}^{+}) that, in \mathbf{V}^{+}, the $\Pi_{1}^{1}(p)$ set W^{+}of all pairs $\langle x, T\rangle$ such that $x \in X^{+}, T \subseteq \omega^{<\omega}$ is a superperfect tree, and

$$
[T] \subseteq[x]_{\mathrm{F}_{1}^{+}} \cap A^{+} \wedge \text { the set }[T] \text { is }\left\{\mathrm{F}_{2}^{+}, \ldots, \mathrm{F}_{n+1}^{+}\right\} \text {-superperfect }
$$

- satisfies proj $W^{+}=X^{+}$. Therefore by the Shoenfield absoluteness theorem the set $W=W^{+} \cap \mathbf{V}$ is $\Pi_{1}^{1}(p)$ and satisfies proj $W=X$ in \mathbf{V}.

Applying the Kondô-Addison uniformization in \mathbf{V}^{+}, we get a $\Pi_{1}^{1}(p)$ set $U^{+} \subseteq W^{+}$which uniformizes W^{+}, in particular, proj $U^{+}=\operatorname{proj} W^{+}=X^{+}$. The corresponding set $U=U^{+} \cap \mathbf{V}$ of type $\Pi_{1}^{1}(p)$ in \mathbf{V} then uniformizes W and satisfies $\operatorname{proj} U=\operatorname{proj} W=X$ still by Shoenfield.

Now, by the choice of the universe \mathbf{V}^{+}, the uncountable $\Pi_{1}^{1}(p)$ set U^{+}must contain a perfect subset $P^{+} \subseteq$ U^{+}of class $\Pi_{1}^{0}(q)$ for a parameter $q \in \mathbf{L}[p]$, hence, $q \in \mathbf{V}$. The according set $P=P^{+} \cap \mathbf{V}$ is then a perfect subset of U in \mathbf{V}, and hence $X^{\prime}=\operatorname{proj} P \subseteq X$ is a perfect set.

Finally, if $x \in X^{\prime}$ then let T_{x} be the only element such that $\left\langle x, T_{x}\right\rangle \in P$. The map $x \longmapsto T_{x}$ is Borel. On the other hand, still by the Shoenfield theorem, if $x \in X^{\prime}$ then $\left[T_{x}\right] \subseteq[x]_{\mathrm{F}_{1}} \cap A$, and the set $\left[T_{x}\right]$ is $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}$ superperfect.

We continue the proof of Theorem 8.1. Let $X^{\prime} \subseteq X$ and a Borel map $x \longmapsto T_{x}$ be as in the lemma. If $x \in X^{\prime}$ and $i=2, \ldots, n+1$, then every F_{i}-class $[y]_{\mathrm{F}_{i}}$ has at most one point common with the set $Y_{x}=\left[T_{x}\right]$. Thus if C is a $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}-\sigma$-bounded set then the intersection $C \cap Y_{x}$ is σ-bounded and hence $C \cap Y_{x}$ is meager in Y_{x}.

There is a Borel set $W \subseteq X^{\prime} \times \mathscr{N}$ such that the collection of all sections $(W)_{x}, x \in X^{\prime}$, is equal to the family of all countable unions of F_{i}-classes, $i=2, \ldots, n+1$, plus a σ-bounded \mathbf{F}_{σ} set. (Note that σ-bounded \mathbf{F}_{σ} sets is the same as σ-compact sets, and that every σ-bounded set is a subset of a σ-bounded \mathbf{F}_{σ} set.) Thus if $x \in X^{\prime}$ then $(W)_{x} \cap Y_{x}$ is meager in Y_{x} by the above. Therefore, by a version of "comeager uniformization", there is a Borel map f defined on X^{\prime} such that if $x \in X^{\prime}$ then $f(x) \in Y_{x} \backslash(W)_{x}$. Clearly f is $1-1$, hence the set $R=\left\{f(x): x \in X^{\prime}\right\}$ is Borel.

Moreover R is pairwise F_{1}-inequivalent by construction. We assert that R is non- $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}$ - σ-bounded, in particular, not σ-bounded!

Indeed suppose otherwise. Then there is $x \in X^{\prime}$ such that $R \subseteq(W)_{x}$. But then $f(x) \in(W)_{x}$, which contradicts the choice of f.

Thus indeed R is non- $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}$ - σ-bounded. It follows by the inductive hypothesis that there exists a $\left\{\mathrm{F}_{2}, \ldots, \mathrm{~F}_{n+1}\right\}$-superperfect set $P \subseteq R$. And P is pairwise F_{1}-inequivalent since so is R. We conclude that P is even $\left\{F_{1}, \ldots, F_{n+1}\right\}$-superperfect, which leads to (II) of the theorem.

It is an interesting problem to figure out whether Theorem 8.1 is true for a countable infinite family of equivalence relations (as in Lemma 6.2). The inductive proof presented above is of little help, of course. Another problem is to figure out whether the theorem still holds for Π_{1}^{1} equivalence relations, as the classical Silver dichotomy does. This is open even for the case of one Π_{1}^{1} equivalence relation, since the background result, Proposition 8.2, does not cover this case. And finally we don't know whether Theorem 8.1 can be strengthened to yield the existence of sets free (as in Proposition 8.2) for a given (finite or countable) collection of Borel sets.

It remains to note that Theorem 8.1 (in its relativized form) implies the following theorem, perhaps, not known previously in such a generality.

Theorem 8.4 Suppose that F_{1}, \ldots, F_{n} are Borel equivalence relations on a Polish space \mathbb{X}, and $A \subseteq \mathbb{X}$ is a Σ_{1}^{1} set. Then either A is $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded, or there exists an $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}$-superperfect set $P \subseteq A$.

Yet the case $n=1$ is known in the form of the following (not yet published) superperfect dichotomy theorem of Zapletal:

Theorem 8.5 If E be a Borel equivalence relation on \mathscr{N} and $A \subseteq \mathscr{N}$ is a Σ_{1}^{1} set then either A is covered by countably many E-classes and a σ-bounded set or there is a superperfect pairwise E -inequivalent set $P \subseteq A$.

Theorem 8.5 can be considered as a "superperfect" version of Silver's dichotomy (cf. [19] or [6, 10.1]), saying that if E is a Borel equivalence relation then either the domain of E is a union of countably many E-classes or there is a perfect pairwise E-inequivalent set $Y \subseteq D$.

9 The case of Σ_{2}^{1} sets: preliminaries

In view of the counterexamples in Section 5, one can expect that positive results for Σ_{2}^{1} sets similar to Theorems 3.1, 8.1, and 3.2 should be expected in terms of ω_{1}-unions of compact sets. And indeed using a determinacy-style argument, Kechris proved in [8] the following theorem, presented here in a somewhat abridged form.

Theorem 9.1 If $A \subseteq \mathscr{N}$ is a Σ_{2}^{1} set then one of the following two claims (I), (II) holds:
(I) A is \mathbf{L} - σ-bounded, in the sense that it is covered by the union of all sets $[T]$, where $T \in \mathbf{L}$ is a compact tree 2 (hence not necessarily a countable union)—or equivalently, for each $x \in A$ there is $y \in \mathscr{N} \cap \mathbf{L}$ with $x \leq^{*} y$, where \leq^{*} is the eventual domination order on \mathscr{N},
(II) there is a superperfect set $P \subseteq A$.

Our next goal is to generalise this result in the directions of Theorem 8.1. We are going to change superperfect sets in (II) by $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}$-superperfect sets, where $\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}$ is a given collection of Δ_{1}^{1} equivalence relations. As for (I), one would naturally look for a condition like: for each $x \in A$, either there is $y \in \mathscr{N} \cap \mathbf{L}$ with $x \leq^{*} y$, or there is $j=1, \ldots, n$ and an "L-presented" F_{j}-equivalence class containing x, whatever being " L -presented" would mean. The following example shows that the most elementary definition of "L-presented" as "containing a constructible element" fails.

Example 9.2 Let F be the equivalence relation of equality of countable sets of reals. That is, its domain is the set \mathscr{N}^{ω} of all infinite sequences of reals, and for $x, y \in \mathscr{N}^{\omega}, x \mathrm{~F} y$ iff $\operatorname{ran} x=\operatorname{ran} y$. Let us work in a $\operatorname{Coll}\left(\omega_{1}^{\mathbf{L}}\right)$-generic extension $\mathbf{L}[f]$ of \mathbf{L}, where $f: \omega \xrightarrow{\text { onto }} \omega_{1}^{\mathbf{L}}$ is a generic collapse map. Let A consist of all $x \in \mathscr{N}^{\omega}$ such that ran x (a set of reals) belongs to \mathbf{L} (but x itself does not necessarily belong to \mathbf{L}). Then A is Σ_{2}^{1} in $\mathbf{L}[f]$. Moreover if $x \in A$ then the F -class $[x]_{\mathrm{F}}$ is not σ-bounded, and the quotient A / F (the set of all F-classes inside A) is uncountable in $\mathbf{L}[f]$.

We believe that there is no perfect (let alone superperfect) pairwise F-inequivalentset $P \subseteq A$ in $\mathbf{L}[f]$, which is quite a safe conjecture in view of the results in [2]. Yet to make the example self-contained let us add to $\mathbf{L}[f]$ a set C of $\aleph_{3}^{\mathbf{L}}=\aleph_{2}^{\mathbf{L}[f]}$ Cohen reals. By a simple cardinality argument, there are no perfect pairwise F-inequivalent sets $P \subseteq A$ in $\mathbf{L}[f, C]$.

However, in $\mathbf{L}[f, C]$, the quotient A / F has uncountably many particular F -classes which are non- σ-bounded and even non-L- σ-bounded in the sense of (I) above, but contain no constructible elements. Thus A neither contains an F -superperfect subset nor satisfies the condition that for each $x \in A$, either there is $y \in \mathscr{N} \cap \mathbf{L}$ with $x \leq^{*} y$, or there is an F-equivalence class containing x and containing a constructible element.

Our model for "L-presented" will be somewhat more complex than just "containing a constructible element". It will be based on a certain uniform version of Δ_{1}^{1}, with ordinals as background parameters.

Let WO $\subseteq \mathscr{N}$ be the Π_{1}^{1} set of all codes of countable (including finite) ordinals, and if $\xi<\omega_{1}$ then let $\mathrm{WO}_{\xi}=\{w \in \mathrm{WO}: w \operatorname{codes} \xi\}$.

Definition 9.3 A Σ_{2}^{1} map $h: \mathscr{N} \rightarrow \mathscr{N}$ is absolutely total if it remains total in any set-generic extension of the universe. In other words, it is required that there is a Σ_{2}^{1} formula $\sigma(\cdot, \cdot)$ such that $h=\{\langle x, y\rangle: \sigma(x, y)\}$ and the sentence $\forall x \exists y \sigma(x, y)$ is forced by any set forcing.

A total but not absolutely total map can be defined in \mathbf{L} by letting $h(x)$ be the Gödel-least $w \in$ WO such that x appears at the ξ-th step of the Gödel construction, where $\xi<\omega_{1}$ is the ordinal coded by w.

Definition 9.4 (1) Suppose that $\xi<\omega_{1}$. A set $X \subseteq \mathscr{N}$ is essential $\Sigma_{n}^{1}(\xi)$ if there is a Σ_{n}^{1} formula $\varphi(x, w)$ such that $X=\{x \in \mathscr{N}: \varphi(x, w)\}$ for every $w \in \mathrm{WO}_{\xi}$. Essential $\Pi_{n}^{1}(\xi)$ sets are defined similarly, while an essential $\Delta_{n}^{1}(\xi)$ set is any set both essential $\Sigma_{n}^{1}(\xi)$ and essential $\Pi_{n}^{1}(\xi)$.
(2) A set X is essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$ if there is an absolutely total Σ_{2}^{1} map h, a Σ_{1}^{1} formula $\chi(\cdot, \cdot)$, and a Π_{1}^{1} formula $\chi^{\prime}(\cdot, \cdot)$, such that if $w \in \mathbf{W O}_{\xi}$ then $X=\{x \in \mathscr{N}: \chi(x, h(w))\}=\left\{x \in \mathscr{N}: \chi^{\prime}(x, h(w))\right\}$.

Cf. Section 11 for more on essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$ sets. In particular we'll show that those sets admit a direct Borel coding with codes in \mathbf{L}.

10 The case of Σ_{2}^{1} sets: the result

Here we prove a theorem which generalizes Theorem 9.1. If F is an equivalence relation on \mathscr{N} then let a $\sigma-\mathrm{F}$ class be any finite or countable union of F-equivalence classes.

Theorem 10.1 Assume that $n<\omega, \mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}$ are Δ_{1}^{1} equivalence relations on \mathscr{N} and $A \subseteq \mathscr{N}$ is a Σ_{2}^{1} set. Then we have one of the following:

[^2](I) A is $\mathbf{L}-\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded, in the sense that for each $x \in A$:

- either there is $y \in \mathscr{N} \cap \mathbf{L}$ such that $x \leq^{*} y$,
- or there is $j=1, \ldots, n$ and a $\sigma-\mathrm{F}_{j}$-class C which contains x and is essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$ for some $\xi<\omega_{1} ;$
(II) there exists an $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}$-superperfect set $P \subseteq A$.

The "or" option in (I) of Theorem 10.1 leaves a certain sense of dissatisfaction since one would rather look for coverage by F_{j}-classes themselves than σ - F_{j}-classes. Cf . Section 12 on resolution of σ - F_{j}-classes into appropriately definable F_{j}-classes, in the context of (I) of the theorem.

Proof. (Based on Theorems 7.1 and 8.1 in key arguments.) First of all, we can w.l.o.g. assume that A is a Π_{1}^{1} set. Indeed, by Kondô's uniformization, A is the projection of a uniform Π_{1}^{1} set $B \subseteq \mathscr{N} \times 2^{\omega}$. For $\langle x, a\rangle,\left\langle x^{\prime}, a^{\prime}\right\rangle$ being pairs in $\mathscr{N} \times 2^{\omega}$, let $\langle x, a\rangle \mathrm{F}_{j}^{\prime}\left\langle x^{\prime}, a^{\prime}\right\rangle$ iff $x \mathrm{~F}_{j} x^{\prime}$. If Theorem 10.1 holds for B and $\mathrm{F}_{1}^{\prime}, \ldots, \mathrm{F}_{n}^{\prime}$ (with $\langle x, a\rangle \leq^{*} y$ iff $x \leq^{*} y$ in (I)) then quite clearly it holds for A and $\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}$.

Thus let A be a Π_{1}^{1} set, and let $A=\bigcup_{\xi<\omega_{1}} A^{\xi}$ be the ordinary decomposition of A into pairwise disjoint Borel sets A^{ξ} (called constituents). There is a Σ_{1}^{1} formula $\beta(w, x)$ and a Π_{1}^{1} formula $\beta^{\prime}(w, x)$ such that
(*) if $\xi<\omega_{1}$ and $w \in \mathrm{WO}_{\xi}$ then $A^{\xi}=\{x: \beta(w, x)\}=\left\{x: \beta^{\prime}(w, x)\right\}$ is a Borel set, and in fact even set essential $\Delta_{1}^{1}(\xi)$.
Case A : There is an ordinal $\xi<\omega_{1}$ such that A_{ξ} is not $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded. Then we have (II) of the theorem by Theorem 8.1.

Case B: All sets A_{ξ} are $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded. Then, by Theorem 7.1, for each ξ there exist Borel sets $Y_{1}^{\xi}, \ldots, Y_{n}^{\xi}, X_{n+1}^{\xi} \subseteq \mathscr{N}$ satisfying (i), (ii), (iii) of Theorem 7.1 for $X=A^{\xi}$-in particular, each set Y_{j}^{ξ} is a countable union of F_{j}-equivalence classes, each set X_{n+1}^{ξ} is σ-bounded, and $A^{\xi} \subseteq Y_{1}^{\xi} \cup \cdots \cup Y_{n}^{\xi} \cup X_{n+1}^{\xi}$.

Our initial plan was to prove that the sets Y_{j}^{ξ} and X_{n+1}^{ξ} are essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$, and moreover, each set X_{n+1}^{ξ} (and in fact any set both essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$ and σ-bounded) is \mathbf{L} - $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded by virtue of exclusively the "either" option in (I) of the theorem. The "moreover" claim was based on metamathematical product forcing argument, similar to the one used in the proof of Lemma 8.3. The anonymous referee suggested another argument of more conventional sort, which we present here with thanks.

Coming back to the proof of Theorem 7.1 with the given set $X=X(w)=\{x \beta(w, x)\}$ and $w \in \mathscr{N}$ being an arbitrary parameter, we observe that the argument yields a Δ_{2}^{1} function $Q^{\prime}: \mathscr{N} \rightarrow \mathscr{N}$ such that
(i) Q^{\prime} is absolutely total Σ_{2}^{1} —since it is defined in n steps, such that each step is governed by a combination of Σ_{1}^{1} and Π_{1}^{1} formulas;
(ii) if $\xi<\omega_{1}$ and $w \in \mathrm{WO}_{\xi}$, then $X_{n+1}(w)=X_{n+1}^{\xi}$;
(iii) if $\xi<\omega_{1}$ and $w \in \mathrm{WO}_{\xi}$ then $X_{n+1}(w)$ is $\Sigma_{1}^{1}\left(Q^{\prime}(w)\right)$;
(iv) moreover, there is a single Σ_{1}^{1}-set $U \subseteq \mathscr{N} \times \mathscr{N}$ such that $X_{n+1}(w)=\left\{x:\left\langle Q^{\prime}(w), x\right\rangle \in U\right\}$ whenever $\xi<\omega_{1}$ and $w \in \mathrm{WO}_{\xi}$.
It immediately follows that $B=\bigcup_{\xi<\omega_{1}} X_{n+1}^{\xi}=\bigcup_{w \in \mathrm{WO}} X_{n+1}(w)$ is a Σ_{2}^{1} set. Therefore, by Theorem 9.1, either B is \mathbf{L} - σ-bounded as in (I) of Theorem 9.1, or there is a superperfect set $P \subseteq B$. Thus to prove Theorem 10.1 it remains to check that the "or" option here definitely fails.

Suppose towards the contrary that $S \subseteq B$ is a superperfect set. Then $S \subseteq A$, and hence, by the known properties of constituents, there is an ordinal $\xi<\omega_{1}$ such that $S \subseteq A^{<\xi}=\bar{\bigcup}_{\eta<\xi} A^{\eta}$. Then obviously $S \subseteq$ $B^{<\xi}=\bigcup_{\eta<\xi} X_{n+1}^{\eta}$. However each set X_{n+1}^{η} is σ-bounded by the above, and hence the set $B^{<\xi}$ is σ-bounded as well, so it cannot contain a superperfect subset, as required.

11 The case of Σ_{2}^{1} sets: Borel coding and absoluteness

Each essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$ set X is Borel, hence, it admits a Borel code. Moreover, if X is essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$ via an absolutely total Σ_{2}^{1} map h, and $w \in \mathrm{WO}_{\xi}$, then X admits a Borel code in $\mathbf{L}[w]$. Our next goal will be
to show that such a set X admits a Borel code—in a certain generalized sense which allows uncountable Borel operations-even in \mathbf{L}.

Let $\operatorname{Ord}^{<\omega}$ be the class of all strings (finite sequences) of ordinals. If $s \in \operatorname{Ord}^{<\omega}$ and $\xi \in \operatorname{Ord}$ then $s^{\curvearrowright} \xi$ denotes the string s extended by ξ; if $s \in \operatorname{Ord}^{<\omega}$ then $\operatorname{lh} s$ is the length of s; if $m<\operatorname{lh} s$ then $s \upharpoonright m$ is the restricted string. By Λ we denote the empty string; $\operatorname{lh} \Lambda=0$ and $\Lambda=s \upharpoonright 0$ for any $s \in \operatorname{Ord}^{<\omega}$.

A set $T \subseteq \operatorname{Ord}^{<\omega}$ is a tree if $T \neq \varnothing$, and for any $s \in T$ and $m<\operatorname{lh} s$ we have $s \upharpoonright m \in T$. Then let $\sup T$ be the least ordinal λ such that $T \subseteq \lambda^{<\omega}$, and let $\operatorname{Max} T$ be the set of all \subseteq-maximal elements $s \in T$. Obviously $\Lambda \in T$ for any tree T.

A tree T is well-founded iff it contains no infinite branches. In this case, a rank function $s \longmapsto|s|_{T} \in$ Ord can be associated with T so that $|t|_{T}=\sup _{t \sim \xi \in T}\left(\left|t^{\wedge} \xi\right|_{T}+1\right)$ (the least ordinal strictly bigger than all ordinals of the form $\left|t^{\wedge} \xi\right|_{T}$, where $\xi \in$ Ord and $t^{\wedge} \xi \in T$) for each $t \in T$. In particular $|s|_{T}=0$ for any $s \in \operatorname{Max} T$. Let $|T|=|\Lambda|_{T} \quad($ the rank of $T)$.

Definition 11.1 Let \mathbb{K} be the class of all generalized Borel codes in \mathbf{L}, i.e., all pairs $c=\langle T, d\rangle=\left\langle T_{c}, d_{c}\right\rangle \in \mathbf{L}$, where $T \subseteq \operatorname{Ord}^{<\omega}$ is a well-founded tree and $d \subseteq T \times \omega^{<\omega}$. In this case, a set $[T, d, s] \subseteq \mathscr{N}$ can be defined for each $s \in T$ by induction on $|s|_{T}$ so that

$$
\begin{aligned}
& \text { if } s \in \operatorname{Max} T \text { then }[T, d, s]=\mathscr{N} \backslash \bigcup_{\langle s, u\rangle \in d} \mathscr{N}_{u} \text {; } \\
& \text { if }|s|_{T}>0 \text { then }[T, d, s]=\mathscr{N} \backslash \bigcup_{s \curvearrowright \xi \in T}\left[T, d, s^{\curvearrowright} \xi\right] .
\end{aligned}
$$

Recall that $\mathscr{N}_{u}=\{a \in \mathscr{N}: u \subset a\}$ is a Baire interval. Finally we put $[T, d]=[T, d, \Lambda]$.
If $\langle T, d\rangle \in \mathbb{K}$ and $\sup T<\omega_{1}$ then $[T, d]$ is a Borel set in $\Pi_{1+|T|}^{0}$. We stress that only constructible codes are considered.

Definition 11.2 If $\rho<\omega_{1}$ then let $\mathbb{K}_{\rho} \in \mathbf{L}$ be the set of all codes $\langle T, d\rangle \in \mathbb{K}$ such that $|T| \leq \rho$ and $\sup T \leq \omega_{\rho}^{\mathbf{L}} .\left(\right.$ Not necessarily $\left.\sup T<\omega_{1}.\right)$ Accordingly let $\left[\mathbb{K}_{\rho}\right]=\left\{[T, d]:\langle T, d\rangle \in \mathbb{K}_{\rho}\right\}$.

Any essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$ set is essential $\Delta_{2}^{1}(\xi)$, and hence $\Delta_{1}^{\mathrm{HC}}(\xi)$. (Recall that HC is the set of all hereditarily countable sets.) This simple fact will allow us to make use of the following result, explicitly proved in [4, Lemma 4] on the base of ideas and technique developed in [21, 22].

Proposition 11.3 Let $X, Y \subseteq \mathscr{N}$ are two disjoint sets in $\Sigma_{1}^{\mathrm{HC}}\left(\omega_{1}\right)$, i.e., Σ_{1}^{HC} with any finite number of parameters in ω_{1}. Suppose that $\rho<\omega_{1}^{\mathrm{L}}$ and X is $\boldsymbol{\Pi}_{1+\rho}^{0}$-separable from Y. Then there is a separating set in $\left[\mathbb{K}_{\rho}\right]$. In particular if $X \subseteq \mathscr{N}$ is a set in $\Delta_{1}^{\mathrm{HC}} \cap \boldsymbol{\Pi}_{1+\rho}^{0}$ then $X \in\left[\mathbb{K}_{\rho}\right]$.

For instance, if $\rho=0$, so that $\Pi_{1+\rho}^{0}=$ closed sets, then the result takes the form: any closed Δ_{1}^{HC} set $X \subseteq \mathscr{N}$ has a code in

$$
\left.\mathbb{K}_{0}=\{\langle T, d\rangle \in \mathbb{K}:|T|=0 \text { (hence just } T=\{\Lambda\}) \wedge \sup T \leq \omega\right\}
$$

but this can be easily established directly.
Thus sets essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi), \xi<\omega_{1}$, even those essential $\Delta_{2}^{1}(\xi)$, admit a straight Borel coding by (not necessarily countable) codes in \mathbf{L}. We'll show now that such a coding can be chosen in a certain absolute way.

Remark 11.4 Suppose that $\xi<\omega_{1}$ and a set $X \subseteq \mathscr{N}$ is essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$, via an absolutely total Σ_{2}^{1} map h and formulas χ, χ^{\prime} as in Definition 9.4(2). Then the following is true in the ground universe \mathbf{V} :
(a) if $v, w \in \mathrm{WO}_{\xi}$ and $x \in \mathscr{N}$ then

$$
\chi(x, h(v)) \Longleftrightarrow \chi(x, h(w)) \Longleftrightarrow \chi^{\prime}(x, h(v)) \Longleftrightarrow \chi^{\prime}(x, h(w))
$$

If we eliminate h by a formula σ as in Definition 9.3 then (a) becomes a Π_{2}^{1} sentence. Therefore (a) is true in any generic extension $\mathbf{V}[G]$ of \mathbf{V} by Shoenfield, and moreover, in any generic extension $\mathbf{L}[G]$ of \mathbf{L} such that $\xi<\omega_{1}^{\mathbf{L}[G]}$. This allows us to unambiguously define extensions $h^{\mathbf{V}[G]}$ of h (a total map) and $X^{\mathbf{V}[G]}$ of X to $\mathbf{V}[G]$, using the same formulas, so that $X^{\mathbf{V}[G]}$ is an essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$ set in $\mathbf{V}[G]$ still via $h^{\mathbf{V}[G]}, \chi, \chi^{\prime}$. Then, assuming $\xi<\omega_{1}^{\mathbf{L}[G]}$, we define associated restrictions $h^{\mathbf{L}[G]}=h^{\mathbf{V}[G]} \cap \mathbf{L}[G]$ and $X^{\mathbf{L}[G]}=X^{\mathbf{V}[G]} \cap \mathbf{L}[G]$ to $\mathbf{L}[G]$, so that $X^{\mathbf{L}[G]}$ is an essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$ set in $\mathbf{L}[G]$ via $h^{\mathbf{L}[G]}, \chi, \chi^{\prime}$ as well.

And if E is a Δ_{1}^{1} equivalence relation in \mathbf{V}, then, even easier, we define an extension $\mathrm{E}^{\mathbf{V}[G]}$ of E to $\mathbf{V}[G]$, using the same formulas which define E , so that $\mathrm{E}^{\mathrm{V}}[G]$ is a Δ_{1}^{1} equivalence relation in $\mathrm{V}[G]$ by Shoenfield, and then define $\mathrm{E}^{\mathbf{L}[G]}=\mathrm{E}^{\mathbf{V}[G]} \cap \mathbf{L}[G]\left(\right.$ a Δ_{1}^{1} equivalence relation in $\left.\mathbf{L}[G]\right)$.

Definition 11.5 Let $\xi, \rho<\omega_{1}$. An essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$ set $X \subseteq \mathscr{N}$ absolutely belongs to $\left[\mathbb{K}_{\rho}\right]$ if there is a code $\langle T, d\rangle \in \mathbb{K}_{\rho}$ such that we have $X^{\mathbf{V}[G]}=[T, d]$ in any set generic extension $\mathbf{V}[G]$ of the universe \mathbf{V}. Note that then by Shoenfield the equality $X^{\mathbf{L}[G]}=[T, d]$ also holds in any generic extension $\mathbf{L}[G]$ of \mathbf{L} such that $\xi<\omega_{1}^{\mathbf{L}[G]}$.

Lemma 11.6 Suppose that $\xi<\omega_{1}, \rho<\omega_{1}^{\mathrm{L}}$, and a set $X \subseteq \mathscr{N}$ is essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$. Then X absolutely belongs to $\left[\mathbb{K}_{\rho}\right]$.

Proof. Let a map $f: \omega \xrightarrow{\text { onto }} \omega_{\rho+1}^{\mathbf{L}}$ be collapse generic over \mathbf{V}, the ground set universe. Let $X^{\mathbf{V}[f]} \in$ $\mathbf{V}[f]$ be the extension of X to $\mathbf{V}[f]$, as above. Then $X^{\mathbf{V}[f]}$ is essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$ in $\mathbf{V}[f]$, and hence by Proposition 11.3 there is a code $\langle T, d\rangle \in \mathbb{K}_{\rho}$ such that $X^{\mathbf{V}[f]}=[T, d]$ in $\mathbf{V}[f]$. To prove, that this code witnesses that X absolutely belongs to $\left[\mathbb{K}_{\rho}\right]$, consider any generic extension $\mathbf{V}[G]$. It can be assumed that G is generic even over $\mathbf{V}[f]$.

Let $X^{\mathbf{V}[G]}, X^{\mathbf{V}[f, G]}$ be the extensions of X (a set in \mathbf{V}) to resp. $\mathbf{V}[G], \mathbf{V}[f, G]$ (cf. Remark 11.4). Then $\langle T, d\rangle$ is a countable Borel code in $\mathbf{V}[f]$ and in $\mathbf{V}[f, G]$ by the choice of f. Therefore the equality $X^{\mathbf{V}[f]}=[T, d]$ can be expressed by a Shoenfield-absolute formula. We conclude that $X^{\mathbf{V}[f, G]}=[T, d]$ holds in $\mathbf{V}[f, G]$, too, and then $X^{\mathbf{V}[G]}=[T, d]$ is true in $\mathbf{V}[G]$ as well since easily $X^{\mathbf{V}[G]}=X^{\mathbf{V}[f, G]} \cap \mathbf{V}[G]$ and $[T, d]^{\mathbf{V}[G]}=$ $[T, d]{ }^{\mathbf{V}[f, G]} \cap \mathbf{V}[G]$.

12 The case of Σ_{2}^{1} sets: resolution of $\boldsymbol{\sigma}$-classes

Here our goal will be to resolve σ-classes, as in the "or" option of (I) of Theorem 10.1, into countable unions of single "L-definable" equivalence classes. We are going to prove the next theorem in this section.

Theorem 12.1 Assume that, in the ground set universe \mathbf{V},
(A) $\rho<\omega_{1}^{\mathrm{L}}, \xi<\omega_{1}, \mathrm{E}$ is an equivalence relation on \mathscr{N} in $\Delta_{1}^{1} \cap \Pi_{1+\rho}^{0}, \varnothing \neq C \subseteq \mathscr{N}$ is a σ-E-class and a set essential $\left(\Delta_{1}^{1} / \Delta_{2}^{1}\right)(\xi)$.

Then each E -class $X \subseteq C$ is a set in $\left[\mathbb{K}_{\rho}\right]$.
Corollary 12.2 Suppose that, in Theorem 10.1, additionally, $\rho<\omega_{1}^{\mathbf{L}}$ and each relation F_{j} belongs to $\boldsymbol{\Pi}_{1+\rho}^{0}$. Then (I) of Theorem 10.1 can be reformulated as follows:
(I) A is \mathbf{L} - $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}$ - σ-bounded, in the sense that for each $x \in A$:

- either there is $y \in \mathscr{N} \cap \mathbf{L}$ such that $x \leq^{*} y$,
- or there is an index $j=1, \ldots, n$ and $a \mathrm{~F}_{j}$-class X which contains x and belongs to $\left[\mathbb{K}_{\rho}\right]$.

The ordinal $\omega_{\rho}^{\mathrm{L}}$ as the measure of borelness in Definition 11.2 and subsequently in (I) of Corollary 12.2, is a point of certain dissatisfaction. Can it be reduced to considerably narrower trees (of the same height)? Examples given in [17] and more recently in [1] allow to conjecture that the value $\omega_{\rho}^{\mathbf{L}}$ cannot be reduced in any essential way.

A similar question can be addressed to the inequality $\omega_{\rho+1}^{\mathrm{L}}<\omega_{1}$ in the next remark.
Remark 12.3 If $\omega_{\rho+1}^{\mathbf{L}}<\omega_{1}$ then both $\mathscr{N} \cap \mathbf{L}$ and \mathbb{K}_{ρ} are countable sets, and hence the number of points y involved in (I) of Corollary 12.2 via the "either" option, and the number of classes X involved in (I) of Corollary 12.2 via the "or" option is countable, too-so that condition (I) of Theorem 10.1 can be replaced by just the $\left\{\mathrm{F}_{1}, \ldots, \mathrm{~F}_{n}\right\}-\sigma$-boundedness of the set A.

We now move to the proof of Theorem 12.1.
Proof. Assume that ρ, ξ, E, C are as in (A) above. Then C is $\Sigma_{1+\rho+1}^{0}$, therefore by Lemma 11.6, we conclude that that
(B) there is a code $\left\langle T_{0}, d_{0}\right\rangle \in \mathbb{K}_{\rho+2}$ in \mathbf{V} such that, in any set generic extension $\mathbf{V}[G]$ of $\mathbf{V},\left[T_{0}, d_{0}\right]=$ $C^{\mathbf{V}[G]}$, and hence by Shoenfield $\left[T_{0}, d_{0}\right]$ is a $\sigma-\mathrm{E}^{\mathbf{V}[G]}$-class in $\mathbf{V}[G]$ containing only those $\mathrm{E}^{\mathbf{V}[G]}$-classes already presented in $\left[T_{0}, d_{0}\right] \cap$.

We begin the proof with a few definitions. If $\langle T, d\rangle$ and $\left\langle T^{\prime}, d^{\prime}\right\rangle$ are codes in \mathbb{K} then let $\langle T, d\rangle \preccurlyeq\left\langle T^{\prime}, d^{\prime}\right\rangle$ mean that $[T, d] \subseteq\left[T^{\prime}, d^{\prime}\right]$ holds in any set generic extension $\mathbf{L}[G]$ of \mathbf{L}. Then, using appropriate collapse extensions, we conclude by Shoenfield, that $[T, d] \subseteq\left[T^{\prime}, d^{\prime}\right]$ also holds in any set generic extension $\mathbf{V}[G]$ of the ground universe \mathbf{V}, including \mathbf{V} itself. A code $\langle T, d\rangle \in \mathbb{K}$ is "essentially non-empty" if $[T, d] \neq \varnothing$ in at least one set-generic extension of \mathbf{L}. By Shoenfield, this is equivalent to $[T, d] \neq \varnothing$ in some/any extension $\mathbf{L}[G]$ with $\sup T<\omega_{1}^{\mathbf{L}[G]}$.

Definition 12.4 Let $\mathbb{P} \in \mathbf{L}$ be the forcing notion which consists of all "essentially non-empty" codes $\langle T, d\rangle \in$ \mathbb{K} such that $\langle T, d\rangle \preccurlyeq\left\langle T_{0}, d_{0}\right\rangle$ and $\sup T \leq \omega_{\rho+2}^{\mathbf{L}}$. We order \mathbb{P} by \preccurlyeq, and $\langle T, d\rangle \preccurlyeq\left\langle T^{\prime}, d^{\prime}\right\rangle$ is understood as $\langle T, d\rangle$ being a stronger forcing condition.

In particular condition $\left\langle T_{0}, d_{0}\right\rangle$ itself (cf. (A)) belongs to \mathbb{P}.
Lemma 12.5 \mathbb{P} forces a real over \mathbf{L}, so that if a set $G \subseteq \mathbb{P}$ is generic over \mathbf{L} then the intersection $\bigcap_{\langle T, d\rangle \in G}[T, d]$ contains a single real in $\mathbf{L}[G]$.

Proof. If $u \in \omega^{<\omega}$ is a string of length $n=\operatorname{lh} u$ then let $T^{u}=\{\Lambda\}$ and let d^{u} consist of all pairs $\langle\Lambda, v\rangle$ such that $v \in \omega^{<\omega}, v \neq u, \operatorname{lh} v=n$. Then $\left\langle T^{u}, d^{u}\right\rangle \in \mathbb{P}$ and $\left[T^{u}, d^{u}\right]=\mathscr{N}_{u}=\{a \in \mathscr{N}: u \subset a\}$. By the genericity, for any n there is a inuque $u=u[n] \in \omega^{<\omega}$ such that $\operatorname{lh} u[n]=n$ and $\left\langle T^{u[n]}, d^{u[n]}\right\rangle \in G$, and in addition $u[n] \subset u[m]$ whenever $n<m$. It follows that there is a real $x_{G}=\bigcup_{n} u[n] \in \mathbf{L}[G]$ such that $x_{G} \upharpoonright n=u[n]$, and hence $x_{G} \in\left[T^{u[n]}, d^{u[n]}\right], \forall n$. We claim that if $\langle T, d\rangle \in \mathbb{P}$ then $\langle T, d\rangle \in G$ iff $x_{G} \in[T, d]$ in $\mathbf{L}[G]$; this obviously proves the lemma.

We prove the claim by induction on the rank $|T|$. Suppose that $|T|=0$, so that $T=\{\Lambda\}, d \subseteq\{\Lambda\} \times \omega^{<\omega}$, and $[T, d]=\mathscr{N} \backslash \bigcup_{v \in U} \mathscr{N}_{v}$, where $U=\left\{v \in \omega^{<\omega}:\langle\Lambda, v\rangle \in d\right\}$. We assert that
(1) any $\left\langle T^{\prime}, d^{\prime}\right\rangle \in \mathbb{P}$ is compatible, in \mathbb{P}, either with $\langle T, d\rangle$ or with one of the codes $\left\langle T^{v}, d^{v}\right\rangle$, where $v \in U-$ therefore either $\langle T, d\rangle$ or one of the codes $\left\langle T^{v}, d^{v}\right\rangle, v \in U$, belongs to G.
Indeed we have $[T, d]=\mathscr{N} \backslash \bigcup_{v \in U}\left[T^{v}, d^{v}\right]$ in any universe.
With (1) in hands, if $v \in U$ and $\left\langle T^{v}, d^{v}\right\rangle \in G$ then on the one hand $\langle T, d\rangle \notin G$ by (1), and on the other hand, obviously $v=u[n]$, where $n=\operatorname{lh} v$, so that $x_{G} \in\left[T^{v}, d^{v}\right]$ and $x_{G} \notin[T, d]$. Conversely, if there is no $v \in U$ with $\left\langle T^{v}, d^{v}\right\rangle \in G$ then on the one hand $\langle T, d\rangle \in G$ by (1), and on the other hand, $x_{G} \notin \bigcup_{v \in U}\left[T^{v}, d^{v}\right]$, so that $x_{G} \in[T, d]$.

To carry out the step, suppose that $|T|>0$. Let $\Xi=\{\xi:\langle\xi\rangle \in T\}$ (where $\langle\xi\rangle$ is a one-term string). If $\xi \in \Xi$ then let

$$
T^{\xi}=\left\{s \in \operatorname{Ord}^{<\omega}: \xi^{\wedge} s \in T\right\} \quad \text { and } \quad d^{\xi}=\left\{\langle s, v\rangle\left\langle\xi^{\wedge} s, v\right\rangle \in d\right\}
$$

Thus each $\left\langle T^{\xi}, d^{\xi}\right\rangle$ is a code in $\mathbb{P},\left|T^{\xi}\right|<|T|$, and $[T, d]=\mathscr{N} \backslash \bigcup_{\xi \in \Xi}\left[T^{\xi}, d^{\xi}\right]$ in any universe containing $\langle T, d\rangle$. Similarly to (1) above, we have
(2) any $\left\langle T^{\prime}, d^{\prime}\right\rangle \in \mathbb{P}$ is compatible, in \mathbb{P}, either with $\langle T, d\rangle$ or with one of the codes $\left\langle T^{\xi}, d^{\xi}\right\rangle$, where $\xi \in \Xi$ therefore either $\langle T, d\rangle$ or one of the codes $\left\langle T^{\xi}, d^{\xi}\right\rangle, \xi \in \Xi$, belongs to G.
Now, if $\xi \in \Xi$ and $\left\langle T^{\xi}, d^{\xi}\right\rangle \in G$ then on the one hand $\langle T, d\rangle \notin G$ by (2), and on the other hand, $x_{G} \in\left[T^{\xi}, d^{\xi}\right]$ by the inductive hypothesis, and hence $x_{G} \notin[T, d]$. Conversely, if there is no $\xi \in \Xi$ with $\left\langle T^{\xi}, d^{\xi}\right\rangle \in G$ then on the one hand $\langle T, d\rangle \in G$ by (2), and on the other hand, $x_{G} \notin \bigcup_{\xi \in \Xi}\left[T^{\xi}, d^{\xi}\right]$, by the inductive hypothesis, so that $x_{G} \in[T, d]$.

Reals of the form $x_{G}=$ the only element of $\bigcap_{\langle T, d\rangle \in G}[T, d]$ in $\mathbf{L}[G]$, where $G \subseteq \mathbb{P}$ is \mathbb{P}-generic, e.g., over \mathbf{V}, will be called \mathbb{P}-generic over \mathbf{V}, too. Let \mathbf{x} be a canonical \mathbb{P}-name for x_{G}. Let $\mathbf{x}_{\text {left }}, \mathbf{x}_{\text {right }}$ be canonical $(\mathbb{P} \times \mathbb{P})$-names for the left and the right copies of x_{G}.

Let \underline{E} be a canonical \mathbb{P}-name for the extension $\mathrm{E}^{\mathbf{V}[G]}$ or $\mathrm{E}^{\mathbf{L}[G]}$ of E to any class like $\mathbf{L}[G]$ or $\mathbf{V}[G]$, G being generic.

Definition 12.6 A code $\langle T, d\rangle \in \mathbb{P}$ is stable if condition $(\langle T, d\rangle ;\langle T, d\rangle)(\mathbb{P} \times \mathbb{P})$-forces, over \mathbf{L}, that $\mathbf{x}_{\text {left }} \underline{E}$ $\mathbf{X}_{\text {right }}$.

Lemma 12.7 If $\langle T, d\rangle \in \mathbb{P}$ is stable then, in \mathbf{V}, there is an element $y \in C$ such that $\langle T, d\rangle \mathbb{P}$-forces, over V, that \mathbf{x} E y.

Proof. Recall that C contains countably many single E-classes in \mathbf{V}. It easily follows by Shoenfield that the extended set $C^{\mathbf{V}[G]}$ has no new $\mathrm{E}^{\mathbf{V}[G]}$-classes in any extension $\mathbf{V}[G]$ of \mathbf{V}. Thus the contrary assumption leads to a pair of conditions $\left\langle T^{\prime}, d^{\prime}\right\rangle \preccurlyeq\langle T, d\rangle$ and $\left\langle T^{\prime \prime}, d^{\prime \prime}\right\rangle \preccurlyeq\langle T, d\rangle$ in \mathbb{P} and elements $y^{\prime}, y^{\prime \prime} \in C$ in \mathbf{V} such that

$$
\left\langle T^{\prime}, d^{\prime}\right\rangle \mathbb{P} \text {-forces } \mathbf{x} \underline{\mathrm{E}} y^{\prime}, \quad \text { and }\left\langle T^{\prime \prime}, d^{\prime \prime}\right\rangle \mathbb{P} \text {-forces } \mathbf{x} \underline{\mathrm{E}} y^{\prime \prime}-\text { over } \mathbf{V}
$$

and $y^{\prime} \notin y^{\prime \prime}$. To get a contradiction consider a set $G^{\prime} \times G^{\prime \prime},(\mathbb{P} \times \mathbb{P})$-generic over \mathbf{V}, and containing condition $\left(\left\langle T^{\prime}, d^{\prime}\right\rangle ;\left\langle T^{\prime \prime}, d^{\prime \prime}\right\rangle\right)$. Then, on the one hand, the generic reals $x_{G^{\prime}}$ and $x_{G^{\prime \prime}}$ satisfy $x_{G^{\prime}} \mathrm{E}^{\left[G^{\prime}\right]} y^{\prime}$ and $x_{G^{\prime \prime}} \mathrm{E}^{\mathbf{V}\left[G^{\prime}\right]}$ $y^{\prime \prime}$, but on the other hand, $x_{G^{\prime}} \mathrm{E}^{\mathrm{V}\left[G^{\prime}, G^{\prime \prime}\right]} x_{G^{\prime \prime}}$ holds by stability. Therefore $y^{\prime} \mathrm{E} y^{\prime \prime}$, which contradicts to the choice of these reals.

Lemma 12.8 The set of all stable conditions $\langle T, d\rangle \in \mathbb{P}$ is dense in \mathbb{P}.
Proof. By definition card $\mathbb{P}=\omega_{\rho+3}^{\mathbf{L}}$ and $\operatorname{card} \mathscr{P}(\mathbb{P})=\omega_{\rho+4}^{\mathbf{L}}$ in \mathbf{L}. Consider an extension $\mathbf{V}[g]$ by a collapse-generic map $g: \omega \xrightarrow{\text { onto }} \omega_{\rho+4}^{\mathbf{L}}$. Then, in $\mathbf{V}[g]$, there is an enumeration $\left\{D_{n}\right\}_{n<\omega}$ of all dense sets $D \subseteq \mathbb{P} \times \mathbb{P}, D \in \mathbf{L}$.
 for any condition $\langle T, d\rangle \preccurlyeq\left\langle T^{*}, d^{*}\right\rangle$ there are stronger conditions $\left\langle T^{\prime}, d^{\prime}\right\rangle \preccurlyeq\langle T, d\rangle$ and $\left\langle T^{\prime \prime}, d^{\prime \prime}\right\rangle \preccurlyeq\langle T, d\rangle$ such that $\left(\left\langle T^{\prime}, d^{\prime}\right\rangle ;\left\langle T^{\prime \prime}, d^{\prime \prime}\right\rangle\right)(\mathbb{P} \times \mathbb{P})$-forces $\neg \mathbf{x}_{\text {left }} \underline{E} \mathbf{x}_{\text {right }}$ over \mathbf{L}. This allows to define, in $\mathbf{V}[g]$, a family $\left\{\left\langle T_{u}, d_{u}\right\rangle\right\}_{u \in 2^{<\omega}}$ of conditions in \mathbb{P} satisfying
(i) $\left\langle T_{u}, d_{u}\right\rangle=\left\langle T^{*}, d^{*}\right\rangle$,
(ii) $\left\langle T_{u \curvearrowright i}, d_{u \curvearrowright i}\right\rangle \preccurlyeq\left\langle T_{u}, d_{u}\right\rangle$ for each $i=0,1$ and $u \in \omega^{<\omega}$,
(iii) if $u \neq v$ in $2^{<\omega}$ are of length $n+1$ then $\left(\left\langle T_{u}, d_{u}\right\rangle ;\left\langle T_{v}, d_{v}\right\rangle\right) \in D_{n}$,
(iv) if $u \in 2^{<\omega}$ then condition $\left(\left\langle T_{u \wedge 0}, d_{u \wedge 0}\right\rangle ; T_{u \wedge 1}, d_{u \wedge 1}\right)(\mathbb{P} \times \mathbb{P})$-forces $\neg \mathbf{x}_{\text {left }} \underline{E} \mathbf{x}_{\text {right }}$ over \mathbf{L}.

Then, in $\mathbf{V}[g]$, if $a \in 2^{\omega}$ then the intersection $\bigcap_{n}\left[T_{a \upharpoonright n}, d_{a \upharpoonright n}\right]$ contains a single point $x_{a} \in\left[T^{*}, d^{*}\right]$ by Lemma 12.5, and we have $\neg\left(x_{a} \mathrm{E}^{\mathbf{V}[g]} x_{b}\right)$ for all $a \neq b$. But by construction $\left[T^{*}, d^{*}\right]^{\mathbf{V}[g]} \subseteq\left[T_{0}, d_{0}\right]^{\mathbf{V}[g]}=$ $C^{\mathbf{V}[g]}$, so that $C^{\mathbf{V}[g]}$ contains uncountably many $\mathrm{E}^{\mathbf{V}[g]}$-classes in $\mathbf{V}[g]$. Yet this contradicts the assumption that C contains countably many E-classes in \mathbf{V} (cf. the list of our blanket assumptions (A) above), since by Shoenfield the property of being a σ-E-class is preserved under extensions.

Let H be the set of all codes $\langle T, d\rangle \in \mathbb{K}_{\rho}$ such that the $\omega_{\rho+4}^{\mathbf{L}}$-collapse forcing notion $\operatorname{Coll}\left(\omega_{\rho+4}^{\mathbf{L}}\right)=\left(\omega_{\rho+4}^{\mathbf{L}}\right)^{<\omega}$ forces, over \mathbf{L}, that

$$
[T, d] \subseteq\left[T_{0}, d_{0}\right] \text { and }[T, d] \text { is an } \underline{E} \text { - equivalence class, }
$$

where \mathbf{g} is a canonical name for the $\operatorname{Coll}\left(\omega_{\rho+4}^{\mathbf{L}}\right)$-generic map $g: \omega \xrightarrow{\text { onto }} \omega_{\rho+4}^{\mathbf{L}}$.
Lemma 12.9 If $\langle T, d\rangle \in H$ then it is true in the ground set universe \mathbf{V} that $[T, d] \subseteq\left[T_{0}, d_{0}\right]$ and $[T, d]$ is a E-class.

Proof. By definition this is true for $\operatorname{Coll}\left(\omega_{\rho+4}^{\mathbf{L}}\right)$-generic extensions of \mathbf{L}-hence by Shoenfield also for all generic extensions $\mathbf{V}[G]$ in which $\omega_{\rho+4}^{\mathbf{L}}$ is countable, and then, by quite obvious downward absoluteness, for the universe \mathbf{V} itself.

Lemma $12.10 H \neq \varnothing$.
Proof. By Lemma 12.10 there is a stable condition $\left\langle T^{\prime}, d^{\prime}\right\rangle \in \mathbb{P}$. Using an $\omega_{\rho+4}^{\mathbf{L}}$-enumeration of all dense sets $D \subseteq \mathbb{P}$ in \mathbf{L}, we easily get a code $\left\langle T^{*}, d^{*}\right\rangle \in \mathbb{K}$ such that $\sup T^{*} \leq \omega_{\rho+4}^{\mathbf{L}}$ and the equality

$$
\left[T^{*}, d^{*}\right]=\left\{x \in\left[T^{\prime}, d^{\prime}\right]: x \text { is } \mathbb{P} \text {-generic over } \mathbf{L}\right\}
$$

holds in any class $\mathbf{V}[G]$. Lemma 12.7 implies that all elements $x \in\left[T^{*}, d^{*}\right]$ in $\mathbf{V}[G]$ are $\mathrm{E}^{\mathrm{V}[G]}$-equivalent to each other and to some $y^{*} \in C$ (so $y^{*} \in \mathbf{V}$).

Let $g: \omega \xrightarrow{\text { onto }} \omega_{\rho+4}^{\mathbf{L}}$ be a collapse-generic map.
We argue in $\mathbf{V}[g]$. By a simple cardinality argument, $\left[T^{*}, d^{*}\right] \neq \varnothing$ in $\mathbf{V}[g]$, and $\left[T^{*}, d^{*}\right]$ consists of pairwise $\mathrm{E}^{\mathrm{V}[g]}$-equivalent elements by the above. This allows us to define

$$
Z=\left\{z: \exists x \in\left[T^{*}, d^{*}\right]\left(x \mathbb{E}^{\mathbf{V}[g]} z\right)\right\}=\left\{z: \forall x \in\left[T^{*}, d^{*}\right]\left(x \mathrm{E}^{\mathbf{V}[g]} z\right)\right\}
$$

in the universe $\mathbf{V}[g]$, so that it is true in $\mathbf{V}[g]$ that Z is an entire $\mathrm{E}^{\mathbf{V}[g]}$-equivalence class, which includes $\left[T^{*}, d^{*}\right]$, hence, has a non-empty intersection with $\left[T^{\prime}, d^{\prime}\right] \subseteq\left[T_{0}, d_{0}\right]$, therefore $Z \subseteq\left[T_{0}, d_{0}\right]$ as $\left[T_{0}, d_{0}\right]$ is an σ - $\mathrm{E}^{[g]}$ class in $\mathbf{V}[g]$ by (A).

It follows that Z is $\boldsymbol{\Pi}_{1+\rho}^{0}$ in $\mathbf{V}[g]$. Moreover, by the choice of g it is true in $\mathbf{V}[g]$ that $\left\langle T^{*}, d^{*}\right\rangle \in \mathbf{L} \cap \mathrm{HC}$, and hence $\left\langle T^{*}, d^{*}\right\rangle$ is $\Delta_{1}^{\mathrm{HC}}(\eta)$ in $\mathbf{V}[g]$ for an ordinal $\eta<\omega_{1}^{\mathbf{V}[g]}$. (Indeed let η be the first ordinal such that $\left\langle T^{*}, d^{*}\right\rangle$ is the η-th set in the Gödel construction of \mathbf{L}.) Then Z is $\Delta_{1}^{\mathrm{HC}}(\eta)$ in $\mathbf{V}[g]$. Therefore by Proposition 11.3 that there is a code $\langle T, d\rangle \in \mathbb{K}_{\rho}$ such that $Z=[T, d]$ in $\mathbf{V}[g]$. Let us demonstrate that $\langle T, d\rangle \in H$.

Consider a collapse-generic map $g^{\prime}: \omega \xrightarrow{\text { onto }} \omega_{\rho+4}^{\mathbf{L}}$; we can assume that g^{\prime} is $\operatorname{Coll}\left(\omega_{\rho+4}^{\mathbf{L}}\right)$-generic even over $\mathbf{V}[g]$. We have to prove that
(A) in $\mathbf{L}\left[g^{\prime}\right]:[T, d] \subseteq\left[T_{0}, d_{0}\right]$ and $[T, d]$ is an $\mathrm{E}^{\mathbf{L}\left[g^{\prime}\right]}$-equivalence class.

Recall that by construction $Z=[T, d] \subseteq\left[T_{0}, d_{0}\right]$ and $[T, d]$ is an $\mathrm{E}^{\mathbf{V}[g]}$-class in $\mathrm{V}[g]$. But the Borel codes involved are countable in both classes $\mathbf{V}[g]$ and $\mathbf{L}\left[g^{\prime}\right]$. This implies (A) by Shoenfield.

Now we have gathered everything necessary to end the proof of the theorem in a few lines. It suffices to prove that $C=\left[T_{0}, d_{0}\right] \subseteq \bigcup_{\langle T, d\rangle \in H}[T, d]$ in \mathbf{V}. Suppose tovards the contrary that this is not the case.

The set $H \subseteq \mathbb{K}_{\rho}$ belongs to \mathbf{L} and card $H \leq \omega_{\rho+1}^{\mathbf{L}}$ in \mathbf{L}, of course. As $\left\langle T_{0}, d_{0}\right\rangle \in \mathbb{K}_{\rho+2}$, we cal easily define a code $\left\langle T_{1}, d_{1}\right\rangle \in \mathbb{K}_{\rho+2}$ such that absolutely $\left[T_{1}, d_{1}\right]=\left[T_{0}, d_{0}\right] \backslash \bigcup_{\langle T, d\rangle \in H}[T, d]$, and hence $\left[T_{1}, d_{1}\right] \neq \varnothing$ in \mathbf{V}, and still $\left[T_{1}, d_{1}\right]$ is a σ-E-class in \mathbf{V} since so is $C=\left[T_{0}, d_{0}\right]$ while each $[T, d],\langle T, d\rangle \in H$, is a E-class by Lemma 12.9.

Acknowledgements We thank Alekos Kechris, Ben Miller, Marcin Sabok, and Jindra Zapletal, as well as an anonymous referee, for valuable remarks and suggestions.

References

[1] G. Debs and J. Saint Raymond, Borel liftings of Borel sets: some decidable and undecidable statements, Mem. Am. Math. Soc. 876 (2007).
[2] M. Groszek and T. Slaman, A basis theorem for perfect sets, Bull. Symb. Log. 4, 204-209 (1998).
[3] W. Hurewicz, Relativ perfekte Teile von Punktmengen und Mengen (A), Fundam. Math. 12, 78-109 (1928).
[4] V. Kanovei, Undecidable and decidable properties of constituents, Math. USSR Sb. 52(2), 491-519 (1985).
[5] V. Kanovei and V. Lyubetsky, On some classical problems of descriptive set theory, Russ. Math. Surv. 58(5), 839-927 (2003).
[6] V. Kanovei, Borel equivalence relations: classification and structure, University Lecture Series Vol. 44 (American Mathematical Society, 2008).
[7] V. Kanovei, M. Sabok, and J. Zapletal, Canonical Ramsey theory on Polish spaces, Cambridge Tracts in Mathematics. To appear.
[8] A. S. Kechris, On a notion of smallness for subsets of the Baire space, Trans. Am. Math. Soc. 229, 191-207 (1977).
[9] A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics Vol. 156 (Springer, 1995).
[10] A. Louveau, A separation theorem for Σ_{1}^{1} sets, Trans. Am. Math. Soc. 260, 363-378 (1980).
[11] A. Louveau and J. Saint Raymond, Caractérisation de la classe de Baire des boréliens par des jeux fermés, C. R. Acad. Sci., Paris, Sér. I 300, 651-654 (1985).
[12] A. Louveau and J. Saint Raymond, Borel classes and closed games: Wadge-type and Hurewicz-type results, Trans. Am. Math. Soc. 304, 431-467 (1987).
[13] D. A. Martin, Π_{2}^{1} monotone inductive definitions, Cabal Seminar 77-79, Proceedings of the Caltech-UCLA Logic Seminar, 197779. Edited by Alexander S. Kechris, Donald A. Martin and Yiannis N. Moschovakis, Lecture Notes in Mathematics Vol. 839 (Springer, 1981), pp. 215-233.
[14] Y. N. Moschovakis, Descriptive Set Theory, Studies in Logic and the Foundations of Mathematics, Vol. 100 (NorthHolland, 1980).
[15] J. Saint Raymond, Approximation des sous-ensembles analytiques par l'interior, C. R. Acad. Sci. Paris 281, 85-87 (1975).
[16] J. Saint Raymond, Boreliens a coupes K_{σ}, Bull. Soc. Math. Fr. 104, 389-400 (1976).
[17] R. L. Sami, On Σ_{1}^{1} equivalence relations with Borel classes of bounded rank, J. Symb. Log. 49, 1273-1283 (1984).
[18] J. R. Shoenfield, Mathematical logic, Reprint of the 1967 original (Association for Symbolic Logic, 2001).
[19] J. H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Log. 18(1), 1-28 (1980).
[20] S. Solecki and O. Spinas, Dominating and unbounded free sets, J. Symb. Log. 64(1), 75-80 (1999).
[21] J. Stern, Suites transfinies d'ensembles boreliens, C. R. Acad. Sci., Paris, Sér. A 288, 527-529 (1979).
[22] J. Stern, On Lusin's restricted continuum problem, Ann. Math. 120, 7-37 (1984).
[23] J. Zapletal, Forcing Idealized, Cambridge Tracts in Mathematics Vol. 174 (Cambridge University Press, 2008).

[^0]: * Corresponding author: e-mail: kanovei@ rambler.ru.
 ** E-mail: lyubetsky @iitp.ru.

[^1]: ${ }^{1}$ Class Δ_{3}^{1} in (I) of the theorem looks too bad. One may want to improve it to Δ_{2}^{1} at least. This would be the case if the ordinal λ in the argument of Case 1 could be shown to be Δ_{2}^{1}. Yet by Martin [13] closure ordinals of inductive constructions of this sort may exceed the domain of Δ_{2}^{1} ordinals.

[^2]: ${ }^{2} \mathbf{L}$ is the constructible universe.

