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Abstract
If a real a is random over a model M and x ∈ M[a] is another real then either (1)
x ∈ M , or (2) M[x] = M[a], or (3) M[x] is a random extension of M and M[a] is
a random extension of M[x]. This result may belong to the old set theoretic folklore.
It appeared as Exapmle 1.17 in Jech’s book “Multiple forcing” without the claim that
M[x] is a random extension of M in (3), but, likely, it has never been published with a
detailed proof. A corollary: �1

n -Reduction holds for all n ≥ 3, inmodels extending the
constructible universe L by κ -many random reals, κ being any uncountable cardinal
in L.
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1 Introduction

It is known from Solovay [20], and especially Grigorieff [3] in most general form, that
any subextension V[x] of a generic extension V[G], generated by a set x ∈ V[G],
is itself a generic extension V[x] = V[G0] of the same ground universe V, and the
whole extension V[G] is equal to a generic extension V[G0][G1] of the intermediate
model V[x] = V[G0]. See a more recent treatment of this question in [5,9,13,21].
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In particular, it is demonstrated in [9] that if P = 〈P ; ≤〉 ∈ V is a forcing notion,
a set G ⊆ P is P-generic over V, t ∈ V is a P-name, x = t[G] ∈ V[G] is the
G -valuation of t , and x ⊆ V, then

(1) there is a set � ⊆ P such that V[�] = V[x] and G is �-generic over V[x];
(2) there exists an order ≤t on P in the ground universe V, such that p ≤ q implies

p ≤t q , and � itself is 〈P ; ≤t 〉-generic over V.

However the nature and forcing properties of the derived forcing notions, that is,
P0 = 〈P ; ≤t 〉 ∈ V and P1(x) = 〈� ; ≤〉 ∈ V[x], is not immediately clear.

At the trivial side, we have the Cohen forcing P = C = 2<ω. In this case, P0 and
P1(x) are countable forcing notions, hence the corresponding extensions, V → V[x]
and V[x] → V[G] in the above scheme, are Cohen generic or trivial. As observed in
[9], this leads to the following result of set theoretic folklore, perhaps never explicitly
appeared in publications, except for Sami [19, Lemma 1.9]. (It can also be derived
from some results in [3], especially 4.7.1 and 2.14.1.)

Theorem 1.1 (folklore, Ramez Sami) Let a ∈ 2ω be Cohen-generic over a ground set
universe V. Let x be a real in V[a]. Then precisely one of the following holds:
(C1) x ∈ V ;
(C2) V[x] = V[a] ;

(C3) (a) V[x] is a Cohen-generic extension of V, and
(b) V[a] is a Cohen-generic extension of V[x].1 	

A much more complex case is the Levy-Solovay collapse extension of L, the

constructible universe. As established in [20], such an extension is equal to a Levy-
Solovay extension of L[x] for any real x it contains.

The following theorem, proved below, is a result of the same type.

Theorem 1.2 Let a ∈ 2ω be Solovay-random over a ground set universe V. Let x be
a real in V[a]. Then we have exactly one of the following:
(R1) x ∈ V ;
(R2) V[x] = V[a] ;

(R3) (a) V[x] is a Solovay-random extension of V, and
(b) V[a] is a Solovay-random extension of V[x].2
This theorem may belong to the old set theoretic folklore. It appeared without

further reference as Example 1.17 in Jech’s book “Multiple forcing” [4], yet without
claim (R3)(a) and with a rather scarse sketch of a proof in terms of Boolean-valued
approach to forcing. As far as we know, the full result has never been published with
a detailed proof.

Note that Theorem 1.2 contains two separate dichotomies: (R1) vs. (R3)(a) and
(R2) vs. (R3)(b). In spite of obvious semblance of Theorem 1.1, Theorem 1.2 takes
more effort. Its proof (it begins in Sect. 4) involves some results related rather to real
analysis and measure theory.

1 Theorem 1.1 may fail for intermediate models not generated by reals, in particular those in which the
axiom of choice does not hold. For instance, a model M of ZF is constructed in [14], which lies between
L and L[c] for a Cohen real c and does not have the form L(x) for any set x .
2 It is not asserted though that the real x itself is Solovay-random over V in (R3)(a) (in (R2), resp.), and/or
the real a itself is Solovay-random over V[x] in (R3)(b).
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Factoring Solovay-random extensions, with application... 107

2 A corollary: reduction in extensions by random reals

The reduction property for a pointclass K , or simply K-Reduction, is the assertion
that for any two sets X ,Y in K (in the same Polish space) there exist disjoint sets
X ′ ⊆ X , Y ′ ⊆ Y in the same class K such that X ′ ∪ Y ′ = X ∪ Y .

It is known classically from studies of Kuratowski [16] that Reduction holds for
�1

1 and �1
2 , but fails for �1

1 and �1
2 . As for the higher projective classes, Addison

[1] proved that the axiom of constructibility V = L implies that Reduction holds for
�1

n , n ≥ 3, but fails for �1
n , n ≥ 3. On the other hand, by Martin [17], the axiom of

projective determinacy PD implies that, similarly to projective level 1, �1
n -Reduction

holds for all odd numbers n ≥ 3, and, similarly to projective level 2, �1
n -Reduction

holds for all even numbers n ≥ 4.
Apparently notmuch is known onReduction for higher projective classes in generic

models. One can expect that rather homogeneous, well-behaved forcing notions pro-
duce generic extensions of L in which Reduction keeps to be true for projective classes
�1

n and accordingly fails for �1
n , n ≥ 3, while this pattern can be violated in specially

designed non-homogeneous extensions. This idea is supported by a few known results.
Ramez Sami [19] proved

Theorem 2.1 (Sami) It is true in any extension of L by ℵ1 Cohen reals that if n ≥ 3
then Σ1

n -Reduction holds, and hence �1
n -Reduction holds, too.3 	


On the other hand, it is proved in [8] that Reduction fails for �1
3 (and in fact

Separation fails for both �1
3 and �1

3) in a rather complicated model related to an
ℵ1-product of forcings similar to Jensen’s minimal forcing [6]. See also [10,12] on
similar models in which the Uniformization principle fails for �1

2 (or �1
n for a given

n ≥ 3) sets with countable sections, and [11] on some related (and very complex)
models of Harrington. The following theorem is the second main result of this paper.

Theorem 2.2 It is true in any extension of L by ℵ1 Solovay-random reals that if n ≥ 3
then Σ1

n -Reduction holds, and hence �1
n -Reduction holds, too.

The theorem also holds in models obtained by adding any uncountable (not nec-
essarily ℵ1) number κ of random reals, as such models are elementarily equivalent,
with respect to analytical formulas, to the extension by ℵ1 random reals.

Proof (Theorem 2.2, sketch) The idea, due to Sami [19], is to closely emulate
Addison’s proof of Σ1

n -Reduction in L. The next “localization lemma” (based on
Theorem 1.2) is another key ingredient. Similar results were obtained by Solovay
[20], and by Sami [19] (with respect to extensions by ℵ1 Cohen reals).

Now, arguing in an ℵ1-random extension N of L, we suppose that n ≥ 3, and
X = {x : ϕ(x)} and Y = {x : ψ(x)} are sets of reals, ϕ and ψ being Σ1

n formulas.
We are going to make use of the following lemma.

3 To prove that Σ1
n -Reduction implies the boldface �1

n -Reduction, it suffices to employ a double-universal
pair of Σ1

n sets, as those used in a typical proof that �1
n -Reduction and �1

n -Separation contradict each other.
This argument does not work for Separation though. Recall that the separation property for a pointclass K ,
or simply K-Separation, is the assertion that any two disjoint sets X , Y in K (in the same Polish space) can

be separated by a set in K ∩ K� , where K� is the pointclass of complements of sets in K .
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Lemma 2.3 (Proof see Sect. 8) If n ≥ 2 and ϕ(x) is a parameter-free Σ1
n formula

then there is a parameter-free Σ1
n formula ϕ∗(x) such that if x is a real in an ℵ1-

random extension N of L then ϕ(x) holds in N iff L[x] |� ϕ∗(x).

By Lemma 2.3, we have X = {x : L[x] |� ϕ∗(x)} and Y = {x : L[x] |� ψ∗(x)},
where ϕ∗ and ψ∗ are still Σ1

n -formulas. Thus ϕ∗(x) is ∃ y Φ(x, y) and ψ∗(x) is
∃ y Ψ (x, y), Φ and Ψ being Π1

n−1 .
Still arguing in N , if x ∈ 2ω then let <L[x] be the canonical Gödel wellordering

of the reals in L[x], of order type ω1 . The crucial property of this system of order
relations says that the bounded quantifiers ∀ y′ <L[x] y and ∀ y′ ≤L[x] y , applied to
a Σ1

n formula, yield a Σ1
n formula. It follows that the sets

X ′ = {x : L[x] |� ∃ y
(
Φ(x, y) ∧ ∀ y′ <L[x] y ¬ Ψ (x, y′)

)}
Y ′ = {x : L[x] |� ∃ y

(
Ψ (x, y) ∧ ∀ y′ ≤L[x] y ¬ Φ(x, y′)

)}

are Σ1
n , because the relativization to L[x] does not violate being Σ1

n (n ≥ 2). It is
easy to check that X ′ and Y ′ are as desired.

� (Theorem 2.2, modulo Lemma 2.3)

3 Two lemmas on random forcing

The proof of Theorem 1.2 makes use of only some basic forcing ideas and some
classical results related to real analysis and measure theory. In this section, we present
two lemmas on random reals involved in the proof.

Random (or Solovay-random) reals, over a set universe V, are usually defined as
those reals in 2ω (or true reals in the unit interval [0, 1] = I) which avoid Borel sets
which are coded in V and null with respect to the usual product probability measure
μ0 on 2ω (or the true Lebesgue measure λ on I, resp.).

The μ0-random reals in 2ω and λ-random reals in I produce the same generic
extensions and thereby both notions can be identified, which is witnessed by the Borel

map f : 2ω onto−→ I with f (a) = ∑
a(n)=1 2

−n−1. It satisfies λ( f [X ]) = μ0(X) for
any Borel set X ⊆ 2ω. Therefore, if a ∈ 2ω and x = f (a) ∈ I then a is μ0-random
iff x is λ-random, and V[a] = V[x] in this case, of course. There is a general version
of such a correspondence, provided by the next lemma.

Lemma 3.1 Assume that ν is a continuous (that is, all singletons are null sets) Borel
probability measure defined on 2ω in a set universe V. Then there is a continuous map

g : 2ω onto−→ I, coded in V, such that if a ∈ 2ω and x = g(a) ∈ I then a is ν -random
over V iff x is λ-random over V, and in this case V[a] = V[x].
Proof Let <lex be the lexicographical order on 2ω, and let (a, b)lex denote <lex-
intervals in 2ω. Put g(a) = ν((0lex, a)lex), where 0lex ∈ 2ω is the <lex-least
element: 0lex(k) = 0 for each k . Easily g is increasing (a ≤lex b implies g(a) ≤
g(b)), hence continuous as all singletons in 2ω are ν -null.

Moreover g is measure-preserving: if X ⊆ 2ω is Borel then ν(X) = λ(g[X ]).
(Compare with the proof of Theorem 17.41 in Kechris [15].)
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Factoring Solovay-random extensions, with application... 109

It follows that a is ν -random iff x is λ-random, whenever a ∈ 2ω and x = g(a).
To see that a ∈ V[x], note that J = g−1[x] is a closed ≤lex-interval in 2ω , the
interior U of which (if non-empty) is a countable union of ≤lex-intervals Un in 2ω

with “rational” endpoints.4 But each Un is a Borel set coded in V (while U itself is
not necessarily coded in V). We conclude that each Un is a ν -null set, hence a /∈ Un ,
and therefore a is equal to an endpoint of J , thus easily a ∈ V[x]. 	


The second lemma in this section belongs to forcing folklore, but we have not
been able to find a really suitable reference. Therefore we add a proof for the reader’s
convenience. See also [22] for a broad consideration of the property of continuous
reading of names.

Lemma 3.2 (continuous reading of names) Let a0 ∈ 2ω be Solovay-random over a
ground set universe V, and y0 ∈ V[a0] ∩ 2ω. Then there is a continuous function
f : 2ω → 2ω, coded in V and such that y0 = f (a0).
The result also holds for y0 ∈ V[a0]∩ (2ω)ω , y0 ∈ V[a0]∩ I, and y0 ∈ V[a0]∩ I

ω .

Proof We argue in V. Let R be the set of all closed μ0-positive sets X ⊆ 2ω , the
Solovay-random forcing. Let

.
y0 be aR-name for y0 , and let

.
a0 be a canonicalR-name

for the principal random real a0 . Consider the set R′ of all conditions Y ∈ R such
that there is a continuous function f : 2ω → 2ω (coded in V), such that Y R-forces
.
y0 = f (

.
a0). It suffices to prove that R′ is dense in R.

Let X ∈ R. If n < ω then let Dn consist of all conditions Y ∈ R such that
Y ⊆ X and Y R-forces

.
y0(n) = 0 or R-forces

.
y0(n) = 1. Clearly Dn is dense in

{Y ∈ R : Y ⊆ X }. Therefore by the CCC property of R for any n there is a finite
pairwise disjoint set An ⊆ Dn satisfying μ0(

⋃
An) ≥ μ0(X) · (1 − 2−n−2). Then

Y = ⋂
n
⋃

An is a closed subset of X with μ0(Y ) ≥ μ0(X)/2, hence Y ∈ R. Define
f0 : Y → 2ω such that if a ∈ Y , n < ω, and i = 0, 1 then f0(a)(n) = i iff there is a
condition Y ′ ∈ An which contains a and R-forces

.
y0(n) = i . Then f0 is continuous,

and any continuous extension f : 2ω → 2ω of f0 witnesses Y ∈ R′ .
The result for the spaces (2ω)ω , I, Iω can be derived bymeans of suitable continuous

maps 2ω onto−→ (2ω)ω , 2ω onto−→ I, and 2ω onto−→ I
ω . 	


4 Proof of Theorem 1.2: case split

Proof (Theorem 1.2, completed in Sect. 7) Let a0 ∈ 2ω be Solovay-random over the
background set universe V. We shall assume that x0 ∈ V[a0] is a real in the unit
segment I = [0, 1]. By Lemma 3.2, there is a continuous map f0 : 2ω → I, coded
in V, such that x0 = f0(a0). Let μ0 be the usual product probability measure on 2ω,

and λ be the Lebesgue measure on I = [0, 1].
We have to prove the trichotomy (R1) vs. (R2) vs. (R3) of Theorem 1.2.
First split. Arguing in V, consider the set C = {x ∈ I : μ0( f0−1[x]) > 0}. It is at

most countable. Consider the complementary sets D = f0−1[C] and A1 = 2ω
� D .

These are Fσ and Gδ sets, respectively, coded in V. We identify themwith “the same”
(i. e., coded by the same codes) sets in the extensions V[a0], V[x0].
4 We call a point b ∈ 2ω “rational” iff it is eventual 0 or eventual 1.
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110 V. Kanovei, V. Lyubetsky

Case 1: a0 ∈ D . Then there is a real x1 ∈ C ⊆ I ∩ V such that a0 ∈ f0−1[x1],
hence x0 = x1 ∈ V, and (R1) holds.

Case 2: a0 ∈ A1 (it will be clear that x0 /∈ V in this case). Then μ0(A1) > 0 by
the randomness. The set Y1 = f0[A1] is analytic, and we have by construction:

(I) if B ⊆ A1 is Borel and μ0(B) > 0 then f0 is not a constant on B .

Second split. Still arguing in V, we let B be the family of all Borel sets B ⊆ A1
such that μ0(B) > 0 and f0 is 1-1 on B . The set B can be empty or not, but anyway
there is a Borel set B0 , equal to a union of ≤ ℵ0 sets in B , such that μ0(B � B0) = 0
for any B ∈ B . (If B = ∅ then B0 = ∅ as well.) We let A2 = A1 � B0 and
Y2 = f0[A2]. Thus A2 is Borel, Y2 ⊆ Y1 analytic, and

(II) if B ⊆ A2 is Borel and μ0(B) > 0 then f0 is not 1-1 on B .

Subcase 2a of Case 2: a0 ∈ A1 � A2 = B0 . Then there is a Borel set B ⊆ A1
such that a0 ∈ B and f0 is 1-1 on B . It follows that a0 = ( f0� B)−1(x0) is absolutely
definable (in fact Σ1

1 -definable) from x0 and some parameters p, p′ ∈ 2ω ∩ V (i. e.,
codes for f0, B resp.). We conclude that a0 ∈ V[x0], thus (R2) holds.

Subcase 2b of Case 2: a0 ∈ A2 , hence μ0(A2) > 0 by the randomness. This is
the key subcase, mostly considered in the three following sections. The goal will be
to get (R3), of course, that is, both (R3)(a) and (R3)(b). 	


5 The key subcase, preliminaries

We argue under the assumption of Subcase 2b, i. e., a0 ∈ A2 , and hence μ0(A2) >

0. It holds inV that there is an Fσ set A′
2 ⊆ A2 of the samemeasureμ0(A′

2) = μ0(A2).
The Borel set A2 � A′

2 , coded in V, is null, and hence a0 ∈ A′
2 . Therefore there is, in

V, a perfect set A3 ⊆ A′
2 , satisfying a0 ∈ A3 and μ0(A3) > 0.

The set R of all open rational intervals J ⊆ I such that μ0(A3 ∩ f0−1[J ]) = 0 is
at most countable. Therefore A0 = A3 �

⋃
J∈R f0−1[J ] is a closed subset of A3 , of

the same measure μ0(A0) = μ0(A3) > 0 — hence a0 ∈ A0 (by the randomness). To
simplify things, define the restricted function f = f0�A0 . Then f maps A0 onto
the closed set Y0 = f0[A0] = f [A0] (since generally continuous images of compact
sets are compact), the real x0 = f0(a0) = f (a0) belongs to Y0 , and we have

(III) if J is an open interval in I and Y0 ∩ J �= ∅ then μ0( f −1[Y0 ∩ J ]) > 0.

We also define the restricted measure μ(A) = μ0(A)/μ0(A0), for any Borel set
A ⊆ A0 , so μ is a continuous probability measure on A0 , and a0 ∈ A0 is μ-random
over V. The following two claims are easy corollaries of (I), (II) above, since generally
(I), (II) are preserved under the restriction of the domain, so that

(I’) if x ∈ Y0 then μ( f −1[x]) = 0 ( f -preimages of singletons are μ-null);
(II’) if B ⊆ A0 is Borel and μ(B) > 0 then f is not 1-1 on B .

Lemma 5.1 If x ∈ I then let g(x) = μ( f −1[Y0 ∩ [0, x)]), so g : I → I. 	

Lemma 5.2 The map g is continuous, rang = I, and g is strictly increasing, except
that g(x) = g(x ′) in case when x < x ′ belong to I and Y0 ∩ (x, x ′) = ∅.
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Factoring Solovay-random extensions, with application... 111

Proof Let x < x ′ belong to I. Then g(x) ≤ g(x ′) is clear. To prove the strict inequality,
note that g(x ′) − g(x) = μ( f −1[Y0 ∩ [x, x ′)]), which is strictly positive by (III)
provided Y0 ∩ (x, x ′) �= ∅. The map g is continuous by (I’). 	

Lemma 5.3 The superposition map F(a) = g( f (a)) : A0

onto−→ I is continuous and
measure-preserving in the sense that if X ⊆ I is Borel then μ(F−1[X ]) = λ(X),
while if A ⊆ A0 is Borel then λ(F[A]) ≥ μ(A).

Proof Consider any interval X = [0,m) in I, 0 ≤ m ≤ 1; thus λ(X) = m . By
definition, we have g(x) ∈ X iff μ( f −1[Y0∩[0, x)]) < m . Therefore the g-preimage
g−1[X ] is equal to [0, R), where R is the smallest real in I satisfying the inequality
μ( f −1[Y0 ∩ [0, R)]) ≥ m . Then clearly μ( f −1[Y0 ∩ [0, R)]) = m .

But f −1[Y0∩[0, R)] = f −1[g−1[X ]] = F−1[X ].Weconclude thatμ(F−1[X ]) =
m = λ(X) for any X = [0,m), as above. By induction, this implies μ(F−1[X ]) =
λ(X) for any Borel set X ⊆ I, the first claim. The second claim follows, since
A ⊆ F−1[F[A]], and any analytic set has a Borel superset of the same measure. 	

Corollary 5.4 (under Subcase 2b) The real y0 = F(a0) = g(x0) ∈ I is λ-random
over V. Thus the model V[x0] = V[ y0] is a Solovay-random extension of V, so that
(R3)(a) holds. 	

Proof To prove the second claim, note that g is “almost” 1-1 (except for possibly
2-element pre-images) on Y0 by Lemma 5.2, and hence V[x0] = V[ y0]. 	


6 The key subcase, measure construction

Arguing under the assumption of Subcase 2b, we are going to prove that V[a0] is
a random extension of V[x0], that is, (R3)(b). A measure ν on the set Ω = F−1[ y0]
will be defined in V[x0] = V[ y0], with respect to which a0 is random.We’ll make use
of the following lemma which combines effects of random forcing and Shoenfield’s
absoluteness.

Lemma 6.1 Let ϕ(x) be a combination of Σ1
1 -formulas and Π1

1 -formulas, by means
of ∧, ∨, ¬, and quantifiers over ω, and with reals in V as parameters. If ϕ( y0) is
true then there is a closed set Y ⊆ I of positive measure λ(Y ) > 0, coded in V,
containing y0 , and satisfying ϕ(y) for all y ∈ Y .

Proof The set {y : ϕ(y)} is measurable, hence, it is true in V that any Borel set Y0 ⊆
I of positive measure contains a perfect subset Y ⊆ Y0 still of positive measure
λ(Y ) > 0, satisfying either (1) ∀ y ∈ Yϕ(y) or (2) ∀ y ∈ Y ¬ϕ(y). These formulas
are Π1

2 (with a parameter p ∈ 2ω ∩ V for the set Y ), hence absolute by Shoenfield’s
absoluteness. It follows by the randomness of y0 that there is a perfect subset Y ⊆ I

of positive measure, containing y0 and satisfying (1) or (2). But (2) is impossible
because of ϕ( y0). 	


Recall that A0 ⊆ 2ω, μ(A0) = 1, f : A0
onto−→ Y0 ⊆ I, and F = g ◦ f : A0

onto−→ I.
Suppose that B ⊆ A0 is a Borel set.
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112 V. Kanovei, V. Lyubetsky

If X ⊆ I then let B �� X = B ∩ F−1[X ] = {a ∈ B : F(a) ∈ X }, e.g. B �� I = B .
In particular, if x ∈ I then let B �� x = B ∩ F−1[x] = {a ∈ B : F(a) = x }.

Lemma 6.2 If B ⊆ A0 and X ⊆ I are Borel sets then μ(B) ≤ λ(F[B]) and μ(B ��
X) ≤ λ(X).

Proof Apply Lemma 5.3. To prove the second inequality, put A = B �� X . Then
μ(A) ≤ λ(F[A]) by Lemma 5.3. However F[A] = X ∩ F[B], hence we have
λ(F[A]) ≤ λ(X). 	


If X ⊆ I is Borel then put λB(X) = μ(B �� X); λB is a σ -additive Borel measure
on I, concentrated on F[B] (that is, λB(I�F[B]) = 0) and satisfying λB(X) ≤ λ(X)

and λB(I) = λB(F[B]) = μ(B). Therefore the map UB(x) = λB([0, x)) = μ(B ��
[0, x)) : I → I is non-decreasing andLipschitz, so that if x < y , thenUB(x) ≤ UB(y)
and UB(y) −UB(x) ≤ y − x .

Proposition 6.3 (see e.g. [18], sections 2, 5, 13)

(i) If B ⊆ A0 is Borel then a derivative U ′
B(x) < ∞ exists for λ-almost all x ∈ I ;

(ii) if B0, B1, . . . ⊆ A0 are pairwise disjoint Borel sets, and B = ⋃
n Bn , then we

have UB(x) = ∑
n UBn (x) for all x , and U ′

B(x) = ∑
n U

′
Bn

(x) for λ-almost
all x ∈ I ;

(iii) if B ⊆ A0 is a Borel set and U ′
B(x) = 0 for λ-almost all x ∈ I, then UB(x) = 0

for all x ∈ I , and hence μ(B) = λB(I) = UB(1) = 0. 	

Lemma 6.4 If C ⊆ A0 and X ⊆ I are Borel sets, and B = C �� X , then U ′

C (x) =
U ′

B(x) for λ-almost all x ∈ X .

Proof Let A = C � B , so that X and Y = I � X are disjoint Borel sets satisfying
F[A] ⊆ Y and F[B] ⊆ X . We have UC (x) = UB(x) + UA(x) for all x ∈ I and
U ′
C (x) = U ′

B(x)+U ′
A(x) (in particular all three derivatives are defined) for λ-almost

all x ∈ I by Proposition 6.3(ii). Recall that

UA(x) = μ(C �� (Y ∩ [0, x))) = μ({a ∈ C : F(a) ∈ Y ∩ [0, x)})

by construction. We claim that U ′
A(x) = 0 for all points x ∈ X of X -density 1.

Indeed suppose that x ∈ X is such. Fix ε > 0. (We consider the right-side derivative
for brevity.) There is δ = δε > 0 such that we have λ(X∩[x,x+α))

α
≥ 1 − ε whenever

0 < α < δ . Now assume that 0 < α < δ . Then

UA(x + α) −UA(x) = μ(C �� (Y ∩ [x, x + α))) ≤ λ(Y ∩ [x, x + α)) ≤ αε

by Lemma 6.2 and the choice of δ , and finally UA(x+α)−UA(x)
α

≤ ε. As ε > 0 and
α < δε are arbitrary in this argument, we can conclude that U ′

A(x) = 0.
Thus we have U ′

A(x) = 0 for λ-almost all x ∈ X by the Lebesgue density theorem,
and this implies the lemma. 	

Lemma 6.5 We let Ω = f −1[x0] = F−1[ y0] = A0 �� y0 . This is a closed subset of
A0 , containing a0 and coded in V[ y0] (not necessarily in V).

Note that if B ⊆ A0 is a Borel set then B �� y0 = B ∩ Ω . 	


123



Factoring Solovay-random extensions, with application... 113

Lemma 6.6 Assume that 〈Pn〉n<ω is a sequence, coded in V[ y0], of Borel sets Pn ⊆
Ω . Then there is a sequence 〈Bn〉n<ω , coded in V, of Borel sets Bn ⊆ A0 , such that
Pn = Bn �� y0 = Bn ∩ Ω for all n.

Proof There is an ordinal ρ < ω1 such that each Pn is a �0
ρ set coded in V[ y0]. As

ω1 is the same for V and V[ y0], there exists a �0
ρ set U ⊆ I × A0 , coded in V, and

universal (in all models with the same ω1) for all �0
ρ sets X ⊆ A0 . By universality,

for each n there is a real zn ∈ I ∩ V[ y0] such that Pn = Uzn = {a : 〈zn, a〉 ∈ U }.
By Lemma 3.2, there is a continuous map ζ : I → I

ω coded in V and satisfying
zn = ζ( y0)(n) for all n . Let W = {〈n, y, a〉 ∈ ω × I × A0 : 〈ζ(y)(n), a〉 ∈ U }.
Then

Pn = Uzn = {a : 〈ζ( y0)(n), a〉 ∈ U } = {a : 〈n, y0, a〉 ∈ W } = Wn y0 for alln.

Then each Bn = {a ∈ A0 : a ∈ WnF(a)} is a Borel set, and the sequence of all sets Bn

is coded in V. Moreover,

Bn ∩ Ω = {a ∈ Ω : a ∈ WnF(a)} = Ω ∩ Wn y0 = Ω ∩ Pn = Pn

(since Pn ⊆ Ω ), thus Pn = Bn ∩ Ω = Bn �� y0 , as required. 	

Lemma 6.7 (Definition of the measure ν ) If P ⊆ Ω is a Borel set coded in V[ y0]
then let ν(P) = U ′

B( y0), for any Borel set B coded in V and satisfying P = B �� y0 .
(Such sets B exist by Lemma 6.6.) Here U ′

B( y0) is defined by Proposition 6.3(i), as
y0 is random over V by Corollary 5.4. 	

Lemma 6.8 ν(P) is independent of the choice of B in Definition 6.7.

Proof Let C ⊆ A0 be another Borel set such that P = C �� y0 . By Lemma 6.1,
there is a Borel set X ⊆ I of positive measure λ(X) > 0, coded in V, containing
y0 , and such that C �� y = B �� y holds for all y ∈ X . Therefore the sets B1 =
B �� X = ⋃

y∈X (B �� y) and C1 = C �� X = ⋃
y∈X (C �� y) coincide with each other.

However we have U ′
B(y) = U ′

B1
(y) and U ′

C (y) = U ′
C1

(y) for λ-almost all y ∈ X
by Lemma 6.4. We conclude that U ′

B(y) = U ′
C (y) for λ-almost all y ∈ X . It follows

that U ′
B( y0) = U ′

C ( y0), since y0 ∈ X is random. 	

Thus ν is a well-defined function on Borel sets P ⊆ Ω in V[ y0].

7 The key subcase, proof of randomness

To finalize the proof of Theorem 1.2 in Case 2b, we are going to show that a0 is
ν -random over V[ y0]. Then it suffices to apply Lemma 3.1, to transform a0 to a
“standard” λ-random real in I.

Lemma 7.1 In V[ y0], ν is a σ -additive continuous probability measure on Ω .
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Proof (A) To prove ν(Ω) = 1 take B = A0. Then A0 �� y0 = F−1[ y0] = Ω .
Lemma 5.3 implies

UA0(x) = λA0([0, x)) = μ(A0 �� [0, x)) = μ(F−1[[0, x)]) = λ([0, x)) = x ,

and hence U ′
A0

(x) = 1 for all x . In particular, ν(Ω) = U ′
A0

( y0) = 1.

(B) Prove the σ -additivity of ν . Lemma 6.6 reduces this to the following claim:

if 〈Cn〉n<ω ∈ V is a sequence of Borel sets Cn ⊆ A0 satisfying (Ck �� y0) ∩
(Cn �� y0) = ∅ for all k �= n , and C = ⋃

n Cn , then U ′
C ( y0) = ∑

n U
′
Cn

( y0).

By Lemma 6.1, there is a Borel set X ⊆ I with λ(X) > 0, coded in V, containing
y0 , and such that (Ck �� y) ∩ (Cn �� y) = ∅ for all y ∈ X , k �= n . The Borel sets
Bn = Cn �� X ⊆ A0 are pairwise disjoint, and the set B = C �� X satisfies B = ⋃

n Bn .
Moreover, we have UB(x) = ∑

n UBn (x) for all x , and U ′
B(x) = ∑

n U
′
Bn

(x) for
λ-almost all x ∈ I by Proposition 6.3(ii). Finally, Lemma 6.4 implies that U ′

B(x) =
U ′
C (x) and U ′

Bn
(x) = U ′

Cn
(x) for all n and λ-almost all x ∈ X . It follows that

U ′
C (x) = ∑

n U
′
Cn

(x) for λ-almost all x ∈ X , hence, U ′
C ( y0) = ∑

n U
′
Cn

( y0) by the
randomness, as required.

(C)Toprove that ν is continuous, suppose to the contrary that z0 ∈ Ω and ν({z0}) >

0. By definition there is a Borel set C ⊆ A0, coded in V and satisfying C �� y0 = {z0}
and U ′

C ( y0) > 0. By Lemma 6.1, there is a Borel set X ⊆ I with λ(X) > 0, coded in
V, containing y0 , and such that C �� y is a singleton and U ′

C (y) > 0 for all y ∈ X .
Let B = C �� X . Then B �� y0 = {z0}, B �� y is a singleton for all y ∈ X , and
U ′

B(y) > 0 for λ-almost all y ∈ X , by Lemma 6.4. It follows that UB(1) > 0,
hence μ(B) = UB(1) > 0. Moreover, by the singleton condition, the preimage
F−1[y] ∩ B = B �� y is a singleton for all y ∈ F[B] ⊆ X , or in other words, F is 1-1
on B . Then f is 1-1 on B as well, since F(a) = g( f (a)). But this contradicts (II’)
of Sect. 5. 	

Lemma 7.2 The real a0 is ν -random over V[ y0], so that (R3)(b) holds.
Proof Assume that P ⊆ Ω is a Borel set, coded in V[ y0], and ν(P) = 0; we have
to prove that a0 /∈ P . By definition there is a Borel set C ⊆ A0, coded in V and
satisfying P = C �� y0 and U ′

C ( y0) = 0. By Lemma 6.1, there is a closed (here, this
is more suitable than Borel) set X ⊆ I of positive measure λ(X) > 0, coded in V,
containing y0 , and such that U ′

C (y) = 0 for all y ∈ X .
Let B = C �� X . Then P = B �� y0 , and U ′

B(y) = 0 for λ-almost all y ∈ X by
Lemma 6.4. Note that F[B] ⊆ X , thus UB(x) is a constant inside any open interval
disjoint from X . Thus U ′

B(y) = 0 for all y ∈ I � X , hence overall U ′
B(y) = 0 for

λ-almost all y ∈ I. This implies UB(x) = 0 for all x ∈ I by Proposition 6.3(iii).
Therefore λB(I) = μ(B) = 0 by construction. We conclude that a0 /∈ B , by the
μ-randomness of a0 . Then a0 /∈ P = B �� y0 , as required. 	


� (Theorem 1.2)

Corollary 7.3 If x, y are reals in an ℵ1-random extension N = L[〈aξ 〉ξ<ω1 ] of L,
then y belongs to a random extension of L[x] inside N .
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Proof We have x ∈ Nα = L[〈aξ 〉ξ<α] and y ∈ Nβ , for some α < β < ω1 . Themodel
Nα is equal to a simple extension of L by one random real. Thus, by Theorem 1.2,
either Nα = L[x] or Nα is a random extension of L[x]. In addition, Nβ is a random
extension of Nα . This implies the result. 	


8 Proof of the localization lemma

Proof (Lemma 2.3) Let R be the Solovay-random forcing notion, and ||−R be the
associated forcing relation. Let � be the weakest element of R, and x̌ be the canonical
name for a set x in the ground set universe V.

Claim 8.1 If n ≥ 2 and ϕ(·) is a parameter-free Σ1
n -formula ( Π1

n -formula), then
the set Fϕ = {x : � ||−R ϕ(x̌)} is Σ1

n ( Π1
n , resp.).

Proof We make use of a standard Borel coding system for subsets of 2ω. It consists
of Π1

1 sets C ⊆ 2ω and W+, W− ⊆ 2ω × 2ω, and an assignment c �→ Bc ⊆ 2ω , such
that (1) {Bc : c ∈ C} is exactly the family of all Borel sets X ⊆ 2ω, and (2) if c ∈ C
and x ∈ 2ω then x ∈ Bc iff W+(c, x) iff ¬ W−(c, x).

Todefine an associated coding system forBorelmaps, let e �→ 〈(e)n〉n<ω be a recursive

homeomorphism 2ω onto−→ (2ω)ω . Let CF = {e ∈ 2ω : ∀ n((e)n ∈ C)} — codes of
Borel maps f : 2ω → 2ω. If e ∈ CF then define a Borel map Fe : 2ω → 2ω so that
Fe(x)(n) = 1 iff x ∈ B(e)n , for all x ∈ 2ω, n < ω.

If ϕ(v1, . . . , vk) is any formula, e1, . . . , ek ∈ CF, and x ∈ 2ω, then let
ϕ(e1, . . . , ek)[x] be the formula ϕ(Fe1(x), . . . ,Fek (x)), and let

Forcϕ = {〈c, e1, . . . , ek〉 ∈ C × CFk : μ0(Bc) > 0 ∧ Bc ||−R ϕ(e1, . . . , ek)[a]} ,

where a is a canonical name for the random real. We assert the following.

(†) If ϕ is a Π1
1 formula then Forcϕ ∈ Σ1

2 . If ϕ is a Σ1
n formula, n ≥ 2, then

Forcϕ ∈ Σ1
n . If ϕ is a Π1

n formula, n ≥ 2, then Forcϕ ∈ Π1
n .

This is proved by induction. If ϕ(v) is Π1
1 and μ0(Bc) > 0 then 〈c, e〉 ∈ Forcϕ iff the

set X = {x ∈ Bc : ¬ ϕ(Fe(x))} is null, which can be proved to be Σ1
2 by coverings

with Gδ sets. To pass Π1
n → Σ1

n+1 , assume that ϕ(v1) := ∃ v2 ψ(v1, v2), ψ is Π1
n .

Then 〈c, e1〉 ∈ Forcϕ iff ∃ e2 ∈ CF (〈c, e1, e2〉 ∈ Forcψ). (We make use of the fact
that the random forcing admits Borel reading of names.) Thus if Forcψ is Σ1

n+1 then
so is Forcϕ . To pass Σ1

n → Π1
n , let ϕ(v) be Σ1

n . Then

〈c, e〉 ∈ Forc¬ ϕ ⇐⇒ ∀ c′ ∈ C (Bc′ ⊆ Bc ∧ μ0(Bc′) > 0 �⇒ 〈c′, e〉 /∈ Forcϕ) .

Thus if Forcϕ is Σ1
n then Forc¬ϕ is Π1

n . This ends the proof of (†).
Finally, x ∈ Fϕ iff 〈c0, ex 〉 ∈ Forcϕ , where c0 ∈ C satisfies Bc0 = 2ω, while

ex ∈ CF is such that Fex is the constant map: Fex (a) = x for all a ∈ 2ω .
� (Claim)
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To complete the proof of Lemma 2.3, define formulas ϕ∗(x) by induction. If ϕ is
Σ1

2 or Π1
2 then ϕ∗ := ϕ works by the Shoenfield absoluteness. Suppose that n ≥ 2,

and ϕ(x) is ∃ y ψ(x, y) with ψ(x, y) being Π1
n , and a Π1

n -formula ψ∗ is defined and
satisfies ψ(x, y) ⇐⇒ L[x, y] |� ψ∗(x, y) in the universe N = L[〈aξ 〉ξ<ω1 ] (a given
ℵ1-random extension).We let ϕ∗(x) be the formula � ||−R ∃ y (L[x̌, y] |� ψ∗(x̌, y)).
This is a Σ1

n+1-formula by Claim 8.1, so it remains to show that the equivalence
ϕ(x) ⇐⇒ L[x] |� ϕ∗(x) holds in N .

Let x be a real in N satisfying ϕ(x). Thus there is a real y ∈ N satisfyingψ(x, y), or
equivalently, L[x, y] |� ψ∗(x, y). By Corollary 7.3, y belongs to a random extension
of L[x] inside N . Therefore, as the random forcing is homogeneous, it is true in L[x]
that � ||−R ∃ y (L[x̌, y] |� ψ∗(x̌, y)). In other words, L[x] |� ϕ∗(x).

To prove the converse, assume that L[x] |� (
� ||−R ∃ y (L[x̌, y] |� ψ∗(x̌, y))

)
.

Consider any real z ∈ N random over L[x]. Then ∃ y (L[x, y] |� ψ∗(x, y)) holds
in L[x, z], so there is a real y ∈ L[x, z] satisfying L[x, y] |� ψ∗(x, y). Then N |�
ψ(x, y) by the choice of ψ∗ , hence finally N |� ϕ(x).

� (Lemma 2.3 and Theorem 2.2)

9 Problems

It is natural to figure out the structure of intermediate models of other popular generic
extensions, both those by a single real, and more complicated ones. As an example,
let S be the Sacks forcing, and Sω be the countable (= full) support product. Let N =
L[〈an〉n<ω] be a Sω -generic extension of L. Assume that x is a real in N . Methods
of [7] allow to prove that L[x] = L[〈an〉n∈u(x)], where u(x) = {n : an ∈ L[x]}.
If u(x) ∈ L then the nature of the factor-extensions L → L[x] and L[x] → N
depends on the cardinalities of u(x) and ω � u(x) in a pretty clear way. The case
u(x) /∈ L is much less clear. One of the particular questions of interest is the following:
if x, y ∈ N and u(x) /∈ L, u(y) /∈ L (not necessarily u(x) = u(y)), then are the
modelsL[x] = L[〈an〉n∈u(x)] andL[y] elementarily equivalent, and are the extensions
L[x] → N and L[y] → N similar in any reasonable way?

The other question is this. Let N = L[a] be a Cohen-generic extension. (The
question is meaningful for extensions of many various types.) Suppose that, in N ,
E is an OD (ordinal-definable) equivalence relation on an OD set X �= ∅ of reals,
containing ≤ ℵ0 equivalence classes. Say exactly two classes, to begin with. Is it true
that there is an OD E-equivalence class? See [2] for a surprising affirmative result
(originally by Solovay) for Sacks-generic extensions.
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