
PROOF OF A THEOREM OF LUSIN 

V. G. Kanovei UDC 517.5 

In [i, 2], Lusin published a theorem (with proof) asserting that a very simple set 
constructed by him is not Borel. Lunina [3] discovered an error in Lusin's proof. 
It is proved that Lusin's theorem is nonetheless valid. 

In 1926, Lusin described a set using the "laws of arithmetic" and proposed proving that 
this set is not Borel (it followed in particular from the method of proof that the set un- 
der consideration turned out to be analytic). The example constructed and the correspond- 
ing proof form the content of the note [i] of Lusin as well as Sec. 61 of his memoirs [2]. 

As was discovered by Lunina [3], the proof proposed by Lusin is invalid. Nevertheless 
it can be shown that the "arithmetic example" of Lusin has the desired properties, i.e., is 
an example of an analytic set which is not a Borel set. We give here a proof of this fact. 

Lusin considered subsets of the set of all irrational numbers of the interval [0, i]. 
It is sometimes more convenient to consider (and this is what we will do) subsets of the 
Baire space of [4, p. 227] which consists of all sequences of natural numbers and is homeomor- 
phic to the set of all irrational numbers in [0, i] by virtue of the representation of an 
irrational number x by a continuous fraction: 

X ~  
1 

nl+ n2+ 

t 
n~ -5 

In the notational system [5, 6], associated with the projective hierarchy, the set stud- 
ied in [i] is defined as follows. Introduce the Borel space N N of all functions of the 
natural numbers N = {I, 2,...) into N (i.e., all sequences of natural numbers). A function 
(sequence) ~ = (a~, nEN) EN N is called composite [i] if "there exists among its members 
an infinite set of numbers which divide one another." The set E of all composite sequences 
constitutes Lusin's example. 

Assertion [i]. The set E is analytic but not Borel. 

There is an ambiguity in the definition of a composite sequence, i.e., do we assume 
that among the elements of the "infinite set of numbers" identical natural numbers can occur 
which are distinct elements (i.e., have distinct indices) of the sequence {as, hEN)? For 
example, is the sequence defined by an = i for all n EN composite? 

Taking the definition of a composite sequence in accordance with the above two alterna- 
tives, we obtain, respectively, two "realizations" of the set E discussed by Lusin. 

E I = {~ENN: there exists a function 

? E N N, such mat ? ( ~  5 ~= ? (n) ~ f s  k ~= n 

and ~ (~ (k~-i))l(a~(~)) is an integer for every k E N}; 

Ez = {=ENN: there exists a function 

E N  N, = c h e a t  g ( ? ( k  q- |)) / a ( y ( k ) )  

i s  a n  i n t e g e r  g r e a t e r  t h a n  o r  e q u a l  t o  2 f o r  e v e r y  k E N ) .  F o r  o n e  v a r i a n t  o f  t h e  d e f i n i -  
t i o n  o f  c o m p o s i t e  s e q u e n c e  we h a v e  E = E l ,  f o r  t h e  o t h e r  E = E 2 ; E z  ~ E 1 .  
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We prove the following theorem. 

THEOREM. The sets E: and E2 are analytic but not Borel. 

Proof. The proof of this theorem consists of two lemmas. 

LEMMA i. The sets E~ and E2 are analytic. 

LEMMA 2. The sets El and E= are not Borel. 

Proof of Lemma i. The proof is carried out by the syntactic method. Let ~ and y be 
variables running over NN; let n and k be variables running over N; let x be multiplication 
of natural numbers. It is clear from the definition of El that El= {=:~ (=)}, where ~ (~) 
is the following formula: 

3 v l V k 3 n [ ~ ( ? ( k + i ) )  = n •  

The f o r m u l a  ~ (~) i s  e v i d e n t l y  a E l - f o r m u l a ,  and t h e r e f o r e  E 1 { a : ~  (~)} i s  a Z , - s e t ,  
i . e . ,  i t  i s  i n  p a r t i c u l a r  a n a l y t i c  ( f o r  t h e  d e f i n i t i o n  o f  ~ - f o r m u l a s  and t h e i r  r e l a t i o n  to  
a n a l y t i c  s e t s ,  s ee  [ 6 ] ) .  

I n  c o m p l e t e l y  a n a l o g o u s  f a s h i o n ,  one a l s o  p r o v e s  t h e  a n a l y t i c i t y  o f  t he  s e t  E2 ( i t  i s  
necessary to make use of the formula 

3~Vk~n l~ @ (k + l) ) = n X ~ ( ~ ( k ) ) & n > 2 ] ) .  

P r o o f  o f  Lemma 2. F ix  some a n a l y t i c  s e t  Q ~ N  N which  i s  n o t  B o r e l .  The i d e a  o f  t he  
p r o o f  c o n s i s t s  i n  c o n s t r u c t i n g  a Bore l  f u n c t i o n  F from NN:to NN such  t h a t  a ~ Q - ~ F ( a ) ~  
E I - ~ - F ( = ) ~ E 2  f o r  e v e r y  = ~ N  N. 

We t u r n  to  t h e  d e t a i l s .  Le t  J d e n o t e  t he  s e t  o f  a l l  p o s i t i v e  s e q u e n c e s  o f  n a t u r a l  
numbers of finite nonzero length. By the definition of analytic set [5], there exists a 
system H= {He:e~J} of closed subsets of NNsuch that Q = D ~ Htl~ (fln is the restric- 

f ~ N  N n ~ N  

tion of the function f to the first n natural numbers, i.e., the first n terms of the se- 
quence f). Moreover, H can be assumed to be a regular system, i.e., if e~ is an extension 
of e2, then He,~___He, [5]. For every =~N N we define t(=) = {e~J:=~He}. 

Let q~J. We will say that q has an infinite path if there exists an infinite se- 
quence e~, e2, �9 ., ek, . . of elements of q such that ek+~ is a proper (i.e., e~+1~=e~) 
extension of ek for every k. 

LEMMA 3. Let ~ N N. Then a~Q, if and only if t(~) has an infinite path. 

Proof. Let =~Q. Then by the choice of H we have e~ ~ H~], for some /~N N. Thus 
n~N 

fll, f12, ...,fl~ .... is the desired infinite path in t(~). 

Conversely, let e~, e=, . . ., ek, . . . be an infinite path in t(~), m~ the length of 
the sequence ek. It is clear that there exists an f~NN, ~ such that ek = flmk for every k. 
By the definition of t(~), this means that =~Hflm ~ for every k. Now by the regularity 
of the system H and the obvious inequality m~.~>m~ for every k we obtain: if m~N, then 
=~H;im. But by the choice of the system H, the latter means precisely that =~Q. The 
lemma is proved. 

Now let P = {p~ :k,m~N) ~ {Pn: n~N) be some enumeration of the set P of all prime 
numbers without repetition, i.e., Pn = Pkm is impossible for every m, k, and n; Pn~ = Pn~ 
implies n~ ffi n=; Pkxmx = Pk~m~ implies k~ = k2 and m~ = m=. 

For every sequence e= (mx ..... m~)~] we define a natural number p (e) =p~m, • ...• 
We observe the following obvious fact. 

Remark. Let e,, ~,~. Then e= is a proper extension of e~ if and only if p(e~) is 
divisible by p(e~) and p(~)~ (e,) > 2 

We now prove the key lemma. 

LEMMA 4. Let q~Y, U = {p(e):e~q) and ~ N  N be defined by the condition 8(n) ffi n 
for n~U and 8(n) = Pn for ~U. Then the following three assertions are mutually equiv- 
alent: 

i) q has an infinite path; 
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2) ~ E 2 ;  

3) ~ E ~ .  
~roof. We remark that it follows from the definition of 8 that ~ E I ~ E  2 (since 

for k~=n we have ~ (k)~(~). It is therefore sufficient to prove the equivalence of the 
first two assertions in the hypothesis of the lemma. 

First let el, e2, . �9 ., ek, . . be an infinite path in q. Define the function V~ 
N N by " ~ condition y(k) = p(ek). It then follows from the Remark that ~ (~ (k+1))/~(y (k))= 

..~I~ (k)=p (e~+O/p (ek) is an integer greater than or equal to 2 for every k. This by 
definition means that ~Ez. 

Conversely, assume that ~E2. Then there exists a function ?EN N such that ~ ~(k-~ 
1))/(~(y(k))) is an integer greater than or equal to 2 for every k. It is clear from the 
definition of B that we can choose a sequence el, e2, . ., ek, . . . of elements of q such 
that p(e k) = y(k) for every k. It follows from the Remark that this sequence is an infinite 
path in q. The lemma is proved. 

We now turn to the definition of the function F. Let ~NN. Define F(~)~N by 
the condition: F(~) (n) = n for n ~ {p (e): e ~ t (~)}; F (~) (n) = p~ in the opposite case. 

LEMMA 5. The function F is a Borel function from NN }o N N, i.e., F is a Borel subset 
of N N • N N. 

Proof. It is clear that F = ~ Un, where each Un is defined as follows: i) if n = 
n~N 

p (e), e ~ J ,  t h e n  U~ = { (a,~) ~ N N • NN: [~ ~ H e --~ ~ (n) = n] & [~ ~ H e - +  ~ (n) = Pn]}; 2) i f  
n ~ {p (e): e ~ J}, then U n = { (a,~) E N N x NN: ~ (n) = Pn}. But every Vn is Borel (since 
each H e is closed). From this the lemma is obvious. 

LEMMA 6. Let a~ N N. Then ~Q----F(~)~E I~F(~) ~E2. 

Proof. The proof is obtained from Lemmas 3 and 4. 

We complete the proof of Lemma 2. Assume the contrary, i.e., let E i be a Borel set; 
i = 1 or i = 2. Then it follows from Lemma 6 that Q = {~NN: F (a)~Ei} is also a Borel 
set (since F is a Borel function by Lemma 5 and the inverse image of a Borel set under a 
Borel function is Borel, cf. [5, Proof of Corollary 5]), which contradicts the choice of Q. 
This contradiction completes the proof of Lemma 2. 

The author is grateful to V. A. Uspenskii for his interest in this work and to M. A. 
Lunina for valuable remarks. 
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