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N. N. LUZIN'S PROBLEMS ON THE EXISTENCE OF CA-SETS 

WITHOUT PERFECT SUBSETS 

V. G. Kanovei 

After P. S. Aleksandrov, Hausdorff, and M. Ya. Suslin proved in 1916-1917 that any 
uncountable Borel set, and even any uncountable A-set on the real line, contains a perfect 
subset, and thus has the cardinality of the continuum c = 2~o, one of the main problems 
in the descriptive set theory at that time was that of investigating the cardinality of CA- 
sets (i.e., sets complementary to A-sets). The essence of this problem is the following: 

PROBLEM i. Is it true that (I) there exists a CA-set of cardinality strictly between 
the countable cardinality ~0 and the cardinality of the continuum, c? 

As possible approximations to the solution Of this problem, two more questions can 
be posed on CA-sets~ 

PROBLEM II. Is it true that(II) there exists an everywhere defined function y = f(x), 
whose graph is a CA-set without any perfect subsets? 

PROBLEM III. Is it true that (III) there exists an uncountable CA-set without any 
perfect subsets? 

These three problems occur in many of Luzin's works on descriptive set theory. In 
particular, Problems I and II are formulated and discussed in the fifth chapter of [i] (see 
also pp. 240 and 246 of [2]), and Problem III arises in [3]. However, in classical descrip- 
tive set theory they remain unsolved. 

In later years, P. S. Novikov, Solovay, and others (for details, see below) established 
that Problems I, II, and III are insoluble within the confines of the Zermelo-Frankel axio- 
metric system ZFC, i.e., using this theory it is not possible to obtain a definite "yes" 
or "no" to any of the three questions posed. 

The aim of this article is to explain the relation of the three problems to each other, 
and also their relation to the continuum hypothesis CH (which can be expressed by the equa- 
tion c = ~,, where ~, is the first uncountable cardinality). In order to justify the formu- 
lation of the fundamental result, we make several remarks connecting the conjectures (I), 
(II), and (III). 

Remark i. The conjecture (II) implies (III). Conjecture (I) also implies (III), since 
a set with a perfect subset must have continual cardinality. Moreover, the conjecture (I) 
implies the negation of CH. 

Remark 2. (Luzin, Chap. v of [I]). An uncountable CA-set with no perfect subsets 
has cardinality equal to ~,. Moreover, the graph of an everywhere defined real function 
has cardinality c. Therefore, conjecture (II) implies CH and is inconsistent with (II). 

Remark 3. It follows from Remarks 1 and 2 that conjecture (I) is equivalent to the 
conjunction (III)/\-~CH (the sign /~ denotes the connective "and," and ~ is the symbol 
of negation). 
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These  remarks only leave possible the following five combinations of our conjectures 
and their negations with CH and its negation: 

-7(III) /~ CH [and then ~ (I) and ~ (II)]; 

J(IIl) /k-7 CH [and then analogously-7(I) and-7(II)]; 

(II) [and then (IIl), ~(I) and CH]; 

(III) A-] CH [and then (I) and ~(II)]; 

(III) /~ (iI) /~ CH [and then-7 (I)]. 

It turns out that each of these five combinations of hypotheses is consistent with 
the axioms of ZFC, i.e., is noncontradictory. The consistency of the combinations of-] (III) 
with CH and its negation gives Theorems 2 and 3 of [4] (where, incidentally, a far stronger 
conjecture than-7(III) is considered, implying that not only sets in the class CA, but 
also uncountable projective sets, have no perfect subsets). 

The consistency of conjecture (II) was established by P. S. Novikov, using the inference 
of (II) from the constructivity axiom V ffi L. In fact, it was shown in Theorem 2 of [5] 
that the axiom V ffi L implies the existence of an everywhere defined function, whose graph 
is the set A 2 and has no perfect subsets. But, as was noted in [6] (Remark 32), using the 
Novikov-Cond6 uniformization theorem we can then derive an everywhere defined function with 
graph in the class CA and no perfect subsets. Finally, each corollary of the constructivity 
axiom is consistent, since this axiom itself does not contradict the axioms of ZFC (K. Godel). 

The consistency of the combination (Ill) /k-TCH was obtained by Solovay [7] as an 
elementary corollary of the principal leaLma shvwing that uncountable CA-sets without perfect 
subsets can be obtained from weaker premises than the axiom V = L. This simple argument 
will be set out below, after the proof of the following result. 

THEOREM. The hypothesis (III)/k~(II) /~CH does not contradict the axioms of ZFC. 

To prove this theorem (which covers the problem of the relations between problems I, 
II, and III, and their relations to the continuous hypothesis within the axioms of ZFC), 
we shall use a model known as the ~l-Cohen generic extension of the constructive model. 
We describe its construction. 

Fix a countable transitive model M of the axioms ZFC + (V = L). As a set of forcing 
conditions (s.f.c.) for the generic extension of M, we take the ~iM-Cohen set P, consisting 
(see p. 119 of [8]) of all possible functions p such that the domain of definition domp 
is contained in ~l M x ~ and is finite, and the range of values ran p is contained in the 
two-element set {0, i}. As usual, we denote by ~i n in this definition the first uncountable 
cardinal in the model M. 

The set P is ordered by inverse inclusion: p ~ q if the function p is an extension 
of the function q: in this case p, as a forcing condition, is more informative than q. 

We now fix a set G ~ P which is P-generic over M, and consider the generic model N = 
M[G]. The properties we require of the model N are contained in the following three lemmas: 

LEMMA I. The continuum hypothesis CH is true in N. 

LEMMA 2. In N, ~i L = ~i is true. 

LEMMA 3. The following statement is true in N: there is no point 6 in the Baire space 
I such that I~ L[6]. 

Notation. ~L is the first uncountable cardinal in the class L of all constructive 
sets. The Baire space I ffi ~ consists of all possible u-sequences of natural numbers: ~ = 
{0, i, 2 .... } is the natural series. For 6 ~I, we denote by L[6] the class of all sets 
which are constructive with respect to 6. 

We first show how Lemmas i, 2, and 3 imply the truth in N of the combined hypothesis 
(|II) A~(II)/k CH; by the same token, we shall have proved the theorem. We shall then give 
the proofs of the lermnas " 

With the continuum hypothesis CH, this is obvious: Lemma i. 

The truth in N of the conjecture (III) is a corollary of Lemma 2 and. another lemma, 
proved by Solovay [7] and Lyubetskii [9]: 
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LEMMA 4. If ml L = ml, then there exists an uncountable CA-set with no perfect subsets. 

We give an outline of the proof of Lemma 4. It is known that the set I ~ L of all 
the constructive points in I belongs to the class A2, and admits a canonical complete order- 
ing -< of length ml L, and also having (as its set of pairs) the class A 2 (in fact, the 
class Z21 as well as I N L). See, for example, the supplement of [8, Sec. 2]. 

In order to construct an uncountable CA-set with no perfect subsets in the space I 
(and thus also on the real line, as a result of the homeomorphism between I and the space 
of irrational points), it is quite sufficient to construct such a set in the class A2: the 
step to the smmller class CA is easily realized using the Novikov-~ondo uniformization theorem 
(see [8, p. 258]) and its corollary 4.22 for the class nl I = CA. 

Thus it is sufficient to deduce from the equation ml L = ml that there exist uncountable 
A2-sets in I with no perfect subsets. Suppose the contrary: there are no such sets. In 
particular, the uncountable (as ~l L = ml) set I ~ L in the class A 2 has a perfect subset 
X 0. The set X 0 may be assumed to be compact. Set F0(a) = a for ~X0; the function F0: 
X 0 ~ I is continuous and one-to-one on X 0. 

Our aim now is to construct a decreasing sequence of perfect (and thus compact) sets 
X o~_ X,~X2~_ ... and a sequence of continuous and one-to-one functions Fi: X i + I (i = 
0, i, 2, ...) on the corresponding Xi, such that we have the condition F~+I (=)-<F~(=) for 
each point a~Xi+ I. The existence of such a sequence i~ediately leads to a contradiction 
and to the proof of Lemma 4; take a point a in the (obviously nonempty) intersection of 
all the X i, and we obtain F~+,(=)-<Fi(=) for all indices i, which contradicts the complete- 
ness of the ordering -< . 

The set X 0 and the function F0 have already been constructed. As it is perfect and 
compact, X 0 is homeomorphic to the Cantor discontinuum C = 2 ~. The latter admits a homeo- 
morphism h: C onto C such that y ~ h(y) and y = h(h(y)) for all 7~C (if ~ = <J0, J~, 
j=, ...> ~C, then h(y) = <i - J0, J~, J2 .... >)" Therefore there is also a homeomorphism 
H: X 0 to X 0 such that a ~ H(=) and e = H(H(=)) for each point =~X 0. 

By the choice of H, and as F0 is one-to-one, the sets 

Y = {~ ~ Xo: Fo (H (~)) -< Fo (=)} 

and 

Z = {~ @ Xo: Fo (~) -< Fo (H (~))} 

give X 0 as their union and, moreover, Y is the H-image of the set Z. Thus Y is not count- 
able. Moreover, Y is a set in the class A 2, since the relation ~ has this class. There- 
fore, in view of the above assumption of the contrary, Y contains a perfect subset X I. It 
remains to define F~(~) = F0(H(=)) for =~X t. 

In exactly the same way, we construct for the pair X I, F I another pair X 2, F2, etc. 

The proof of Le=~a 4 and the verification of the truth of the conjecture (III) in the 
model N are complete. 

Finally, we verify that the conjecture (II) is false in N; thus we shall complete the 
deduction of the theorem from Lenlmas i, 2, and 3. We obtain the required result as a corol- 
lary of Lemma 3 and the following statement. 

LEMMA 5. If the conjecture (II) is satisfied, then there exists a point 6 in the space 
I such that I CX-L[6]. 

Proof. Let the function F: I + I be such that its graph X = {<a, F(=)>: = ~I} is 
a CA-set with no perfect subsets [the case of real functions of a real argument in conjec- 
ture (II) reduces easily to the case of functions from I to I]. By a theorem of Solovay 
[7] and Mansfield [I0] (see also [8, p. 327, result 16.7], there exists a point 6 ~I such 
that X ~L[6]; it is sufficient to take ~ such that X is a set in the class ~l I,~ But 
then also I~ L[6]. In fact, let a~_I and 8 = F(a). We have <~, 8>~ X, and hence <~, 
8>~ L[6] and a~L[6]. 

Therefore, in order to prove the theorem it remains to prove Lemmas i, 2, and 3. 
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Proof of Lea~a i. Our ~iM-Cohen s.f.c. P satisfies the chain countability condition 
c.c.c. (also known as the antichain ~z-condition) in the original model M (see [8, p. 121]), 
and has cardinality ~z M in M. Moreover, the continuum hypothesis CH is true in M (as a corol- 

lary of the constructivity axiom in M), and by the same token the equation ~i = mz ~xw is 
satisfied. The truth of CH in the model N = M[G] is given by Theorem 3.15 of [8, p. 125] 
for ~ = v = ~z M and i = ~ = ~. 

Proof of Leamna 2. As a result of the c.c.c., the cardinals of M remain cardinals in 
N, i.e., in particular, ~i M = ~i N. But M is the "constructive part" of the model N. 

Proof of Lemma 3. On the contrary, leC 6E I ~ N and let I~ L[6] be true in N. By 
the "existence and minimality lemma" (see [8, p. iii]), there exists a set t EM, t~ P x 
(~ • ~), such that 

8 = %(t) = {<~, 3: Bp E G (@, k, ~ E t)} 

[bearing in mind that <k, s E6, when ~(k) = s Moreover, if the c.c.c, is satisfied 
in M for P, we may assume without loss of generality that t is no more than countable in 
M (see the argument in the proof of Theorem 3.15 of [8, p. 125]). But then the set 

U, = {~<~; there exist natural numbers k, s m and p ~-P such that <p, k, s t 
and <~, m> E domp} 

is no more than countable in M; really, it is only important that the complementary set 
U 2 = ~z M - U z is nonempty. 

Let 8 = 1 or 2. If p~P, then we denote by P8 the restriction of the function p to 
the set (U 8 x ~) ~ domp. Set Pe = {Pg: pEP} and G 8 = {P8: pEG}. 

It is easily seen that the mapping p ~* <Pz, P2 > gives (in M) an order isomorphism 
from P to Pz • P2, and the image of the set G under this isomorphism is G z x G= (the second 
statement uses the fact. that G is generic). Therefore, the set G z x G 2 is Pz • P2-g eneric 
over M. In this situation, by Theorem 2.5 of [6, p. 13], each point ~EI which belongs 
to both M[G I] and M[G2], also belongs to M. In particular, since the point 6 = iG(t) be- 
longs to the model M[G z] (by the definition of Uz), and I~L[6] in M[G] (by the choice 
of 6), we have =~_M each time that =EI N M[G2]. 

In order for this to obtain the required contradiction, we fix an ordinal 6~U 2 and 
define a point ~ I  by the relation ~(n) = j, when Bp~G (<~, n>~dom p/~p (~, n)= j) 
(naturally, here j = 0 or i). Clearly, ~EM[G2] , and thus u~M by the above. Thus, the 
set 

D = {r~P: there exists n~ ~ such that <6, n>~dom r and r(6, n) ~ a(n)} 

belongs to the model M. 

However, it is easily verified that the set D is dense in P: for any q~P there exists 
r ~D, r ~ q. Therefore, the intersection D ~ G is nonempty. Let rED ~ G, and let n ~_~ 
be such that <6, n>~ domr and r(6, n) ~ e(n). We now see that the conditions p, r ~--_-G 
cannot be consistent in P, i.e., there is no q~ P such that q ~ p and q ~ r; and this con- 
tradicts the genericity of the set G. 

This contradiction completes the proof of Lemma 3 and of the theorem. 

In conclusion, we note that Lemma 4 equally allows us to verify that an ~-Cohen (i.e., 
obtained by means of an ~2M-Cohen s.f.c.) generic extension N' of the original model M by 
the axiom ZFC + (V = L) satisfies ([H)/~-~CH. In fact, a l-Cohen s.f.c, satisfies the 
chain countability condition for any l, so that Lemma 2, and also conjecture (III) (by Lemma 
4) are satisfied for N'. At the same time, it is well known that the continuum hypothesis 
is invalid in N' (see, for example, [8, pp. 118-122]). This argument proves the inconsistency 
of the combination ([H)/\-~CH. 
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SYMMETRY PROPERTIES OF HIGHER SPECTRAL DENSITIES 

OF STATIONARY RANDOM PROCESSES 

V. G. Alekseev 

Let {~(k), k~Z} be a real random process with mean E ~(k)~-0, stationary up to the 
sixth order, i.e., such that all its moments up to the sixth order, inclusive, exist and 
do not depend on the choice of the initial point of reference. For v = 2, 6 we set r v (s 
.... s ~ sv(k, k + s .... k + s where we denote by sv(kl, .... k9) the v-th order 
simple semiinvariant corresponding to the random vector {~(kz) ..... ~(kv)}. We shall be 
interested in the spectral densities f(v)(lz ..... lv-l) of orders v = ~'-~, which in the 
cases v = 2 and 3 are defined by the formulas 

/(n 0') --'-- / (~') ---- (2n) -l .~zzz exp (-- il'~) r. z (I) 

and 

fa) (s ~.~) = (2~)-~. ~t,~z ~,:=__z exp (-- ill)~ , - -  il~).,) r a (l v l : ) ,  (i) 

and for ~ z 4 they are analogously expressed in terms of the corresponding semiinvariants 
rv(s .'*, s (see, for example, [i, Sec. 2.6]). The semiinvariants rv(s I ..... s 
(9 = 2,-~-~) are assumed to decrease sufficiently quickly (in absolute value) as s 2 + ... 
+ s = ~ ~, so that the spectral densities which interest us do exist. 

As the domain of definition of the spectral_density f(9)(Al, ..!, l~-l) we may take, 
for example, the hyDercube (square, interval) ~v-l where ~ = (4, ~]. We may also assume 
that the function f(~)(A1 ..... lv_ I) is defined on the whole space R v-1 and is periodic 
(with period 2~) in each of its arguments. However, it will be more convenient for us to 
assume that the domain of definition of the spectral density f(v)(X I ..... l~-l) is a poly- 
hedron (polygon, interval) Q~, where Q2 = ["~, ~] and the polygon Qa and the polyhedra Q4, 
Qs, and Qs are described by the systems of inequalities 

-- 2 K <  ~, -- ~, < 2=, 
--2=<X~+2X~<2a ( L k = l , 2 ,  ] :~=k) ,  

{ --2~<kj--~<2~ ( / ,k---- t ,2,3,  j < k ) ,  

2 n < X j  + ~ + 21~<2n  ( ] = / = k : / = l = ~  ]), 
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