References

1. V. P. Glushko and O. P. Malyutina, in: Trudy Mat. Fakul'teta [in Russian], Izd. Voronezh Univ., Voronezh (1997), pp. 29-34.
2. V. P. Glushko and Yu. B. Savchenko, in: Itogi Nauki i Tekhniki. Matem. Analiz [in Russian], Vol. 23, VINITI, Moscow (1985), pp. 125-218.
3. H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, Deutscher Verlag der Wissenschaften, Berlin (1978).

Voronezh State University

Translated by I. P. Zvyagin

Pyramidal Structure of Constructibility Degrees

V. G. Kanovei and J. Zapletal

KEY words: constructibility degrees, Sacks models, forcing.

Introduction

We consider a model whose structure of degrees of constructibility includes
(1) degrees $0<\boldsymbol{a}_{0}<\boldsymbol{a}_{1}<\cdots$, where 0 is the constructive degree;
(2) a degree $b>0$ incomparable with any of the a_{n};
(3) "concatenations" $a_{0} b<a_{1} b<a_{2} b<\cdots$;
(4) the greatest degree $\boldsymbol{a}_{\boldsymbol{\omega}} \boldsymbol{b}$.

The degrees a_{0}, a_{1}, \ldots, and b could be obtained by means of the Sacks ${ }^{\omega} \times$ Sacks forcing. (Here Sacks ${ }^{\omega}$ is the iteration of the Sacks forcing Sacks of length ω with countable support; see [1]. Accordingly, Sacks ${ }^{m}$ is the iteration of Sacks of length m.) However, in this process, another degree, the upper bound a_{ω} of the degrees $a_{n}, n \in \omega$, would emerge; this degree is incomparable with \boldsymbol{b}, and so it is distinct from $\boldsymbol{a}_{\omega} \boldsymbol{b}$. Therefore, we need another form of iteration.

Elements of the set ω^{ω} will be called (real) numbers.
Theorem. Let ω_{1}^{L} be countable. Then there exists a generic extension $\mathbf{M}=\mathrm{L}\left[\left(a_{n}: n \in \omega\right\rangle, b\right]$ generated by the real numbers a_{n} and b such that
(i) for any n, the sequence $\left\langle\left\langle a_{0}, \ldots, a_{n}\right\rangle, b\right\rangle$ is (Sacks ${ }^{n+1} \times$ Sacks)-generic over L;
(ii) each real number $x \in \mathrm{M}$ either belongs to $\mathrm{L}\left[a_{0}, \ldots, a_{n}, b\right]$ for a certain n or satisfies the property $\mathbf{L}[x]=\mathbf{L}\left[\left\langle a_{n}: n \in \omega\right\rangle, b\right]$.

By the known properties of ordinary iterated Sacks models (see [1, 2]), the constructibility degrees of numbers in such a model M have the structure described by (1)-(4).

[^0]

Fig. 1. The structure of \mathbf{L} degrees in the model under study

Fig. 2. The structure of Ldegrees in the ordinary iterated Sacks model with the same system of generators a_{n} and b

§1. Forcing

The arguments below are performed in the model \mathbf{L}.
Let $\mathbf{S}=$ Sacks be the Sacks forcing. For any n, we denote by $\mathbf{S}^{\boldsymbol{n}}$ its iteration of length n with the associated forcing relation \Vdash_{n}. Each $\tau \in \mathbf{S}^{n}$ is a function defined on the set $n=\{0, \ldots, n-1\}$ so that $\tau \mid k \Vdash_{k} " \tau(k) \in \breve{S}^{\prime}$ for all $k<n$.

If $u \in 2^{n}$ and f is a function such that each restriction of the form $u \upharpoonright k, k<n$, belongs to $\operatorname{dom} p$, then we denote by $\left.f\right|_{u}$ the function defined on n by the formula $\left(\left.f\right|_{u}\right)(k)=f(u \mid k)$ for all $k<n$.

Let us define a forcing \mathbf{P} as the family of all $p=\left\langle T_{p}, f_{p}\right\rangle$ such that
(a) $T_{p} \subseteq 2^{<\omega}$ is a perfect tree;
(b) f_{p} is a function defined on T_{p} so that $\left.f_{p}\right|_{u} \in S^{n}$ for all $u \in T_{p} \cap 2^{n}$.

We shall say that q is stronger than p (and write $q \leq p$), if $T_{q} \subseteq T_{p}$ and $\left.f_{q}\right|_{u} \leq\left. f_{p}\right|_{u}$ in S^{n} for each $u \in T_{q} \cap 2^{n}$. The relation of \mathbf{P}-forcing will be denoted by \mathbb{I}.

Recall that $u \in T$ is called a splitting node of the tree $T \subseteq 2^{<\omega}$ if the nodes $u^{\wedge} 0$ and $u^{\wedge} 1$ belong to T. A splitting node of level n has exactly n splitting nodes below it. A perfect tree T contains exactly 2^{n} splitting nodes at each level n.

Let S and T be perfect trees. We shall write $S \leq_{n} T$ if $S \subseteq T$ and the nth splitting levels in S and T coincide. It is known that if T_{n} are perfect trees and $T_{0} \geq_{0} T_{1} \geq_{1} T_{2} \geq_{2} \cdots$, then $T=\cap T_{n}$ are also perfect trees.

For the forcing \mathbf{P}, this construction takes the following form.
Let $p, q \in \mathbf{P}$. Set $q \leq_{n} p$ if $q \leq p, T_{q} \leq_{n} T_{p}$, and each $u \in T_{q} \cap 2^{m}, m<n$, satisfies the property $\left.f_{q}\right|_{u} \vdash_{m} " f_{q}(u) \leq_{n} f_{p}(u)$." Then any decreasing chain $p_{0} \geq_{0} p_{1} \geq_{1} p_{2} \geq_{2} \cdots$ of forcing conditions $p_{n} \in \mathbf{P}$ has a lower bound in \mathbf{P}.

§2. Extension

If a set $G \subseteq \mathbf{P}$ is \mathbf{P}-generic over \mathbf{L}, then $T=\bigcap_{p \in G} T_{p}$ is a generic chain in $2^{<\omega}$, so that $b=U T \in 2^{\omega}$ is the Sacks number over L.

Let $n \in \omega$. Set $u=b \mid n, u \in 2^{n}$. Then the set $\left.G\right|_{u}=\left\{\left.f_{p}\right|_{u}: p \in G\right\}$ is \mathbf{S}^{n}-generic over \mathbf{L}, i.e., there is a $\mathbf{S}^{\boldsymbol{n}}$-generic sequence of numbers $\left\langle a_{0}, \ldots, a_{n-1}\right\rangle$ defined over \mathbf{L}, in which each element $a_{k} \in 2^{\omega}$ is the Sacks number over $\mathbf{L}\left[a_{0}, \ldots, a_{k-1}\right]$. (Of course, a_{k} here does not depend on the choice of $n>k$.) Moreover, the sequence $\left\langle\left\langle a_{0}, \ldots, a_{n-1}\right\rangle, b\right\rangle$ is ($\mathbf{S}^{n} \times \mathbf{S}$)-generic over \mathbf{L}.

Now it remains to prove statement (ii) of the theorem. It follows from the following lemma.

Lemma 1. Suppose that a number $x \in \mathbf{L}[G]$ does not belong to the class $\mathbf{L}\left[a_{0}, \ldots, a_{n}, b\right]$ for any n. Then $G \in \mathbf{L}[x]$.
We shall begin the proof with a definition. A roster of size l is a finite sequence of the form $R=$ $\left\langle u, w_{0}, \ldots, w_{l-1}\right\rangle$ all the elements $u, w_{0}, \ldots, w_{l-1}$ of which belong to 2^{l}. A roster $R=\left\langle u, w_{0}, \ldots, w_{l-1}\right\rangle$ can be understood as a condition in \mathbf{P} that forces \breve{b} to extend u and each $\breve{a}_{k}, k<l$, to extend w_{k}.

A roster $R=\left\langle u, w_{0}, \ldots, w_{l-1}\right\rangle$ agrees with the generic set G if $u \subset b$ and $w_{k} \subset a_{k}$ for all $k<l$. A roster R agrees with a condition $p \in \mathbf{P}$ if there exists a stronger condition $q \leq p$ that forces R to agree with \breve{G}. In this case there exists a greatest (i.e., a weakest) condition q of this sort (the restriction of p to R), which is denoted by $q=p \mid R: q$ is obtained by appending to p the information that \breve{b} extends u and each $\breve{a}_{k}, k<l$, extends w_{k}.

We shall say that a condition $p \in \mathbf{P}$ fully n-splits below l if the nth splitting level of T_{p} lies entirely below l and for any $u \in T_{p} \cap 2^{m}, m \leq n$, we have

$$
\left.f_{p}\right|_{u} \Vdash_{n} \text { "the } n \text {th splitting level of } f_{p}(u) \text { lies entirely below } l \text { ". }
$$

Lemma 2. Suppose that a roster $R=\left\langle u, w_{0}, \ldots, w_{l-1}\right\rangle$ agrees with a condition $p \in \mathbf{P}$ which fully n splits below $l \geq n$, and a condition $r \in \mathbf{P}$ is stronger than $p \mid R$. Then there exists a condition $q \leq_{n} p$ such that $q \upharpoonright R$ coincides with r.

Proof. Let us define T_{q} as the set of all $v \in T_{p}$ such that either $u \nsubseteq v$ or $v \in T_{r}$. (Then each $v \in T_{r}$ is \subseteq-comparable with u by the choice of r.)

Let us define $f_{q}(v)$ for $v \in T_{q}$. For $u \subseteq v$, we set $f_{q}(v)=f_{r}(v)$; for \subseteq-incomparable u and v, we set $f_{q}(v)=f_{p}(v)$. It remains to consider the case of the strict inclusion $v \subset u$. Set $m=\operatorname{dom} v, m<l$. Let $f_{q}(v)$ be the S_{m}-name of

$$
\begin{aligned}
& \text { "if } \exists j<m\left(w_{j} \nsubseteq \breve{a}_{j}\right) \text {, then } \operatorname{I} \text { am } f_{p}(v) \text {; } \\
& \text { otherwise, } \operatorname{I~am}\left\{a \in f_{p}(v): w_{m} \subset a \Longrightarrow a \in f_{r}(v)\right\} . "
\end{aligned}
$$

From the second part of the definition it follows that $q \backslash R=r$. Let $m<n$ and $v \in T_{q} \cap 2^{m}$. We shall show that $\left.f_{q}\right|_{v} \Vdash_{m}$ " $f_{q}(v) \leq_{n} f_{p}(v)$." By definition, the only nontrivial case is $v=u \dagger m \subset u$. We proceed by arguing in the \mathbf{S}^{m}-generic extension of the universe. By definition, all distinctions between $f_{p}(v)$ and $f_{q}(v)$ are concentrated in the domain $D=\left\{a \in 2^{w}: w_{m} \subset a\right\}$, where $w_{m} \in 2^{l}$. On the other hand, the nth splitting level of $f_{p}(v)$ is defined below l, so these distinctions do not violate the property $f_{q}(v) \leq_{n} \cdot f_{p}(v)$. Hence, $q \leq_{n} p$.

§3. Proof of Lemma 1

Let \breve{x} be the name of our number x. By the assumption of the lemma, a certain $p \in G$ forces " $\breve{x} \notin \mathrm{~L}\left[\breve{a}_{0}, \ldots, \breve{a}_{n}, \breve{b}\right]$ " for any n. By induction on n, we shall define
(a) a sequence $p=p_{0} \geq_{0} p_{1} \geq_{1} p_{2} \geq_{2} \cdots$ of conditions $p_{n} \in \mathbf{P}$;
(b) a sequence of positive integers $l_{0}<l_{1}<l_{2}<\cdots$; and
(c) a function g that maps rosters of size l_{n} into $\Sigma \cup\{\perp\}$, where Σ is the set of all functions σ such that $\operatorname{dom} \sigma \subseteq \omega$ is finite and $\operatorname{ran} \sigma \subseteq\{0,1\}$ and \perp is a formal symbol for separating unessential cases
so that for each n and any roster R of size l_{n},

$$
\begin{equation*}
p_{n+1} \| " \text { " } R \text { agrees with } \breve{G} \Longleftrightarrow g(R) \neq \perp \text { and } g(R) \subset \breve{x} " . \tag{1}
\end{equation*}
$$

Then any lower bound $q \in \mathbf{P}$ of the sequence of conditions p_{n} will force \breve{G} to be the only generic set that agrees with all the rosters R satisfying the property $g(R) \subset \breve{x}$. Therefore, q will force " $\breve{G} \in \mathbf{L}[\breve{x}]$," as required.

Suppose that p_{n} has already been constructed. Let us show how to define l_{n}, the action of g on rosters of size l_{n}, and the condition p_{n+1}.

First part. In view of familiar properties of Sacks forcing and its finite iterations, there exist a condition $q \leq_{n} p_{n}$ and a positive integer $l_{n}>l_{n-1}$ such that $T_{q}=T_{p_{n}}$ and q fully n-splits below l_{n}. Choose an enumeration $\left\langle R_{k}^{0}, R_{k}^{\mathrm{l}}\right\rangle, k<K$, of all pairs of different rosters of size l_{n}. Using induction on $k \leq K$, let us define
(a) conditions $q=q_{0} \geq_{n} q_{1} \geq_{n} q_{2} \geq_{n} \cdots \geq_{n} q_{K}$ in P;
(b) positive integers $m_{k} \in \omega$ and $i_{k} \in\{0,1\}$
so as to ensure that

$$
q_{k+1} \Vdash\left\{\begin{array}{l}
\text { "if } R_{k}^{0} \text { agrees with } \breve{G}, \text { then } \breve{x}\left(m_{k}\right)=i_{k} ", \\
\text { "if } R_{k}^{1} \text { agrees with } \breve{G}, \text { then } \breve{x}\left(m_{k}\right) \neq i_{k} "
\end{array}\right.
$$

for each $k<K$. Then let us set $p_{n+1}=q_{K}$ and, for any roster R of size l_{n},

$$
g(R)= \begin{cases}\left\{\left\langle m_{k}, i_{k}\right\rangle: k<K, R=R_{k}^{0}\right\} & \text { if } R \text { agrees with } q_{K} \\ \perp & \text { otherwise. }\end{cases}
$$

Such a choice obviously implies (1).
Second part. Now that we have defined q_{k}, let us define q_{k+1}, m_{k}, and i_{k}. The construction consists of two steps.

Step 1. We find a pair of intermediate conditions q^{0} and q^{1}. If the roster R_{k}^{0} does not agree with q_{k}, we set $q^{0}=q^{1}=q_{k}$ and proceed to Step 2. Suppose that R_{k}^{0} agrees with q_{k}. Recall that R_{k}^{0} is a roster of size l_{n}, i.e., $R_{k}^{0}=\left\langle u, w_{0}, \ldots, w_{l_{n}-1}\right\rangle$, where u and w_{j} belong to $2^{l_{n}}$.

Since q_{k} forces " $\breve{x} \notin L\left[\breve{a}_{0}, \ldots, \breve{a}_{l_{n}}, b\right]$," there exist conditions $r^{0}, r^{1} \in \mathbf{P}$ that are stronger than $q_{k} \backslash R_{k}^{0}$ and satisfy the properties $T_{r^{0}}=T_{r^{1}}$ (which implies $u \in T_{r_{0}}=T_{r_{1}}$) and $\left.f_{r^{0}}\right|_{u}=\left.f_{r^{1}}\right|_{u}$; also, there exists a number $m_{k} \in \omega$ such that $r^{0} \Vdash " \breve{x}\left(m_{k}\right)=0$ " and $r^{1} \Vdash " \breve{x}\left(m_{k}\right)=1$."

The existence of conditions q^{0} and q^{1} in \mathbf{P} such that $q^{i} \leq_{n} q_{k}$ and $q^{i} \mid R_{k}^{0}=r^{i}, i=0,1$, is ensured by Lemma 2. Moreover, a closer examination of the proof of Lemma 2 shows that, after we have chosen the conditions r^{i}, the conditions q^{i} can be chosen so that $T_{q^{0}}=T_{q^{1}}$ and $f_{q^{0}}(v)=f_{q^{1}}(v)$ for all $v \in T_{q^{0}}=T_{q^{1}}$ not satisfying the inclusion $u \subseteq v$. In particular, $q^{0}\left|R=q^{1}\right| R$ holds for any roster of size l_{n}.

Step 2. If R_{k}^{1} does not agree with q^{0} (and so with q^{1} as well by the above), then we set $q_{k+1}=q^{0}$ and $i_{k}=0$. Suppose that R_{k}^{1} agrees with r.

The condition $r \leq q^{0} \upharpoonright R_{k}^{1}$ defines the value of $\breve{x}\left(m_{k}\right)$ to be equal, say, to 0 . Set $i_{k}=1$. As was proved above, $r \leq q^{1} \mid R_{k}^{1}$. Using Lemma 2, we obtain a condition $q \leq_{n} q^{1}$ such that $q \mid R_{k}^{1}=r$. Thus, $q \leq_{n} q_{k}, q \backslash R_{k}^{1}=r \Vdash$ " $\breve{x}\left(m_{k}\right)=0, "$ and if q agrees with R_{k}^{0}, then $q \upharpoonright R_{k}^{0} \leq q^{1} \upharpoonright R_{k}^{0}$. Hence,

$$
q \upharpoonright R_{k}^{0} \Vdash \quad " \breve{x}\left(m_{k}\right)=i_{k}=1 . "
$$

It follows that the condition $q_{k+1}=q$ has the desired properties.
The research of the first author was supported by Caltech and the Research Department of the Ministry of Railroads of Russia. The research of the second author was supported by the GA C̆R Foundation under grant No. 201/97/0216.

References

1. J. E. Baumgartner and R. Laver, Ann. Math. Logic, 17, 271-288 (1979).
2. V. Kanovei, "On non-wellfounded iterations of perfect set forcing," J. Symbolic Logic (to appear).
(V. G. Kanovei) Moscow Institute of Transport Engineering

E-mail address: kanovei@mech.math.msu.su
(J. Zapletal) Caltech, Pasadena (USA)

E-mail address: jindra@cco.caltech.edu

[^0]: Translated from Matematicheskie Zametki, Vol. 63, No. 4, pp. 632-635, April, 1998.
 Original article submitted September 22, 1997.

