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Introduction

We consider a model whose structure of degrees of constructibility includes

(1) degrees 0 < ag < a; < ---, where O is the constructive degree;
(2) a degree b > 0 incomparable with any of the a,;

(3) “concatenations” agh < a;b <azb<---;

(4) the greatest degree a,b.

The degrees ag, a;,..., and b could be obtained by means of the Sacks” x Sacks forcing. (Here Sacks”
is the iteration of the Sacks forcing Sacks of length w with countable support; see [1]. Accordingly, Sacks™
is the iteration of Sacks of length m.) However, in this process, another degree, the upper bound a. of
the degrees @an, n € w, would emerge; this degree is incomparable with b, and so it is distinct from a,b.
Therefore, we need another form of iteration.

Elements of the set w* will be called (real) numbers.

Theorem. Let w{ be countable. Then there exists a generic extension M = L{{an, : n € w),}]

generated by the real numbers a, and b such that
(i) for any n, the sequence {(ao, ..., an),b) is (Sacks™! x Sacks)-generic over L;
(i) each real number z € M either belongs to Llag, ... , an, b] for a certain n or satisfles the property

Liz] = L{{an : n € w), b].

By the known properties of ordinary iterated Sacks models (see [1, 2]), the constructibility degrees of
numbers in such a model M have the structure described by (1)-(4).
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§1. Forcing

The arguments below are performed in the model L.

Let S = Sacks be the Sacks forcing. For any n, we denote by S™ its iteration of length n with the
associated forcing relation IF,,. Each 7 € S” is a function defined on the set n = {0,...,n — 1} so that
Tl klby “r(k)€S” forall k <n.

If w € 2" and f is a function such that each restriction of the form u [ k, k < n, belongs to domp,
then we denote by f|, the function defined on n by the formula (f|,)(k) = f(u [ k) forall k <n.

Let us define a forcing P as the family of all p = (T}, fp) such that

(a) T, € 2<¥ is a perfect tree;

(b) fp is a function defined on T}, so that fp|, € S™ forall u € T, N2".

We shall say that ¢ is stronger than p (and write ¢ < p), if T, € T, and fylu < fplu in S™ for each
u € Ty N 2" . The relation of P-forcing will be denoted by IF.

Recall that u € T is called a splitting node of the tree T C 2<“ if the nodes 40 and 4”1 belong to T'.
A splitting node of level n has exactly n splitting nodes below it. A perfect tree T contains exactly 2"
splitting nodes at each level n.

Let S and T be perfect trees. We shall write § <, T if S C T and the nth splitting levels in S
and T coincide. It is known that if T, are perfect trees and Ty 29 T3 21 T2 2 2+, then T = NT, are
also perfect trees.

For the forcing P, this construction takes the following form.

Let p,g € P. Set ¢ <n,pif ¢ <p, Ty <n Tp, and each u € T; N 2™, m < n, satisfies the property
falu Fm “fq(u) <n fp(u).” Then any decreasing chain po 20 p1 21 p2 2 2--- of forcing conditions
pn € P has a lower bound in P.

§2. Extension

Ifaset G C P is P-generic over L, then T = (¢ T, is a generic chain in 2<% sothat b= UT €2¥
is the Sacks number over L.
Let n € w. Set u=>b[n, u € 2®. Then the set Glu = {fplu : p € G} is S™-generic over L, ie,

there is a S™-generic sequence of numbers {ag, ..., @n-1) defined over L, in which each element a; € 2¢
is the Sacks number over Lag, ..., ak—;]. (Of course, ar here does not depend on the choice of n > k.)
Moreover, the sequence ({ag,-..,an-1), b) is (S™ X S)-generic over L.

Now it remains to prove statement (ii) of the theorem. It follows from the following lemma.
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Lemma 1. Suppose that a number z € L[G] does not belong to the class Llag , ..., an, b} for any n.
Then G € Liz].

We shall begin the proof with a definition. A roster of size [ is a finite sequence of the form R =
(u,wo, ..., wi~;) all the elements u, wo, ..., wi~ of which belong to 2'. A roster R = (u, wo,...,w;_;)
can be understood as a condition in P that forces b to extend u and each &y , k<, to extend wg.

A roster R = (u,wo,...,wi~1) agrees with the generic set G if v C b and wi C a; forall k<. A
roster R agrees with a condltlon p € P if there exists a stronger condition ¢ < p that forces R to agree
with (. In this case there exists a greatest (i.e., a weakest) condition g of this sort (the restriction of p
to R), which is denoted by ¢ = p | R: ¢ is obtained by appending to p the information that b extends u
and each éx, k <!, extends w;.

We shall say that a condition p € P fully n-splits below 1 if the nth splitting level of T, lies entirely
below ! and for any u € T, N 2™, m < n, we have

fplu IFn “the nth splitting level of fy(u) lies entirely below 1.

Lemma 2. Suppose that a roster R = (u, wq, ..., w;—1) agrees with a condition p € P which fully n-
splits below | > n, and a condition r € P is stronger than p [ R. Then there exists a condition q <, p
such that q | R coincides with r.

Proof. Let us define Ty as the set of all v € T, such that either u € v or v € T;.. (Then each v € T,
is C-comparable with u by the choice of r.)

Let us define fy(v) for v € T,. For u C v, we set fo(v) = fr(v); for C-incomparable u and v, we set
fo(v) = fp(v). It remains to consider the case of the strict inclusion v C u. Set m = domv, m < [. Let
fq(v) be the S,,-name of

“f 37 < m (w; € &;), then I am fp(v);
otherwise, I am {a € fp(v) : wm Ca => a € f,(v)}.”

From the second part of the definition it follows that ¢ [ R =r. Let m <n and v € T, N 2™. We shall
show that fils IFm “fq(v) <n fp(v).” By definition, the only nontrivial case is v = u [ m C u. We
proceed by arguing in the S™-generic extension of the universe. By definition, all distinctions between
fp(v) and f,(v) are concentrated in the domain D = {a € 2¥ : w,, C a}, where wy, € 2. On the other
hand, the nth splitting level of f,(v) is defined below I, so these distinctions do not violate the property

fo(v) Sn-fp(v). Hence, ¢ <, p. O

§3. Proof of Lemma 1

Let % be the name of our number z. By the assumption of the lemma, a certain p € G forces
“% ¢ Lido,...,dn, 3]” for any n. By induction on n, we shall define
(a) a sequence p=po >0 py 21 pz > 3+ of conditions pn € P;
(b) a sequence of positive integers lp < I; < la <---;and
(c) a function g that maps rosters of size I into ZU {1}, where T is the set of all functions o such
that domo C w is finite and rano C {0,1} and 1 is a formal symbol for separating unessential
cases

so that for each n and any roster R of size [,,
Pn+1 IF “R agrees with G — g(R)# L1 and g(R) C £". 1)

Then any lower bound ¢ € P of the sequence of conditions p, will force G to be the only generic set
that agrees with all the rosters R satisfying the property g(R) C &. Therefore, ¢ will force “GeLl#,”
as required.

Suppose that p, has already been constructed. Let us show how to define I, the action of g on rosters
of size [, , and the condition pp+i.
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First part. In view of familiar properties of Sacks forcing and its finite iterations, there exist a condition
¢ <na Pn and a positive integer I, > [,_; such that Ty, = T, and ¢ fully n-splits below {,. Choose an
enumeration (R}, RL), k < K, of all pairs of different rosters of size I,. Using induction on k < K, let
us define

(a) conditions ¢ =go >» g1 2a g2 2a *** 2n gk in P;

(b) positive integers my € w and #; € {0,1}
so as to ensure that .

| “if RY agrees with G, then ¥(m) = i¢”,
Qk+1 . . > " .
“if R} agrees with G, then #(my) # ;"

for each k < K. Then let us set pny1 = gk and, for any roster R of size I,

{{mk,ix) : k < K, R=R}} if R agrees with ¢g,
o(®) = { .

4 otherwise.
Such a choice obviously implies (1).

Second part. Now that we have defined q;, let us define gi4+1, Mg, and ix. The construction consists
of two steps.

Step 1. We find a pair of intermediate conditions ¢° and g¢'. If the roster R does not agree with g,
we set ¢° = ¢' = ¢; and proceed to Step 2. Suppose that R} agrees with gx. Recall that R} is a roster
of size l,, ie., R} = (u,wo,...,wi,—1), where u and w; belong to ol

Since g forces “% ¢ Lldo,...,d,,b]," there exist conditions r®,r! € P that are stronger than
g | R and satisfy the properties Tpo = T,1 (which implies u € Ty, = Ty, ) and fro|y = fr1]u; also, there
exists a number m; € w such that r® IF “#(m) =0" and r! IF “Z(mi) = 1.7

The existence of conditions ¢ and ¢! in P such that ¢' <, gz and ¢' | R} =%, i =0, 1, is ensured
by Lemma 2. Moreover, a closer examination of the proof of Lemma 2 shows that, after we have chosen the
conditions r*, the conditions ¢' can be chosen so that Tye = Ty and fpo(v) = fu(v) forall v € Tpo =T
not satisfying the inclusion u C v. In particular, ¢° [ R = ¢* | R holds for any roster of size Iy.

Step 2. If RL does not agree with ¢° (and so with ¢' as well by the above), then we set gi+1 = ¢°
and iz = 0. Suppose that R} agrees with r.

The condition r < ¢° | R} defines the value of Z(m;) to be equal, say, to 0. Set iy = 1. As was
proved above, r < ¢! [ RL. Using Lemma 2, we obtain a condition g <. ¢' such that ¢ [ R} =r. Thus,
q4<nqk, ¢ R =7l “%(my) =0,” and if ¢ agrees with R}, then ¢ [ R} < ¢' | R}. Hence,

g RYIF  “¥(my) =ik =1."

It follows that the condition gx+, = g has the desired properties.
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