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I n t r o d u c t i o n  

We consider a model whose structure of degrees of constructibility includes 

(1) degrees 0 < a0 < 91 < -.- , where 0 is the constructive degree; 
(2) a degree b > 0 incomparable with any of the an ; 
(3) "concatenations" aob < a l b  < a2b < . . .  ; 
(4) the greatest degree a, ,b .  

The degrees a0, 9 1 , . . . ,  and b could be obtained by means of the Sacks ~ x Sacks forcing. (Here Sacks ~ 
is the iteration of the Sacks forcing Sacks of length w with countable support; see [1]. Accordingly, Sacks m 
is the iteration of Sacks of length m.)  However, in this process, another degree, the  upper  bound a~ of 
the degrees an ,  n E w, would emerge; this degree is incomparable with b, and so it is distinct from a~,b. 
Therefore, we need another form of iteration. 

Elements of the set w ~ will be called (real) numbers. 

T h e o r e m .  Let  w L be countable. Then there exists a generic extension M = L[(an : n e w), b] 
generated by the reM numbers  aT, and b such that 

(i) for any n ,  the sequence ( ( a 0 , . . . ,  a , ) ,  b) is (Sacks '`+' • Sacks )-generic over L; 
(it) each real n u m b e r  x E M either belongs to L[a0, . . . ,  an, b] for a certain n or satist]es the property  

L[z] = L[(an : n e w), b]. 

By the known properties of ordinary iterated Sacks models (see [1, 2]), the constructibility degrees of 
numbers in such a model M have the structure described by (1)-(4). 
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FIG. 1. The  s t ruc ture  of L- 
degrees in the model  under  
s tudy  

w F o r c i n g  

The  arguments  below are performed in the model L .  
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FIG. 2. The  s t ruc tu re  of L- 
degrees in the ord inary  iter- 
ated Sacks model  wi th  the 
same system of generators  
a,,  and b 

Let S = Sacks be the Sacks forcing. For any n ,  we denote by S"  its i te ra t ion of length n with the 
associated forcing relat ion II-n. Each r E S n is a function defined on the set n = {0, . . . ,  n - 1} so that  

r I k I~-k "v(k) e S" for all k < n .  
If u E 2 ~ and  f is a funct ion such that  each restriction of the form u I k ,  k < n ,  belongs to d o m p ,  

then we denote  by  f l -  the funct ion defined on n by the formula ( f l u ) ( k ) =  f ( u  r k) for all k < n .  
Let us define a forcing P as the family of all p = (Tv, fv) such tha t  

(a) T,  C 2 <~' is a perfect  tree; 
(b) fv is a funct ion defined on T v so that  fp I~ E S "  for all u E Tp I"1 2" .  

We shall say tha t  q is stronger than  p (and write q < p), if T~ _C Tp and fgl -  < fp l -  in S "  for each 
u E Tq N 2 '~ . T h e  re la t ion of  P-forcing will be denoted  by 11-. 

Recall tha t  u E T is called a spli~ting node of the tree T C_. 2 <`0 if the nodes u^0  and u ^ l  belong to T .  
A splitt ing node  of level n has exactly n splitt ing nodes below it. A perfect t ree T contains exact ly  2 n 
split t ing nodes at each level n .  

Let S and  T be perfect  trees. We shall write S <n T if S C T and the n t h  spli t t ing levels in S 
and T coincide. It  is known tha t  if Tn are perfect trees and To >0 TI >1 T2 > 2 " "  , then  T = n T n  are 
also perfect  trees. 

For the forcing P ,  this construct ion takes the following form. 
Let p, qE P .  Set q < , p  if q <p, Tq <~T v,andeach u E T ~ f ' 1 2  '~, m < n ,  satisfies the p roper ty  

fql~ I~-,~ " f q ( u )  < ,  fv(u)." Then  any decreasing chain p0 >0 p~ >~ p2 > 2" ' "  of forcing conditions 
pn E P has a lower bound  in P .  

w Extension 

If a set G C_ P is P-gener ic  over L,  then T --- Nv~G Tp is a generic chain in 2 <`0 , so tha t  b = U T  E 2`0 
is the Sacks num ber  over L .  

Let n E w. Set u = b I n ,  u E 2 n. Then  the set G]~, = {fvlu : P  E G} is S '~-gener icover  L ,  i.e., 
there is a Sn-generic  sequence of numbers /a0, . . . ,  a n - l )  defined over L ,  in which each element  ak E 2`0 
is the Sacks number  over L [ a 0 , . . . ,  ak-~]. (Of course, a~ here does not depend on the choice of n > k.)  
Moreover, the sequence ( ( a 0 , . . . ,  a n - l ) ,  b) is (S '~ x S)-generic over L.  

Now it remains to prove s ta tcment  (ii) of the theorem. It follows from thc following lemma. 
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L e m m a  1. Suppose that a number  z E L[G] does not belong to the class L [ a 0 , . . . ,  a , ,  b] for any  n.  
Then G E L[x].  

We shall begin the p roof  with a definition. A roster of size l is a finite sequence  of the form R = 
(u, w 0 , . . . ,  w i - l )  all the  e lements  u,  w 0 , . . . ,  wi-1 of which belong to 2 t . A ros ter  R = (u, w 0 , . . . ,  wt-1) 

can be unde r s tood  as a condi t ion in P tha t  forces b to extend u and each ~k, k < l ,  to ex tend  wk. 
A ros ter  R = (u, w o , . . .  ,w t -1 )  agrees with the generic set G if u C b and wt~ C ak for all k < I. A 

roster  R agrees with a condi t ion p E P if there exists a stronger condition q < p t h a t  forces R to agree 
with G.  In this case there  exists a greates t  (i.e., a weakest) condition q of this so r t  ( the restriction of p 

to R), which is deno ted  by  q = p I R: q is obta ined by appending to p the in fo rma t ion  tha t  b extends  u 
and each 5k,  k < l ,  ex tends  wk .  

We shall say tha t  a condi t ion p 6 P fully n-splits below l if the n th  spli t t ing level of  T n lies entirely 
below 1 and  for any u E T v N 2 m,  rn <_ n ,  we have 

fvl,, IF. " the n th  spli t t ing level of fv(u)  lies entirely below I " .  

L e m m a  2. Suppose that a roster R = (u, wo, . .. , wt-~) agrees with a condition p 6 P which fully n- 
splits below l > n ,  and a condition r E P is stronger than p [ R .  Then there exis ts  a condition q <n p 
such that q r R coincides with r .  

P r o o f .  Let  us define Tq as the set of all v E T v such that  ei ther u ~ v or v E T r .  (Then  each v E Tr 
is C-comparable  wi th  u by  the choice of  r . )  

Let  us define fq(v)  for  v e Tq. For u C v ,  we set fq(V) = I t ( v ) ;  for C- incomparab le  u and  v,  we set 
fq(V) = i v ( v ) .  It remains  to consider the case of the strict inclusion v C u .  Set rn = d o m v ,  m < I. Let 
fq(v) be the S, , , -name of 

"if 3j < rn (wj ~ a/), then I am h(v);  

otherwise,  I am {a e i v ( v ) :  w, ,  C a ==:> a e f r (v ) } . "  

From the second par t  of  the  definit ion it follows that  q [ R = r .  Let m < n and  v E Tq n 2 '~ . We shall 
show tha t  fq[~ IFm " fq (v )  <n h ( v ) . "  By  definition, the only nontrivial  case is v = u [ rn C u .  We 
proceed by  arguing in the  Sin-generic extension of the universe. By definition, all dis t inct ions between 
h ( v )  and fq(v)  are concen t ra ted  in the domain  D = {a e 2w: w,n C a} ,  where wm e 2 t. On the other  
hand,  the n t h  spl i t t ing level of  i v (v )  is defined below l ,  so these dist inctions do n o t  violate  the  proper ty  
h(v) <,,fn(v). Hence, q <,, p. [] 

w P r o o f  o f  L e m m a  1 

Let :~ be  the  name  of our  number  x .  By the assumption of the lemma,  a cer ta in  p E G forces 
":~ r L[~0, . o . ,  5 , ,  b]" for any n .  By induct ion on n ,  we shall define 

(a) a sequence p = P0 >0 Pl >1 P2 > 2 " "  of conditions p ,  E P ; 
(b) a sequence of  posi t ive integers l0 < I1 < / 2  < - . .  ; and 
(c) a funct ion g tha t  maps  rosters of size I ,  into E U {_l_}, where E is the set of  all funct ions a such 

that  d o m a  C w is finite and r a n d  _C {0, 1} and i is a formal symbol  for separa t ing  unessential 
c a s e s  

so that  for each n and  any ros ter  R of size ln,  

p , + ,  IF- " R  agrees with r .: '.. g(R) # I and g(R)  C ~" .  (1) 

Then  any lower bound  q E P of the sequence of conditions p ,  will force G to be  the only generic set 
tha t  agrees with all the  rosters  R satisfying the proper ty  g(R) C ~. Therefore ,  q will force " G  E L[~] ," 
as required. 

Suppose tha t  Pn has a l ready been constructed.  Let us show how to define l , ,  the  act ion of g on rosters 
of size l,,, and the condi t ion p , + l .  
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First  part. In view of familiar properties of Sacks forcing and its finite i terations, there  exist a condition 
q <,, p,, and a positive integer l,~ > 1,,-i such that Tq = Tp. and q fully n-splits below 1,.  Choose an 
enumerat ion (R ~ R [ ) ,  k < K ,  of all pairs of different rosters of size 1,. Using induct ion on k < K ,  let 
us define 

(a) condit ions q = qo >n ql >_n q2 >n "'" >_n qK in P ;  
(b) posit ive integers m t  G w and i t  E {0, 1} 

so as to ensure that  
= i  " "if R ~ agrees with G, then ~(rnt) t , 

qt+~ I~- "if R~ agrees with G, then ~:(mt) # i t "  

for each k < K .  Then let us set p,,+~ = qK and, for any roster R of size l,,, 

{ { ( r n t , i t ) : k < K ,  R = R ] }  i f R a g r e e s w i t h q l r  

g( R )  = 2_ otherwise. 

Such a choice obviously implies (1). 
Second part.  Now that  we have defined q t ,  let us define qk+l, rnk, and ik. The  const ruct ion  consists 

of two steps. 
Step 1. We find a pair  of intermediate  conditions q0 and ql .  If the roster R ~ does not  agree with q t ,  

we set q0 = ql = qt and proceed to Step 2. Suppose that  R ~ agrees wigh qk. Recall  tha t  R~, is a roster 
of size l,,, i.e., R~ = ( u , w o ,  . . .  , w z . - 1 ) ,  where u and wj belong to 2 l- . 

Since qt forces "~ ~ L [ a 0 , . . . ,  fit. ,  b]," there exist conditions r ~ r I E P that  are s t ronger  than 
qt [ R~ and satisfy the propert ies  Tr0 = Tr, (which implies u E T~o = T~, ) and f~o [,, = f~, [= ; also, there 
exists a number  rnk G w such that  r ~ IF " $ ( m t )  = 0" and r I It- "$( rn t )  = 1 ." 

The  existence of condit ions q0 and ql in P such that  qi <,~ qt and qi I R~ = r i ,  i = 0 ,  1 ,  is ensured 
by Lemma 2. Moreover, a closer examinat ion of the proof of Lemma 2 shows that ,  af ter  we have chosen the 
conditions r i , the conditions qi can be chosen so that  Tq0 = Tq, and fqo(v) = fq , ( v )  for all v E Tq0 = Tq~ 
not satisfying the inclusion u C_ v. In particular, q0 I R = qZ [ R holds for any roster  of  size I , .  

Step 2. If R~ does not  agree with q0 (and so with ql as well by the above),  then we set qt+l  = q0 
and i t  = 0. Suppose that  R~ agrees with r.  

The  condit ion r < q0 I R~ defines the value of ~(mk) to be  equal, say, to 0. Set i t  = 1. As was 
proved above, r < q~ I R~.  Using Lemma 2, we obtain a condition q <n q~ such tha t  q [ R~ = r .  Thus, 
q <n  q t ,  q I R~ = r I~- " ~ ( m t )  = 0," and if q agrees with R ~ , then q r R ~ < qX [ R o. Hence, 

q I R~ IF "$(mk) = ik = 1." 

It follows that  the condit ion qk+l = q has the desired properties. 
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