Nonstandard Set Theory in \in -Language

V. G. Kanovei

Received September 16, 1998

Abstract—A sufficiently convenient set theory in the standard \in -language applicable to non-standard analysis is proposed.

KEY WORDS: nonstandard set theory, Hrbaček theory, internal set, well-founded set, saturated elementary extensions, **ZFC** universe.

Nonstandard set theories form one of the two known systems of foundations of nonstandard analysis. (The second one consists in using nonstandard extensions of mathematical structures in the "standard" **ZFC** universe.) A typical nonstandard set theory (for instance, Nelson's internal set theory **IST** [1]; see also [2–5]) organizes the universe of sets in such a way that objects of regular mathematics, called *standard*, coexist and interact with *nonstandard* objects (for instance, infinitesimal numbers). In so doing, the class S of all standard sets is singled out by mean of the undefinable *standardness predicate* st x (read as "x is standard"). In other words, these nonstandard set theories are formulated in st- \in -language containing st and \in as atomic predicates.

In this paper we propose a set theory in \in -language strong enough to formalize nonstandard analysis. It is called the *simplified Hrbaček theory* or **SHST**. In short, **SHST** is the theory of the \in -structure of the **HST** universe in which the **HST** axioms (those of the Hrbaček nonstandard set theory, which uses st in its language; see below) are true. The **SHST** theory proves the existence of saturated elementary extensions. Another property of **SHST** is the existence of a (Boolean) **ZFC** interpretation such that the class of all standard sets of the interpretation is isomorphic to the **ZFC** universe. In particular, **SHST** and **ZFC** are equiconsistent and any theorem of **SHST** about standard sets is a theorem of **ZFC** (about all sets).

The main idea underlying the construction of the **SHST** axioms is the fact that the class S (which does not seem to be \in -definable in **HST**) has a \in -definable isomorphic copy: the class V of all well-founded sets (Kawaï's observation [4]). This makes it possible to replace S as the "standard" universe by V and use the obvious \in -definability of V. The class I of *internal* sets (the elementary extension of S) also admits a \in -definition.

1. HRBAČEK'S THEORY

This theory was introduced by Hrbaček [2]. An improved version was presented in detail in [3], but, for convenience, we list of the axioms of **HST** with brief comments. Recall that **HST** is a theory in the st- \in -language; st x means that x is standard; and $\mathbb{S} = \{x : \text{st } x\}$ denotes the class of all standard sets. Elements of standard sets are called *internal* sets, int x is the formula $\exists^{\text{st}} y \ (x \in y) \ (x \text{ is internal})$, and $\mathbb{I} = \{x : \text{int } x\}$ is the class of all internal sets. The quantifiers \exists^{st} and \forall^{int} below are understood in the obvious way: "there exists standard" and "for any internal."

The axioms of the universe are all axioms of **ZFC**, except the regularity, degree, and choice axioms. The separation and substitution schemas are formulated in st- \in -language.

Transitivity of I. $\forall^{\text{int}} x \ \forall y \in x \ (\text{int} y)$.

Regularity over \mathbb{I} . $\forall X \neq \emptyset \ \exists x \in X \ (x \cap X \subseteq \mathbb{I}).$

ZFCst. All formulas of the form Φ^{st} (Φ relativized to S), where Φ is a **ZFC** axiom.

Carry-over. All sentences of the form $\Phi^{st} \iff \Phi^{int}$, where Φ is a closed \in -formula with standard parameters.

Standardization. $\forall X \exists^{st} Y (X \cap S = Y \cap S)$ (for any X there exists a standard Y that contains the same standard elements).

These axioms suffice to define the class \mathbb{V} of all well-founded sets (i.e., elements of transitive sets X such that $\in \upharpoonright X$ is well-founded) and the \in -isomorphism $x \mapsto {}^{*}x$ of \mathbb{V} onto \mathbb{S} (${}^{*}x$ is defined as the only standard set u containing all sets of the form ${}^{*}y$, $y \in x$, and no other standard elements). It follows that \mathbb{V} is a transitive class interpreting **ZFC** and closed under taking subsets. Furthermore, $x \mapsto {}^{*}x$ is an elementary embedding (in the \in -language) of \mathbb{V} in \mathbb{I} by carry-over (see [3, Sec. 1]).

In **HST**, cardinals, ordinals, natural numbers are \mathbb{V} -notions, so that a natural number is understood as a set $n \in \mathbb{V}$ which is a natural number in \mathbb{V} (briefly, a \mathbb{V} -natural number). The set of all natural numbers is denoted by ω .

Sets of the same cardinality as $n = \{0, 1, ..., n-1\}$, where $n \in \omega$, are called *finite*. Sets of the same cardinality as $x \in \mathbb{V}$ are called *sets of standard size* or, briefly, SS-*sets*.

Let us formulate the last two essential axioms of **HST**.

Saturation of I. If $\mathcal{X} \subseteq I$ is an SS-set and $\cap \mathcal{X}' \neq \emptyset$ for any *finite* $\mathcal{X}' \subseteq \mathcal{X}$ (the finite intersection property), then $\cap \mathcal{X}' \neq \emptyset$.

SS-choice. The axiom of choice holds for the case in which the choice function is to be defined on an SS-family of (nonempty) sets.

Saturation allows us to obtain diverse nonstandard sets. The axiom of SS-choice partly compensates for the absence of the complete choice axiom, which contradicts **HST** as well as the degree and regularity axioms.

Theorem 1 (see [3]). The **HST** and **ZFC** theories are equiconsistent. Furthermore, **HST** has a Boolean interpretation in **ZFC**, in which the class S is provably \in -isomorphic to the basic universe **ZFC**. Consequently, if **HST** proves that a closed \in -formula Φ is true in V (or, equivalently, in S), then Φ is a theorem in **ZFC**.

Unexpectedly, it turns out that the class I is directly \in -definable in **HST**. We say that a set x is quasiinternal if there exists an ω -sequence $\{x_n\}_{n\in\omega}$ such that $x \in x_{n+1} \in x_n$ for all $n \in \omega$.

Proposition 1 (HST). Classes of internal and quasiinternal sets coincide.

Proof. [3]. Let $x \in \mathbb{I}$. Reasoning within the universe \mathbb{I} , we define $y_k = y_{k-1} \cup \{y_{k-1}\}$ by induction on $k \in {}^*\omega$ starting with $y_0 = x$. Choose an arbitrary $\nu \in {}^*\omega \setminus \omega$, and set $x_n = y_{\nu-n}$ for all $n \in \omega$.

The converse implication readily follows from the regularity over \mathbb{I} . \Box

2. THE SIMPLIFIED HRBAČEK THEORY

The **SHST** theory includes the following groups (i)–(iv) of axioms.

 (i) Similarly to HST, all the axioms of ZFC except the regularity, degree, and choice axioms. (Separation and substitution in the st-∈-language.)

This suffices to introduce the class \mathbb{V} of all well-founded sets and to prove its transitivity.

(ii) All formulas of the form Φ^{wf} (Φ relativized to $\mathbb{V} = \{x : wf x\}$), where Φ is an axiom of **ZFC**, and wf x says, "x is well-founded."

MATHEMATICAL NOTES Vol. 70 No. 1 2001

Further, suppose that ${}^{q}\mathbb{I}$ denotes in the \in -language the class of all quasiinternal sets (see above). We add

(iii) axioms of transitivity of the class ${}^{q}\mathbb{I}$, regularity over ${}^{q}\mathbb{I}$, saturation of ${}^{q}\mathbb{I}$, and SS-choice (as in the **HST** theory, but for ${}^{q}\mathbb{I}$).

As regards the carry-over, we cannot borrow its formulation directly from **HST**: **SHST** does not ensure any suitable embeddings of \mathbb{V} in ${}^{q}\mathbb{I}$. However, the following wording is quite acceptable.

(iv) SIMPLIFIED CARRY-OVER. All formulas of the form $\Phi^{\text{wf}} \iff \Phi^{q-\text{int}}$, where Φ is a closed \in -formula with parameters from ω . (It is hardly possible to invoke a larger range of parameters: the problem is that $\mathbb{V} \cap \mathbb{I} = H\omega$ (hereditarily finite sets) in **HST**, but parameters from $H\omega$ reduce to ω .)

(Here q-int denotes the relativization to $q\mathbb{I}$.) This axiom needs a comment, because at first, it is not clear that $\omega \subseteq q\mathbb{I}$. The plan is to accept the simplified carry-over in the parameter-free version, which readily implies that $q\mathbb{I}$ is a transitive \in -model of **ZFC**, and hence, $\omega \subseteq q\mathbb{I}$. Then we accept the simplified carry-over entirely.

Notice that **SHST** is a subtheory of the \in -part of **HST**. (To prove the simplified carry-over in **HST**, we verify by induction on x in **HST** that *x = x for all $x \in \omega$; then $\Phi^{wf} \iff \Phi^{int}$, since $x \mapsto *x$ is an elementary embedding of \mathbb{V} into \mathbb{I} .) Thus, **SHST** satisfies Theorem 1. The following lemma shows that **SHST** ensures the existence of elementary extensions.

Lemma 1 (SHST). For any transitive $X \in \mathbb{V}$ there exists a transitive ${}^{*}X \in {}^{q}\mathbb{I}$ and an elementary embedding of $\langle X ; \in \rangle$ into $\langle {}^{*}X ; \in \rangle$.

Proof. The carry-over and saturation of **SHST** yield the transitive set ${}^{*}X \in {}^{q}\mathbb{I}$ such that the structures $\langle X; \in \rangle$ and $\langle {}^{*}X; \in \rangle$ are elementarily equivalent. Let us construct an elementary embedding of $\langle X; \in \rangle$ into $\langle {}^{*}X; \in \rangle$.

By the choice of *X and the saturation of ${}^{q}\mathbb{I}$ if $n \in \omega$, then for any *n*-tuple $\langle x_1, \ldots, x_n \rangle \in X^n$ there exists an *n*-tuple $\langle r_1, \ldots, r_n \rangle \in {}^{*}X^n$ such that

(A) for any \in -formula $A(\cdot, \ldots, \cdot)$ (formulas are understood as finite sequences of a certain form in this proof), $A(x_1, \ldots, x_n)$ is true in $\langle X ; \in \rangle$ if and only if $A(r_1, \ldots, r_n)$ is true in $\langle *X ; \in \rangle$.

According to the SS-choice axiom, there exists a one-to-one length-preserving map of finite sequences $f: X^{<\omega} \to ({}^*\!X)^{<\omega}$ such that (A) holds for $\langle x'_1, \ldots, x'_n \rangle = f(\langle x_1, \ldots, x_n \rangle)$, whatever the *n*-tuple $\langle x_1, \ldots, x_n \rangle \in X^{<\omega}$. Clearly, we have $f(\langle x \rangle) = \langle \phi(x) \rangle$, where $\phi: X \to {}^*\!X$ is a one-to-one function.

If $D \subseteq X$ is finite and F is a finite set of \in -formulas, then let $\Pi_{DF} \in {}^{q}\mathbb{I}$ be the set of all one-to-one maps $\pi \in {}^{q}\mathbb{I}$, $\pi : {}^{*}X$ onto ${}^{*}X$ such that for any \in -formula $A(v_{1}, \ldots, v_{n}) \in F$ and all $x_{1}, \ldots, x_{n} \in D$ we have:

(B) it is true in *X that $A(\pi(\phi(x_1)), \ldots, \pi(\phi(x_n))) \iff A(r_1, \ldots, r_n)$, where $\langle r_1, \ldots, r_n \rangle = f(\langle x_1, \ldots, x_n \rangle)$.

Notice that the sets Π_{DF} are nonempty by the choice of *X and f. (For example, if F contains only one formula A, we simply take the bijection π : *X onto *X such that $\pi(\phi(x_i)) = r_i$ for all i.) In addition, the family of all sets Π_{DF} is of standard size and satisfies the finite intersection property. (Indeed, $\Pi_{D_1F_1} \cap \Pi_{D_2F_2} \supseteq \Pi_{D_1 \cup D_2, F_1 \cup F_2}$.) This means that there exists a one-toone map $\pi \in {}^{q}\mathbb{I}, \pi : *X \to *X$ contained in each of our sets Π_{DF} such that (B) holds for all $x_1, \ldots, x_n \in X^{<\omega}$ and all \in -formulas A. It readily follows that $p(x) = \pi(\phi(x))$ is an elementary embedding of $\langle X; \in \rangle$ in $\langle *X; \in \rangle$. \Box

3. DEVELOPING NONSTANDARD ANALYSIS IN SHST

Informally, the class \mathbb{V} of all well-founded sets is identified with the "standard" mathematical universe. Then, since **SHST** satisfies Theorem 1 (as a subtheory of **HST**), the universe **SHST**

can be regarded as a quite well defined extension of the "true" universe \mathbb{V} just like \mathbb{C} is an extension of \mathbb{R} . Hence, **SHST** is not just a syntactic tool: we have a complete interpretation in **ZFC**.

It is known that the set $X = V_{\omega+\omega}$, defined in \mathbb{V} , suffices for constructing almost all mathematical structures in \mathbb{V} . In particular, the sets $\mathbb{N} = \omega$ (natural numbers) and \mathbb{R} belong to \mathbb{V} .

Lemma 1 yields the transitive set ${}^{*}X = {}^{*}V_{\omega+\omega} \in {}^{q}\mathbb{I}$ and elementary embedding $x \mapsto {}^{*}x$ of the structure $\langle V_{\omega+\omega}; \in \rangle$ into $\langle {}^{*}V_{\omega+\omega}; \in \rangle$. (Notice that ${}^{*}V_{\omega+\omega}$ is a ${}^{q}\mathbb{I}$ -analog of $V_{\omega+\omega}$: in fact, ${}^{*}V_{\omega+\omega} = V_{{}^{*}\omega+{}^{*}\omega}$ in ${}^{q}\mathbb{I}$.) It is easy to show that ${}^{*}n = n \in {}^{*}\mathbb{N}$ for any $n \in \mathbb{N}$ (for instance, by induction on n); so \mathbb{N} is the initial segment of ${}^{*}\mathbb{N}$. Moreover, ${}^{*}\mathbb{N} \setminus \mathbb{N}$ is nonempty by saturation applied to the family of sets $S_n = \{k \in {}^{*}\mathbb{N} : k > n\}, n \in \mathbb{N}$. Elements of ${}^{*}\mathbb{N}$ are exactly the ${}^{q}\mathbb{I}$ natural numbers, which can be called, as usual, *hypernatural*. The numbers in ${}^{*}\mathbb{N} \setminus \mathbb{N}$ are called *infinitely large*.

As regards the real numbers (again, in the sense of \mathbb{V}), we have $\mathbb{R} \in V_{\omega+\omega}$ and $\mathbb{R} \subseteq V_{\omega+\omega}$ in \mathbb{V} ; hence, $\mathbb{R} \in \mathbb{V}_{\omega+\omega}$ in ${}^{q}\mathbb{I}$, and $\mathbb{K} \in \mathbb{R}$ is well defined for all $x \in \mathbb{R}$. Elements of \mathbb{R} , i.e., ${}^{q}\mathbb{I}$ -real numbers, can be called *hyperreal*. Now we can introduce the notions of *infinitely large*, *infinitesimal*, *bounded* hyperreal numbers and the ratio \approx of *infinite closeness* in the ordinary way.

Lemma 2. If $x \in \mathbb{R}$ is bounded, then $x \approx \mathbb{R}$ for a certain $z \in \mathbb{R}$.

Proof. Notice that the sets $A = \{y \in \mathbb{R} : *y \leq x\}$ and $B = \{y \in \mathbb{R} : *y > x\}$ are nonempty by the boundedness of x. These sets belong to \mathbb{V} , because this class is closed with respect to taking subsets. Reasoning in \mathbb{V} , we find a number z which is either the greatest in A or the smallest in B. \Box

This simple argument demonstrates the potential of **SHST**. As to more complicated examples, such as the Loeb measure and "hyperfinite" descriptive set theory, we refer the reader to [3, 2.2 and 2.3], where it is explained how to perform typical "nonstandard" calculations in the context of similar systems.

ACKNOWLEDGMENTS

This research was supported by the Russian Foundation for Basic Research under grant no. 98-01-00045, the DFG Foundation under grant no. 436-RUS-17/66/97, and by Wuppertal University.

REFERENCES

- E. Nelson, "Internal set theory: a new approach to nonstandard analysis," Bull. Amer. Math. Soc., 83 (1977), 1165–1198.
- 2. K. Hrbaček, "Axiomatic foundations for nonstandard analysis," Fund. Math., 98 (1978), 1–19.
- V. Kanovei and M. Reeken, "Mathematics in a nonstandard world," Math. Japonica, 45 (1997), no. 2, 369–408, no. 3, 555–571.
- T. Kawaï, "Nonstandard analysis by axiomatic methods," in: Southeast Asia Conference on Logic (Singapore 1981), vol. 111, Studies in Logic and Foundations of Math, North-Holland, Amsterdam, 1983, pp. 55–76.
- A. G. Kusraev and S. S. Kutateladze, Nonstandard Methods of Analysis [in Russian], Nauka, Novosibirsk, 1990.

M. V. LOMONOSOV MOSCOW STATE UNIVERSITY *E-mail*: kanovei@mech.math.msu.su