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Nonstandard set theories form one of the two known systems of foundations of nonstandard
analysis. (The second one consists in using nonstandard extensions of mathematical structures in
the “standard” ZFC universe.) A typical nonstandard set theory (for instance, Nelson’s internal
set theory IST [1]; see also [2–5]) organizes the universe of sets in such a way that objects of
regular mathematics, called standard, coexist and interact with nonstandard objects (for instance,
infinitesimal numbers). In so doing, the class S of all standard sets is singled out by mean of
the undefinable standardness predicate stx (read as “x is standard”). In other words, these
nonstandard set theories are formulated in st-∈-language containing st and ∈ as atomic predicates.

In this paper we propose a set theory in ∈-language strong enough to formalize nonstandard
analysis. It is called the simplified Hrbaček theory or SHST . In short, SHST is the theory of
the ∈-structure of the HST universe in which the HST axioms (those of the Hrbaček nonstandard
set theory, which uses st in its language; see below) are true. The SHST theory proves the
existence of saturated elementary extensions. Another property of SHST is the existence of a
(Boolean) ZFC interpretation such that the class of all standard sets of the interpretation is
isomorphic to the ZFC universe. In particular, SHST and ZFC are equiconsistent and any
theorem of SHST about standard sets is a theorem of ZFC (about all sets).

The main idea underlying the construction of the SHST axioms is the fact that the class S
(which does not seem to be ∈-definable in HST) has a ∈-definable isomorphic copy: the class V
of all well-founded sets (Kawäı’s observation [4]). This makes it possible to replace S as the
“standard” universe by V and use the obvious ∈-definability of V . The class I of internal sets
(the elementary extension of S) also admits a ∈-definition.

1. HRBAČEK’S THEORY

This theory was introduced by Hrbaček [2]. An improved version was presented in detail in [3],
but, for convenience, we list of the axioms of HST with brief comments. Recall that HST is
a theory in the st-∈-language; stx means that x is standard; and S = {x : st x} denotes the
class of all standard sets. Elements of standard sets are called internal sets, int x is the formula
∃sty (x ∈ y) (x is internal), and I = {x : intx} is the class of all internal sets. The quantifiers ∃st
and ∀int below are understood in the obvious way: “there exists standard” and “for any internal.”

The axioms of the universe are all axioms of ZFC , except the regularity, degree, and choice
axioms. The separation and substitution schemas are formulated in st-∈-language.

Transitivity of I . ∀intx ∀y ∈ x (int y) .
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Regularity over I . ∀X �= ∅ ∃x ∈ X (x ∩X ⊆ I) .

ZFCst . All formulas of the form Φst (Φ relativized to S), where Φ is a ZFC axiom.

Carry-over. All sentences of the form Φst ⇐⇒ Φint , where Φ is a closed ∈-formula with
standard parameters.

Standardization. ∀X ∃stY (X ∩S = Y ∩S) (for any X there exists a standard Y that contains
the same standard elements).

These axioms suffice to define the class V of all well-founded sets (i.e., elements of transitive
sets X such that ∈ � X is well-founded) and the ∈-isomorphism x �→ ∗x of V onto S (∗x is
defined as the only standard set u containing all sets of the form ∗y , y ∈ x , and no other standard
elements). It follows that V is a transitive class interpreting ZFC and closed under taking subsets.
Furthermore, x �→ ∗x is an elementary embedding (in the ∈-language) of V in I by carry-over
(see [3, Sec. 1]).

In HST , cardinals, ordinals, natural numbers are V-notions, so that a natural number is un-
derstood as a set n ∈ V which is a natural number in V (briefly, a V-natural number). The set
of all natural numbers is denoted by ω .

Sets of the same cardinality as n = {0, 1, . . . , n − 1} , where n ∈ ω , are called finite. Sets of
the same cardinality as x ∈ V are called sets of standard size or, briefly, SS-sets.

Let us formulate the last two essential axioms of HST .

Saturation of I . If X ⊆ I is an SS-set and ∩X ′ �= ∅ for any finite X ′ ⊆ X (the finite
intersection property), then ∩X ′ �= ∅ .

SS-choice. The axiom of choice holds for the case in which the choice function is to be defined
on an SS-family of (nonempty) sets.

Saturation allows us to obtain diverse nonstandard sets. The axiom of SS-choice partly compen-
sates for the absence of the complete choice axiom, which contradicts HST as well as the degree
and regularity axioms.

Theorem 1 (see [3]). The HST and ZFC theories are equiconsistent. Furthermore, HST has
a Boolean interpretation in ZFC , in which the class S is provably ∈-isomorphic to the basic
universe ZFC . Consequently, if HST proves that a closed ∈-formula Φ is true in V (or, equiv-
alently, in S ), then Φ is a theorem in ZFC .

Unexpectedly, it turns out that the class I is directly ∈-definable in HST . We say that a set x
is quasiinternal if there exists an ω-sequence {xn}n∈ω such that x ∈ xn+1 ∈ xn for all n ∈ ω .

Proposition 1 (HST). Classes of internal and quasiinternal sets coincide.

Proof. [3]. Let x ∈ I . Reasoning within the universe I , we define yk = yk−1 ∪ {yk−1} by
induction on k ∈ ∗ω starting with y0 = x . Choose an arbitrary ν ∈ ∗ω \ω , and set xn = yν−n for
all n ∈ ω .

The converse implication readily follows from the regularity over I . �

2. THE SIMPLIFIED HRBAČEK THEORY

The SHST theory includes the following groups (i)–(iv) of axioms.

(i) Similarly to HST , all the axioms of ZFC except the regularity, degree, and choice axioms.
(Separation and substitution in the st-∈-language.)

This suffices to introduce the class V of all well-founded sets and to prove its transitivity.

(ii) All formulas of the form Φwf (Φ relativized to V = {x : wf x}), where Φ is an axiom
of ZFC , and wf x says, “x is well-founded.”
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Further, suppose that q
I denotes in the ∈-language the class of all quasiinternal sets (see

above). We add

(iii) axioms of transitivity of the class qI , regularity over qI , saturation of qI , and SS-choice
(as in the HST theory, but for qI).

As regards the carry-over, we cannot borrow its formulation directly from HST: SHST does
not ensure any suitable embeddings of V in qI . However, the following wording is quite acceptable.

(iv) Simplified carry-over. All formulas of the form Φwf ⇐⇒ Φ q -int , where Φ is a
closed ∈-formula with parameters from ω . (It is hardly possible to invoke a larger range
of parameters: the problem is that V ∩ I = Hω (hereditarily finite sets) in HST , but
parameters from Hω reduce to ω .)

(Here q -int denotes the relativization to q
I .) This axiom needs a comment, because at first,

it is not clear that ω ⊆ qI . The plan is to accept the simplified carry-over in the parameter-free
version, which readily implies that qI is a transitive ∈-model of ZFC , and hence, ω ⊆ qI . Then
we accept the simplified carry-over entirely.

Notice that SHST is a subtheory of the ∈-part of HST . (To prove the simplified carry-over
in HST , we verify by induction on x in HST that ∗x = x for all x ∈ ω ; then Φwf ⇐⇒ Φint ,
since x �→ ∗x is an elementary embedding of V into I .) Thus, SHST satisfies Theorem 1. The
following lemma shows that SHST ensures the existence of elementary extensions.

Lemma 1 (SHST). For any transitive X ∈ V there exists a transitive ∗X ∈ qI and an elementary
embedding of 〈X ; ∈〉 into 〈∗X ; ∈〉 .
Proof. The carry-over and saturation of SHST yield the transitive set ∗X ∈ qI such that the
structures 〈X ; ∈〉 and 〈∗X ; ∈〉 are elementarily equivalent. Let us construct an elementary em-
bedding of 〈X ; ∈〉 into 〈∗X ; ∈〉 .

By the choice of ∗X and the saturation of qI if n ∈ ω , then for any n-tuple 〈x1 , . . . , xn〉 ∈ Xn
there exists an n-tuple 〈r1 , . . . , rn〉 ∈ ∗Xn such that

(A) for any ∈-formula A( · , . . . , · ) (formulas are understood as finite sequences of a certain
form in this proof), A(x1 , . . . , xn) is true in 〈X ; ∈〉 if and only if A(r1 , . . . , rn) is true
in 〈∗X ; ∈〉 .

According to the SS-choice axiom, there exists a one-to-one length-preserving map of finite se-
quences f : X<ω → (∗X)<ω such that (A) holds for 〈x′1 , . . . , x′n〉 = f(〈x1 , . . . , xn〉) , whatever the
n-tuple 〈x1 , . . . , xn〉 ∈ X<ω . Clearly, we have f(〈x〉) = 〈φ(x)〉 , where φ : X → ∗X is a one-to-one
function.

If D ⊆ X is finite and F is a finite set of ∈-formulas, then let ΠDF ∈ qI be the set of all
one-to-one maps π ∈ qI , π : ∗X onto ∗X such that for any ∈-formula A(v1 , . . . , vn) ∈ F and all
x1 , . . . , xn ∈ D we have:

(B) it is true in ∗X that A(π(φ(x1)), . . . , π(φ(xn))) ⇐⇒ A(r1 , . . . , rn) , where 〈r1 , . . . , rn〉 =
f(〈x1 , . . . , xn〉) .

Notice that the sets ΠDF are nonempty by the choice of ∗X and f . (For example, if F contains
only one formula A , we simply take the bijection π : ∗X onto ∗X such that π(φ(xi)) = ri for
all i .) In addition, the family of all sets ΠDF is of standard size and satisfies the finite intersection
property. (Indeed, ΠD1F1 ∩ ΠD2F2 ⊇ ΠD1∪D2 ,F1∪F2 .) This means that there exists a one-to-
one map π ∈ qI , π : ∗X → ∗X contained in each of our sets ΠDF such that (B) holds for all
x1 , . . . , xn ∈ X<ω and all ∈-formulas A . It readily follows that p(x) = π(φ(x)) is an elementary
embedding of 〈X ; ∈〉 in 〈∗X ; ∈〉 . �

3. DEVELOPING NONSTANDARD ANALYSIS IN SHST

Informally, the class V of all well-founded sets is identified with the “standard” mathematical
universe. Then, since SHST satisfies Theorem 1 (as a subtheory of HST), the universe SHST
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can be regarded as a quite well defined extension of the “true” universe V just like C is an extension
of R . Hence, SHST is not just a syntactic tool: we have a complete interpretation in ZFC .

It is known that the set X = Vω+ω , defined in V , suffices for constructing almost all mathe-
matical structures in V . In particular, the sets N = ω (natural numbers) and R belong to V .

Lemma 1 yields the transitive set ∗X = ∗Vω+ω ∈ qI and elementary embedding x �→ ∗x of
the structure 〈Vω+ω ; ∈〉 into 〈∗Vω+ω ; ∈〉 . (Notice that ∗Vω+ω is a q

I-analog of Vω+ω: in fact,
∗Vω+ω = V∗ω+∗ω in q

I .) It is easy to show that ∗n = n ∈ ∗N for any n ∈ N (for instance, by
induction on n); so N is the initial segment of ∗N . Moreover, ∗N \ N is nonempty by saturation
applied to the family of sets Sn = {k ∈ ∗N : k > n} , n ∈ N . Elements of ∗N are exactly the qI-
natural numbers, which can be called, as usual, hypernatural. The numbers in ∗

N \ N are called
infinitely large.

As regards the real numbers (again, in the sense of V), we have R ∈ Vω+ω and R ⊆ Vω+ω
in V ; hence, ∗R ∈ ∗Vω+ω in q

I , and ∗x ∈ ∗R is well defined for all x ∈ R . Elements of ∗R ,
i.e., qI-real numbers, can be called hyperreal. Now we can introduce the notions of infinitely large,
infinitesimal, bounded hyperreal numbers and the ratio ≈ of infinite closeness in the ordinary way.

Lemma 2. If x ∈ ∗R is bounded, then x ≈ ∗z for a certain z ∈ R .
Proof. Notice that the sets A = {y ∈ R : ∗y ≤ x} and B = {y ∈ R : ∗y > x} are nonempty by
the boundedness of x . These sets belong to V , because this class is closed with respect to taking
subsets. Reasoning in V , we find a number z which is either the greatest in A or the smallest
in B . �

This simple argument demonstrates the potential of SHST . As to more complicated examples,
such as the Loeb measure and “hyperfinite” descriptive set theory, we refer the reader to [3, 2.2
and 2.3], where it is explained how to perform typical “nonstandard” calculations in the context
of similar systems.
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