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Abstract—The familiar theorem that any Σ1
2(a)-set X of real numbers (where a is a fixed

real parameter) not containing a perfect kernel necessarily satisfies the condition X ⊆ L[a] is
extended to a wider class of sets, with countable ordinals allowed as additional parameters in
Σ1

2(a)-definitions.

Key words: perfect kernel property, perfect subset, forcing, descriptive set theory, CA-set.

This note continues our paper [1] devoted to classical problems related to the regularity prop-
erties of point sets. One of these properties is the perfect kernel property, which holds for a given
set X whenever it either is finite or countable or contains a perfect subset. For instance, any
Borel set and even any Σ1

1-set in a Polish space1 have the perfect kernel property (Souslin [2]2).
As distinct, say, from Lebesgue measurability, the perfect kernel property cannot be carried over
to complementary sets. Therefore, the problem concerning the perfect kernel property for Π1

1-sets
(i.e., sets complementary to Σ1

1-sets) was recognized as one of the most important in descriptive
theory quite early (for the first time, perhaps, in [3]).

All attempts to solve this problem using methods of classical descriptive set theory had no
effect. The reason for which they failed became clear only after investigations in axiomatic set
theory showed that this problem is undecidable, that is, it cannot be solved if a “solution” is
understood as a definite, positive or negative, answer to the posed question. Namely, Novikov [4]
showed that it is impossible to refute the existence of counterexamples, i.e., uncountable sets
without perfect subsets, in the class Π1

1 , and Solovay [5] established that it is impossible to prove
the existence of counterexamples in the class Π1

1 (in fact, in the considerably wider class of all
projective sets). Here the words to “prove” and “refute” are understood in the sense of a proof
or refutation in the Zermelo–Fraenkel axiomatics ZFC of set theory, which is now equated to
the existence of ordinary mathematical proof or refutation (in the informal sense). Thus, the
perfect kernel problem, like many other problems of classical descriptive set theory, turned out to
be undecidable in this strongest sense. (The surveys [1, 6, 7] contain various information about
undecidable problems of descriptive set theory.)

These undecidability investigations brought about a number of other remarkable results. For
instance, Lyubetskii [8, 9] showed that the existence of a Lebesgue nonmeasurable projective
set of class Σ1

2 implies the existence of an uncountable Π1
1-set without perfect subsets (i.e., a

counterexample to the perfect kernel property), but the reverse implication is not true. The
following theorem (see [1, Sec. 4.5]) played a crucial role in the research connected with the perfect
kernel property of Π1

1-sets.

1A metric space is said to be Polish if it is complete and separable. For instance, the real line R and the Baire
space N

ω are Polish spaces. Σ1
1-sets in Polish spaces are the continuous images of Borel sets or, which is the same,

projections of Borel sets, e.g., from R
n+1 to R . These sets are also called A-sets, and their complementary sets

are called CA-sets.
2More historical details concerning this and some other classical theorems of descriptive set theory are given at

the end of the first section in [1].
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Theorem 1 (Solovay [10], Lyubetskii [11]). If a ∈ Nω and a Σ1
2(a)-set X ⊆ Nω does not contain

perfect subsets, then X ⊆ L[a] .3

Here Nω is the Baire space, the class Σ1
2(a) is formed by all the sets definable by Σ1

2-formulas
with a single parameter a , and the class of all sets constructive with respect to a ∈ Nω is denoted
by L[a] . (Certain important notations introduced in [1] are used in this paper without special
comment.)

Our goal is to prove a strengthening of this theorem, i.e., basically the same result for a con-
siderably wider class of point sets. The idea of this wider class is to allow the usage of countable
ordinals as additional definability parameters (used in addition to the parameter a). To realize
this idea directly is rather difficult, since the language of analytical formulas (see [1, Sec. 1C]), in
terms of which classes of the form Σ1

2(a) are defined, does not involve ordinals.
However, there is a roundabout way based on encoding of ordinals by points of the space Nω .
Let us fix, once and for all, a recursive enumeration Q = {qn : n ∈ N} of the set of rational

numbers Q . Set Qw = {qn : w(n) = 0} for each w ∈ Nω . Now, for any ξ < ω1 , we denote
by WOξ the set of all w ∈ Nω such that Qw is of the ordinal type ξ in the sense of the natural
order on Q . Elements of the set WOξ are regarded as codes of the ordinal ξ . Finally, we put
WO =

⋃
ξ<ω1

WOξ . This set belongs to the class Π1
1 (see [1, Sec. 1E]), and the formula |w| = ξ

for w ∈ WOξ defines a function on this set. Viewing each WOξ as an image of the ordinal
ξ < ω1 , now available for the language of analytical formulas, we arrive at the following definition:

Definition 2. A formula ϕ(w, x) (in any language) is said to be w-invariant if, for any x ∈ Nω

and w, w′ ∈ WO satisfying the equation |w| = |w′| , we have

ϕ(w, x) ⇐⇒ ϕ(w′ , x).

The formula ϕ(w, x) is said to be absolutely w-invariant if it remains w-invariant in any generic
extension of the universe.

Any set of the form X = {x ∈ Nω : ϕ(w0 , x)} , where w0 ∈ WO and ϕ(w, x) is an absolutely w-
invariant Σ1

2-formula with a single parameter a ∈ Nω , is called an absolutely invariant Σ1
2(a, ω1)-

set.

For instance, if ψ(ξ , x) is any formula in which ξ < ω1 and x ∈ Nω , then the formula w ∈
WO ∧ ψ(|w|, x) is w-invariant. The latter formula can be analytical, whereas the initial one, ψ ,
certainly, cannot. For absolute invariance, it suffices that the invariance be deducible in ZFC from
the definition of ϕ , as is the case, e.g., for formulas of the form w ∈ WO ∧ ψ(|w|, x) .

Any Σ1
2(a)-set is trivially an absolutely invariant Σ1

2(a, ω1)-set. A less trivial example: obvi-
ously, any set of the form WOξ is absolutely invariant and even a ∆1

1(a, ω1)-set, but does not
belong to Σ1

2(a) in the case ω
L[a]
1 ≤ ξ < ω1 . Therefore, the following theorem (the main theorem

of this note) strengthens Theorem 1.

Theorem 3. If a ∈ Nω and an absolutely invariant Σ1
2(a, ω1)-set X ⊆ Nω does not contain

perfect subsets, then X ⊆ L[a] . In particular, if it is additionally known that ω
L[a]
1 < ω1 , then X

is at most countable.

3As is customary in modern descriptive set theory, all results here are formulated and proved for point sets in the
Baire space N

ω . However, since N
ω is homeomorphic to the “Baire line,” i.e., to the set of all irrational points of R ,

the majority of descriptive set theory results is automatically carried over from N
ω to R by means of a very simple,

in effect, recursive mapping. In particular, this applies to Theorem 1 and to our main result, Theorem 3, although
the latter needs some additional work in order to obtain R-versions of the notions connected with Definition 2. A

general discussion of the independence of descriptive set theory problems from the choice of the base space can be
found in [1, Sec. 1A].
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Proof. Let X = {x ∈ Nω : ϕ(w, x)} , where w ∈ WO and ϕ(w, x) is an absolutely w-invariant
Σ1

2-formula with a single parameter a ∈ Nω . Let ξ = |w| .
Further reasoning makes use of the collapse forcing4 C(ξ) = Coll(N, ξ) . Thus, C(ξ) consists of

all finite sequences of ordinals < ξ , in other words, of all functions

p : m → ξ , where m = {0, 1, . . . , m − 1},

and p ≤ q (i.e., p is “stronger”) whenever q ⊆ p , i.e., p extends q as a function. Any C(ξ)-generic
set G ⊆ C(ξ) generates the function f [G] = ∪G : N

onto−→ ξ , a generic collapse of ξ . Conversely,
we have G = {f [G] � n : n ∈ N} .

A convenient technique is to consider the universe of all sets V as a model in a certain “virtual”
wider universe, in which the desired generic extensions of V exist. In particular, in such a wider
universe, one can consider a C(ξ)×C(ξ)-generic extension V[G, G′] of the universe V generated
by a pair of sets G1 , G2 ⊆ C(ξ) generic over V (consequently, over L[a] as well) in which, by the
previous argument, there exist two collapse functions, f1 = ∪G1 and f2 = ∪G2 , from N onto ξ .
Accordingly, there exist codes w1 ∈ WOξ ∩L[f1] and w2 ∈ WOξ ∩L[f2] of the ordinal ξ . Recall
that we also have a code w ∈ WOξ ∩ V which, of course, belongs to the class V[f1 , f2] .

Notice that in our assumptions the formula ϕ is w-invariant in V[f1 , f2] . Thus, in this extended
universe V[f1 , f2] , the sets

X ′ = {x : ϕ(w, x)}, X ′
1 = {x : ϕ(w1 , x)}, and X ′

2 = {x : ϕ(w2 , x)}
coincide. For convenience, we assume that primed capital letters stand for point sets defined in
the extended universe V[f1 , f2] .

We claim that the set X ′ has no perfect kernel in V[f1 , f2] . To prove this, we choose, reasoning
in V[f1 , f2] , a uniform Π1

1(a, w)-set P ′ ⊆ Nω ×Nω such that X ′ = domP ′ = {x : ∃ y P (x, y)} .
(We use the Novikov–Kondô–Addison uniformization theorem; see, for instance, [1, Sec. 1.9].)

It follows from the Shoenfield absoluteness theorem5 that the set P = P ′ ∩ V lies in V , is
a Π1

1(a)-set in V , and satisfies the relation X = domP . Since it is true in V that X does
not contain perfect subsets, the same is valid for P as well. But then, applying the Shoenfield
absoluteness theorem again, we see that P ′ also does not contain perfect subsets in V[f1 , f2] ,
because the absence of a perfect subset can be expressed by a Π1

2-formula saying that none of the
constituents of a given Π1

1(a)-set contains a perfect kernel. Thus, by Theorem 1, P ′ ⊆ L[a, w] in
V[f1 , f2] . It follows that X ′ ⊆ L[a, w] , and, therefore, X ′ does not contain a perfect kernel in
V[f1 , f2] by the Groszek–Slaman theorem,6 as claimed.

Applying Theorem 1 again and taking into account the absence of a perfect kernel proved above,
we see that the same set X ′ = X ′

1 = X ′
2 satisfies X ′

1 ⊆ L[a, f1] and X ′
2 ⊆ L[a, f2] in V[f1 , f2] ,

and so
X ′ ⊆ L[a, f1] ∩ L[a, f2] in V[f1 , f2].

However, by the forcing product theorem [1, Theorem 4.2(i)] we have

L[a, f1] ∩ L[a, f2] = L[a] in V[f1 , f2].

Thus, X ′ ⊆ L[a, f1] ; but then we also have X ⊆ L[a] , since X = X ′ ∩ V (for instance, because
P = P ′ ∩ V). This completes the proof of the theorem. �

4We assume a certain familiarity of the reader with forcing. A summary of main theorems of the theory of forcing
with references to the corresponding sources can be found in [1, Sec. 4A]. We shall apply these theorems without
special explanations.

5This theorem, as applied to the situation in question, states that any closed Σ1
2-formula or Π1

2-formula with
parameters from V is either simultaneously true in V and in V[f1 , f2] or simultaneously false in V and in
V[f1 , f2] (see, e.g., [1, 2.8]).

6This theorem states that the set N
ω ∩ L[b] , b ∈ N

ω , cannot have perfect subsets unless N
ω ⊆ L[b] . The proof

can be found, e.g., in [12].
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