

Mitochondrial DNA Part A, 2016; 27(3): 1795–1797 © 2014 Informa UK Ltd. DOI: 10.3109/19401736.2014.963817

MITOGENOME ANNOUNCEMENT

The complete mitochondrial genome of Baikalian amphipoda *Eulimnogammarus vittatus* Dybowsky, 1874

Elena V. Romanova¹, Kirill V. Mikhailov^{2,3}, Maria D. Logacheva^{2,4}, Ravil M. Kamaltynov¹, Vladimir V. Aleoshin^{2,3}, and Dmitry Yu. Sherbakov^{1,5}

¹Laboratory of Molecular Systematics, Limnological Institute, Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia, ²Department of Evolutional Biochemistry, Belozersky Institute for Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia, ³Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, ⁴Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia, and ⁵Faculty of Biology and Soils, Irkutsk State University, Irkutsk, Russia

Abstract

A complete mitochondrial genome sequence of amphipoda *Eulimnogammarus vittatus* Dybowsky, 1874 from Lake Baikal was obtained using next-generation sequencing approach. Mitochondrial DNA with the length of 15,534 bp contains 13 protein-coding genes, 2 ribosomal RNA, 23 transfer RNA and non-coding sequences: a putative control region and 7 intergenic spacers. A brief comparative analysis of mitochondrial genomes of *E. vittatus* and its sister species *Eulimnogammarus verrucosus* was performed.

Keywords

Amphipoda, genome annotation, mitochondrial genome, next-generation sequencing

informa

healthcare

History

Received 4 September 2014 Accepted 7 September 2014 Published online 29 September 2014

Amphipods (Crustacea) are the most diverse animals in Lake Baikal (East Siberia). This group of invertebrates is known to originate in course of long endemic adaptive radiation, the beginning of which dates back to more than 20 myr (Mats et al., 2011). According to the most modern taxonomic system, there are more than 347 amphipod species from 71 genera inhabiting the lake (Kamaltynov, 2001). Still the phylogenetic relationships of Baikalian amphipods remain poorly understood mostly due to low resolution of the molecular markers used (McDonald et al., 2005).

Table 1. Organization of the mitochondrial genome of E. vittatus.

Feature	Strand	From	То	Size (bp)	Start	Stop
CO1	+	1	1537	1537	ATT	T(AA)
tRNA-Leu2	+	1538	1598	61		
CO2	+	1599	2280	682	TTG	T(AA)
tRNA-Lyz	+	2281	2340	60		
tRNA-Asp	+	2341	2401	61		
ATP8	+	2402	2557	156	GTG	TAA
ATP6	+	2551	3219	669	ATG	TAA
CO3	+	3219	4004	786	ATG	TAA
Intergenic spacer-1	n.a.	4005	4006	2		
ND3	+	4007	4360	354	ATG	TAG
tRNA-Ala	+	4359	4417	59		
tRNA-Ser1	+	4416	4467	52		
Intergenic spacer-2	n.a.	4468	4470	3		
tRNA-Asn	+	4471	4531	61		
tRNA-Glu	+	4529	4591	63		
tRNA-Arg	+	4586	4645	60		

(continued)

Table 1. Continued

Feature	Strand	From	То	Size (bp)	Start	Stop
tRNA-Phe	_	4644	4703	60		
ND5	_	4703	6415	1713	TTG	TAA
tRNA-His	_	6416	6477	62		
ND4	_	6478	7786	1309	ATG	T(AA)
ND4L	-	7780	8073	294	ATG	TAA
Intergenic spacer-3	n.a.	8074	8076	3		
tRNA-Thr	+	8077	8136	60		
tRNA-Pro	-	8136	8197	62		
Intergenic spacer-4	n.a.	8198	8202	5		
ND6	+	8203	8700	498	ATG	TAA
Cyt b	+	8700	9836	1137	ATG	TAA
tRNA-Ser2	+	9835	9895	61		
Intergenic spacer-5	n.a.	9896	10,218	323		
tRNA-Leul	_	10,219	10,278	60		
Intergenic spacer-6	n.a.	10,279	10,374	96		
ND1	_	10,375	11,307	933	TTG	TAG
tRNA-Pro	_	11,308	11,368	61		
16S rRNA	_	11,369	12,352	984		
tRNA-Val	_	12,353	12,406	54		
12S rRNA	_	12,405	13,026	622		
Control region		13,027	14,079	1053		
tRNA-Tyr	_	14,080	14,140	61		
tRNA-Gln	_	14,138	14,193	56		
tRNA-Cys	_	14,194	14,250	57		
Intergenic spacer-7	n.a.	14,251	14,309	59		
tRNA-Ile	+	14,310	14,370	61		
tRNA-Met	+	14,372	14,432	61		
ND2	+	14,433	15,414	982	TTG	T(AA)
tRNA-Trp	+	15,415	15,474	60		
tRNA-Gly	+	15,475	15,534	60		

The incomplete stop codons are labeled in the table with parentheses.

Eulimnogammarus vittatus is an endemic species which widely distributed in Baikal at the depth range of 0 to 2 meters (sometimes down to 30 meters) (Kamaltynov, 2001). A specimen for this study was collected at the water's edge near the village Sukhoi Ruchey (51° 38' 48" N, 103° 45' 14" E) in November 2012.

Exactly 4.6 million paired-end reads were obtained from the total genomic DNA of E. vittatus using HiSeq 2000 system (Illumina, San Diego, CA). The reads were cleaned from the adapter sequences with Trimmomatic-0.32 (Bolger et al., 2014) and assembled de novo using Velvet 1.2.10 (Zerbino & Birney, 2008). Mitochondrial scaffold of E. vittatus was identified in the assembly using BLAST (Altschul et al., 1997) and the reference sequence of Gammarus duebeni (Genbank NC_017760, Krebes & Bastrop, 2012). The mitochondrial scaffold of E. vittatus had mean coverage of 21 and contained a single gap, which was subsequently closed by Sanger sequencing. By mapping reads on both ends of the scaffold, the assembled mitochondrial DNA sequence of amphipod E. vittatus was determined as circular with the length of 15,534 bp. The GC content of the heavy strand was 32.58% with the following base composition: A - 34.20%, T -33.22%, C - 12.68% and G - 19.90%. Sequence annotation was performed using the MITOS pipeline (Bernt et al., 2013), and the gene boundaries were revised and corrected manually. The annotation found 13 protein-coding genes, 2 ribosomal RNA genes and 23 transfer RNA genes in the mitochondrial DNA of E. vittatus. The sequence also contains 1053 bp long putative control region and 7 intergenic spacers ranging from 2 to 323 bp (Table 1). Annotated mitochondrion of E. vittatus is available in GanBank (KM287572).

The genes order of *E. vittatus* mitochondrial genome was almost identical with the one of its sister species *E. verrucosus* described earlier (Rivarola-Duarte et al., 2014). However

E. vittatus had two copies of *tRNA-Pro* and an altered position of *tRNA-Leu1*. These two species possess different start codons in *ND1*, *ND4*, *ND4L* and *ND5* genes and different stop codons in *ND1* and *ND4* genes.

Utilization of complete mitochondrial genome sequences can allow resolving contradictions in systematics of Baikalian amphipods as well as discovering mechanisms of rapid adaptive radiation which take place in ancient lakes.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper. The work was supported by the governmentally funded project No VI.61.1.3; Russian Foundation for Basic Research (grant No 13-04-90757-mol_rf_nr) and the Ministry of Education and Science of the Russian Federation (Grant No 11.G34.31.0008 and the program "Scientific and scientific-pedagogical personnel of innovative Russia").

References

- Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25:3389–402.
- Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, et al. (2013). MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69:313–19.
- Bolger AM, Lohse M, Usadel B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–20.
- Kamaltynov RM. (2001). Amphipoda: Gammaroidea. In: Nikitina TA, editor. Index of animal species inhabiting Lake Baikal and its catchment area. Novosibirsk: Nauka. p 572–832 (In Russian).
- Krebes L, Bastrop R. (2012). The mitogenome of Gammarus duebeni (Crustacea Amphipoda): A new gene order and non-neutral sequence evolution of tandem repeats in the control region. Comp Biochem Physiol Part D Genomics Proteomics 7:201–11.

DOI: 10.3109/19401736.2014.963817

- MacDonald 3rd KS, Yampolsky L, Duffy JE. (2005). Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Mol Phylogenet Evol 35:323–43.
- Mats VD, Shcherbakov DYu, Efimova IM. (2011). Late Cretaceous– Cenozoic history of the Lake Baikal depression and formation of its unique biodiversity. Stratigr Geol Correl 19:40–61.
- Rivarola-Duarte L, Otto C, Jühling F, Schreiber S, Bedulina D, Jakob L, Gurkov A, et al. (2014). A first glimpse at the genome of the Baikalian amphipod *Eulimnogammarus verrucosus*. J Exp Zool B Mol Dev Evol 322:177–89.
- Zerbino DR, Birney E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–9.