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ON THE NONEMPTINESS OF CLASSES IN AXIOMATIC SET THEORY
UDC 51.01.16

V. G. KANOVEI

Abstract. Theorems are proved on the consistency with ZF, for η > 2, of each of

the following three propositions: (1) there exists an L-minimal (in particular, nonconstructive)

a C ω such that V = L[a) and {α}ε n but every K u o f class Ση with constructive

code is itself constructive; (2) there exist a, b C ω such that their L-degrees differ by a

formula from Π π , but not by formulas from Σ η with constants from L (X and Υ are said to

differ by a formula φ(χ) if ~ [(3x e Ι ) Ϊ > ( Ϊ ) = (3}< e Υ)φ(γ)]); (3) there exists an infinite,

but Dedekind finite, set XS ? (ui) of class Π η , whereas there are no such sets of class Ση.

The proof uses Cohen's forcing method.

Bibliography: 17 titles.

§ 1. Introduction. Formulation of the theorems

As N. N. Luzin predicted (see the Conclusion to [ la], and [lb]), the classical methods

of descriptive set theory are not successful in solving nontrivial problems concerning projec-

tive sets for levels beginning with the third, and sometimes for the second and even for the

first level. For example, it is impossible to prove or to refute the assertion of the Lebesgue

measurability of every set of real numbers of the class A2. (This was established, on the

one hand, by P. S. Novikov [2], and, on the other, by R. M. Solovay [6].) Thus, that

assertion and its negation are each consistent with the Zermelo-Fraenkel axiomatic set theory

ZF. Many other problems of this kind also allow of a solution only in terms of consistency

with ZF or ZFC (ZF + Axiom of Choice).

The theorems proved in the present paper can be called "theorems on the consistency

of the nonemptiness of differences". Theorems 1 and 2 have the following general form:

The proposition "In the class Kj there exist elements satisfying a certain property Λ"

is consistent (with respect to ZF or ZFC) with the proposition "In the class K2 there do

not exist elements satisfying the same property Λ."

Here, Kl and K2 are certain fixed classes of sets. For example, in Theorem 2 one

takes as Kt and K2, respectively, the projective classes CAn and An of N. N. Luzin ( [ lc] ,

WorL· p. 586).

Thus, the difference Ky - K2 turns out to be "nonempty" (in the sense of consistency)
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with respect to the property Λ. In Theorem 3, the "consistency of the nonemptiness" of

the difference Kj - K2 is understood in a somewhat different way.

Before formulating the theorems, let us make some terminological remarks. By R we

denote Ρ (ω) = {χ : χ C ω}, the collection of all subsets of the natural number sequence

ω. We shall use the standard notation (cf. [5], § §16.1 and 16.6) for classes of subsets

of spaces of the form com χ Rk, as well as the notation for corresponding collections of

formulas of second-order arithmetic with variables of type 1 overi? ([5], §16.2). In

particular, if ί < 2 and η € ω, then Σ'η is the collection of all subsets of such spaces defined

by Σ'η-formulas without parameters; Σ'^χ is the same with the additional condition that we

can use a fixed χ C ω as a parameter of type 1. Similarly, U'n and Π^χ are the collections

of all subsets of the indicated spaces defined by n'n-formulas without parameters and with

the parameter x, respectively. Further, A'n = Σ'η Γι U'n and Al^x = Σ'^χ Π Π^ χ. In addition,

one defines Σ*π = U^ccj^n* (coinciding with the class An for spaces of the form Rk) and

£% = UxCujCTn* (coinciding with CAn). In this connection, in a Σ^-prefix we do not

permit a quantifier of type 0 to stand to the left of the quantifier of type 1; and the same

for Π*.

THEOREM 1. Let η > 2. The proposition "In the class A^+1 there exists a non-

constructive subset of the set ω" is consistent with ZFC + "In the class Σ* all subsets of

ω are constructive".

THEOREM 2. Let η > 2. The proposition "In the class CAn there exists an infinite

D-finite subset of the set R" is consistent with ZF + "In the class An there are no infinite

D-finite subsets of R."

(A set is said to be infinite if it is not equinumerous with any natural number; that is,

if it is not finite. A set is said to be D-finite if it is not equinumerous with any of its

proper subsets (cf. [4], §5).)

Before formulating Theorem 3, let us introduce some more definitions. If U is any

set, by L(U) we denote the class of all sets constructible with respect to t/(cf. [4], §11).

For a C ω, we define [a] = {x C ω: L(x) = L(a)}, the collection of all subsets of ω which

are "equiconstructible" with a; that is, the L-degree or the degree of constructibility of a.

In addition, ϊϊ Χ, Υ, Ζ CR and if [Χ η Ζ = 0 & Υ Π Ζ φ 0] ν[ΧΠΖΦ0&ΥηΖ = 0]

is satisfied, then we say that Ζ distinguishes the sets X and Y.

THEOREM 3. Let η > 2. The proposition "There exist nonconstructible a, b C ω such

that there is in the class Π^ a set Ζ <ZR which distinguishes [a] and [b], but in the class

ΣΑ there is no such set Ζ <ZR" is consistent with ZFC.
η

§2. Comments on the theorems

2.1. On Theorem 1. The consistency of the assertion of the existence of a non-

constructible subset of ω was proved by Cohen [3]. The first η on trivial result on the

position of such subsets in the analytic hierarchy is due to Shoenfield [10] :
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PROPOSITION (A). //x, y C ω and y G Σ^'χ, then y e L(x), andy G Σ^1* w

/« /-(

Proposition (A) follows easily from the well-known Absoluteness Principle:

ABSOLUTENESS PRINCIPLE [10]. If Μ is a transitive class which is a model of ZF, if

ωι C M, and if φ is a closed W^-formula with parameters from M, then φ is true in Μ if

and only if it is true in the universe V {that is, the class of all sets).

(A) implies, in particular, the constructibility of every χ C ω of the class Σ\. Thus,

Theorem 1 is not true for η = 0, 1.

In the present paper, we actually prove not Theorem 1, but rather the following

stronger one.

THEOREM Γ. Let n>2. The proposition "There exists an L-minimal a C ω satisfy-

ing the condition V = L(a) (i.e., all sets are constructive relative to a) and {a} G Π^" is

consistent with ZFC + "If x, y C ω, if χ G L, and ify G Σ*-*, then y<EL and L |=

y^^xr

(A set a C ω is called L-minimal [8] if a is nonconstructible, and, for every b G L(a)

such that b C ω, from b £ L it follows that a G L(b).)

Theorem 1 follows from Theorem l ' by virtue of the fact that every /--minimal subset

of ω is nonconstructible by definition, and from {a} G Π^ it easily follows that s £ A1

The consistency of the assertion of the existence of an Z-minimal a C ω satisfying the

condition V = L(a) was proved by Sacks [8]. Later, Jensen [7] strengthened Sacks's result

by the requirement {tf}G Π^. In view of Proposition (A), Jensen's result coincides with the

special case η — 2 of Theorem 1'.

Theorem l ' was announced by the author in [16] and proved in [17] by a somewhat

different method than in the present paper. Some other results about minimal subsets of

ω were announced in [14].

2.2. On Theorem 2. The axiom of choice implies the equivalence of the two defini-

tions of finiteness: Every set X is finite if and only if it is Z)-finite ([4], §5). Thus, the

nonexistence of infinite /^-finite sets is provable in ZFC. Let us also mention that any set

X is Z)-finite if and only if it does not contain a subset equinumerous with the natural

number sequence ω ([4], §5); the proof does not use the axiom of choice.

Although the existence of infinite Z)-finite sets is inconsistent with ZFC, nevertheless

it is consistent with ZF ([3], Chapter 4, §9). Infinite Z>-finite sets can be projective ([15],

Theorem T4) and even occur in Π^ ([13], without proof). On the other hand, in ZF (with-

out the axiom of choice!), the following holds.

PROPOSITION (B). There does not exist an infinite D-finite set X such that X CR and

PROOF. Assume X CR, i e Σ ' , Xinfinite. Let us construct a set Υ C X which is

equinumerous with ω. We define G as the collection of all pairs (n, x) G ω χ R such that
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(x)i e X for arbitrary i < η (where (x\ = (k G ω: 2* · 3* G x}) and (χ),· Φ (x)f for /, / <

n, j Φ i. It is clear that G e Z ^ and dom(G) = ω (the latter from the infinity of X). By

the Novikov-Kondo-Addison uniformization theorem ([5], §16.7, Theorem XLV), we find

a function F CG such that dom(F) = dom(G) = ω. Now, Υ = {(^(m)),·: i < m G ω} is

the desired subset of X equinumerous with ω, and Proposition (B) is proved.

Proposition (B) refutes Theorem 2 for η = 0, 1. It also implies the equivalence of the

result of [13] mentioned above and the special case η = 2 of Theorem 2.

We also shall prove Theorem 2 in the following stronger form.

THEOREM 2'. Let n>2. The proposition "In the class U^ there exists an infinite

D-finite subset of the set R" is consistent with ZF + "In the class Σ^ there are no infinite

D-finite subsets of R."

The derivation of Theorem 2 from Theorem 2' is trivial by virtue of the fact that Π'

is a subclass of the class CAn = Π^. Theorem 2' was announced by the author in [16].

2.3. On Theorem 3. Assume Χ, Υ CR and let Κ be any class. The sets X and Υ

are said to be ^.-distinguishable if there is a set Ζ G Κ, Ζ C R, such that Ζ distinguishes X

and Y. In the contrary case, we say that X and Υ are ^.-indistinguishable.

The problem of the distinguishability of L-degrees of subsets of ω has not been

considered in the literature. We note that, if one or both of a and b are constructible, then

the situation becomes trivial. In fact, [a] = [b] for a, b e i ; {0} distinguishes [a] and [b]

for a G L and b £ L.

PROPOSITION (C). If a and b are nonconstructible (for example, L-minimal) subsets

of the set ω, then [a] and [b] are Σ\ 'L-indistinguishable.

(By T,l

n'
L we denote ϋ ^ ^ ^ Σ ^ ' ^ ω is, the collection of all Z^-sets "with

constructible coding".)

PROOF. Assume Ζ CR, Ζ G ~Z,\'L and Ζ η [α] Φ0. It is clear that Ζ <£L (since

a, b $L). According to a theorem of [12], in this case there exists an R-perfect set Ρ C ζ

"with constructible coding". Obviously such a set has a nonempty intersection with every

[x],x C ω. Thus Ζ Π [b] is nonempty. Q. E. D.

From Proposition (C) it follows that Theorem 3 is not valid for η = 0, 1.

Theorem 3 also is proved in a stronger form.

THEOREM 3'. Let η > 2. The proposition "There exist L-minimal a, b C ω such that

the sets R Γ) L(a) and R η L(b) are Π^-distinguishable but Σ^'1-indistinguishable" is

consistent with ZFC.

The derivation of Theorem 3 from Theorem 3' is based upon the following lemma.

LEMMA. Let η > 2. Assume that a, Κ ω are L-minimal, and that the sets X = R Π

L(a) and Υ = R Π L(b) are U^-distinguishable but Σ^·1-indistinguishable. Then the sets

[a] and [b] are U^-distinguishable but Σ^ 'L-indistinguishable.
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PROOF. We note two subsidiary facts:

(1) X = [a] U L * and Υ = [b] U L*, where L* =L HR. (This follows from the

definition of /--minimality.)

(2) L* G Σ* (cf., for example, [9]).

Assume now that Ζ CR, Ζ £ Π ^ , and Ζ distinguishes X and Y. Then Ζ' = Ζ - L*

distinguishes [a] and [b] by virtue of (1), and Z' £ Π^ by virtue of (2) and the fact that

ZGYll

n,n>2.

Conversely, assume Ζ CR, Ζ G 2JJ'L, and Ζ distinguishes [a] and[£]. Then

Proposition (C) implies that n>3. So, the set Ζ' = Ζ - L* belongs to Σ^>Ζΐ by (2). On

the other hand, Z' distinguishes X and Υ by virtue of (1). This proves the lemma.

The derivation of Theorem 3 from Theorem 3' and the lemma is trivial. Theorem 3'

was announced by the author in [16] in a somewhat different form.

2.4. Formulation of the Fundamental Theorem (FT). Theorems l', 2' and 3' are

corollaries of the fundamental theorem FT that will be formulated below. Before formulat-

ing FT, let us introduce, for every n, Proposition 33 „ (4) as the conjunction of the following

nine propositions.

$11(4): A CR, V = L(A), and the elements of A have pairwise distinct L-degrees.

U2(A): A is infinite and D-finite.

%3(A): The elements of A are L-minimal.

$L4'n(A): A is a set of the class Π^.

U4'n(A): In the class Σ^ there are no infinite D-finite subsets of R.

Κ5'η(Α): IfaGA, then {a} e Π^ is true in L(a).

?15'ή(Α): IfaeA,x<ER Γ) L, and y € i? η L(a), and, moreover, y G Σλ

η'
χ is true in

L(a), then y 6 1 , and y G Σ^'χ is true in L.

U6'n(A): If a, b<E A and α Φ b, then the sets L(a) η R and L(b) η R are Π^-

distinguishable in L(a, b).

816^04): If a, bGA, then the sets L(a) η R and L(b) Γ) R are Σ\·1-indistinguishable

in L(a, b).

We shall prove that, for any η > 2, the proposition 3A S n (4) is consistent with ZF,

from which it is trivial to obtain Theorems l', 2' and 3'. In fact, for Theorem l ' one has

to use parts $11, $13, 215 ,̂ and $15̂ ' of Proposition B n ; for Theorem 2', parts 211, $12, ?I4^,

and «I4||; for Theorem 3', parts $11, S3, 216;, and 216 '̂.

The consistency of 3,4 8n(<4) is proved in the following form.

FUNDAMENTAL THEOREM (FT). Let n>2 and assume that (w 2 ) L (constructible
ω2> [ 7 ] ) i s countable in the universe. Then there is a set A such that Proposition %5η(Α)

is true in L(A).

The consistency of the premise of this theorem with ZF is well known (cf. [3],

Chapter 4, §10); thus, this theorem implies the consistency with ZF of the proposition

14 S n (4) for η > 2. Hence, FT implies Theorems Γ, 2', 3' (and 1, 2, 3).

2.5. Plan of the proof. In the remainder of the paper (§§3—7), we shall assume the
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countability of {u2)
L. In §3, we shall consider a general construction of generic extensions

L(A) of the constructible universe L with the help of sets A C.R. In this connection, as

sets of forcing conditions (s.f.c.) we shall take sets of the form P°°, where Ρ is some con-

structible collection of perfect trees in < ω 2. For the proof of FT it suffices to choose a

set Ρ e L, Ρ C < ω 2 , such that Bn04) is satisfied in all P-generic extensions of the form

L(A). The existence of such extensions is obtained in the usual way from the countability

of (OJ2)
L in the universe. Properties 211(4) and U2(A) are of a trivial nature; their satisfac-

tion in all extensions of the form L(A) also is proved in §3 (Theorem 3.4).

In §4 we shall study properties of extensions of the form L{A), under the assumption

that the s.f.c. Ρ has the form Ρ = {Ja<Ecj Pam L, where (Pa, a e cOj) is a sequence of the

type constructed in [7] (a Jensen sequence, Definition 4.2). We shall show that if, in

addition, A is a subset of R which is /"-generic over L, then every a E.A will be /.-minimal

(Theorem 4.6), and A itself will be the collection of all subsets of ω in L(A) which are P-

generic over L (4.4). If, in addition, the sequence Pa satisfies a suitable definability condition

in L (in [7] such a condition follows from the construction), then in L(A) the properties

ηίη(Α), i = 4, 5, 6, will be satisfied (4.5).

To ensure the truth in L(A) of the "dual" properties Ui'^(A) (Theorem 6.1), in §6 we

impose on the sequence Pa the requirement of "elementary equivalence" of Ρ and the

collection P' of all constructible perfect trees (P CP') relative to forcing of formulas of the

class n ^ j (Definition 6.1).

We note that, in the /''-generic extensions of Z. of the form L{A), the properties

Wi'n(A), i = 4, 5, 6, are satisfied for any n\ this stems from the existence of a sufficient

number of order automorphisms of the set P'. However, we shall not deal with /"'-generic

extensions; instead of them we shall consider a suitable relation fore (5.4), to the study

of which §5 is devoted.

Finally, in §7, for a fixed η Ξ> 2 we shall construct a sequence (Pa, α G w t ) satisfying

the requirements of both §4 and §6; this concludes the proof of FT. That is the plan of

the proof.

All the standard set-theoretic symbolism is taken from [4], except for the following

change: cardinality is denoted by card(x), instead of \x \.

The author is deeply grateful to Professors V. A. Uspenskii and V. N. Grisin for reading

this paper and for their valuable assistance.

§3. Generic extensions used in the proof of FT

We presuppose that the reader is familiar with the general theory of generic extensions

and the method of forcing, as well as with the elementary theory of the hierarchy of subsets

of spaces of the form cofc χ Rm and of formulas of second-order arithmetic ([3], Chapter 16).

The construction of generic extensions of permutational (symmetric) type and the symmetry

properties of such extensions are taken from [3], Chapter 4, §9. In the presentation of the

connection between forcing and truth in generic extensions we follow [6]. Finally, from [7]

we take the idea of replacing generic filters by generic subsets of ω, and the use of generic

extensions of the constructible universe L, but not of a countable model of the theory

ZF + V = L. Moreover, the existence of generic extensions is guaranteed by the introduction
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of the additional axiom on the countability of (ω 2 )
L in the hypothesis of FT.

We shall begin with the definition of the forcing conditions-perfect trees in the set

3.1. Perfect trees. By YX we denote the set {/: / is a function from Finto X} ([4],

p. 5). (This is not to be confused with the Cartesian power X™; see below.) We introduce

the set < ω 2 = \3η<=ω"2, the collection of all finite sequences of zeros and ones (including

the sequence 0 of length zero). For e G < ω 2 and i G 2 we define e i = eU {(dom(e), i)}

(an "extension" of the sequence e) ([4], §18).

A nonempty ρ C < ω 2 is called a perfect tree (in < ω 2 ) if: (1) for e G ρ and e G <ω2,

e Ce implies e G p; (2) for arbitrary eQ G ρ there exists e G ρ such that e 0 C e and

e"0 and Π belong to p. By Perf we denote the collection of all perfect trees.

For every Ρ G Perf one can define Clp as the collection of all χ C ω such that, for each

η G ω, there exists e Gp D "2 satisfying (V' < «) [i G χ = e(i) = 1 ] . Cl is a perfect sub-

set of the space R = Ρ (ω).

If e G <ω2, then by <e> we denote {e G < ω 2 : e Ce or e C e'}; (e>G Perf, and

Cl<e> is clopen (closed and open).

Before any further definitions, let us agree that an (m-tuple) finite sequence (x0, . . . ,

s m l ) coincides with 0 for m = 0 and with s0 for m = 1. Then the Cartesian power Xm

of every nonempty X is equal to {0} = 1 for m = 0 and is equal to X for m - 1.

Assume now that ρ = (p0, . . . , Pm_x) G Perf" (an m-tuple of perfect trees). We

define Clp = {(JC0, . . . , xm_1): xi G Clp. for every i < m] (if τη = 0, then Clp = Cl0 =

{0} = R°; if m = 1, then Clp = Clp ). For the same ρ we define \\p || = m ("dimension").

\{ k < m, then we set ρ I· k = (p 0 , . . . , pk_ j) (= 0 for k = 0), and for k > m we define

ρ | k - (p0, . . ., p m - l 5

 <ω2, . . . , < ω2).
*-m times

Similarly, if a = (a 0, . . . ,fl/M_1) G i?"1, A: < m, we set a (• k = (a0, . . . , ak_1).

If a = (a(-, / G ω) G ω Λ and k G ω, then by a \ k we denote the finite sequence (aQ, . . . ,

3.2. Generic sequences and finite sequences. For every /" C Perf we define P°° =

U m e t J P m (the collection of all finite sequences of elements of P). The set Perf" is

ordered by the relation < : (p0, . . . , P^-ι) < (io> · • · > ^ m - i ) ^ an<^ o n ' y tf k *ζ m and,

for every / < k, qi Cpj holds.

As sets of forcing conditions we shall consider sets of the form P°° (ordered by the

relation <), where Ρ C Perf satisfies the condition

// e e / ) G P , then

The collection of all Ρ satisfying this condition will be denoted by Spl ("splitting"

sets).

We now introduce the important concept of generic sequences and finite sequences of

subsets of ω. Let Λ" be a transitive class which is a model of ZF (below, as a rule, Κ — L),

and let Ρ G L C\ Spl be fixed. A sequence (function) a G ω R is said to be a P-generic
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sequence over Κ if the set Ga= {p& P°°: a \- \\p\\ G C\p] has a nonempty intersection with

every set Q G Κ which is dense in P°°. (Q is said to be dense in U ([6], I. 1.2) if Q C U C

Perf °° and the following conditions hold: (l)q&Q&ueU&u>q^uGQ, and (2)

(VM ε ( / ) ( 3 ^ G 0 [g > «].) P-generic sequences over L will be called simply P-generic

sequences.

The method of dealing with P-generic sequences instead of generic filters on P°° is

taken from [7]. Moreover, membership of Ρ in Spl implies that K(a) = K{Ga), as well as

the fact that Ga is a P-generic filter over K, for any P-generic sequence a over Κ (cf. [7],

the reasoning on p. 124).

Similarly, if a G Rm, we define Ga = [p G P"1: a G Clp}; the finite sequence α is

called a P-generic m-tuple over Κ if Ga Π Q is nonempty for every set Q G.K which is dense

in Pm. In particular, a C ω is a P-generic subset of ω over /Γ if (a) = a is a P-generic 1-tuple

over A" (this coincides with the definition in [7]). As above, P-generic m-tuples over L are

simply called P-generic m-tuples.

We shall use the following properties of generic sequences and finite sequences over L.

Assume Ρ £ Spl is constructible.

1. If(ao,...,am)isa P-generic (m + \)-tuple, then am <£ L(aQ, . . . ,am_1). In

fact, by the "produce lemma" ([6], I. 2.3), am is P-generic over Κ = L(a0, . . . ,am_1).

From this and Ρ G Spl it follows easily that am φ Κ, Q.E.D.

2. If a = (a(, i €= ω) is a P-generic sequence (over L) and if m £ ω, then am ^

L({at: i Φ m}). (The proof is similar.)

3. If a is as above, i, j G ω, and a is obtained from a by transposing at and ajt then

a is also a P-generic sequence (over L). (This follows easily from the definitions.)

4. Ifm e ω, a G Rm is a P-generic m-tuple, Q^L, and Q is predense in Pm, then
aGUqeQaq. (Obvious)

(A set Q C Pm is called predense in F™ if {p G Pm: (3q G Q) \p > q] } is dense in

Pm [7].)
5. Assume ρ G P°°. 77ie« i&ere ex/sis α P-generic (over L) sequence a G WR satisfying

Ρ ^Ga-
in fact, the countability of ( ω 2 ) χ (cf. 2.5) easily yields the countability (in the universe)

of the collection of all constructible sets that are dense in P°°; then we apply the argument

of [6], 1.1.8.

3.3. Forcing. We fix some Ρ G L η Spl. A set A C.R is called a P-generic set if

A = rng(a) = {α,·: ι G ω} for some P-generic (over L) sequence a = (ap i G ω). For the

study of generic extensions of the form L(A), where A is a P-generic set, we introduce a

suitable forcing relation.

First we define the language L to be the extension of the usual e-language obtained by

adding the constants A, afc (k G ω), and x_ (x G L). If ψ is a formula of L, and a =

(at, i G ω) G ω Λ, then we define the interpretation ψ" of the formula φ by changing 4 ϋί*

and χ to {a,-: / G ω}, ak and x, respectively. Following [6], 1.1.9, we introduce a forcing

relation: ρ \\~Ρφ if and only if iff is true in L(mg(a)) for any P-generic (over L) sequence

a satisfying ρ G Ga.

In this definition it is presupposed that ρ G P°° and that φ is a closed formula of the



AXIOMATIC SET THEORY 515

language L. If Ρ is clearly determined by the context (as in this section), then we shall write

Ih instead of \[-p.

The basic properties of the relation ||—p are as follows:

1. The relation \\- {i.e., \\-p for a given Ρ ε Spl) is expressible in L in the following

sense: if φ(χ1, . . . , xm) is an ^formula without parameters, then {(p, cx, . . . , cm):

ρ e Pt Cj, . . . , cm are constants of the language L and ρ | \- φ(ε1, . . . ,cm)}is a class in

L.

2. Assume a is a P-generic sequence, A = rng(a), φ is a formula of the language L and

φα is true in L(A). Then there exists ρ G Ga such that ρ \ \- φ.

We refer the reader to [6], I. 1.9.

3.4. Symmetry properties, and securing 211(4) and 212(4) in L(A). The set Ρ of 3.3

remains fixed. We formulate some properties of generic extensions of type 3.3, studied in

detail in [3], Chapter 4, §9.

1. Assume φ is a closed formula of the language L. Then the set {p GP°°: ρ \\- φ

or ρ If- ~ ψ} is dense in P°° and belongs to L. (This follows easily from 3.3.1 and 3.3.2.)

2. Assume ρ e P°°, φ is a formula of language L, m G ω, and every constant q^

occurring in φ satisfies i < m. Then ρ \\- ψ and ρ \ m \\- φ are equivalent.

3. If φ and m are as in 2, then the set {p e Pm: ρ \\- φ or ρ \\- ~ ψ} is dense in

Pm and belongs to L.

4. If A C.R is a P-generic set and ζ €. L(A), ζ C ω, then there exist m & ω and

a0, . . . ,am_x eA such that ζ e L(aQ, . . . ,am_1).

Assertions 2 and 4 are common to all "permutation" extensions ([3], proof of the

lemma on Russian p. 261), and 3 follows from 1 and 2.

THEOREM. Assume A CR is a P-generic set. Then 211(4) and 212(4) are satisfied

in L(A).

We carry out the proof in L(A). The validity of SIl(4) is obvious from 3.2.2. Let

us prove that A is infinite and Z)-finite. That A is infinite follows from 3.2.2 again. Let us

suppose that /is a bijection from ω into A (/£ L(A)). Applying assertion 4, we easily

obtain that / e L(a0, . . . , am_ t ) for some m ε ω and a0, . . . , am_x GA. Then

rng(/) CL(a 0 , . . . , am_1). Again by 3.2.2, since mg(f) CA,we conclude that mg(f) C

{a0, . . . ,am_1}, which contradicts the fact that /is bijective. This contradiction completes

the proof of the theorem.

§4. Application of Jensen's method for securing

properties 213(4) and %ΐη(Α), i = 4, 5, 6, in L(A)

Thus, we are able to construct a set A CR such that 211(4) and 212(4) are true in

L(A). In fact, one must take any constructible Ρ e Spl (for example, Ρ = Perf η L) and

any P-generic (over L) set A.

In this section we shall consider a method for constructing constructible Ρ £ Spl such

that 213(4) and 21/^(4), i = 4, 5, 6, also hold in L(A). This method consists in constructing

Ρ (in L) in the form Ρ = DaPa, where (Pa, a € (ω^) is a sequence constructed by the
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method of [7] (such sequences will be called Jensen sequences—see Definition 4.2). Imposing

on the Jensen sequence (Pa, a ε (CL>J)£) the additional requirement of definability in L, we

obtain the fulfillment in L(A) of properties U3(A) and Έ.ΐ'η(Α), i = 4, 5, 6 (for suitable

η > 2) (Theorems 4.5 and 4.6).

Below in §6 we shall indicate another requirement on Jensen sequences leading to the

fulfillment in L(A) of properties Ui'^(A). In this connection, in §4 we shall deal with not

a particular Jensen sequence (as was done in [7]), but rather an "arbitrary" one. A particular

choice of a Jensen sequence for the proof of FT is carried out in §7.

The ideas of [7] form the basis for the arguments of this section.

4.1. Splitting. Let us introduce some preliminary definitions. If p, q ε Perf and

ρ = q Π (fej) U • · · U <em>) for certain e^, . . . , em ε q, then we say that ρ is closed-open

(clopen) in q; in that case, Cl Π Cl will be clopen in Cl in the topological sense. We say

that ρ = (p0, . . . , Pm_l) ε Perf" is componentwise disjoint if pf η p. is finite (that is,

CIp Π Clp. is empty) for / Φ j . If ρ € Perfm, U C Perfm, and ρ C \JQ for some finite

Q CU, then we write p> \JU.

Assume P, Q& Spl, and let Ξ be any set. We say that Q is a splitting of Ρ over Ξ

if the following assertions (1)—(4) hold:

(1) for every ρ ε Ρ, there exists q ε Q such that q C p ;

(2) for every q ε Q, there exists ρ & Ρ such that q C.p;

(3) if ρ ε Ρ and q G Q, then ρ is clopen in q;

(4) if m ε ω, U ε Ε is predense in Pm, and q ε Qm is componentwise disjoint, then

q> MU.

Let us show that, if (1), (2) and (3) hold, then (4) is equivalent to:

(5) i f m G w , ί / e H is predense in Pm, and aQ, . . . , am_l ε UgegCl a r e

pairwise distinct, then (a0, . . . , am_l) ε U u e £ / C l u .

First let use prove (5) —*• (4). Assume q ε £>m is componentwise disjoint. Then

every a = (a0, . . . , am_l) ε Cl^ obviously satisfies at Φ af for ί Φ j . According to (5),

this yields α ε \JU<£UC\U. Thus, C\q C U u e c / C l u . But, by (3), the set Clu Π Cl^ is clopen

in Cl for any u ε U. From this, with the help of the compactness of Rm, we obtain

q> Vt/,i.e. (4).

Let us prove the converse implication. Since β ε Spl, it is not difficult to choose a

componentwise disjoint q ε Q"1 such that a = (a0, . . . , am_l) ε Cl . But, according to

(4), q > \/U, and this yields α ε U u e [ / C l u , i.e., (5) has been proved. This completes

the proof of the equivalence.

4.2. Jensen sequences. Assume η = (Ρα, α ε ν) ε L is a sequence of elements of Spl

that are countable in L. We call π a Spl-sequence (of length ^) if, for every β ε μ, the set

.Pp is a splitting of P<& = U ^ e ^ over Ζ. γ * ( π / ( 3 ) , where by γ*(π/(3) we mean the least

γ ε On for which π\β ε £ γ and β is countable in Ζ-γ. Spl-sequences of length ( ω ^ are

called Jensen sequences. We note that every Spl-sequence (and Jensen sequence) is constructible

by definition.

Jensen sequences were constructed for the first time in [7]. We shall formulate some

trivial properties of Spl-sequences.
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LEMMA 1. Assume IT = (Pa, α ε y) is a Spl-sequence and a ε v. Then Pa is predense

in Ρ = U a e / « (cf. [7], Corollary 5).

The proof is easily obtained by induction on a and v, taking into account that

{Pa : a e β] C LyHnm for any β ε v.

From the lemma and the definitions, we obtain

COROLLARY 2. Let π be as in Lemma 1, and assume a ε β ε v.

(1) Ifqe.Pp, thenq> \/Pa.

(2) If ρ e P a , ί/ζβκ rAere exzsft # ε /^ SMCA z t o <? > p.

4.3. 4̂ property of antichains. If Q C i/ C Perf °° and, for arbitrary p, q £ Q and

u<EU,u>p&u>q implies ρ = ς, then we call β an antichain in [/. A maximal antichain in

U obviously is a set which is predense in U.

THEOREM. Assume η = (Pa, a e (ω^1) is a Jensen sequence, Ρ = U a e ( w \LPa'

m ε ω, α«ύ? Q & L is a maximal antichain in Pm. Then Q is countable in L and there exists

λ G (ω ι ) L SMC/Z tfzai f/;e following conditions are satisfied:

(i) QCP?X (where P<x = \JaexPa).

00 //a 0 , . . . , a m _ j ε υ ρ ε ρ λ α ai-e pairwise distinct, then (a0, . . . , am_l) ε

(iii) If q & P™ is componentwise disjoint, then q > VG-

PROOF. The beginning of the argument is in L. We introduce the notation

<2<λ = (Ρα) Π Q

(where Ρ<λ = Uag^-Pa) for every λ ε ojj. It is clear that a>j, π, Ρ and Q are elements

of Ζ ω . This permits us to choose a countable set Μ ε Ζ,ω containing the indicated sets

and such that

(1) Μ Z'S a« elementary submodel of L^ .

Obviously, Μ is an extensional set. So, there exist a transitive TV and a e-isomorphism

ψ οι Μ onto ,/V. We define λ = φ(ωι), and we shall show that λ is what is required. Taking

into account (1) and the choice of ψ and N, we obtain the following sequence of propositions:

(2) If χ ε Μ is countable, then χ CM. (One uses (1) and the formula "There exists

a function from ω onto x".)

(3) If χ G Μ is hereditarily countable, then φ(χ) = χ. (This follows from (2) by

induction on the rank of x.)

(4) λ = Μ ΓΊ coj (from (2) and (3)).

(5) φ(π) = π|λ = (Ρα, α ε λ) (from (1), (3), (4) and the choice of φ).

(6) φ(Ρ) = Ρ<λ, φ(Ο) = Q<x (from (3) and (5)).

(7) Q<x is a maximal antichain in Ρ™λ . (This follows from (1), (6), and the

hypotheses.) Hence, Q<K is predense in Ρ^λ.

(8) Ν = Ls for some § 6 ω Γ

(9) λ is nondenumerable in Ν = L6 (since ωχ is nondenumerable in Ζ,ω ); thus,
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(10) β < λ

 e V(*IX) ( f r o m (7> aa

(11) Q - β < λ , i.e., Q C P < X . In fact, suppose the contrary; that is, assume υ G β -

Q<\. By 4.2.2(2), one can select β G ω χ , j3 > λ, and a componentwise disjoint q&P1?

such that q > υ. (One also uses Ρβ G Spl.) Applying (7) and (10) and taking Definition 4.2,

into account, we obtain q > VG<x- From this, since u andi^ G Spl, we obtain the existence

of u ε β < λ and wEP^1 such that w>q and w > u. Thus, w>u,w> υ, wEP"1. But

Μ and υ automatically are distinct elements of β (u G β < λ ; υ G Q - β < λ ) , contrary to the

choice of Q as an antichain. This proves (11).

This ends the reasoning in L. Let us finish the proof of the theorem. From (11) we

deduce (i) and the countability of β in L, and (ii) and (iii) follow from (7), (10), Definition

4.2, and parts 4.1(4) and 4.1(5) of Definition 4.1.

So, λ is the required ordinal, and the theorem is proved.

4.4. Definability of A in L(A). Assume π = (Pa, a G ( ω ^ ) is a Jensen sequence,

and Ρ = U a e(c j )L^a- m t^l > w^h m e help of an analogue of Theorem 4.3, it was

established that, if a C ω is ^-generic over L, then

{a} = Π U Clp

is true in L(a). We shall prove here an analogue of this proposition for extensions of type

3.3.

THEOREM. Let π and Ρ be as above, and assume that A CR is a P-generic set. Then

(ω,)1 = (ω^^ and

L(A)\= A= f] U Clp.

PROOF. Let A = {ak: k e ω} , where a = (afc, k G ω) is a P-generic sequence over Z,.

We note that every constructible antichain in P°° is at most countable in L, by virtue of 4.3.

From this, in the usual way ([4], Lemma 56), we obtain (ωχ)
1 = ( ω ^ ' ^ ' . In addition,

every Pa, a G (coj)1·, is predense in Ρ by 4.2.1, and every ak is /'-generic. Applying 3.2.4,

we obtain the inclusion from left to right in the statement of the theorem. For a proof

of the reverse inclusion, we prove the following lemma:

LEMMA 1. Assume m G ω, b C ω, b ψ {a0, . . . ,am_l}, and b G U e J . Cl for

every a e ( ω ^ . 77zen ft € £(*0, . . . , am _ x\

PROOF. By 3.2.1 it suffices to verify that b = (a0, . . . , am_1, b) is a P-generic
(m + l)-tuple. Assume C/e L and U dense in Pm+1. We select QCU, Q e L, such that

β is a maximal antichain in U. Then β is a maximal antichain in Pm + 1 (since U is dense

in Pm +'). Let λ G (ωj)1" be such that the requirement 4.3(ii) is satisfied. (It exists by

Theorem 43.)

We note that a0, . . . ,am+l and b are pairwise distinct (at Φ a- by (3.2.2)) and are

elements of the set L L e p CL. (For b this follows from the hypothesis of the lemma, and

for the at from the already proved inclusion from left to right in the theorem.) By the

choice of λ, this gives b G \JqeQC\q. A fortiori, b G U u e [ / C l u (β C If). This means that

Gb Π U Φ 0, which proves the lemma.
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Let us return to the proof of the theorem. Assume Κ ω and b G U p & P Cl for

every a G ( ω ^ . Let us show that bEA. In fact, from 3.4.4 it follows that b G L(a0,

. . . , am_x) for some m G ω. Now, by Lemma 1, we obtain i £ {a0, . . . ,am_1},

i.e., b G A. This proves the inclusion from right to left and the theorem.

4.5. Securing Άι'η(Α), / = 4, 5, 6. Let π and Ρ be as in 4.4, and assume that ^ Ci?

is a /"-generic set. The preceding theorem shows that A is definable in L(A) by some G-

formula (with parameter π). So, imposing on π a certain condition of definability in L, we

can expect the satisfaction in L(A) of the properties Uin(A), i = 4, 5, 6, for suitable n. Let

us take a short pause to introduce certain concepts connected with Ε-definability in the

collection Τ of all hereditarily at most countable sets. (We remark that Τ = Ζ ω if the

axiom of constructibility V = L holds.)

Ση and Πη are standard designations for classes of G-formulas [9]. By Σ^ we denote

the collection of all X C Τ defined in Τ by some Ση-formula without parameters.

Analogously, one defines Π^; then Δ^ = Σζ Π n j . There is a remarkable connection

between definability in Τ and analytic definability:

PROPOSITION 1 ([11], the lemma on p. 281). Assume η > 1 and X C R. Then X G

Σ* + j if and only if Χ Ε Σζ, and similarly for Π and A.

We shall use this proposition to prove the following theorem.

THEOREM. Let π, Ρ and A = {ak: k G co} be such that, as above, η > 2 and π ε

Σ ^ is true in L. Then %i'n(A), i = 4,5,6, hold in L(A).

We carry out the proof in L(A). From Theorem 4.4 it follows that (cjj)L = Wj

(= (Wj) ·^)) . From this, by the hypothesis and the equation Τ = Ζ,ω in L, we obtain that

^ )

On the other hand, Ζ.ω G Σ^ (cf., for example, [7], the proof of Corollary 9). This

yields vr G Σ^_ 1. This means, by Theorem 4.4, that A G n j _ j . Finally, using Proposition

1, we obtain A G Π^; that is, U4'n(A) (true in HA)).

Let us turn to U5'n(A). Assume a = ak G A. From 3.2.2 it follows that A n L(a) =

{a}, whence, just as in the proof of 214^(4), we obtain L(A) |= {a} G Π^; that is, U5'n(A).

Finally, let us consider U6'n(A). Assume k, I G ω, k Φ I. Then L(ak) η {a,} = 0 by

3.2.2, and L(a,) η {α^Φ 0 (obvious). It suffices to prove, therefore, that {aJG Π^ in

L(ak, at). But {ak, at} = Α Π i(a f c > flj) (by 3.2.2); from this, as above, we obtain

{ak, at] G Π^ in L(ak, at). Now it is obvious that L{ak, at) (= {at} G Π^, which proves the

theorem.

4.6. Securing the minimality of elements of A. The objects π, Ρ ζτιάΑ = {ak: k G ω}

of 4.5 remain fixed. We shall prove that every a E A is /.-minimal. We note that our proof

differs from the proof of minimality in [7].

THEOREM . L(A) f= ?I3(4); that is, every ak is L-minimal.

PROOF. By 3.2.3, it suffices to prove the /.-minimality of aQ. ao^L follows from

3.2.2. Assume now that χ G L(aQ) - L and χ C ω. Let us prove that aQ G L(x). From the
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choice οι χ it is clear that there exists a formula \(k) of the language L (3.3), containing

only the constant q^ and constants of the form £,cGL, and satisfying Λ: = {k G ω:
L("o) Ν Χ12**)}· w e write Ν instead of \\-p (cf. 3.3). We may assume that, if ρ G P°°, then

/> I I - [ { f e e ω : Ζ , ( α ο ) | = χ (fe)}£EL

(if this is not so, then we consider the formula

χ' (fc) ^ [χ (ft) if {ft e= ω : L (a0) | = χ (ft)} ££ L; and Λ G « 0 otherwise]).

Then the set U = {(p, q) G P2 : for some k G ω, either ρ | |- χ(<;) &

ill X© or ρ || χ(£) & q \\- \(k)} is dense in P2 (by 3.4.3 and the choice of χ), and

UEL (by3.3.1).

Now, choosing a maximal antichain and using Theorem 4.3, in a way similar to the

proof of 4.4, we select λ G (Wj)L such that

(1) if' u, υ G Ρλ and u η υ is finite (that is, (u, υ) is componentwise disjoint), then

(u, υ) > \/U.

Assume Φ is the collection of all formulas obtained from formulas of the form

x(k), k G ω, with the help of the symbols ~, & and V. From (1) and the definition of U,

one easily obtains

(2) If u, υ £Ρ , and u Π υ is finite, then there exists a formula ψ G Φ such that

u |h φ, but ν \\- ~ ψ.

In addition, for φ G Φ we define its interpretation JC f= φ interpreting x(k) as k G x.

We now observe that from 4.2.1 and 3.2.4 it follows that

(J Cl p .

From this, since Ρχ G Spl, on taking account of 3.4.2 and 3.3.2, we obtain that aQ is the

unique element in the set D{C1U: u G PK, and, if ψ G Φ and χ (= ψ, then ~ w | h ~ <̂ }.

Now a0 G L(x) is obvious, and the theorem is proved.

§5. The language λ and ramified forcing

5.1. Arithmetic functions. Now we want to introduce a language for describing real

numbers in extensions of the form L(A), where A CR is a /"-generic set, and Ρ =

U a £ , ·μ,Ρα for some Jensen sequence (Pa, a G (ajj)^). We desire, in particular, that

this language contain constants for all subsets of ω in L(A).

The well-known methods of introducing a "ramified" language and forcing (the

parametric space of [3] or the Boolean-valued universe of [4]) cannot be used because of

their great complexity (in the sense of definability) and their "nondescriptive" character.

We offer a considerably simpler construction, connected with the use of arithmetic functions

as constants for subsets of ω in extensions of the form L(A).

A function F: R —• R is said to be an arithmetic function (a.f.) if {(JC, m): χ Ceo &

m G F(x)} is a set in the class j£, (= U n eu>§?)· l t i s c l e a r t h a t ^ collection F of all

a.f.'s is a continuum, F = {F^: f C ω}, where the enumeration F^ can be chosen so that

6=F,i*)}€=Ai. (1)
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In fact, to every / C ω one can, in a canonical fashion, associate a construction of a

Σ^-set XfC.R χ ω , starting from elementary intervals; further, Fj is set equal to {(x,

Xf{x}): χ C ω}. (1) is satisfied by virtue of the canonical character of the choice of X*

from /.

Let us extend the operation of F, onto./?"1, m& ω. If m > 1, we define a homeo-

morphism <i>m by the condition Φηι(x0, . . . , xm _ χ) = {mk + i: i < m & k G xt], and we

set Ff(x0, . . . ,xm_1) = Ff(<i>m(x0, . . . ,xm_J). Separately, for m = 0 we set

f

5.2. REPRESENTATION THEOREM. Assume π = (Ρα, a G ( ω ^ ) is a Jensen sequence

Ρ = ϋ α £ ( ω )L Pa, a = (afc, k e ω) w a P-generic sequence, and A = {afc: Λ € ω}. /« i t o

situation, every x& R Γ) L(A) can be represented in the form of an a.f. with constructible

coding, in the sense of the following theorem.

THEOREM. Assume m Ε ω and χ e L(a \ m), χ C ω. Then there exists fEL,fCu>,

such that χ = Ff{a [ m).

PROOF. Assume ^(Λ) is a formula of the language L, containing as constants only

constants of the form a_k, k <m, and c, c € L, and satisfying χ = {k ε ω: i(^4) (=

We reason within L. We define £/k = {p<EPm: ρ \\- φ) or ρ | | φ(Κ)}. (The

subscript Ρ on |{— is omitted; cf. 3.3.) From 3.4.3 and the choice of φ, we obtain that every

Uk is dense in Pm. This permits us, using Theorem 4.3, to select a sequence (Qk, k e ω)

of countable antichains maximal in Pm such that Qk C i/fc for all λ:. Let us set

^ = U Clp.

It is clear that every Z'k is a Σ® -subset of the set Rm.

Hence there exists an fC ω such that:

(1) ifzGZ°k- Z\, then k φ Ffe), and

(2) ifzezl- Z°k, then k e Ff{z).

This ends the reasoning in L. Let us prove that /is what is required; that is, χ =

FJa I m). Assume k G x; we shall show that k G /y(a |. w). First we establish that:

(3) C a n e ^ 0 awd Ga n Q°k = 0. (For the definition of Ga, cf. 3.2.)

In fact, from 3.2.4 and the choice of Qk as a maximal antichain in Pm, we obtain

Qk nGa^°- Assume q <Ξ Qk η Ga. From k G x, the choice of ^, and 3.3.2, it follows

that q Ε Qk - Q°, which is what was required. This proves (3). Now, defining

η = υ α.

(the analogue of Z'k in the universe), we obtain from (3)

(4) a I m <Ξ Y{ - Y°k.

We note finally that (2) is equivalent to some Π J -formula with parameters from L

(the same in L and in the universe). Together with the Absoluteness Principle (cf. 2.1), this

yields

(5) ifzGYk- Y°, then k G Ff(z) (in the universe).
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From (4) and (5) we also obtain k G iy(z).

The derivation of k φ χ —• k φ. FAz) is similar. Thus, /is what is required, and the

theorem is proved.

5.3. λ-formulas. The theorem just proved provides the basis for introducing a

ramified language for describing elements of R Π L(A), using as constants of type 1 (i.e.,

for R) arithmetic functions with coding from L (more precisely, we use the codings

themselves, attaching to them the meaning of the a.f.'s). The precise definition is as follows.

Let η > 1. By Σλ* we denote an "extension" of the collection of all Σ*-formulas

(without constants) by means of:

(1) allowing symbols of the form/, / ε ω, to be taken as constants of type 0, and

symbols of the form m*f, where m G ω and / G R η L, as constants of type 1;

(2) allowing us to provide certain constants of type 1 with subscripts from ω.

Moreover, we require that:

(3) quantifiers of type 1, occurring in the right-most block of such quantifiers, do

not have subscripts.

Πλ^ is defined similarly. Formulas occurring in Σλ^ or Πλ^ for some η > 1 are called

\-formulas. We note that λ-formulas are constructible (i.e., their transcriptions are construct-

ible finite sequences), since every constant m*f satisfies / G L.

Assume φ is a λ-formula. By || φ || we denote the least mQ G ω such that: (i) if m*f

occurs in φ, then m < m0, and (ii) if a quantifier with subscript m occurs in φ, then m <

mQ. By 1̂ 1 we denote the least m0 G ω such that (i) is satisfied (note that \ψ\ < \\φ\\). If

φ G Σλ,1,, then by φ~ we denote the result of the canonical transformation of ~ φ to a

Πλ1 form; similarly for φ € Πλ^.

We proceed to the interpretation of λ-formulas. Assume φ is a λ-formula and a € ω Λ.

We define φ" to be the result of replacing in φ all constants of the form l_ and m*f by I and

FJa 1· m), respectively (cf. the definition of α I· m in 3.1), and of quantifiers of the form

3(V)m* by 3(V)x ε ί η L(a I m). (Quantifiers without subscripts are not changed.) We

note that, if, in addition, ψ € Σλ} U Πλ}, then ^f is a formula of second-order arithmetic

with parameters from R U ω. (This follows from (3).)

5.4. Forcing (fore). The forcing relation fore for λ-formulas which we define below

is not formally connected with truth in f-generic extensions of the form L(A) for some P.

However, one can show that, in fact, it corresponds to (Perf Π Z,)-generic extensions of the

indicated form. (This fact will be useful to have in mind, although it will not be used

anywhere in what follows.)

We shall define a relation ρ fore ψ, where it is presupposed that ψ is a closed λ-formula

and ρ £ Perf°° Π L, by induction on the complexity of φ:

(1) If φ e Σλ} U Πλ{ and, for every a e ω Λ satisfying a \ \\p\\ 6 Clp, / is true,

then ρ fore φ. (As we mentioned in 5.3, φ" is a formula of second-order arithmetic with

parameters from R U ω for ψ & Σλ} U Πλ}, and, therefore, one can speak about the truth

οΐφα.)

(2) // φ is lmx\p(x) and ψ e Σλ* + j U Πλ*, k > 1, then ρ fore ψ ^ (there exists /<=

R C\L such that ρ fore ψ (m */*)).

(3) // φ is 3x \p(x), ψ e Σ λ £ + 1 U Πλ1., k > 1, then ρ fore φ ±* (there exist m and

/ e i ? U i such that ρ fore \p(m*f)).
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(4) Ι/φ& Πλ£, k>2, then ρ fore φ - (for every q G Perf°° Π L such that q>p,

q fore φ~ does not hold).

In (2) and (3), χ is a variable of type 1.

5.5. Some properties of fore.

1. The relation fore is expressible in L; more precisely, [p fore φ] = [L \= ρ fore φ].

In fact, in the transcription of ρ fore φ, by the definition in 5.3, the constructibility

of ρ and (the transcription of) φ is assumed. In addition, the proposition (Vtf ε ω Λ)

[a [ \\p || ε Cl —> ιρα is true], written in 5.4(1), is obviously a formula of the class Π}

(for φ ε Πλ}) or Π^ (for φ ε Σ λ | ) with constructible parameters. Thus, this proposition is

absolute under relativization to L (cf. the Absoluteness Principle of 2.1). From this, we

obtain what is required for φ ε Σλ} U Πλ|. If the formula φ is more complex, we carry

out the proof by induction on the complexity of φ, taking into account the obvious

absoluteness of the definitions of 5.4 (2, 3, 4). The details are trivial and are left to the

reader.

In the following propositions, we fix a closed λ-formula φ and some ρ ε Perf °° Π L.

2. ρ fore ψ and ρ fore φ~ cannot hold simultaneously.

3. If φ ε Πλ£, k > 2, and ~ ρ fore φ, then there exists q ε L η Perf°° such that

q>p and q fore φ~.

4. // q ε Perf °° Π L and q> ρ and ρ fore φ, then q fore φ.

5. // llpH < k ε ω, then ρ fore φ = ρ I k fore ψ.

The proofs of 2-4 are trivial, and 5 is easily proved by induction on the complexity

of ψ, with the help of the definition of ρ 1- k in 3.1. (For k > \\p\\ and α ε ω Λ, we have

a I k ε Cl [k = a [ \\p\\ ε Cl ; thus, ρ and ρ I k carry "the same information in the sense

of fore".)

5.6. A restriction theorem. We want to prove in this subsection a proposition similar

to 3.4.2 (for fore). It will be proved that the relation ρ fore ψ actually depends only on

ρ Ι \φ\. We remark in passing that, in the transcription of iff, a,· can occur with / > \φ\ (at

the cost of subscripts for quantifiers of type 1); therefore, the following theorem expresses

a deeper fact than 3.4.2. (A direct analogue of 3.4.2 would have to contain IMI, rather than

M·)

THEOREM. Assume φ is a closed λ-formula, ρ ε Perf°° Π L and \\p\\ > \ψ\ = m.

Then ρ fore φ and ρ \ m fore φ are equivalent.

The proof is carried out in L. (This is permissible by virtue of 5.5.1.) It is clear that

ρ [ m < p . From this and 5.5.4, under the hypothesis of the theorem, one easily obtains

the implication from right to left.

For the proof of the reverse implication, we consider certain order automorphisms of

the set Perf" (which is equal to Perf°° η L, since the proof is carried out in L), and their

extensions to arithmetic functions (a.f.) and λ-formulas. Let us introduce the appropriate

definitions.

If / ε co, and ρ = (p0, . . . , pt_x) and q = (q0, . . . , q^^) are elements of Perf',

and the sequence η = (//,·, / ε ω) is such that every Hi is a homeomorphism of Clp. onto

CL. for i < I and a homeomorphism of 7? onto R for / > I, then we write τ? ε Horn . If,
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in addition, l> m and Hi = {(χ, χ): χ £ Clp.} (that is, in particular, pt = q^ is satisfied for

all / < m, then τ? is said to be m-preserving. The following assertion is obvious.

1. If p, q e Perf', m < I, and ρ [ m = q [ m, then there exists an m-preserving η G

Uompq.

Assume now that p, q G Perf' and η = (//,·, i G ω) G Horn are fixed. For k G ω

one can define a homeomorphism H<k: C\plk

 o n t o > Q q l k by the condition

If, in addition, u G Perf*, u> p, then the set tt<kC\u obviously has the form C\v for some

(unique) υ G Perf*, υ > q; we denote it by υ = [η] ^w). We have

2. [77] j is a bijection of {u G Perf": u> p] onto {υ G Perf": υ > q}, preserving <

and || • · • ||; [77] j(p) = q (this is obvious from the definition).

Let us extend the operation of 77 to a.f.'s. If / C ω and F = F5 (cf. 5.1), then we

can define a function F' from Rk into R by the condition F'(H<k(xJ) = F(x) for Λ: G

Clp t J t andF'(y) = y for y £Wqik (= H<kC\pik). It is clear that F' is an a.f. (from Rk

into R); that is, F ' = F5 for some (not unique) / ' C ω; we denote one of these / ' by

(τ?]*,(/). We note the following fact:

3. Assume k < w < /, 17 is m-preserving, and f C ω. Then Fk= F*> , wnere / ' =

This allows us to require in addition:

4. Under the hypotheses of 3, [77] *(/) = /·

Finally, let us extend the operation of η to λ-formulas. If ψ is a λ-formula, then by

[77] 3ψ we denote the result of replacing in φ every constant m*f by m*f, where / ' =

[τ?]*(/). It is not difficult to verify that

5. ifuG Perf", u>p,k = \\u\\, a,aG"R,a I k G C1M and a I k = H<k(a [ k),

then φ" coincides with (φ')α , where φ = [η] 3φ.

PROPOSITION 6 (invariance of fore). Assume p, q G Perf', 7? G Homp<?, u G Perf",

u > ρ, φ is a λ-formula, u = [77] y(u), and φ = [77] 3ψ. Then u fore ψ and u fore ψ are

equivalent.

The proof proceeds by means of a trivial induction on the complexity of φ, using the

definition of 5.4. Moreover, in the case φ& Σλ} U Πλ{, the desired result follows from 5

above, the passage from Πλ^ to Σ λ ^ + 1 is obvious (one must use the operators [77]*), and

the passage from Σλ^ to Πλ^, n > 2, is realized with the help of 2 above. The details are

left to the reader.

Let us return to the proof of the theorem. Assume that m, ρ and φ are the objects in

the hypotheses of the theorem and that ρ fore φ; we shall prove that ρ \ m fore φ. We set

q = (p I m) \ I, where / = ||p|| (> m). It is clear that ρ [ m = q \ m, | |p|| = ||<?|| = I.

Applying 1, we find an /«-preserving 77 G Homp(7. From ρ fore ψ and 6 (with u = p), it

follows that [77] j(p) fore [77] 3ψ. But [7?] x(p) = q by 2, and [η] 3φ = ψ by 4 and the fact

that \φ\ = m. Thus, q fore φ, whence, from 5.5.5 and the definition of q, we obtain q [ m

fore ψ; that is, ρ \ m fore φ. Q.E.D.
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§6. Conserving sequences

6.1. Definition and formulation of the fundamental property of conserving sequences.

First we give some intuitive motivation. Assume Ρ — {JaPa\ Ĉ a> α ^ ( ω ι ) ^ ) ^s a Jensen

sequence, a = (ak, k G ω) is a P-generic (over L) sequence of elements of R, and A =

{ak: t e w } , What properties of Ρ can guarantee that Ui'J,(A), i = 4, 5, 6, hold in L{A)1

One can prove that the truth in L(A) of the indicated propositions follows from the

following general requirement:

(*) Assume ip(k) G Σλ^, k is the unique free variable of φ {of type 0), and m = \φ\.

Then

For example, that part of U5'^(A) which asserts the constructibility of every element of

R in Σ^'Σ follows directly from (*) for m = 0.

But how can (*) be ensured? If we prove that fore and truth in L(A) agree (as in 3.3.2)

up to Σλ^-formulas, then, in the light of Theorem 5.6, one can be sure that (*) will be

satisfied.

In turn, how can we now ensure the indicated agreement? For formulas of Σλ\ U Πλ},

agreement follows from Definition 5.4(1) and the Absoluteness Principle (cf. 2.1). Theorem

5.2 guarantees that the agreement is preserved in passing from φ(χ) to lmx(3x)<p(x). But,

in passing from φ~ to φ, φ G Πλ£, k > 2, it is difficult to be sure of the preservation of the

agreement, since, in Definition 5.4(4), q G Perf°° Π L is written, not q G P°°. Thus, to

preserve the agreement under the indicated transformation, we must use a property that is

like an "elementary equivalence" of P°° and Perf°° Π L. This is brought about in the follow-

ing definition.

A Jensen sequence (Pa, α G ( G J J ) 1 ) is said to be an η-conserving sequence (n-c.s.) if,

for every ρ & P°° (where Ρ = Uae(u> ) L ̂ a) m^ e v e r Y closed formula φ e U j < Λ < η Π λ ^ ,

there exists q €Ξ P°° such that q > p, and either q fore φ or q fore φ~.

By 5.5.1, the formula "x is an n-c.s." is absolute with respect to relativization to L.

THEOREM. Assume η > 2, (Pa, a e ( ( j j f ) is an n-c.s., and P, a and A = {ak, k e ω}

are as above. Then Ui^(A), i = 4, 5, 6, are true in L(A).

The rest of §6 is devoted to the proof of this theorem. Let us briefly outline the

proof. In 6.2, with the help of Theorem 5.2, we prove the agreement of fore and truth in

L(A) up to Σλ^-formulas. From this and 5.6, in 6.3 we easily show that proposition (*) is

satisfied. Finally, in 6.4-6.6, we prove the truth of Ώ,ΐ^Α), i = 4, 5, 6, in L(A), with the

help of (*), which already has been established.

The objects P, a and A = {ak: k G ω] of the hypothesis of the theorem remain fixed

in 6.2-6.6.

6.2. THEOREM (on the connection of fore and truth). Assume 1 < k < η and that

ψ £ Σλ£ is closed. Then φ" is true in L(A) if and only if there exists ρ G Ga such that

ρ fore φ. (Compare 3.3.2.)

1. We begin the proof with an auxiliary lemma.
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LEMMA 1. There exists ρ G Ga such that ρ fore φ or ρ fore φ".

PROOF. By the definition of n-c.s., the set Q = {p G P°°: ρ fore φ or ρ

fore φ~} is dense in P°°, and from 5.5.1 it follows that Q G L. From this and the

definition of /"-generic sequence (3.2), we obtain the desired result.

Let us proceed to a proof of the theorem by induction on k > 1.

2. k = 1. Assume first that ρ G Ga and ρ fore ψ; we shall prove that L(A) \= φ".

By Definition 5.4(1), ρ fore φ means that ψυ is true for any b G ω Λ satisfying 6 I- ||p|| e

Clp. In particular, / is true (a I \\p\\ G C\p, since ρ G G a). But ψα obviously is a Σ}-

formula with parameters from L(A). Hence, by the Absoluteness Principle (cf. 2.1), φα is

true in L(A), Q.E.D. This proves the implication from right to left.

Conversely, assume L(A) |= γ?α, and that there is no ρ G Ga such that ρ fore ψ. Then,

by Lemma 1, there exists ρ G Ga satisfying ρ fore φ~. As above, it follows from this that

L{A) |= (φ~)α; that is, L(A) (= ~ <f\ but this contradicts the assumption L(A) \= ι/.

Thus, the case k = 1 has been dealt with.

3. Let us assume that the theorem has been proved for some k, 1 < k < n, and prove

it for formulas φ of Σλ£ + t . For simplicity, we assume that φ = 1ηιχφ(χ) (χ a variable of

type 1), m ε ω and φ G Πλ£; that is, the leftmost block of quantifiers of φ consists entirely

of one quantifier, 3m x. (The general case of various quantifiers 3 of type 1 is perfectly

analogous.)

Let us prove it from left to right. Assume L(A) |= φ". According to the definition of

5.3, this means that there exists χ G R Π L(a \ rri) such that L(A) |= φα{χ). By Theorem

5.2, χ has the form F^{a I ni) for some / G R Π L. Thus, L(A) μ i//a(F^(a \ rri)); that is,

L(A) f= \p(m*f)a, and, finally, ~ £(^4) (= (\p(m*f)~)a. Applying the inductive hypothesis to

the formula i//(m*/)~ G Σλ^. and using Lemma 1, we deduce that there exists ρ GGa such

that ρ fore \p(m*f); that is, ρ fore φ (by 5.4(2)). This proves the implication from left to

right.

Conversely, assume ρ &Ga and ρ fore φ. By 5.4(2), this means that ρ fore xjj(m*f)

for some / G R Π L. Let us prove that

L(A)\-^(m*f)a. (1)

In fact, in the contrary case, L(A) |= (t//(m*/)")a. Again applying the inductive

hypothesis to \p(m*f)~, we can find ^ G , such that (7 fore ψ(«ζ*/)~. We note that Gfl

is a filter (cf. 3.2); that is, there exists r G Ga such that r > ρ and Λ > q. Together with

5.5.4, this yields r fore i//(m*/) and r fore \p(m*f)~, which contradicts 5.5.2. The contra-

diction proves (1).

But (1) means that ψ"(χ) is true in L(A), where χ = -FT(a [• rri). From / G Z, and

5.1(1), it easily follows that χ G L(a I rri), whence we obtain L(A) (= (3mxi/'(x))a; that is,

L(A) (= </. Q.E.D.

This completes the induction step, and the theorem is proved.

6.3. PROOF OF PROPOSITION (*) OF 6.1. We note first the following strengthening of

Theorem 6.2.

LEMMA 1. Assume φ G Σλ^ is closed. Then φα is true in L(A) if and only if there

exists ρ G G Π pW such that ρ fore ψ.
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The proof follows easily from 5.6 and 6.2.

THEOREM 2 ((*) of 6.1). Assume <p(k) Ε Σλ^ is a formula with the unique free

variable k {of type 0). Then the set ζ = {k Ε ω: L(A) (= <pa(k)} belongs to L(a \ m).

PROOF. Lemma 1 implies that ζ = {k Ε ω: there exists ρ Ε Pm such that a \ m Ε

Cl and ρ fore y(k)}. From this and 5.5.1, we easily obtain the desired result.

Let us derive another corollary of Lemma 1. Before formulating it, we note that

ρ I 0 = 0 and a \ 0 <= Clp t 0 for arbitrary ρ Ε Perf°° (cf. 3.1).

COROLLARY 3 (reformulation of Lemma 1 for \ψ\ = 0). Assume φ Ε Σλ^ is closed

and \φ\ = 0. Then φα is true in L{A) if and only ifO fore φ.

6.4. THEOREM. M'^A) is true in L(A).

PROOF. Assume X C.R, Χ Ε L(A), Χ Ε Σ^Ίη L(A), and X does not have any subsets

in L(A) which are equinumerous with ω. We shall prove that X is finite. First we choose a

Σλ^-formula defining the set X in L(A).

By the choice of X, there exist a Σ^-formula κ(χ, y) (without parameters) and a

y Ε L(A) such that X = {x<ERD L(A): L(A) Ν κ (χ, y)}. Using 3.4.4 and 5.2, we find

f<ER CiL such that y = Ff(a [ m). Let us consider the Σλ^-formula 0(x) - K(xt m*f).

By the definitions of 5.3 and the choice of/, it is clear that θα(χ) coincides with κ(χ, y).

Thus,X= {xGL(A) nR: L(A) f= θ"(χ)}. We note that |0 | = m, by the definition of 0.

We shall prove two auxiliary propositions.

1. If IE. ω, then Χ η L(a [I) is finite.

In fact, the class L(a I I) has in L(A) a canonical well-ordering, and X does not contain

subsets in L(A) which are equinumerous with ω.

2. If IE ω, then Χ η L(a [ 1) C L(a I m).

It suffices to prove this proposition for / > m. We let X' denote Χ Π L(a [ I), and

we assume the contrary; that is, we assume χ Ε X' - L(a 1· m). By the finiteness of X'

(according to 1), there exist s0, . . . , s;-, s'o, . . . , s'j Ε co such that χ is the unique element

of X' containing every s,·, but not containing any s\ (i </). Assume $k) is the result of the

canonical reduction of the formula

Ή ιχ [Θ (x) &s0, ..., 3j<=x &s'o, . . . , s j i i & f e e x l

to Σλ^-form. Then, from the definitions of 5.3, the choice of s( and s)·, and the definition

of X', it easily follows that χ = {k Ε ω: L(A) |= if?(k)}. We note that, by the construction

of φ, | φ | = |0 | = m (the subscript / does not occur in the definition of \φ\; cf. 5.3).

Applying 6.3.2, we obtain χ Ε L(a \ m), which obviously contradicts the choice of x. This

contradiction proves 2.

Now, from 2 and 3.4.4, we obtain X CL(a [ m), from which the finiteness of A'

follows from 1. This proves the theorem.

65. THEOREM. U5'^(A) is true in L(A).

PROOF. Assume α = α(. EA,xER HL, y ER Π L(a), and y Ε Σι

η'
χ in L(A). We
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shall prove that y G L and ^ Σ ^ 1 * in L. By the equivalence of all the a{ (3.2.3), we may

assume / = 0; that is, a = a0. Assume <//(£) is a Σ^-formula with parameter x, defining y in

L{aQ); that is, y = {k G ω: L(a0) \= ψ (A;)}. We define in the following way a formula

(1) We change in φ every occurrence of χ to 0*x. (We note here that F°{a [ 0) =

F°(Q) = x, according to the definition of 5.1.)

(2) Every quantifier of φ of type 1 in the rightmost block of such quantifiers is left

without subscripts.

(3) All the remaining quantifiers of φ of type 1 are provided with the subscript 1.

It is not difficult to verify that

[L (Α) | - φ α {k)) = [L{ao)\= ψ (k)]

for any k G ω. (In fact, a quantifier 3(V),-z is the relativization to L(a0) — L(a I 1) of a

quantifier 3(V)z, according to the definition of 5.3; the quantifiers mentioned in (2) need

not be relativized, by virtue of the Absoluteness Principle of 2.1; and the constants 0*x

occurring in φ are converted in the formula φ" into the parameter x, as indicated in (1).)

Thus,

y = {k <= ω : L (A) \~ φα (ft)} = {k: 0 fore φ (fe)}.

(The second equation follows from 6.3.3; |̂ >| = 0 is obvious from the construction of φ.)

From this and 5.5.1 it follows that y e L.

For the proof of y G Σ^'χ in L, we use the following proposition, which it is conven-

ient for us to prove in §7.

(*) In L, {k G ω: 0 fore ip(k)} G Σι

η<
χ is true (cf. 7.5.4).

From (*), we easily obtain that.y G Σι

η·
χ in L. This proves the theorem.

6.6. THEOREM. U6'^(A) is true in L(A).

PROOF. It is necessary to prove that, if i, j G ω, ζ G L{at, a.) is a set in the class

Σ^'Σ in L(at, aj), Ζ CR, and Ζ η L(af) Φ 0, then Ζ η L(af) Φ 0. By 3.2.3, we can assume

that i = 0 and / = 1.

Assume, therefore, that Ζ e L(a0, αχ), Ζ CR, Ζ η L(a0) Φ 0, and Ζ G Σχ

η'
1 holds in

Z/(a0, flj); we shall prove that

As in the proof of Theorem 6.5, we choose a formula φ(χ) G Σλ^ such that \φ\ = 0,

every quantifier of φ of type 1 except those occurring in the rightmost block of these

quantifiers has subscript 2 (this corresponds to the relativization to L(a [ 2) = L(a0, a^),

and, finally, L(A) \= Ζ = {χ C ω: / ( * ) } . Then Ζ Π L(a0) Φ 0 means that {3λχφ)Υ is

true in L(A) (since L(aQ) = L(a I 1)); that is, 0 fore Ί^φζχ) (by 6.3.3). Assume now that

b = (bl, I G ω) G WR is such that ax = b0, a0 = bx, and bl = a, for / > 2. Then ft is a P-

generic sequence by 3.2.3, and A = {bf. Ι ε ω} holds. From this, applying 6.3.3 (to b

instead of a) in the reverse direction, we obtain L(A) \= (3ιχφ(χ))ι>; that is,
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\zzφ4(3 % e tf β L (b0)) [L (A) \zzφ4 (χ)}.

We observe now that b0 = a1 by definition of b, and φ1' coincides with φα by the choice of

φ. Hence the assertion just obtained can be rewritten in the following form:

that is, L(ax) Γ) Χ Φ 0 (by the choice of ψ), Q.E.D. (1) and the theorem are proved.

Combining Theorems 6 A—6.6, we obtain a proof of Theorem 6.1.

§7. Proof of the fundamental theorem

By the results of 3.4, 4.5, 4.6, and 6.1, we see that, for the proof of FT for a fixed

η > 2, it suffices to construct an «-conserving Jensen sequence π satisfying π G 2^_j in L,

and also to prove the proposition (*) of 6.5. Having such a TT and applying 3.2.5, it is not

difficult to obtain a set A <ZR with the properties required in the statement of FT.

In this section we present a method for constructing a π of the indicated form. The

construction of π is carried out within L in the form of a transfinite procedure.

We begin with the following theorem, asserting the existence of a splitting (cf. 4.1).

7.1. Theorem on splittings. Before formulating it, we shall prove the following lemma.

LEMMA 1. Assume Ρ G Spl and Ξ countable. Then there exists a countable splitting

of the set Ρ over Ξ.

PROOF. Without restricting its generality, our argument may assume that Ρ and Ξ are

elements of the collection Τ of all hereditarily countable sets. We define F as the collection

of all finite (as sets) functions / C (ω χ < ω 2 ) χ Ρ satisfying the following property: if

(k, e) G dom(/), e G < ω 2 , and e C e, then (k, e') G dom(/) and f(k, e) Cf(k, e).

A set G C F is said to be dense in F if (V/G F) (3g GG) [ f C g ] . In [7] it was shown

that one can construct a "total" function S from ω χ < ω 2 into Ρ such that the following

conditions are fulfilled:

(1) S(k, e)CS(k, e')fore Ce.

(2) If G CF is dense in F and is defined in Τ by some &formula with parameters

from Ρ U Ξ (a countable number of parameters), then there exists fGG such that f C S

(thatis,f=S\dom(f)).

Now let us set

qk = Π ϋ S(k, e).

From (1) and (2) it follows that qk G Perf for arbitrary k (cf. [7]). Thus, Q = {qk η

(e): k G ω & e G qk} €. Spl and Q is countable. Let us show that β is a splitting of Ρ over

A . In fact, 4.1 (1, 2, 3) easily follow from (1) and (2). (For example, for the proof of 4.1

(1) it suffices to verify that G = ]/G F: f(k, 0) Cp for some k G ω} is dense in F for

arbitrary ρ G P.)

Finally, property 4.1(5) (from which 4.1(4) follows, as we proved in 4.1) is taken by

us from [7] (Corollary 2).

A detailed proof of 4.1(5) is rather involved from a technical standpoint, and we leave

it to the reader.
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Thus, Q is what was required, and the lemma is proved.

THEOREM. Assume Ρ G Spl and Ξ countable, ρ &Pm, and U dense in Perfm. Then

there exist Q, a countable splitting of Ρ over A, and q^Q71 such that q > ρ and q G U.

PROOF. Assume Qo is a countable splitting of Ρ over A . (It exists by Lemma 1.)

Using 4.1(1), we choose q G Q™ such that q > ρ and further, using the density of U, we

choose q = (q0, . . . ,qm_1)G U such that q > q . Finally, we define Q = QQ U {qt Π

(e): i < m & e G qt}. Then Q is the desired splitting. (4.1(1, 2, 3) are obvious, 4.1(5) for

Q follows from 4.1(5) for Qo and \Jq(=QC\q = \JqSQ C\q; finally, q £ Qm, q > ρ and

«7 G £/ by construction.) This proves the theorem.

7.2. Theorem on extensions. All the reasoning of this subsection is carried out within

L. We shall apply the results of 7.1 to prove a theorem playing a key role in the construction

of the required sequence π. First we shall prove two auxiliary propositions.

LEMMA 1. If ρ G Perfm, and Β CRm is α Π {-set, then there exists q G Perfm, q > p,

such that either Clq CiB = 0orC\q C.B.

PROOF. Cl Π Β possesses the Baire property in Cl (cf. [ la], p. 153). Hence, one

can assume that either Cl - Β or Cl Π Β is a set of the first category in Cl . Let us

assume the first (the second is perfectly analogous). Then Cl Π Β contains a subset of the

form X = C\keLJXk, where every Xk is a dense (in the topological sense) open subset of

Clp. Setting Ρ = {ρ Π (e): e G p] and Uk = {u G Pm: Clu C Xk) we obtain that Ρ G Spl

is countable, and every Uk is dense in Pm.

Let us apply 7.1.1 to Ρ and Ξ = {Uk: k G ω}. Assume Q is a splitting of Ρ over A .

Using 4.1(1), we choose qGQ such that q>p. Then ? > V£/fc (by 4.1(4)); that is, Cl^ C

Unet/ f c

c l

M ; m addition, Cl^ C Xk. Thus, Cl^ C I = ΠΛ ε ωΛΓ

Λ . . This means that ^ is

what was required, and the lemma is proved.

COROLLARY 2. Assume φ is a closed λ-formula, and m > \ψ\. Then the set {p G

Pm: ρ fore φ or ρ fore ψ~ } is dense in Pm.

PROOF. If φ G Πλ{ U Σλ{, then what is required follows easily from Lemma 1, taking

into account the definition of 5.4(1). If ψ G Πλ£ U Σλ£, k > 2, we apply 5.5.3 and 5.6.

Now let us prove the theorem on extensions.

THEOREM. Assume ρ = (Pa, a G v) is a Spl-sequence, ν G ωα (= (coj)^; all the

reasoning of this subsection is carried out within L), φ is a closed λ-formula, P<v —

\JaevPa, and ρ G P~v. Then there exist Pv and q G />~ such that (Pa,a< v) also is a

Sp\-sequence (of length ν + 1), q > p, and either q fore φ or q fore φ~.

PROOF. One can assume that m = ||p|| > \\φ\\. We apply Theorem 7.1 to Ρ = P<v,

Η = £ γ . ( ρ ) (cf. the definition of y* in 4.2), p, and U = {q G Perfm: q fore φ or q fore ψ~]

(which is dense in Perfm by Corollary 2).

Assume Pv is a countable splitting of P<v over Έ, q £ P^1, q > p, and q & U. Pv and

? are what is required, and the theorem is proved.
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7.3. Construction of a Σ^-definable Jensen sequence. Because of considerations of a

technical nature, we shall prove FT separately for η = 2 and η > 3. In the case of η = 2,

Propositions (A), (B) and (C) of §2 permit us not to be concerned about UQ(A), i = 4, 5,

6. Thus, it suffices to construct (in L) a Σ^-definable Jensen sequence.

THEOREM (formulated and proved in L). There exists a Jensen sequence π such that

PROOF. Let -< be a canonical well-ordering of the set Τ = £ ω (cf. [9]). It has the

following property:

1. -< G Af and Seg = {{y : y < χ}: χ G T} G Af (cf. [9], Lemma 21, p. 83).

Now we shall estimate the complexity of certain sets.

PROPOSITION 2. The following sets are in A^:

(1) My= {(P, Q,Z)GT: Qisa splitting of Ρ over H};

(2) {IT G Τ: π is a Spl-sequence}.

PROOF. (1) As is well known, (La, a G W l ) G Af ([9], p. 38 or p. 82). On the

other hand, if α G ωί is a limit ordinal and ξ = (Ρ, Q, Ξ) 6 I a , then it is easily verified

that ξ G My =La |= ξ G My. This means that My = {£ G Τ: there exists a limit ordinal

α G cjj such that ξ G La and La \= ξ G My} = {% G Γ: if α G ωλ is a limit ordinal and

ξ G Z,a, then La (= ξ G Mj}. From this, (1) is obvious; and (2) easily follows from (1) and

the observation that (La, a G Wj) G Af. The details are left to the reader.

Let us return to the proof of the theorem. For every at most countable Spl-sequence

p, by p + we shall denote the least (in the sense of <) countable Spl-sequence η satisfying

ρ C η (that is, ν = dom(p) G dom(rj) and ρ = η\ν); such a sequence exists by Theorem 7.2.

Now we set p 0 = 0, pa+ y — P^, Ρρ= Uae^Pc« f° r Hrnit ordinals β G cjj, and π =

Uaeu) ^α· Let u s s n ow that π is the desired sequence. In fact, π is a Spl-sequence, since

every pa is a Spl-sequence and pa C p« for α G |3. Moreover, dom(?r) = ω1, since dom(pa+l)

is strictly greater than dom(pa). Hence, π is a Jensen sequence. It remains to prove that

LEMMA 3. The set Μ = {(ρ, η) G Τ: ρ, η are Spl-sequences and η = p + } belongs to

PROOF. Let Λ/ο = {(ρ, η) G Γ: ρ, η are Spl-sequences and ρ C η}. From 2(2) it

follows that

Further, from the definitions of p + and Seg (cf. Proposition 1), we have

Μ = {(Ρ, η) €Ξ Λϊο: (V ζ €Ξ Γ) [ζ -< η -^ (Ρ, ζ) φ Μο]}

= {(Ρ, η) 6Ξ Μο : (Ή S €Ξ Seg) [η e 5 & (V ζ ΕΞ S) [(Ρ, ζ) e Λί, -+ ζ = η]]}.

From this and property 1, the lemma follows.
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COROLLARY 4. The set Η = {ρα: α ε ω χ } belongs to Σ^.

PROOF. It is clear that ρ ε H= [there exists a function / such that ν = dom(/) is a

countable limit ordinal, /(0) = 0, f(a + 1) = / ( a ) + for all α e y, /(0) = [Jf^ for limit

ordinals β £ ρ, and ρ ε rng(/)]. From this and 3, it follows that Η & Σ J\

Let us return to the proof of the theorem. From the construction it follows that

η = KjH. From this, with the help of 4, we obtain that π ε Σ\, and π is what was

required. This proves the theorem.

7.4. Complexity of the relation fore. All the arguments of this subsection are carried

out within L. (Nevertheless, the propositions proved are also true in the universe by virtue

of 5.5.1.)

As usual, every λ-formula and every formula of second-order arithmetic will be

identified with its transcription (a finite sequence of symbols), regarding, in this connection,

all logical signs and other such symbols (encoded) to be sets of finite rank. Then every λ-

formula will be a finite sequence of sets of finite rank and of constructible (by the definition

of 5 . 3 ) / ε R , occurring in constants m*f. Thus, every λ-formula is an element of the set

Τ = Ζ,ω (all our reasoning is carried out in L), and the collections Σλ£ and Πλ£ will be

Δ^-subsets of the set T.

If k > 1, we define Forc^ = {{ρ, ψ): ρ ε Perf°° & ψ ε Σλ£ is closed & ρ fore φ}; we

define Fore" in a similar manner. Forc^ and Fore" are also subsets of T. Let us evaluate

their complexity.

THEOREM (in L). Fore" ε Δ^ and Forcf ε \l\; if k > 2, then Forcj™ ε n£_j and

Έοχοξ ε Σζ_ j .

The proof consists of three lemmas.

LEMMA 1. Fore" £ Δ [ .

PROOF. Using the definitions of 5.3 and 5.4(1), to every ρ ε Perf°° and every closed

Πλ}-formula φ one can associate a closed Π j-formula φρ with parameters from R such

that:

(1) p fore ψ = φ is true, and

(2) ρ, φ ι—>· φ is a transformation of the class A^.

(The stipulation 5.1(1) allows us to ensure (2).)

In addition, for every closed Π {-formula φ with parameters from R, in [9], §5, there

is constructed a certain /"(ψ) C ω χ ω such that:

(3) φ is true Ξ /-(ψ) is a well-ordering, and

(4) r is a function of the class A^.

Finally, we note the following obvious fact:

(5) Word = {r C ω χ ω: r is a well-ordering} ε Δ^\

From (1) and (3), we obtain

Fore" = {(ρ, φ) : ρ e = P e r f ° ° & φ ε Πλ{ is closed &r (IJJW) E= Word}.
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From this and (2), (4) and (5), the assertion of the lemma easily follows.

LEMMA 2. Forcf G Tlf.

OUTLINE OF THE PROOF. For ρ G Perf °° and closed φ G Σλ | , one can construct a

Σ}-formula Ψρψ(χ) with unique free variable χ (of type 1) such that

The rest is as in Lemma 1.

Let us now prove the "main" part of the theorem by induction with respect to k > 2,

formulating the induction step in the following form:

LEMMA 3. Assume k > 1 and Fore" G Δ £ . Then F o r c | + 1 G Σ^ and Forc" + j G

The proof for Forc^+ j easily follows from the definitions of 5.4(2, 3) by virtue of

the fact that transformations of the type 3mx\p(x) \—>· \j/(m*f) are expressible by A^-

relations. Moreover, according to the definition of 5.4(4).

= {(ρ, φ) : ρ e= Perf00 & φ e= Πλ^+1

= Perf00) [̂  > ρ Μ-(9, φ ' ) ^

From this expression, with the help of what already has been proved for Forc^+ j , we

obtain without difficulty that Forc" + j e Τΐζ. This proves the lemma.

Combining Lemmas 1,2, and 3, we obtain a proof of the theorem.

COROLLARY 4 (Proposition (*) of 6.5). Assume φ^) G Σλ^, η > 2, χ C ω, and φ

contains only the constant 0*x among constants of type 1. Then S = {k G ω: Ο fore

PROOF. From the choice of φ, it is clear that k \—• φ(Κ) is a Δ^'χ-function. From

this, with the help of the theorem just proved, we obtain S G Σ ^ 1 . But, by 4.5.1, this

means that S e Σ^χ. Q.E.D.

7.5. Construction of α Σ%_ ̂ definable η-conserving Jensen sequence for η > 3.

THEOREM (Formulated and proved in L). Assume η > 3. Then there exists an n-

conserving Jensen sequence π such that π G Σ^_ t .

PROOF. We choose any functions ρ : ω 1 —> Perf" and φ : Wj —*• U i < ^ < n {φ S fIXfc:

φ is closed } satisfying the following conditions:

(1) If ρ G Perf°°, 1 < k < n, and φ G Πλ^ is closed, then there exists a nondenumer-

able set of a G ω χ such that ρ = ρ'(α) and φ = ί^(α).

(2) p~ and φ are functions of the class Δ^.

(Fulfillment of (2) can be secured with the help of the well-ordering <̂ of 7.3.)

Assume now that ρ = (Pa, a G v) is a Spl-sequence, ν G ωλ, Ρ = U aej^a» Ρ =

fi(v) and φ = φ (ν). From Theorem 7.2 we obtain that there exists a Spl-sequence η G Τ
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such that ρ C η, and if, in addition, ρ €. P°°, then for some q G (\Jmg(p))°° we have q > ρ

and either q fore ψ or q fore φ~. By p + we denote the •<-least of such τ?.

Moreover, as in 7.3, we define p 0 = 0, pa+l = p+, p^ = U a e ^ a f o r l i m i t ordinals

j3, and π = ϋ α ε ω /°a- ^ i n 7-3, π i s a J e n s e n sequence. In addition, from (1) and the

definition of p + it easily follows that π is «-conserving. ((1) takes care of all ρ e (Urng(7r))°°

and of all φ G ϋ , < Λ < η Π λ ^ . )

It remains to verify that n & Σ^.

LEMMA 1. {(p, 17): r? = p + } e A j _ r

The proof proceeds just as in 7.3.3, taking into account, in addition, (2), Theorem 7.4,

and the condition n > 3. (If n = 2, then the proof of the lemma cannot be carried out by

virtue of the fact that Forcf e Ilf but does not belong to Δ^.) The details are left to the

reader.

Now Ή G 2 j_ j follows from Lemma 1 in a way similar to the derivation of 7.3.4 from

7.3.3. Thus π is as required, and the theorem is proved.

We note that the proof of the theorem makes essential use of the condition n > 3.

(For n = 2, it is impossible to prove Lemma 1.) Indeed, this was the reason for the

necessity of a separate construction in 7.3.

7.6. Completion of the proof of the Fundamental Theorem of 2.4). Let n > 2 be

fixed. We select a Jensen sequence π = (Pa, α Ε (ω^1) satisfying the condition π £ 2 j_ j

in L and which is an «-conserving sequence for n > 3. (The existence of a π with such

properties is guaranteed by Theorem 7.3 for n = 2 and Theorem 7.5 for n > 3.) We set

Ρ = Uae(o> )L^a a n c^' u s m S 3.2.5, we choose a P-generic set A CR. (We note that the

countability of (w 2 ) L is required in the hypothesis of FT.)

Using Theorems 3.4, 4.5, 4.6, and 6.1, as well as (for n = 2) Propositions (A), (B),

and (C) of §2, we deduce that the proposition $n(A) is true in L(A). This completes the

proof of FT.
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