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THE SET OF ALL ANALYTICALLY DEFINABLE SETS

OF NATURAL NUMBERS CAN BE DEFINED ANALYTICALLY
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V. G. KANOVEI

ABSTRACT. The author proves consistency with ZFC of the following assertion: the set of
all analytically definable sets χ Q ω is analytically definable. A subset χ of ω is said to be
analytically definable if χ belongs to one of the classes 2 j of the analytic hierarchy. The
same holds for X Q 9(u>). Thus Tarski's problem on definability in the theory of types is
solved for the case ρ — 1. The proof uses the method of forcing, with the aid of almost
disjoint sets.

Bibliography: 14 titles.

§1. Introduction

1.1. Formulation of the Fundamental Theorem. The language of second-order arithmetic
with variables for sets (of natural numbers) is described in [1], p. 492. It contains two
types of variables: variables of type 0 with range the set ω of natural numbers, and
variables of type 1 with range the collection R = <? (ω) of all subsets of ω. In addition to
predicates of elementary arithmetic for variables of type 0, this language also contains
the binary membership predicate "Α: ε j " ; H is assumed to be a variable of type 0, and χ
a variable of type 1.

The formulas of this language will be called analytic formulas.
Free variables of analytic formulas can be replaced by parameters of the correspond-

ing type; that is, for type 0 from ω, and for type 1 from R.

If φ(&) is an analytic formula with k (of type 0) as its only free variable, and not
containing parameters from R, then the set {k e ω: <p(fc)} defined by this formula will
be said to be analtyically definable. The collection of all analytically definable χ e R will
be denoted by An.

Similarly, if φ(χ) is an analytic formula with χ (of type 1) as its only free variable, and
not containing parameters from R, then the set {x G R: φ(χ)} defined by this formula
will be said to be analytically definable.

Sets χ e R and X C R are analytically definable if and only if they occur in one of
the classes 2j[, IlJ or Al

n of the analytic hierarchy. (See [1], §16.2, Theorem XII, and §16.1,
Corollary 1. For a definition of the classes Σ^, Π^ and Δ ,̂ see, for example, [1], §16.1,
convention on notation.)

In the survey [6], problems P3110 and P3112 posed the question of the consistency
with ZFC [3] of the following assertions:

l)An = R η L.
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2) The set An is analytically definable.

(L is the class of all sets constructive in the sense of Godel ([3], Chapter III).)

We shall give a positive answer to these questions:

FUNDAMENTAL THEOREM (FT). The assertion An = R η L is consistent with the theory

ZFC.

COROLLARY. The assertion "The set An is analytically definable" is consistent with ZFC.

The derivation of the Corollary from FT is trivial: The set R η L, as is well known,

belongs to *Σ\ (cf. [7] or [2], Problem lOg). Thus, this set is analytically definable.

The Corollary of FT also gives a (partial) answer to a problem of Tarski. In [13], for

every η > 1 and every ρ e ω, there was introduced the collection Dv of all sets of type η

definable by formulas of type not higher than/?, and it was asked whether DXp e D^ for

ρ > 1. (All the remaining possibilities among the assertions D^ G Dn+X p were ex-

amined in [13].)

We note that Dn is precisely the collection of all sets of type 1, that is, all χ e R

definable by analytic formulas without parameters; thus, £>,, coincides with the collec-

tion An introduced above. Similarly, D2i is precisely the collection of all analytically

definable sets X C R. Thus the Corollary can be rewritten as follows:

The assertion Du G Z)21 is consistent with ZFC.

This also gives a partial answer (for/; = 1) to Tarski's problem.

By a somewhat more complicated application of the methods of the present paper, one

can prove that the assertion Dlp e D^ is consistent with ZFC in general, for any ρ > 1.

It is also consistent for/» = oo, where £)n o o = U ε ω D .

We remark that the assertion Dn <$. D2l also is consistent with ZFC, since it follows

from the axiom of constructibility (see the the next section).

The present paper consists of the proof of FT. Before presenting the plan of the proof,

we shall make several observations.

1.2. Axioms contradicting the assertions An = R (~) L and "The set An is analytically

definable". Among such axioms there is, in particular, the axiom of constructibility

V = L ([3], Chapter III, §1), asserting that every set is constructible.

In fact, let us assume the contrary: V = L and An is analytically definable. Then the

set X = R — An also is analytically definable and is obviously nonempty (since R is

nondenumerable and An is denumerable)". On the other hand, V = L implies [7] the

existence of an analytically definable (more precisely, in Δ£) well-ordering of the set R.

The least, in the sense of this well-ordering, element χ of the set X is also analytically

definable; that is, it belongs to An, yielding a contradiction.

Since the axiom of constructibility is consistent with ZFC [3], the assertions whose

consistency with ZFC is stated in FT and its corollary are independent of ZFC; that is,

their denials are consistent with the theory ZFC.

We remark that the proof of the denials of the assertions just mentioned can be

carried out with the help of hypotheses weaker than V = L. Let us cite several such

hypotheses.

The ordinal uf1 (the first ordinal nondenumerable in L) is nondenumerable in the universe

of all sets.

R η L g An.
There exists an analytically definable well-ordering of some nondenumereble set X C R.
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There exist a measurable cardinal κ and a normal measure μ on κ such that V — L[/i];
that is, all sets are constructive from μ.

13. Definability at a lower level. The Corollary of FT shows that the set An of all
analytically definable χ G R "can be" analytically definable. This result contrasts with
the following propositions, provable in ZF:

(a) The set of all recursive χ G R is nonrecursive.
(b) The set of all arithmetically definable χ G R is not arithmetically definable.
(c) The set of all A\-sets χ G R does not belong to Δ].
(d) The set of all Assets χ G R does not belong to A\.
TERMINOLOGY. The recursive sets χ G R and X C R are defined in [1], §15.1. A set

Α; ε Λ is called arithmetically definable if there exists an analytic formula φ(&), not
containing parameters from R or quantifiers with variables of type 1, such that χ =
{k G ω: φ(&)}. In like manner, one defines the concept of arithmetically definable sets
X C R. In general, "arithmetic" is "analytic" without quantifiers with variables of type
1.

Proposition (a) is obvious; the collection of all recursive χ G R is denumerable, but
every recursive X C R must be clopen (open and closed) in R and, therefore, either
empty or of the power of the continuum.

(b) and (c) are mentioned in [1], §16.7, in a somewhat altered form appropriate for
second-order arithmetic with variables of type 1 for functions from ω into ω.

Finally, (d) can be easily obtained from the following "Basis Theorem" ([1], §16.7,
Corollary XLV(c)): Every nonempty "L\-set (and, therefore, every nonempty A\-set) X
contains an element χ G X in the class A\. For the proof of (d), one must assume the
contrary and apply the Basis Theorem to the complement of the set {x G R: χ is a
Δ^-set).

We note that, under the assumption V = L, the assertion "The set of all Δ^-sets χ G R
does not belong to Aj" is also provable for any η > 3. It would be of interest to
determine whether the denial of this assertion for some η > 3 is consistent with ZFC.

It would also be of interest to determine whether the assertion "R η L is precisely the
collection of all Δ^-sets χ G R" is consistent with ZFC.

1.4. A second formulation of FT. We shall prove the Fundamental Theorem in the
following more convenient form.

FUNDAMENTAL THEOREM (second formulation). Assume that ω/- (the third nondenumer-
able cardinal of the constructible universe L) is denumerable in the universe of all sets. Then
there exists a set G such that in the class L[G] of all sets constructible from G the following
two assertions are true:

(i) Every a G L[G] Π R analytically definable in L[G] is constructible.
(ii) Every constructible r G R is analytically definable in L[G\.

It is known that the assertion "ω£ is denumerable" is consistent with ZFC (see, for
example, [3], Chapter IV, § 10). In view of this fact, the validity of the second formulation
of FT automatically follows from the validity of the first.

In accordance with the second formulation of FT, we shall assume in the proof that
the ordinal ω£ is denumerable in the universe of all sets. However, this assumption
actually is only used for the proof of the existence of generic filters (cf. 2.4 and 4.1).
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1.5. The plan of the proof. In §2 we introduce the important concept of a system. With
every system U we associate the set of forcing conditions P(U) for generic extensions of
the constructible universe L. The structure of P(U) is similar to the structure of the set
of forcing conditions in [8], §5.

We consider filters which are L-generic on P( U) in the sense of [5], which, for brevity,
we shall call t/-generic filters, or (/-g.f.'s. Every i/-g.f. G generates, in a natural way, 1) a
function gG from ω onto R η L, and 2) a family of sets {S%: n, i ε ω}.

Some general properties of these sets in generic extensions of the indicated form are
also studied in §2.

In §3 we construct in L a certain specific system U* = (i/*: n, i ε ω) such that every
U*-g.l. G will be what is required in the second formulation of FT. The construction of
U* is organized in such a way that the complexity of the "nth-level" component of (U%:
i e ω) increases as η increases. Moreover, for any m ε ω, the components i/* with
η > m have no influence, roughly speaking, on the forcing of formulas of complexity
< m. This effect is achieved by the special "generic" way in which U* is constructed in
L.

In §§4 and 5 we prove proposition (i) of the second formulation of FT for any i/*-g.f.
G. The decisive element is the following important proposition, which follows from the
construction of the system U*:

(A) If ρ ε Ρ( U*) and if an analytic formula ψ(Α:), with k {of type 0) as its only free

variable, does not have parameters, then one can select q ε P{ U*), q > p, such that VA;

[either q forces \p(k) or q forces — ψ(&)]·

(Cf. the proof of Theorem 4.8.2.)
This proposition implies (i) of the second formulation of FT for any t/*-g.f. G. The

verification of (A) uses a special relation fore, which is introduced and studied in §4.
Actually, (A) (more precisely, Proposition 4.8(»), from which (A) is easily obtained) is
proved first for the relation fore in §5; but the "generic" character of U* enables us to
establish the agreement between fore and forcing with respect to P(U*) (Corollary 4.8.1
and Theorem 4.7).

The apparatus of the fore relation is similar, in its meaning and its role in the proof, to
the corresponding apparatus of fore in [12].

For the purpose of greater clarity, we shall prove (i) of the second formulation of FT
for any t/*-g.f. G (Theorem 4.9), using 4.8(*), before the proof of Proposition 4.8(») itself
in §5.

Finally, in §6 we prove proposition (ii) of the second formulation of FT for any
C/*-g.f. G. We introduce a collection of formulas Φπ(5, ι) satisfying the following
conditions:

l ) / / / e gG(n) (where gG is the function from ω onto R η L mentioned above), then
*JLS°,i)istrueinL[G\

2) Ifi £ gG(n), then there is no S ε L[G] such that Φπ(5, ι) is true in L[G].
3) The set {/ ε ω: 3S Φη(5, i) is true in L[G]} is analytically definable in L[G].
(The i/*-g.f. G and n, i e ω are arbitrary.)
Conditions 1) and 2) mean that every set gG(«) is definable in L[G] by a formula

3S Φ,ί^, ι). Proposition 3) implies, in addition, the analytic definability of gG(«). But,
since gG is a function from ω onto R η L, every r ε R η L has the form gG(h) for
suitable η and is, therefore, analytically definable in the class L[G].
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That is the structure of the proof.
1.6. Notation. All of the basic set-theoretic notation is taken from [4], with the

following change: the power of a set χ is denoted by card(x).
We often use the abbreviation ( . . . : . . . ) for "indexed sets", that is, for functions.

For example, the notation (U£: α ε Wj) designates the function/ defined on the set ω2

by the condition/(o) = t/n" Va Ε ω2. Similarly, the notation (U%: n, i G ω) designates
the function/defined on the set ω Χ ω by the condition/(/ι, ι) = U% Vn, i Ε ω.

§2. Generic extensions, used for the proof of the

Fundamental Theorem

2.1. Preliminary definitions. ω{~ is the first ordinal which is nondenumerable in L.
Seqa is the collection of all constructible functions from α into 2 = {0, 1}.

U a e w ; : Seqa.
;

Fun is the collection of all constructible functions from oof into 2.
Assume 5 C Seq, / ε Fun, and y ε wf. If there is no a 6 ω{~, α > γ, such that

f\a e S, we say that 5 does not cover f above y. If (3γ Ε ω^) [S does not cover/above
γ], we say that S does not cover f. In the contrary case, we say that S covers f. This holds
if and only if

(Vy e ω(-)(3α ε uf-)[a > y and/|a Ε S].

Let us introduce the important definition of a system. By a system we mean a
constructible function U defined on ω Χ ω and satisfying the condition U(n, i) C Fun
for all η and /'. To simplify the notation, we shall write Uni instead of U(n, i), and,
similarly, U^ and i/* instead of U'(n, i) and U*(n, i), etc. (for systems U, U' and U*).
The set i/m- will be called the (n, i)th component of the system U.

2.2. Forcing conditions. Let U be a system. We wish to construct a set of forcing
conditions which will produce a generic function g from ω onto R η L and a generic
family (S^: n, i e ω) of subsets of the set Seq such that, for all η 6 ω, ί e g(n) and
/ e Fun, the following equivalence holds: 5W covers f if and only iff & t/m.

A suitable set of forcing conditions is the collection P{ U) of all constructible functions
ρ defined on {0} υ (ω Χ ω) and satisfying the following seven conditions:

(i) e = p(0) is a function from some finite χ C ω into R n l ; we shall denote χ =
dom(/>(0)) by \p\.

(ii) Every p{n, i) is a pair (sni, Xm).
(iii) JTO C Seq and JTO is at most countable in L.
(iv) ΧΜ is a collection, at most countable in L, of pairs of the form (γ,/), where γ Εω, 1

andf e Uni.
(ν) //(γ,/) e X,,,, then iro does not cover f above y.
(vi) Ifn&\p\ (where, by (i), \p\ = dom(/>(0))) and i e ω, then p(n, i) = (0, 0); that is,

Sni = 0 and Xni = 0.
(vii) If η e \p\ and i Ε ω, ι £ e(n) (where, by (i), e(n) belongs to R η L), then also

p(n, i) = (0, 0).
This is the definition of P(U). Before defining an order < on P(U), we agree to write

(s, X) < (s\ X') if s C s' and X c X' (s, s', X and X' are arbitrary sets). Now we order
P(U) componentwise: ρ < q if and only if p(0) C ^(0) andp(n, i) < q(n, i) for all η and
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By Po we denote the set P(V), where V = (ω Χ ω) X {Fun} (that is, Km = Fun for all

η and i). It is clear that every P( U) is a constructive subset of Po.

23. Some properties of the ordering. Before describing the use of sets of the form P(U)

for forcing and the construction of generic extensions, we shall consider in more detail

the ordering < on Po.

Arbitrary/»,/»' e Po are said to be compatible if there exists q ε Po such that q >p

and q > p'. In the contrary case, ρ and /»' are said to be incompatible. We say that

Q C Po is an antichain if any distinct p,p' e Q are incompatible.

LEMMA 1. If Q C Po is a constructible antichain, then Q has power < ω χ in L.

We carry out the proof in L. For every ρ G Po we define a function sp on {0} υ

(ω Χ ω) in the following way: ^(0) = /»(0), and, if />(«, i) = (s, X), then sp(n, i) = 5.

Then, on the one hand, Up, q ε Po are incompatible, it is easy to check that sp φ sq. But,

on the other hand, the set {sp: ρ e Po) obviously has power < ω,, whence the desired

result follows.

For/»,,/»2 e Po we introduce ρ, V Pi as the (unique) function q defined on {0} υ

(ω Χ ω) by the conditions ςτ(Ο) = />[(0) υ Ρ2Φ) and q{n, i) = (s, X), where ί = J , υ s2,

X = X\ U A'j, and (s,, A1,) = /^(n, /")» fe %i) = />2("> ')· The following two assertions

are valid, and their simple verification is left to the reader.

LEMMA 2. Let pvp2 ε Po. Then />, and p2 are compatible if and only if /», \/ p2 ε Ρο;

and in that case ρ, < />, V Pi and Pi < /Ί

LEMMA 3. If U is a system andpvp2 e /*(i/) are compatible, thenpx \J p2 ε /*(£/),

thus ρ ι and p2 are also compatible in P(U) (that is, there exists a q ε P(U), namely

9 = P\ V />2> ^ " ^ ^ a ' Q > P\ and q > p^.

The simple proof of the following lemma, giving a necessary and sufficient condition

for compatibility, is also left to the reader.

LEMMA 4 (compatibility criterion). Assume that p, q e P9 p(0) = e, q(0) = e', and

p(n, i) = (JTO-, Xni) and q(n, i) = (s1^, X^) for all n, i ε ω. Then ρ and q are compatible if

and only if the following three assertions are (simultaneously) satisfied:

(1) The functions e and e' are compatible; that is, there exists noj ε |/»| Π \ρ'\ such that

e<J) * e'U).
(2) If n, i G ω and (v,f) e X^ — X^, then the set s'^ — sm does not cover f above v.
(3) If n, i €E ω and (v,f) e X'M — X^, then the set s^ — s'^ does not cover f above v.

Before proving an important corollary of Lemma 4, we introduce the following

definition.

Let ρ e Po and m ε ω. By ρ [m we denote the function q defined on the set

{0} υ (ω Χ ω) by the following conditions:

1) tf(0) = p(0)\m; that is, if e = />(0) and χ = dom(e) ( = \p\), then ^(0) is the function

e' defined on χ η m by the condition e'(J) = e(J) for anyy e χ η m;

2) q(n, i) = p(n, i) for η < m;

3) q(n, 0 = (0, 0) for η > m.

It is not difficult to verify thatp[m e P o ,p\m < /> and \p\m\ C m, and, in addition,

if \p\ C m, then ρ I, w = ρ (from 2.2(vi)), and, if/» belongs to P(U), so does/>[,/w.
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COROLLARY 5. Assume thatp,p' e Po, m Ε ω, \ρ'\ η \p\ C m, andp[m < /?'|,m. FAe«
p\/ p' e / · 0 ; /Ααί is, according to Lemma 2, ρ and ρ' are compatible.

PROOF. Let us put p" = />'[,>«, e = />(0), e' = p'(0), e" = />"(0),/>(«, /) = (sni, XJ) and
p'(n, i) = (s'ni, X^j) for all n, i e ω. Let us check conditions (l)-(3) of Lemma 4.

If j e \p\ η |/>'|, then by hypothesis./ < m\ that is,./ e |^" | . Hence e'(J) = e"(y)· On
the other hand, from p[m < p' [m and j <m it follows that e(y') = e"0)· Now it is
obvious that (1) holds.

Further, if η < m, then from ρ [m < p' [m, we have im C J^ and X^ C A^, whence (2)
and (3) follow.

If η > m, then, by hypothesis, η £ \p'\ η |/?|. Hence either sni = Xni = 0 or s'ni = A^
= 0. In both cases the requirements (2) and (3) of Lemma 4 are satisfied, and the
corollary is proved.

In conclusion, we note that all the definitions, and, in general, all the arguments of
2.1-2.3 are, by their very meaning, relativizible to L.

2.4. Generic filters and forcing. Let us fix a system U and consider the set P( U) with
the ordering < as the set of forcing conditions for generic extensions of the constructible
universe.

The approach in which the constructible universe L is used as the initial model for
generic extensions is apparently due to Jensen [9].

We assume that the reader is familiar with the theory of generic extensions in [5], pp.
5-7 (the definition of dense subset of P(U), L-generic filter on P(U), the corresponding
forcing, and their properties). The forcing corresponding to P(U) will be denoted by Ι \-υ

or simply by I l· when it is clear which system U we are talking about. We make a few
observations.

1. As in [5],ρ < q signifies that q is "more informative" than/»; that is, every formula
forced by ρ is also forced by q. We note that in [2] the reverse convention is assumed.

2. Below we shall consider only L-generic filters, and so for brevity we write " t/-g.f."
instead of "/.-generic filter on P(U)".

3. The requirement in [5], 1.1.8, that the set C = { Υ C P(U): Υ is constructible} is at
most countable is fulfilled in our case. In fact, P(U) obviously has power < w2

L in L.
Hence C has power < ω£ in L. But the ordinal <o3

L is countable (in the universe of all
sets) by the assumption in 1.4.

The requirement that C is countable implies, for every ρ G P( U), the existence of a
U-g.f. G satisfying ρ e G. It is also necessary for the proof of the basic properties of
forcing (if the latter is defined by truth in generic extensions, as in [5]).

4. The language whose formulas are forced contains in [5] constants for a generic filter
and for every χ of the initial model; that is, for every x E i i n our case. We shall denote
these constants by G and x, respectively.

5. Below in §3 we shall construct a system U* possessing the property that every
i/*-g.f. G is what is required in the sense of the second formulation of FT. But now we
consider certain properties of generic extensions not depending on the specific choice of
U.

2.5. Elementary properties of generic extensions. To avoid repetition, we fix a system U
and some i/-g.f. G. We introduce the following sets belonging to the generic extension
L[G]:
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{p(O):p&G);
G[n,i] = {p(n,i):p(E G);
gG = U G[0];
SS — U {s: there exists X such that (s, A') ε G[/J, /]}.
The following assertions hold:
\.gG is a junction from ω onto R η L. Hence R Π L and wf are countable in L[G].
2. ^oery 5^ is a subset of the set Seq.
3. If n, i e ω a/u/ ι £ gG(fl), fAen eoery ρ G G satisfies the condition p(n, i) = (0, 0).

Thus, in this case, SG = 0.
PROOF. 1. The collection {/»(0): ρ ε P(U)} forms the usual set of forcing conditions

for obtaining generic functions from ω onto R η L (cf. [3], Chapter IV, §7, and [2],
§9.8).

2 is obvious.
3. Assume, for the sake of contradiction, that ρ ε G and p{n, i) φ (0, 0). Since

/' £ gG(ri) and G is generic, we may assume, without restricting generality, that/» I l· "i £
gG(n)" (the subscript U is omitted). But the latter assertion, as can be easily verified,
signifies that η ε dom(e) and i £ <?(«)> where e = /»(0). But this, together with/?(/i, ι) φ
(0, 0), contradicts 2.2(vii).

2.6. COVERING THEOREM. Assume that U is a system, G is a U-g.f., η ε ω, i G gG(n),
andf G Fun. Then S% covers f if and only iff £ i/m.

This important theorem is based upon requirements (iv) and (v) of the definition of 2.2
and reveals their specific character.

PROOF. Necessity. Assume, for the sake of contradiction, that / e i/m and that S?
covers /. This assumption quickly reduces to the existence of some ρ e P(U) (and even
some ρ e G, but this is not needed) such that

(1) η e dom(e) and i e e{n), where e = p(0), and
(2) ρ I l· " 5 ^ covers f" (we omit the subscript U from I h).
Assume p(n, i) = (s, X). Since J C Seq is at most countable in L by 2.2(iii), there

exists γ ε w,L such that dom(A) < γ for all h ε s. We set X' = X U {(γ,/)} and define
ρ' ε P(U) by the conditions p'(0) = p(0), p\n, i) = (i, X') and p'(mj) = p(m,f) for
*n Φ n\J j Φι. Using / ) £ ? ( ( / ) , / £ Uni, and (1), we can easily check that, in fact,
ρ' ε P(U). It is also obvious that/»' > p.

On the other hand,/>'(«, i) = (s, A") and (γ,/) ε A". From this and part 2.2 (v) of the
definition of P(U) it follows that, ifp" e P(U),p" > p' andp"(n, i) = (s", X"), then Λ"
does not cover / above γ. Thus, by the definition of SG, we have p' I l· "S% does not
cover f above γ", which contradicts (2) and/»' > />. The necessity is proved.

Sufficiency. Again we assume the contrary: / £ UM, but S% does not cover /. This
reduces to the existence of ρ ε P(U) and y ε ω^ for which the following two assertions
hold:

(3) η ε dom(e) and i ε e(n), where e = /»(0), anrf
(4)/» I h " 5 ^ ifoes «of cocer f above γ".
Again, assume />(n, i) = (J, Ar). The collection F = {f ε Fun: 3ρ [(»»,/') ε λ']} is

constructive and at most countable in L, and F C i/m by definition 2.2(iv). Hence
/ £ F. Therefore there exists 8 ε ω^ such that δ > γ and/|5 =^/'|δ for all/' ε F. We
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set s' = s υ {/|δ} and we define/ ε P(U) by the conditions p'(0) = p(0), p'(n, i) =
(s\ X) a.ndp'(m,j) — p(m,j) for m ¥= η \/j Ψ i.

As above, p' ε P(U) and p' > p. In addition, p'(n, i) = (s', X) and f\8 £ i ' , 8 > y.
By definition of SG, this implies p' I h " ~ [S% does not cover f above γ]". This
contradicts (4), and the theorem is proved.

2.7. Codes and a representation theorem. Below we shall have to carry out a careful
investigation of sets a C ω and S C Seq belonging to generic extensions. For this study
we shall introduce two constructible collections of codes for the indicated sets.

By cod we shall denote the collection of all constructible families of the form c = (Qk:
k ε ω) such that each Qk is a subset of Po of power < af" in L. If c is as indicated, and
G C Po (for example, if G is a t/-g.f. for some system U), we introduce the "completion"
cG = {k G<J:G η Qk¥= 0}. It is clear that cG C ω and cG ε L[G].

Similarly, by Cod we denote the collection of all constructible families c = (Q,:
h ε Seq) such that each Qh is a subset of Po of power < ω^ in L. For such c and
arbitrary G c P o w e set cG = {h ε Seq: G Π Qh Φ 0}.

In addition, for every system U, we introduce Cod(i/) as the collection of all c = (β^:
Λ £ Seq) ε Cod such that Qh C P(t/) for arbitrary h ε Seq.

The sets cod, Cod, and Cod( U) are obviously constructible.
The following theorem shows that a representation of α ε L[G], α C ω, in the form

a = cG, c ε cod, is possible for all such a.

THEOREM 1. Assume that U is a system, G is a U-g.f., α ε L[G], and a C ω. Then there
exists c ε cod such that a = cG.

PROOF. Being an element of L[G], the set a is definable in L[G] by some formula <p(k)
with constructible parameters and the parameter G: a = {k ε ω: φ(Α:) is true in L[G]}.
Let the formula <p(k) be obtained from <p(&) by replacing the parameter G by the
constant G and by replacing every parameter χ ε L by a corresponding constant x.

We reason within L. For every Α: ε ω we define Bk = {ρ ε P(U): ρ I l· <p(k)} (the
subscript U of I l· is omitted). The definition of Bk can be carried out within L since
forcing is expressible within the "initial model" ([5], 1.1.9). Further, for every k ε ω we
choose in Bk a maximal antichain Qk C Bk (that is, there is no ρ ε i?t which is
incompatible with arbitrary q ε Qk). Then card(^) < ω] by 2.3.1, and therefore c =
(Qk: k ε ω) belongs to cod. This ends the reasoning within L.

Let us prove that the c that was constructed is what is required; that is, a = cG. By the
genericity of G, the choice of φ, and the definition of Bk, we have kGa=GnBk¥=0.
On the other hand, by definition of cG, we have k ε c c = G η Qk =£ 0. Thus it suffices
to prove the equivalence GnBk = 0 = Gn Qk = 0 f or every & ε ω.

The implication from left to right in this equivalence is obvious, since, by definition,
Qk C Bk. The implication from right to left can be derived without difficulity from the
choice of Qk as a maximal antichain in Bk, the genericity of G, and Proposition 2.3.3.
The details are left to the reader. This proves the theorem.

REMARK. By construction, Qk c P(U) for all &.
By using this remark and after inessential changes in the proof of Theorem 1, it is not

difficult to obtain a proof of the following theorem.

THEOREM 2. Assume that U is a system, G is a U-g.f., S ε L[G], and S C Seq. Then
there exists c ε Cod such that S = cG.
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§3. Construction of the system U*

After the general arguments of §2, we shall construct in this section a system U*
possessing the property that every i/*-g.f. satisfies the second formulation of the
fundamental Theorem 1.4.

All the reasoning in §3 is carried out within the constructible universe L.
3.1. Preliminary definitions. We say that the system V extends the system i/ if i/m C KTO

for all η and /. A system U is said to be small if every set t/nl has power < ω,. By PS we
denote the collection of all pairs (U, V) such that U and V are small systems and
Urn Π Vnj = 0 for all η and /.

If m Ε ω, then we set

PS<m = {(U, V) e PS: i/m = Fm = 0 for all η > m and i e ω},

and
PS>m = {(u< v) e PS: t/m = Vni = 0 for all η < m and i G ω).

Let U be a system and m ε ω. By l/[ < w] we denote the system U' defined by the
conditions U'ni = i/ra for η < m, and £/„', = 0 for η > m. Similarly, by U[ > m] we denote
the system U" defined by the conditions t/n" = t/m for η > m, and U£ = 0 for η <m.

If α is an ordinal and (Uy: γ ε α) is a sequence of systems, then by lining,, Uy we
denote the system U defined by the condition Uni = U r e a U% for all η and i. A
sequence of systems (Uy: γ e a) is said to be a continuously increasing sequence (ci.s.) if:
(1) every system Uy is small, (2) Ufi extends Uy for γ e /? e a, and (3) i/" = hn^g^ ί/γ

for all Umit ordinals β & a.

Two c.i.s.'s (ί/ γ: γ e a) and (Vy: γ e a) are said to be contrary if ([/γ, Κγ) e PS for
all γ e a.

Finally, if (U, V) and (t/', K') belong to PS, and, in addition, U' extends i/ and V
extends K, then we write that (U', V) extends (U, V).

The system U* that will be constructed below will have the form U* = 1ΰηα ε ω U",
where (Ua: α ε ω2) is a previously constructed c.i.s. At the same time, we shall construct
another ci.s. (V: a e ω2) contrary to the first c.i.s. The construction of both c.i.s.'s is
carried out in 3.6 after some auxiliary arguments in 3.2-3.5.

3.2.Definability in Ηω2. By Ηω2 we denote the set {x: the power of the transitive
closure of χ is less than o>2}. We use the standard notation Σπ and Πη for classes of
e-formulas [10].

For convenience, we denote the set Σ*"2 = {X C Ηω2: Χ is definable in Ηω2 by some
Ση-formula without parameters} by Σ^. Similarly for Π® and for Δ<,2) = Σ<,2) η Π®.

Further, we define Σ£2) — {X C Ηω2: X is definable in Ηω2 by some Σ,,-formula in
which parameters from Ηω2 are permitted}. Similarly for Π^, and for Δ® = Π^2) η Σ ^ .

Let us state the following proposition about the definability in Ηω2 of some sets which
were defined earlier.

i n i e Σ&2), ω! e Σ^2), and the following sets belong to Δ^: {ω,}, Seq, Fun, P& cod,
Cod, {U: U is a small system), PS, PS<m and PS>m (uniformly with respect to m)(')
{(U,p): U is a small system and ρ e P(U)}, {(/>, q): p, q e Po and ρ < q) and {(p, q):

p, q e Po are compatible).

(')This means that the sets {(m, I/): m e ω and U e PS<m (or PS>m)) belong to
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OUTLINE OF THE PROOF. Since all the arguments of §3 are carried out within L,
R π L = R £ Σ^2). Further, let cnt(x) be the following Σ,-formula expressing "at most
countable": 3/[/is a function from ω onto χ υ {0}]. We have

ω , = {γ:γ is an ordinal and ο η ί ί γ ) } ^ ! ' 2 ' .

In precisely the same way,

{ω,} = {λ:λ is an ordinal, ~cnt(k) and (Υγ^λ)οηί (γ)};

that is, {ω,} is definable in Hu>2 by a formula which is a conjunction of the Z0-formula
"λ is an ordinal", the Π,-formula " ~ cnt(A)", and the Σ,-formula "(Vy £ X)cnt(y)" (the
quantifier (Vy £ λ) is bounded and does not affect the level of definability). From this it
follows that {ω,} £ Δ(

2

2).

The rest of the sets listed above are definable in Ηω2 by formulas which are built up
out of formulas of the form cnt(x), χ £ R η L, χ = ω,, with the help of prepositional
connectives and bounded quantifiers. These formulas can be written down immediately
from the definitions, and this is left to the reader. The last of the indicated sets requires
special care; one must use 2.3.2 and write it in the form {(/>, q): the sets/», q, and/? V q
belong to Po).

33. Canonical well-ordering of Hu>2. Remember that all arguments of §3 are carried out
within L. This means that there exists a canonical well-ordering of the (constructible)
universe. By -< we denote the restriction of this well-ordering to the set Ηω2. The
relation < on Ηω2 is a well-ordering of Ηω2 of type ω2 and has definability properties
expressed in the following proposition (cf. [10], p. 83):

1. The sets {(x,y): x, y £ Ηω2 and χ < y) and IS = {{y: y <. χ): χ £ Hu>2) {the
collection of all initial segments of Ηω2 in the sense of ·<) both belong to Δγ\

With the help of this proposition, we prove the "uniformization principle":

LEMMA 2. Assume X C Ηω2 Χ Ηω2 and Χ Ε Δ(2), η > 1. Then the set F = {(x,y) G
X: y is the < -least of ally' such that (x,y') £ A'} also belongs to Δ<2).

PROOF. The following two equations hold for F:

F = {(x, y): (x, y)^X and V y' [y' ~ζ y — (x, y')&X]},

F = {{x,y):(x,y)^X and a Z [ Z e /

The first of these yields a Ππ-definition of F in Ηω2, and the second yields a
2n-definition. Reduction of the formulas written above to forms in Πη and Σπ can be
carried out with the help of Proposition 1 and X £ Δ^2). We note that the quantifier
"(Vy' ε Ζ)" is bounded and does not increase the complexity.

For a more detailed proof of a similar proposition, cf. [10], the theorem on pp. 86-87.
3.4. The sequences ma, ta, ί/

(α), and F ( a ) . These sets play an important role in the
construction of Ua and V below in 3.6.

For every α £ ω2, we construct sets ma, ta, ί/
(α), and F ( o ) such that the following three

conditions are fulfilled:
1. ma £ co, ta £ Ηω2, (ί/(α), F ( a )) £ PS for all a.
2. The sequences (ma: a e ω2), (ta: a £ ω^, (1/<α): α £ ω^, and (F ( o r ) : α £ coj) belong

to the collection Δ2

2).
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3. Assume that m & ω, t Ε. Ηω2, and κ C ω2 is closed and bounded in ω2 (that is,
U κ = ω2 and U(K Π α) ε κ for all a Ε Wj). Assume also that (Ua: a ε Wj) α/κ/ ( F a :
a Ε Wj) are contrary c.i.s.'s. Then there exists a ε κ such that m = ma, t — ta, U" =
U(a\ and V = K(a).

The construction of these sets will be based upon a sequence (Aa: a ε ω^ of elements
of the set Ηω2 with the following properties:

(i) (Aa:a e «j) Ε ΔΡ, ow/
(ii) if κ' C ω2 is closed and bounded in ω2 and (Ba: α ε ω^ is a sequence of elements of

Ηω2, then there exists α ε κ' such that Aa = (By: γ ε α).
The existence of such a sequence is, in turn, based upon Jensen's principle 0a , which

is true upon assumption of V = L (and V = L is assumed in this section); cf. [10] and
[14]. This principle asserts the existence of a sequence (Sa: a e ω^ of sets Sa Q a
satisfying the following condition:

(1) If a set κ C ω2 is closed and bounded in ω2, and if X C ω2, then there exists an
α ε κ such that Χ Π α = Sa.

Analyzing any standard construction of such a sequence (see [10] and [14]), we can
verify without difficulty, with the help of the uniformization principle 3.3.2, that the
sequence satisfies

(2)(5 α :αε ω 2 )εΔ<, 2 >.
Further, for every α Ε ω2, let C(a) be the ath element of the set Ηω2 in the sense of

the ordering -< of 3.3. Then the function C from ω2 onto Ηω2 is constructive and
belongs to Δ^ by virtue of the choice of the ordering -< .

Starting from Sa and C, we construct Aa as follows: Aa = C"Sa = {C(0): β e Sa).
From (2) and the membership of C in Af\ we immediately obtain property (i) for the
sequence (Aa: α ε ω2). Let us verify (ii). Assume κ' and (Ba: α ε ω^ are as indicated in
(ii). Let us set

X={$eEa2:C($) = {(y, B-,)} for some γ€=ω2}

and

} = {(γ, ΒΊ) :

and put κ = κ' η κ". It is clear that X C ω2. In addition, it is not hard to verify that κ"
is closed and bounded in <o2. Hence the intersection κ of two closed and bounded sets is
itself closed and bounded. Now, by virtue of (1), there exists α Ε κ such that Χ η α =

Sa. We have

( β τ : γ € = α ) ( = { ( γ , Β,) : γ€=<ζ}) = {Ctf): βε=ΧΠα} (since

= {<:(β) :peS a } (since XDa=Sa)=Aa.

But, by construction, α ε κ C κ', and the proof of (ii) is finished.
Now, having a sequence (Aa: α ε ω2) with properties (i) and (ii), we define the sets ma,

ta, U(a\ and F ( a ) .
Assume α Ε ω2. If Aa has the form (ay: γ Ε α), every αγ is a quadruple (m, t, Uy, Vy)

(where m and t are one and the same for all γ), and (Uy: y ε α) and (V: γ ε α) are
contrary c.i.s.'s, then we define ma = m, ta — t, ί/(α) = Ηηιγ(Ξα W, and K(or) =
l im r e a K».
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If the indicated group of conditions does not hold, then we set ma = ta = 0 and
j/W = Via) = (ω χ ω ) χ {0} (that is, U$> = V^ = 0 for all η and /)·

This concludes the definition of ma, ta, t/(a), and F ( a ) . Let us verify the conditions
stated above.

That 1 holds is obvious from the construction and the definition of lim.
Further, the group of conditions determining the two alternatives of the construction

expresses a A2

2)-relation (this is easily obtained from (i) and 3.2). This implies that 2
holds.

Finally, the proof of 3 is obtained by applying (ii) to the set κ' = {α G κ: a is a limit
ordinal} and the sequence (Ba: a G Wj), determined by the condition that Ba =
(m, t, U", Va) for every α G ω2. In this connection, it is necessary to consider the
continuity of the sequences U" and V", which implies the equations U" = l im r e a W
and V = Πηΐγ^ Vy for limit ordinals α G ω2.

The details are left to the reader.
3.5. Blocking pairs. Assume that (V, V) G PS, m G ω, and D C Ηω2. We write that

the pair (V, V) m-blocks D if one of the following two conditions holds:
(i)(U'[>m],V'[>m])GD;

(ii) there is no pair (U", V") ε ΰ η PS>m extending (U'[ > m], V'[ > m]).

The following proposition is obvious.
1. If m e ω, α e ω2, and D C Ηω2, then there exists a pair (U', V) £ PS, extending

the pair (U(a), F ( a )) (constructed in 3.4) and m-blocking the set D, such that U'[ < m] =
U(a)[ < m] and V'[ < m] = F(a>[ < m\.

(This proposition is true, it is clear, not only for the pair (t/ ( o ), F ( a )), but also for any
pair(i/, V) e PS.)

By Fp(a) we denote the least such pair (U', V), in the sense of the well-ordering -< of
(3.3).

Further, for every η > 1, we fix a Σπ-formula unn(x, t) which is universal in the sense
of the following assertion: If X C Ηω2 and X G Σ$\ then there exists t G Ηω2 such
that X = {x G Ηω2: unB(jc, t) is true in Ηω2). We define M" = {x G Ηω2: unn(x, t) is
true in Hu>2}. By the choice of the formula unB we have the following proposition:

2. {M"\ t G Ηω2) is exactly the collection of all Σ^-subsets of Ηω2 (assuming η > 1).
Finally, for α G ω2 and m G ω, we define t/ ( m a ) and Vima) so that (£/ ( m a ), V<ma)) =

Fg(a), where D = M/"+2 and t = ta. From the definitions we immediately obtain the
following proposition:

3. Let a G ω2 and m G ω. Then the pair (Uima\ F ( m a )) belongs to PS, extends the pair
(t/(a>, VM), m-blocks the set M,m~2, and satisfies the equations t/ ( m o )[< m] = t/ ( a )[< m]
and F ( m a )[ < m] = V(a\ < m].

As usual, by t/n

("a) and Vj^ we denote the (n, /)th component of the systems Uima)

and K(ma) (cf. 2.1). We note that the last two equations of proposition 3 yield υ%™> =
U^ and V^ = Vj^ whenever η < m.

Now we prove a lemma on definability of components.

LEMMA 4. Assume m G ω. Then the sets (U^h a G ω2 and n, i G ω) and
a G ω2 and n, i G ω) belong to Δ^+ 3.

We carry out the proof only for the first set; the proof for the second is similar. It
suffices to verify that the sequence (i/ ( m a ) : a G ω^ belongs to Δ^+3- From 3.2, 3.4.2, and
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membership of the formula un m + 2 in 2 m + 2 , it is not hard to obtain the following fact:
the set {(a, U\ V): the pair (U1, V) belongs to PS, extends the pair (C/(a>, F ( a )),
m-blocks the set M™+2, and satisfies U'[<m] = [/<">[< m] and V'[< m] = V(a\< m]}
belongs to Δ^+3. More precisely, this set is definable in Ηω2 by a conjunction of a
Em+2-formula describing condition (i) for (U', V) and the connection with (£/(e), F ( a ))
and ta, and of a IIm+2-fonnula transcribing (ii) for ((/', V).

Now the membership of (C/(ma): a Ε ω^ in Δ®+3 follows from the uniformization
principle 3.3.2 and the definitions. This proves the lemma.

After the preliminary constructions in 3.2-3.5, we begin the construction of the
sequences U" and V discussed in 3.1.

3.6. THEOREM ON THE SEQUENCES U" AND V. There exist sequences (Ua: a Ε ω^ and
(V: a Ε ω2) satisfying the following three conditions:

(i) These sequences are contrary c.i.s.'s.
(ii) If m Ε ω, β Ε ω2, and the set D C Ηω2 belongs to Σ ^ + 2 , then there exists α Ε ω2,

a > β, such that the pair (Ua, V) m-blocks the set D.
(iii) If η & ω, then the sets (U%: a e ω2 and i Ε. ω) and (V%: a G ω2 and i Ε ω) belong

to Σ « 3.

PROOF. We shall describe the construction of U" and V by induction on α ε ω2.
(a) We set i/° = V° = (ω Χ ω) Χ {0}; that is, C/°. = V° = 0 for all η and i.
(b) If β Ε ω2 is a limit ordinal, then I/" = l i m ^ ί/γ and F^ = lim^^ F Y .
(c) Assume that α Ε ω2 and that ί/α and F a have been constructed with (Ua, V) Ε

PS. We shall construct ( ί/ α + 1 , F a + 1 ) e PS1. For this, we fix n, i Ε ω and describe the
construction of the components U%+' and V%+'. We point out that this construction will
be based only upon the components i/n" and F^ of the systems U" and V (already
constructed), but not upon the "entire" systems U" and V.

The construction depends upon satisfaction of the following conditions:

ilia. ̂  n, Uni — Uni , Vni = Vni . (*)

If (·) is satisfied, then we define m = ma, U£+l = £^">, and F,S+1 = V^"
and F ^ ^ are the (n, i)th components of the systems i/(ma) and F ( m e ) that were
constructed in 3.5.)

If (*) is not satisfied, then we define U%+1 = U° and F ^ + l = F^. This concludes the
definition of t/^+ 1 and KJ+ 1.

Carrying out the definition of i/n"
+1 and F n"+ I in this way for all n, i Ε ω, we obtain

systems Ua + 1 and Va+\ the components of which are U%+1 and F ^ + 1 .
This concludes the inductive construction of U" and V for α Ε ω2.
Let us prove that the constructed sequences satisfy requirements (i)-(iii) in the

statement of the theorem. We begin with the following two assertions.
1. If α Ε ω2, then ({/", V) Ε PS and the pair (Ua+\ F e + 1 ) extends the pair (Ua, F°).

Thus, according to part (b) of the inductive construction, the constructed sequences are
contrary c.i.s.'s; that is, requirement (i) is satisfied.

2. Assume that α Ε ω2 is such that U" = t/ ( a ) and V = F(e>. Then Ua + l = Uima\
Va+1 = V(ma\ and the pair {Ua+\ Va+l) m-blocks the set Mt

m+2, where m = ma and
t = L.
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The simple proof of both assertions follows immediately from the definitions and
Proposition 3.5.3. (In particular, one uses the equations Uima\<m] = t/ ( a )[</n] and
F ( m a )[ < m] = V(a\ < m] in 3.5.3.)

The details of the proof of 1 and 2 are left to the reader.
Now that we have proved requirement (i) of the statement of the theorem (assertion 1),

in 3.7 and 3.8 we shall prove (ii) and (iii) for the constructed sequences, and so finish the
proof of the theorem.

3.7. Verification of (ii). So, let us verify requirement (ii) of the statement of Theorem
3.6 for the sequences constructed in 3.6.

Let m G ω, β G ω2, D C Ηω2, and D G Σ^+2- Let us find a > β such that the pan-
ic/", V) will w-block D. According to 3.5.2, the set D has the form D = M,m + 2 for
suitable t G Ηω2. We fix this t and apply 3.4.3 for the given m, t, the set κ = {a G ω2:
a > β}, and the sequences constructed in 3.6 (which are contrary c.i.s.'s by 3.6.1). We
find α e ω2, α > β, such that ma - m,ta = t, ί/(α) = Ua and F(a> = V.

Now, taking into account the choice of /, we apply 3.6.2 to complete the proof.
3.8. Verification of (iii). We fix η G ω and prove the membership in Σ ^ 3 of the set

Ε = {(α, i, [/„"): α G u2 and ι G ω} (this is a more explicit description of the set (U%:
a G ω2 and / G ω)).

We write down the following formula:

φη(α, ι, «, ν, ιΐ, υ'):±ρα<Ξω2&ίίΞω&θ,

where θ is the disjunction θχ V θ2 of the following formulas θχ and θ2:

On the one hand, from the definition in 3.6 we obtain the following proposition.
1. Take any a G ω2, / G ω, and u', v' G Ηω2. Then the formula φη(α, i, U%, V%, «', v')

is true in Ηω2 if and only ifu'= U%+1 and υ' = V°+'.
On the other hand, from 3.4.2 and 3.5.4 we obtain
2. The set {(a, i, u, v, u', υ'): φη(α, i, u, v, u', υ') is true in Ho^} belongs to the collection

Now we immediately begin the study of the complexity of the set E. We introduce
another auxiliary formula:

ψη(α, i,f,g)±r<x G ω2 & / G u> & [f and g are functions defined on

the set α + 1] &/(0) = g(0) = 0 & [for every limit ordinal β < a,

Κβ) = U Y 6 j 8 /(Y) and 8(β) = Uy£fi g(y)] & Of β G «)

φη(«, ',Λβ), 8(β),Λβ + 1), 8(β+ 1».

We note at once that proposition 2 implies
3. 7%e set {(a, i,f, g): ψΛ(α, i,f, g) is true in Ηω2) belongs to Δ^.3.
In addition, from 1 and the definition of 3.6, one concludes that ψη(α, i,f, g) is true in

Ηω2 if and only if Α β) = U% and g(β) = V*for all β < a. Hence

E={(a, i, «):'Ή/3# [ψ,, (α, i, f, g)&f(a) =M] is true in Ηω2 }.

From this equation and 3, we obtain Ε G
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The verification of requirement 3.6(iii) for the second set (V%: a £ ω2 and i G ω) is
similar.

This concludes the verification of requirements (i)-(iii) of the statement of Theorem
3.6 for the sequences constructed above, and Theorem 3.6 is proved.

3.9. The system U*. So, we have constructed sequences (ί/": α e Wj) and (V: a G ω^)
satisfying the requirements 3.6(i)-(iii). These sequences are to remain fixed in the
ensuing exposition. Remember that their construction, like all of the reasoning in §3, is
carried out in the constructible universe L.

We define U* = limaeti)2 JJa and V* = limae<<,2 V, and we state several propositions
relating to U* and V*.

1. // β < a G ω2, then the pair (Ua, V) belongs to PS, extends the pair (U0, V"), and
satifies Ρ{Όβ) C P(Ua) C P(U*).

2- £/* = U αεω2 U», F* = U α ε ω 2 V» and U* η V* = 0.
3.P(U*)= l)aeaiP(U").
Propositions 1 and 2 are easily obtained from 3.6(i) and the definition of lim. For the

proof of 3 we must note that, in every ρ G P& at most countably many / G Fun are
"involved".

Somewhat less trivial is the following proposition.

LEMMA 4. Assume n, i G ω. Then the set i/* has power ω2.

PROOF. Assume the contrary: card(t/*·) < ω,. Thenl/*· G Ηω2, and therefore, by 3.2,
the set D = {(t/, V) G PS: t/m- £ i/*} belongs to 2^2) (with parameter U·). Hence,
according to 3.6(ii) (for m = 0), there exists α G ω2 such that either (a) or (b) holds:

(a)(i/ a, F°)G D.
(b) There is no pair (U, V) G D extending (Ua, V).
If (a) holds, then, by definition of the set D, U% 2 £/*, which contradicts 2.
Assume that (b) holds. We show that in this case one also obtains a contradiction.

Since (Ua, V) G PS by 3.6(i), the set V% has power < ω,. Thus, according to the
assumption at the beginning of the proof, V% υ U% also has power < ων Hence, there
exists / G Fun such that / £ FB° υ U^. Now we define a system U' as follows:
U!a = ί/̂  υ {/}, and U^ = t/^, for m φ η \Jj φ i. By the choice of/, it is clear that
the pair ({/', V) belongs to PS, extends the pair ((/", F"), and satisfies/ G U^. The
latter means that ({/', V) belongs to D. But this contradicts (b).

Thus, both possibilities (a) and (b) lead to contradiction, and the lemma is proved.

LEMMA 5. Assume η G ω. Then the sets Cn = {(/,/): / G ω and / G 6ζ5} α/κ/ C'n =
{(/,/): ι G ω and/ G FJ} 6e/o«g to Σ®.3.

We shall carry out the proof for Cn; the proof for C'n is similar. From proposition 2, we
have Cn = {(/,/): / G ω & (3α G ω 2 ) [/ G C/̂ ]}. Now Cn G Σ®.3 follows from 3.6(iii).

§4. Constructibility of all sets of natural numbers

analytically definable in L[G]

4.1. Third formulation of the fundamental theorem. The system U* constructed in 3.9
will play a central role in the proof of the fundamental theorem. In fact, we now will
prove FT in the following form.
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FUNDAMENTAL THEOREM (third formulation). If G is a U*-g.f., then the following
assertions hold:

(i) Every a G L[G] Π R, analytically definable in L[G], is constructible.
(ii) Every constructible r C ω is analytically definable in L[G].

The derivation of the second formulation of FT (1.4) from the third is trivial by virtue
of the existence of a C/*-g.f., 2.4.3.

§4 is devoted to the proof of assertion (i). First, we introduce in 4.2-4.6 the special
apparatus of the fore relation in order to study analytic truth in L[G], based upon the
representation Theorem 2.7.1. Then assertion (i) is proved in 4.7-4.9. The proof uses a
proposition, the restriction principle 4.8(*), the verification of which is done separately in
§5.

All the reasoning in 4.2-4.6 and 4.8, like that in §3, is carried out within the
constructible universe L.

4.2. ~ &3-formulas. We shall introduce a special language for the study of analytic
truth in generic extensions. Here and in the rest of §4, the letters m, η and k denote
natural numbers and variables of type 0 (with range ω), the letter JC is a variable of type 1
(with range 9 (ω)), and the letter c is a "code", an element of the set cod.

By an elementary ~ &3-formula we mean a formula of one of the following forms:
m + n = k, m-n = k, m = n, kE.x, kE.c. Further, by a ~ &3-formula we mean a
formula obtained from elementary ones with the help of ~ , &, and quantifiers 3k and
3x. The form of the logical symbols is restricted for technical reasons.

For each ~ & 3-formula φ, we define its complexity com(<p):

com(<p) = 0 if φ is an elementary formula;

com(<p & ψ) = max(com(<p), com(^));

com(3A: φ(&)) = com(3x <p(x)) = com(<p);

com(~ φ) = com(<p) + 1.

The interpretation of — &3-formulas will be introduced in 4.7.
43. The fore relation. Before the definition of fore, we introduce the following

definition:

Tm={(U, V)<=PS: there exists β ε ω 2 , such that U[<m]=U^[<m]

and V[<m]=Vf\<m]}.

It is clear that Tm+l C Tm C To = PS.
Now we define the relation ρ f o r c w φ. As part of this notation, we assume that

(U, V) G PS, ρ G P(U), and φ is a closed ~&3-formula. The definition proceeds by
induction on the length of φ.

(i) Assume that the (closed) formula φ has one of the forms m + η = k, m- η = k or
m = n. Then ρ forc{/K φ if and only if φ is true under the usual interpretation of addition,
multiplication, or equality of natural numbers.

(ii) Assume φ is a formula k S. c, where k e ω and c = ((?,: t e ω) e cod. Then
ρ forcc/K φ if and only if there exists q G Qk such that ρ > q.

(iii)/> forc(/K φ & ψ if and only if ρ ίοτουν φ and ρ f o r c w ψ.
(iv)p foTcuv 3k φ(&) if and only if there exists k G ω such that ρ forcuv <p(&).
(y)p ioiCyy 3x <p(x) if and only if there exists c G cod such that ρ ίοτζυν φ(ο).
(vi) ρ iorcuy ~ φ if and only if there do not exist a pair (£/', V) G T^^^ and some

p' G P(U') such that (t/\ V) extends ((/, V) andp' >p andp' iorcy.y. φ.
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This concludes the definition of fore. We recommend that this definition be compared

with the original definition of forcing by P. J. Cohen [3], Chapter IV, §3, in the light of

the representation Theorem 2.7.1. In our definition, the role of "parameter space" is

played by ω, the collection of constants for natural numbers, and by cod, the collection

of constants for sets of natural numbers.

We note the following properties of fore:

1. If ρ ίοτουν φ, then (U, V) G PS, ρ G P(U), and φ is a closed ~ &3-formula (by

definition).

2. If ρ foTCuy φ, the pair (U1, V) G PS extends (U, V), ρ' G P(U'), and p' > p, then

p' f o r c ^ φ.

3. If (U, V) e rcom(T>), then ρ forc [ / K φ and ρ forc l / K ~ φ cannot hold simultaneously.

Assertion 2 can be verified without difficulty by induction, using the definition of the

fore relation, and 3 follows from part (vi) of the definition.

4.4. Definability of the relation fore. In 4.7 below we shall prove that the relation fore is

connected with truth in generic extensions in roughly the same way as ordinary forcing.

In the proof of this fact it will be essential to use the specific characteristics of the

construction of the system U*, as well as the particular property 3.6(ii). In order to apply

this property, we shall study the complexity of the fore relation.

Let <p(klt . . . , km, xv . . . , xn) be a ~ &3-fonnula, with all its free variables explicitly

indicated. We define the set

= {(p, U, V,kt,..., km, Cl, ..., c) : (U, V) e = P S , p<=P(U),

ifeiEio, c.-ecod and ρ forc rν φ (ku ..., km, cu ..., c ) } .

THEOREM. Forc9 e 2g>m(<p)+2. (The definition ο/Σ<2) is in 3.2.)

PROOF. For elementary formulas φ, the theorem follows immediately from various

assertions in 3.2; in this connection, the quantifier "V# G Qk" in the definition 4.3(ii) is

bounded and does not raise the level of definability. Further, we carry out the proof by

induction on the length of the formula φ. The induction steps 4.3(iii)-(v) are no trouble

and can be handled with the help of 3.2.

The only nontrivial part is the induction step 4.3(vi), which we examine now. For

simplicity, we assume that the — &3-formula φ is closed; that is, has no free variables.

Then, by definition,

Forc-φ = {(p, U, V): (U, V) e PS, P<=P(U) and Vp', V {/', V V [(U1, V)

& (V, V) extends (U, V)&p'€EP (V) &p'>p
-v(p', U', V

If we now assume that Fore,, e Σ * ^ ) + 2 (inductive hypothesis), from 3.2 and Tm

® w e obtain

that is, Forc^,, e Σ(£Μ_φ)+2, since com(~ φ) = com(φ) + 1.

Finally, the assertion Tm G Σ^+2' which was used in this argument, is obvious from
property 3.6(iii) of the sequences U" and V (cf. 3.9), as well as from 3.2 and the
definition of Tm. The inductive step is finished, and the theorem is proved.
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4.5. The relation fore with pairs (ί/α, V). For brevity, we agree to write/» forca φ

instead of ρ torc^y. φ, where Ua and V are terms of the sequences fixed in 3.9. We

shall prove two assertions about the relation forca.

1. //p, q G P(U*), ρ < q, a G ω2, and ρ forca φ, then there exists α λ G ω2 such that

q forcA φ.

2. If ρ, ρι G P(U*) are compatible, and a and a, belong to ω2, then ρ forca — φ and

px forca φ cannot hold simultaneously.

PROOF OF 1. 3.9.1 and 3.9.3 imply the existence of λ e ω2, λ > α, such that q G

P(Uk). Now we apply 4.3.2, with the help of 3.9.1.

PROOF OF 2. Assume the contrary: px forctt| φ and ρ forca — φ. By 2.3.3, there exists

q G P(U*) such that q >ρ and q >/»,. Arguing as in the proof of 1, we find j S £ w 2

such that q forc^ φ and q forc^ ~ φ. This contradicts 4.3.3, since the pair (17β, Υβ)

obviously belongs to every set Tm.

4.6. DENSITY THEOREM. Let φ be a closed ~ &B-formula. Then the set

Q = [p G P(U*): there exists a G ω2 such that ρ forca φ or ρ forca — φ}

is dense in P(U*).

PROOF. We fix.ρ G P(U*) and find/?' G Q such that/?' >p. We also fix δ e ω2 such

that ρ G P(US). (Such a δ exists by 3.9.3.) We begin the proof with the following

definitions: m = com(<p) and D = {(U, V) G PS>m: there exist a pair (U\ V) G Tm

and somep' G i»(t/') such that U = U'[> m], V = F'[> m],/>' >p, and/>' f o r c ^ , φ}.

(PS>m and £/[> m] are defined in 3.1.) From 3.2, Theorem 4.4, and the proposition

Tm e Σ ^ + 2 in the proof of 4.4, we obtain D e Σ ^ · Hence, by 3.6(ii), there exists

γ e ω2, γ > δ, such that the pair (ί/ γ, Vr) m-blocks the set D. This means that one of

the following two conditions is satisfied:

(a) The pair (Uy[ > m], Vy[ > m\) belongs to the set D.

(b) There is no pair (U, V) e D extending (Uy[ > m], V[ > m]).

Assume (a) holds. By definition of D, there exist (U', V) e Tm and/»' e P(U') such

that the following two conditions are fulfilled:

(1) U'[ > m] = Uy[ > m], V'[ > m] = Vy[ > m], andp' > p.

(2)p' forc^y. φ.

We note, further, that (U', V) G Tm implies, by the definition of Tm, the existence of

β e ω2 such that the following holds:

(3) U'[< m] = U0[< m] and V'[< m] = V^[< m].

We define α = max(/?, γ), and from (1), (3), and 3.9.1 we have that the pair (Ua, V)

belongs to PS and extends the pair (i/\ V). From this, (2), and 4.3.2, it follows that

p' forca φ; that is, p' e Q. Finally, ρ' > ρ holds by the choice of p' and (1). Thus, case

(a) has been dealt with.

Now assume that (b) holds. Let us show that we then have ρ forcy — φ (that is, ρ

already belongs to Q). Assume the contrary. We note that from the choice of δ, 3.9.1,

and γ > δ it follows that ρ G P( Uy). Hence the assumption of the contrary implies, by

the definition 4.3(vi), the existence of a pair (£/', V) G Tm, extending (ί/γ, Vy), and

some/»' G P(U') such that/»' > ρ and/»' forcy-,,, φ. Now, denoting U = U'[> m] and

V = V'[> m], we obviously have (U, V) G D. In addition, the pair (i/, V) will extend

(Uy[> m], V[> m]), since (t/', V) extends the pair (Uy, V). But this contradicts the

hypothesis (b).
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The contradiction completes the proof that ρ f orcy ~ φ. Thus, ρ itself already belongs
to the set D in case (b).

Both cases have been considered, and the theorem is proved.

4.7. The agreement of truth with fore. Up to this point, the reasoning in §4 has been
carried out within the constructible universe (cf. 4.1). In this subsection, the reasoning
will be carried out within the universe of all sets.

Before proving a theorem on the connection between truth and fore, which will play a
central role in the whole fore apparatus, we shall introduce an interpretation of
~ &3-formulas. If φ is a ~ &3-formula and G C Po (for example, if G is a t/*-g.f.), we
define φ G to be the result of replacing in φ every constant c ε cod by cG. (The definition
of c° is in 2.7.) The formula φ G is an analytic formula with parameters from L[G]. We
note that φ° coincides with φ if φ does not have constants from cod.

THEOREM. Assume that φ is a closed ~ &3-formula and that G is a U*-g.f. Then φG is
true in L[G] if and only if there exist a ε ω£ and ρ ε G such that ρ forca φ.

The proof proceeds by induction on the length of φ. The consideration of formulas of
4.3(i) is trivial, and the induction steps 4.3(iii), (iv) are left to the reader. Let us consider
a formula φ of the form 4.3(ii); that is, φ is a formula k ε c, where k ε ω and c = (Q,:
t e. <o) ε cod.

Assume that φ° is true in L[G]. This means that ) t £ c c ; that is, G η Qk Φ 0 by
definition of cG (cf. 2.7).

We introduce the sets Q+ = {p ε P(U*): there exists q ε Qk such that/? > q) and
Q~= {p ε P(U*): ρ is incompatible with every q ε Qk η P(U*)}. It is not difficult to
verify, using 2.3.3, that the set Q = Q+ υ Q~ is dense in P(U*). In addition, Q is
constructible, since c, and therefore Qk, is constructible (cf. 2.7).

Thus, G n 6 ^ 0 . Assume ρ ε G η Q. We note that ρ ε Q ~ is impossible, since
G Π Qk¥=0 and G C P(U*) is a filter. Therefore, ρ ε Q + holds. But, by definition
4.3(ii), this means that ρ f orca k ε c, where α ε ω/" is such that /> ε P{ U"). (Such an α
exists, by virtue of 3.9.3 and/> ε P(U*).)

Conversely, assume ρ ε G, α ε ω/", and ρ forca k G c. This means, by 4.3(ii), that
ρ > q for some q Ε Qk. We note that from/? > q, q EL P^, ana ρ ε P(U*) it follows that
? e Ρ(ί/*). Hence, since G is a filter and/) ε G, we obtain that q G G. Thus, (7 Π β*
Φ 0; that is, Α; ε cG by Definition 2.7.

Thus, the case of formulas φ of the form 4.3(ii) has been dealt with.
Now we shall do the inductive step 4.3(v); that is, we consider a — &3-formula φ such

that the theorem already has been proved for <p(c) for arbitrary c ε cod, and we prove
the theorem for the formula 3 Λ: φ(χ).

Assume that (3JC φ(χ))β is true in L[G]. By Theorem 2.7.1, there exists c ε cod such
that <p(c)c is true in L[G]. The inductive hypothesis implies the existence of ρ ε G and
α ε ω/" such that ρ forca <p(c). Thus, by 4.3(v),/> forca 3 χ φ(χ).

Conversely, assume/? ε G, α ε ω/", and/? forca 3x ψ(χ). This means that/? forca <p(c)
for some c ε cod. By the inductive hypothesis, <p(c)G is true in L[G], etc.

Finally, let us do the inductive step 4.3(vi). We assume that the theorem has been
proved for a formula φ, and prove it for ~ φ.

Assume that (— <p)G is true in L[G]. This means that <pG is false in L[G], and thus, by
the inductive hypothesis, there exist no ρ ε G and ο ε wf" such that ρ forca φ. Hence,
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by Theorem 4.6 and the genericity of G, there exists ρ e G such that ρ forca ~ φ for

some a e ω/\ Q.E.D. (Remark: the set Q of Theorem 4.6 is constructible, since all the

reasoning in 4.2-4.6 was carried out within L.)

Conversely, assume/? e G, a e ω2

£, and/» forca ~ φ. Assume the contrary: (~ <p)G is

false in L[G\, that is, <pG is true in L[G]. By the inductive hypothesis, there exist/», e G

and a, e ω^ such that/?, forcai φ. But G is a filter; that is,ρ and/?, are compatible. This

contradicts 4.5.2. This concludes the inductive step, and the theorem is proved.

4.8. Restriction principle. In this section we again reason within L. First we point out

the following corollary of Theorem 4.7.

COROLLARY 1. If ρ e P( U*), a e ω2, and if a closed ~ &3-formula φ does not contain

constants from cod and satisfies ρ forca φ, then ρ I V * "φ is true {in L[G])".

Some remarks about the formulation of this corollary. By I l· * we denote the relation

I l-y., where U* is the system of 3.9. Further, as a direct consequence of Theorem 4.7, we

should write /? I l· * "<pG is true in L[G]". But, since the corollary is restricted to formulas

which do not have constants from cod, the superscript G can be omitted, since for every

such formula φ and every G C Ρ the formula φ G coincides with φ.

We also note that every closed ~ &3-formula not containing constants from cod is a

(closed) analytic formula not containing parameters from R, and therefore one can speak

about its truth or falsity (in L[G]).

Now let us state the following "restriction principle":

(*) Let φ be a closed ~ &3-formula which does not contain constants from cod. Assume

also that m e ω, com(<p) < m, (U, V) e PS, ρ e P(U), and ρ ίοτουν~ψ. Then

ρ \m iotcuv ~ φ. (The definition of ρ \m is in 2.3.)

This principle will be proved below. But here, let us prove with its help a theorem

which leads directly to a proof of 4.1(i).

THEOREM 2. If ρ EL P(U*) and ψ(Α;) is a ~&3-formula which has k as its only free

variable and does not contain constants from cod, then ρ I h * "the set ( i E u : Ψ(£) is true

(in L[G])} is constructible".

PROOF. We define Qk = {/? e P(U*): there exists α e ω2 such that either/» I l· *

or /»I l· * ~ ψ(1ί)}, and Q = Π *«=ω Qk. Thus, Q consists of all ρ e P(U*) which

"decide" every formula i//(k), k S ω.

The following proposition results from the definition of Q.

(1) If q Ε Q, then q\V* "the set {k e ω: ψ(Α:)} is constructible".

In fact, let us define r = {k e ω: q\l·* t^(k)}. Then, on the one hand, r is construct-

ible, since forcing is expressible in the "initial model" L ([5], 1.1.9). On the other hand,

from q e Q it follows that q I l· * "{A; e ω: ψ(£)} = r".

Thanks to Proposition (1), for the proof of the theorem it suffices to prove the

following lemma.

LEMMA. Ifpe P(U*), then there exists q e Q such that q >p.

PROOF OF THE LEMMA. Since the set \p\ is finite by 2.2(i), there exists m e w such that

com(ip(k)) < m and \p\ C m. Let us verify the following auxiliary proposition:

(2) Ifk Ε ω,/?' e P(U*), and \p'\ C m, then there existsp" e Qk such thatp" >/?' and

\P"\ £ m.
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In fact, by Theorem 4.6 there exist α G ω2 and t G P(U*) such that t >p', and either

t force ~ \f/(k) or / forca — ~ ψ(Α). Let us show that p" = t[m is what is required.

Indeed,/»" G P(U*) follows from / G P(U*), \p"\ C m is obvious by construction, and

/»" > p' is obtained without difficulty from t > p' and \p'\ C m.

On the other hand, from the choice of m we obtain com(i|/(A:)) < m and

com(~ ψ(λ:)) < m. Hence, applying the restriction principle (*), we obtain that either

p" forca — ψ(&) or p" forca Ψ(&)· Corollary 1 allows us to change over to \l·*:

either p" 11- * ~ \p(k) or /»" I l· * \p(k). But the latter assertion obviously implies

/>" I h * ^(k). Thus,/»" G Qk. Q.E.D. This proves (2).

Let us continue the proof of the lemma. The assertion (2) that we have just proved

enables us to construct, by induction on k, a sequence (pk: k Ε ω) satisfying the

following three conditions:

(Ο/Ό = Ρ andPk+i ^ Qkfor °H k Ε ω.

(ii) \pk\ C mfor all k G ω.

(hi)/»* < pk+ifor all k G ω.

Let us show that this sequence is less than or equal to some q G P(U*), which is what

is required. We introduce the following notation:

ek = Pk (U), (sk

ni, X
k

m) = pft (η, ί).

In addition, we define

° U ^k< Sni = = [_,'
S=;u k=h>

Finally, we introduce a function q, defined on the set {0} υ (ω Χ ω) by the conditions

q(O) = e and q(n, i) = (sm, ATm) for all n, i G ω.

First of all, let us prove that q G P(U*). Since the whole construction of this section is

carried out in L, q is automatically constructive. Now it is necessary to check conditions

2.2(i)-(vii) for q. We begin with 2.2(i).

From (iii) it follows that {ek: k G ω) is a nondecreasing sequence of finite functions,

ek C ω X (R η L) for all k. But, according to (ii), dom(efc) C m for all k. Hence (eA:

A: G ω) becomes constant and e = ek for some k. Thus requirement 2.2(i) holds for q.

After this, the verification of 2.2(ii)-(vii) for q can be carried out without any special

difficulty, if we take into account (iii) and the fact that every pk belongs to P{ U*). The

details are left to the reader.

Thus, q G P( U*). Moreover, from the construction it is obvious that q > pk for all k,

and therefore that q > ρ = p0. Finally, from (i) it follows that q G Qk for all k; that is,

q G Q. Thus, q is what is required, and the lemma is proved. This completes the proof of

the theorem.

4.9. Constructibility of analytically definable sets. The reasoning of this subsection will

be carried out within the universe of all sets. We already have sufficient information to

prove Propostion 4.1(i).

THEOREM. If G is a U*-g.f. and a G L[G] η R is analytically definable in L[G], then a

is constructible.

PROOF. Let <?(&) be an analytic formula without parameters, defining a in L[G]:

a = {k G ω: φ(Α) is true in L[G]}. Expressing in φ(Α) the symbols V> ->, = , and V by

means of ~ , & and 3, we obtain a ~ &3-formula ψ(Α:), without constants from cod,
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also satisfying a = {k G ω: ψ(&) is true in L[G]}. Application of Theorem 4.8.2 in this

situation, and using the well-known ([5], 1.1.9) relations between forcing and truth in

generic extensions, completes the proof.

Thus, the desired result 4.1(i) has been proved under the assumption that the principle

(*) of 4.8 holds.

§5. Proof of principle 4.8(*)

The proof of this principle is based upon an idea used in the proof of a lemma in

Chapter IV, §5 of [3]. First, in 5.1-5.3 we introduce and study some special transforma-

tions of sets occurring in the fore apparatus, and then, in 5.4-5.6, we prove principle

4.8(.).

All the reasoning of §5 proceeds within the constructible universe.

5.1. Transformations. Fix m G ω. By Fm we denote the collection of all bijections IT of

the set ω onto itself such that n(J) = j for ally < m. With every pair π G Tm, b C ωχ, we

associate a transformation [irb], operating on sets of certain forms.

Thus, assume IT e F m and b C ω,; we shall define the operation of [irb].

If h G Seq and α = dom(A) (εω,), then by bh we denote the function h! defined on α

by the conditions Α'(γ) = Λ(γ) for γ G α — b and Λ'(γ) = 1 — Α(γ) for γ G α η b. It is

clear that bh G Seq and α = dom(Wi).

Similarly, if / G Fun, then by bf we denote the function/' G Fun defined as follows:

/'(γ) = /(7) for γ £ ω, - b and/'(γ) = 1 - /(γ) for γ £ ί .

If s C Seq and u c Fun, then we set bs = {bh: h G s) and bu = {bf: f G u).

Assume now that U is a system. By [irb] U we denote the system U' defined by the

following conditions: {/„', = Uni for η < m and f/̂ n), = bU^ for η > m. (Remember that

i/m C Fun; cf. 2.1.) Since π e F m , these two conditions do not contradict each other and

determine U^ for any k e ω.

If X C ω, X Fun, we set bX = {(γ, bf): (y,f) G X).

Let ρ e Po. By [irb]p we denote the unique q e Po satisfying the following three

conditions:

1) If e = p(0), then q(0) is the function e' defined on the set ιτ"\ρ\ by the condition

e'(v(J)) = e(J)for allj e \p\. {Remember that \p\ = dom(/>(0)) = dom(e); cf. 2.2.)

2)Ifn>m andp(n, i) = (s, X), then q(ir(n), i) = (bs, bX).

3) If η < m, then q(n, i) = p(n, i).

From IT ε F m it follows that these three conditions determine a unique function q

defined on {0} υ (ω Χ ω). We suggest to the reader that he verify that this function q

actually does belong to Po.

In addition, if c = (Qk: k e ω) e cod, then we set [irb]c = (Q£: k G ω), where

Q'k = {[^b]P'-P e Qk} f o r a 1 1 k e ω ·
Finally, if φ is a — &3-formula, then by [irb\tp we denote the result of replacing in φ

all constants c G cod by [wb]c.

This concludes the definition of the transformation [irb\. We note that this definition

obviously depends, not only on w and b, but also on m. We do not explicitly indicate this

dependence on m for the sake of convenience. Below, it will always be clear from the

context that m is involved in the definition.

5.2. Properties of the transformation [irb]. The natural number m of 5.1 is to remain

fixed. We also fix π e F m and b C ω,. The simple, but sometimes quite tedious,

verification of the following nine assertions is left to the reader.
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l.Ifp e Po, then [irb]p ε Po. (We already noted this in 5.1.)

2. If U is a system, so is [nb] U.

3. If(U, V) ε PS, then ([irb]U, [irb]V) e PS.

4 , / / c £ cod, then [irb]c ε cod.

5. If ρ Ε P(U), then \mb\p G Ρ([ττΖ>] ί/).
6. //> e f>0α«ί/ Uis a system, then ([wb]p)[m = p\m and U[< m] = ([irb]U)[< m]

7 (consequence of 6 and 3). If(U, V) e Tk, k < w, iAe/z ([ττ6]ί/, [irb]V) <E Tk.

8. 7/1/» < q, then [irb]p < [w6]<jr; if a system V extends a system U, then [irb\V will

extend [irb]U.

9. The operation of[vb] is invertible in the following sense: if, for example, ρ e Po, then

[ir~xb]([nb]p) = [vb}([w~lb]p) = p. We have a similar invertibility for operations on sys-

tems, codes (elements of the set cod), and ~ &3-formulas.

53. Invariance of fore. In this subsection, fix m e ω. In the statement and proof of the

following theorem, the operation of all transformations [irb] is carried out with respect to

this m.

THEOREM. // (U, V) e PS, ρ e P(U), π e Tm, b C ω,, φ is a closed ~ &3-formula

such that com((p) < m + 1, and finally, ρ foTcuv φ, then [irb]p ίοτ<^^υίν1>]ν[ιτ^φ.

The proof proceeds by induction on the number of logical signs ( ~ , &, 3) in φ, for all

sets U, V,p, π, b of the specified forms. It suffices to prove the following six assertions:

1. The theorem is true for every formula φ of the form 4.3(i).

2. The theorem is true for every formula ψ of the form 4.3(ii).

3. The theorem is true for a formula φ, & φ2 if it is true for each of the formulas φλ and

φ2.

4. The theorem is true for a formula 3k <p(k), where k is a variable of type 0, if it is true

for formulas <p(A:)/or arbitrary k Ε. ω.

5. The theorem is true for a formula 3x φ(χ), where χ is a variable of type 1, if it is true

for formulas q>(c)for arbitrary c ε cod.

6. The theorem is true for a formula ~ φ if it is true for [ττ&]φ (and, naturally, under the

assumption that com(— φ) < m + 1).

Assertions 1 and 2 are the initial step of the induction, and 3-6 form the inductive

step. Before proving these assertions, we define U' = [mb] U, V = [irb] V, and p' =

[irb]p.

Assertion 1 is obvious from 4.3(i), since the conditions ([/ ' , V) ε PS and/?' ε P(U')

hold by virtue of 5.2.3 and 5.2.5.

PROOF OF 2. So, assume φ is k e c, where Α: ε ω and c = (Qt: Ι ε ω) ε cod. By

definition 4.3(ii),/> f o r c ^ φ means that there exists q G Qk satisfying

(I)p > q.

From the assertions/» ε P(U) and (1), with the help of 5.2.5 and 5.2.8, we have

(2) The setp' = [irb]p belongs to P(U') and satisfies p' > q', where q' = [irb]q.

But, by the definition of [irb]c and 4.3(ii), assertion (2) implies p' lovely, k ε \irb\c;

that is,/»' {οτον.ν,[π^φ. Q.E.D. This completes the proof of 2.

The trivial proofs of 3 and 4 are left to the reader.

PROOF OF 5. By 4.3(v),ρ ίοτουν 3χ φ(χ) implies/» forc ( / K tp(c) for some c ε cod. But

the theorem is true for <p(c) by hypothesis. Hence p' forcy-^ <p'(c'), where <p'(x) is the
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formula [vb]<p(x) and c' = [nb]c ( e cod by 5.2.4). Therefore, by 4.3(v), we have
p' IOTCV.V, 3x ψ'(χ); that is,p' forc^ylnb^x <p(x). Q.E.D.

PROOF OF 6. By φ' we denote the formula [π6]φ. It is clear that [irb\ ~ φ is ~ φ'.
Define k = com(<p'). Then k < m, since com(<j/) = com((p), and com(— φ) < m + 1 by
the statement of 6.

Let us assume the contrary: that the theorem is not true for ~ φ; that is, the following
two assertions hold:

(3)/? forc^ ~ φ.
(4) // is not true that p' ioTCv.y ~ φ'.
Since (V, V) e PS and/»' G P(U') follow from the hypothesis of the theorem and

5.2.3 and 5.2.6, by 4.3(vi) assertion (4) yields the existence of a pair (U', V) e Tk,
extending the pair (U\ V), and the existence of p' e -P(U'), p' > p', such that we have

(5) p' forc^, φ'.
But, by the hypothesis of assertion 6, the theorem is true for the formula φ' == [ιτδ]φ.

Hence one can carry out the transformation [π"1^] on (5) and obtain
(6) ρ forc^ φ, where ρ = [ir~lb]p', U = [ir'lb]l]', and V = [ir-xb]\' {the identity of φ

and [π"'Ζ>]φ follows from 5.2.9).
On the other hand, from the choice of U', V, p', the definitions of V, V, p' (at the

beginning of the proof of the theorem), and various assertions of 5.2, applied to the
transformation [w"1*], it is not difficult to obtain

(7) (U, V) e Tk, (U, V) extends (U,V),pG i>(U), and ρ > p.
Now, assertions (3), (6) and (7) lead to a contradiction, by virtue of 4.3(vi). This

contradiction refutes the contrary hypothesis (the conjunction of (3) and (4)), and
assertion 6 and the theorem are proved.

5.4. Beginning of the proof of principle 4.8(*). Assumption of the contrary. After the
preliminary arguments in 5.1-5.3, we proceed to the proof of 4.8(*). Until the end of §5,
we fix a closed ~ &3-formula φ, not containing constants from the set cod. We also fix,
in accordance with the statement of 4.8(»), m, k, p, U, and V such that the following
assertion holds:

1. m e ω, k = com(«p) < m, (U, V) e PS, ρ e P(U), and ρ iaicuv ~ φ.
Let us prove that ρ [m foTcuy ~ φ. Assume the contrary. Since ρ[m e P(U) easily

follows from ρ e P(U), by 4.3(vi) the assumption of the contrary implies the existence of
sets/, U and V satisfying the following two conditions:

2. {U, V) ε Tk, (U, V) extends (U, V), and ρ G P(U).
3. ρ > p[m and ρ IOXCQV φ.

Below in 5.6 we intend to obtain a contradiction, which will refute the assumption of
the contrary that we have made.

5.5. Construction of U', V and p'. These sets, which will play an important role in
obtaining a contradiction, will be constructed by carrying out on U, V, and /J a suitable
transformation [irb]. We indicate the choice of π and b.

Choice of m. By the definition 2.2(i), the sets \p\ and \p\ will be finite sets of natural
numbers. Hence there exists a n J V 6 « such that \p\ υ \p\ C N. Now it is not hard to
select π £ Fm satisfying the following requirement:

Let us fix this IT e Tm.
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Choice of b. We set F = U „,,·«=„(£/„,• U Fro). Since (0, F) e PS1, F C Fun will be a
set of power < ω,. Let ((fa, ga): a ε ω,) be some enumeration of the set F X F. We
define* = {a e ω,:/«(a) = ga(a)}.

From the choice of 6 and the definition 5.1, we immediately obtain:
(a) /// G F, then bf $ F. (For the definition of bf, see 5.1.)
Thus, τ £ Γ Β and i C w , have been chosen. Now we define p' = [irb]p, U' = [nb] U,

and V = [irb] V. (The operation of [wb] is carried out with respect to the natural number
m specified at the beginning of 5.4.) Let us prove the following properties of the sets/?',
U' and V:

\.{U', V) e Tk,p' e P(U') andp'lm = p[m.
2. U'[< m}= 0[< m\ and V'[< m] = V[< m\.
3. \p\ η | / | C m.
4.p' forc^y, φ.
5.1fn>m and i ε «, then C/m Π V'M = U* η Fm = 0.
Assertion I follows from 5.4.2 and 5.2.7, 5.2.5 and 5.2.6.
Assertion 2 follows from 5.2.6.
For the proof of 3, we observe that \p\ C Ν by the choice of N. On the other hand, it

is not hard to verify that \p\ = ir"\p\, and thus, by the choice of Ν and π, ify ε \ρ'\, then
either./ < m orj > N. Now 3 is obvious.

Further, assertion 4 follows from 5.4.3 and Theorem 5.3; the identity of the formulas φ
and [π6]φ holds by virtue of the absence in φ of constants from cod.

It remains to verify 5. Assume η > m and / e ω. Let us prove, for example, that
i/TO η V'ni = 0. (The second equality is proved similarly.) Assume, for the sake of
contradiction, that g Ε Uni η Fn',. Since the system U extends U by 5.4.2, we obtain
g ε {/„,> and thus g ε F.

On the other hand, from π G Tm, η > m, g G V^, and the definition V = [irb]V, one
infers the existence of n' > m (namely, ή = π~ι(η)) and / ε VηΊ such that g = bf.
Again, / ε F by definition of F.

Thus, f,g ε F and g = bf. But this contradicts (a), and assertion 5 is proved.
5.6. Completion of the proof of A.%(*). We have constructed sets U', V, and/»' satisfying

requirements 1-5 of 5.5. We shall use these sets to obtain a contradiction, which will
refute the assumption of the contrary of 5.4 and thus will complete the proof of principle
4.8(*).

We set/»" = /? Vρ'. (For the definition of the operation V» see 2.3.) Let us introduce
systems U" and V" by the conditions C/J = Uni υ U^ and FJ = Fro υ F ·̂.

Let us prove the following auxiliary assertions.
\.Ifn<m and i ε ω, then C/m C U^ and t/m. C V'M.
2. Ifn, i ε ω, then UM η Fn',. - l £ η VM = 0.
3. The pair (£/", V") belongs to PS and extends the pairs (U, V) and(U', V).
4. U"[< k] = U'[< k] and V"[< k] = F'[< k] (k was introduced in 5.4).
5. The pair (U", V") belongs to Tk.
6.p" ε P0,p" > pandp" > p'.
l.p" ε P(U").
Assertion 1 follows from 5.4.2 and 5.5.2.
Assertion 2 for η > m is obtained directly from 5.5.5. If η <m, then 2 follows

immediately from 1 and the equality U^ η V'M = 0, which is a consequence of (U', V)
ε PS (and the latter is valid because of 5.5.1, since Tk C PS).
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Further, (£/", V") e PS follows from 2 and the fact that the pairs (U, V) and
(i/', V) belong to PS (for the pair (U, V) this was mentioned in 5.4.1). The remaining
part of assertion 3 is obvious.

For the proof of 4, it suffices to apply 1, making use of k < m and the definitions of
U" and V". Now from 4, the definition of Tk, and the assertion (£/', V) e ΓΛ (cf. 5.5.1),
we obtain a proof of 5.

For a proof of 6 we note that from 5.5.1 and 5.4.3 it follows OasA p'\,m > ρ \m. Now 6
follows from 2.3.5, 2.3.2, and 5.5.3.

Finally, remember that;? ε P(U) and// e P(U') (cf. 5.4.1 and 5.5.1). From this and
the definition of the system U" and the set/?" = ρ \Jρ', and by virtue of/?" e Ρο, which
already has been proved, we have/?" e P(U"). Assertions 1-7 are proved.

Now we obtain a contradiction. From assertions 3, 6, 7, 5.4.1 and 4.3.2 it follows that
p" IOTCV«V~ ~ φ. Similarly, using 5.5.4 instead of 5.4.1, we have/?" forc^.,^ φ. But these
last two assertions contradict each other according to 4.3.3, since (U", V") e Tk has
been noted in 5, and k = com(<p) holds by 5.4.1.

The contradiction that we have obtained refutes the assumption of the contrary in 5.4
and completes the proof of principle 4.8(*). Thus we have completely proved Theorem
4.9 and proposition (i) of the third formulation of FT in 4.1.

§6. The analytic definability in L[G] of all

constructive sets of natural numbers

In this section we intend to prove proposition (ii) of the third formulation of FT. Thus
the fundamental theorem will be completely proved. We begin with the definition of
formulas which will ensure the definability in L[G] of every constructible r C ω.

6.1. The formulas Φη. For every η e ω, we introduce the following formula Φη(5, i)
with variables S and i and constructible parameters U*, V*, and n:

(Dn(S, i ) ^ 5 s S e q & i e M & ( V / e t / ; i ){S does not cover f]&

(Vf^V*ni)[S covers fl.

We shall explain the use of the formulas Φπ for definability. Assume G is a i/*-g.f.
Theorem 2.6 and the proposition U% n ^ = 0 of 3.9.2 imply the following result.

COROLLARY. If η EL ω and i e gG(n), then the formula Φη(5^, i) is true in L[G]. Thus,
since S% e. L[G], the formula 3 5 ΦΛ(5, /) is true in L[G].

(The special properties of the construction of U* do not enter into the validity of the
corollary.)

We shall prove, using the special properties of U*, that if ι £ gG(n), then 3S Φη(5, /)
is false in L[G] (Theorem 6.3). Thus, the set r = gG(n) turns out to be definable in L[G]
by the formula 3S ΦΛ(5, /). Moreover, Proposition 2.5.1 enables us to define every
constructible r C ω by a formula of that form. Finally, with the help of 3.9.5, we shall
prove that every formula 3 5 Φη(5, ι) is equivalent in L[G] to a suitable analytic formula
(even occuring in Σι

η+5). This will complete the proof of (ii) in 4.1.

6.2 A sharpening of the representation theorem. We need a somewhat stronger form of
Theorem 2.7.2, based on 2.5.3.

We introduce the following definition: the set c = (Qh: h e Seq) e Cod is said to be
(n, i)-evasive if for all h e Seq and ρ e Qh we have p(n, i) = (0, 0).
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COROLLARY (of Theorem 2.7.2). Assume that G is a U*-g.f., S ε L[G], and S C Seq.
Assume also that n, i ε ω and i £ gG(n). Then there exists an (n, f)-evasive c G Cod(C/*)
such that S = cG.

PROOF. By Theorem 2.7.2, there exists a (not necessarily (n, /)-evasive) c' ε Cod(t/*)
satisfying c'G = S. Let c' = (<2A': h ε Seq). Define Qh = {p ε gA': />(π, ι) = (0, 0)} and
c = (Qh: h £ Seq), and let us show that c is what is required.

By construction, c ε Cod( U*) and c is (n, /)-evasive. Hence, by choice of c', it suffices
to prove the equality c'G = cG; that is, the equivalence G η βΑ' = 0 = G η gA = 0 for
arbitrary A ε Seq. But this equivalence is obtained directly from 2.5.3.

63. Formulation and beginning of the proof of the "falsity theorem". Our next goal is the
proof of the following theorem.

THEOREM. Assume that G is a U*-g.f., n, i £ ω, and i & gG(n). Then the formula
3S Φη(Ξ, i) is false in L[G].

The proof of this theorem will be concluded in 6.5. It begins by assuming the contrary:
the formula Φη(5, i) is true in L[G] for some 5 ε L[G]. By Corollary 6.2, there exists an
(n, /)-evasive c = (Qh: h ε Seq) ε Cod(C/*) such that S = cG. Thus, the formula
Φη(ί:σ, ι) is true in L[G]. This implies the existence of/>0£ G such that the following
holds:

l.p^l·**!»^,!).
Here and below we shall write I h * instead of I h^.. Remember that G and x, for every

χ ε L, are constants of the forcing language (see 2.4).
Now we shall obtain a contradiction. The sets n, i, G,p0 and c = (Qh: h e Seq) that

we have introduced will be fixed in the reasoning in 6.4-6.5.
6.4. The set D. All the reasoning of this subsection is carried out in L. First of all,

because of 3.9.3 we can fix β ε ω2 such that p0 G P( Up). Now we introduce the
following definition.

If γ ε ω,, / ε Fun, and ρ ε Ρο are such that (Υμ ε ωχ)[μ > γ -*ρ is incompatible
with every q e Qj\^ then we shall write 3ί(γ, f,p).

REMARK. If / ε Fun and μ ε ω,, then h = f\ μ belongs to Seq, and Qfl/l = Qh has
been fixed in 6.3.

We shall prove two lemmas about the formula 31.

LEMMA 1. /// ε F*, γ ε ωχ,ρ e P(U*), and ρ >/»0, then ~3ί(γ,/,/>).

PROOF. From 6.3.1,ρ >po,f ε F*, and the definition of Φη it follows that;» I h * "cG

covers F'. This means that there existspx ε P(U*),pl > p, and μ e ω,, μ > γ, such that
/>, I l· * " h e cG", where A = / | μ e Seq. By definition of cG (cf. 2.7), this implies the
existence of q ε Qh such that/>, is compatible with q. The ρ also is compatible with q,
since px > p. This yields — 91(γ,/,/>)·

LEMMA 2. If f ε ί/η*, /A<?n iAere ex/ίί t ε .Ρ(ί/*) α/κ/ γ ε ω, such that t > ρ0 and

9ί(γ,/,0·

PROOF. From 6.3.1,/ ε U*it and the definition of Φη one infers the existence of γ ε ω,
and t ε P(U*) such that t > p0 and the following holds:

(1) t 11- * " c G does not cover f above γ".
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Let us show that t is what is required; that is, 2ί(γ,/, t). Assume the contrary. Then
there exist μ £ «„ μ > γ, and q e ζ)^μ such that t is compatible with q. Set h = f\ μ.

Note that / e P(U*) holds by our choice of t, and q e P(U*) follows from c ε
Cod(t/*). Hence, applying 2.3.3, we deduce that the set t' = t\J q belongs to P(U*) and
satisfies t' > t and t' > q.

The latter assertion implies, in particular, that t' I l· * "q G G", and, in addition, t' I h *
"h ε cG" by the definition of cG and the fact that q ε Qh. But this obviously contradicts
(1) and the fact that t' > t and μ > γ. The lemma is proved.

Now we define D as the collection of all pairs (U, V) ε PS such that there exist
γ 6 « , , / 6 Km, and/? ε /*(l/) satisfying/? > p0 and 21(γ,/,/>)· Using various parts of
Proposition 3.2 on definability, we can easily verify that D ε Σ2

2) (with parameters /, p0,
c ε Ηω2). Hence, applying property 3.6(ii) of the sequences U" and V" that were fixed
in 3.9, we can find α ε ω2, α > β, such that one of the following two assertions is
satisfied:

3. (C/°, F « ) e Z».
4. There is no pair (U, V) e D extending the pair (Ua, Va).
We shall show that each of these assertions leads to a contradiction. We begin with

assertion 3.
So, assume (Ua, V) e D. By the definition of D and by 3.9.1 and 3.9.2, this means

that there exist ρ e P(U*) and / e K* such that ρ >p0 and 91(γ,/,/>). But this
contradicts Lemma 1. Thus assertion 3 has quickly led to a contradiction.

6.5. Completion of the proof of Theorem 6.3. Now we intend to reduce assertion 4 of 6.4
to a contradiction. The reasoning of this subsection, like that of 6.4, proceeds within L.

So, assume that there is no pair (t/, V) E. D, extending (ί/α, V).
For ρ e Po and m,j e ω, we shall denote by Fp(m,j) the set {g e Fun: 3v[(v, g) e

A']}, where X is the second component of the pair p{m,j); that is, p(m,j) = (s, X) for
some s C Seq.

Definition 2.2 implies that Fp(m,j) C Fun is at most countable.
Further, the set [/„" has power < ω,, since (Ua, V) ε PS (cf. 3.9.1). On the other

hand, U*t has power ω2 by 3.9.4. Hence there exists/ e t/* — i/n". Fix such an/ G Fun.
We shall prove the following result.

LEMMA. There exist ρ ε P(U*) and γ ε ω, such that ρ > po,f & Fp(n, i), andΊ1(γ, f, p)
holds.

(Remember that «, i and/>0 were fixed, beginning with 6.3.)
PROOF. By 6.4.2, there exist t ε P{ U*), t > p0, and ν ε ω, such that the following

holds:

We shall change / slightly in order to obtain the desired p. Let t(n, i) — (s, X). Set
Ar

1 = {(»>, g) ε X: g ¥=f}; that is, Ar

1 is obtained from X by eliminating from X all pairs
of the form (»>,/), where/ ε Fun was fixed above.

Now we define/? ε P(U*) by the conditions/?(0) = t(0),p(n, i) = (s, XX), andp(m,j)
= t(m,j) for m φ η \J j' φ 1. Let us show that the/? just constructed, together with the γ
chosen above, are what is required.

From / £ ? ( t/*) and the construction of p, it is clear that ρ does indeed belong to
P(U*). Moreover, the change top from / has to do only with the function/in the («, j)th
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component. On the other hand,/>0 G P(Ua) (this follows from α > β, the choice of β in
6.4, and 3.9.1), and/ £ l/^. From this, together with t > PQ, one easily obtains ρ > p0.

The assertion/ <$. Fp(n, i) holds by definition of p.
It remains to verify 9Ι(γ, /,/»). Assume the contrary. This means that there exist

μ ε «„ μ > y, and ? ε ^ μ such that the following is satisfied.
(2) ρ is compatible with q.
Let us show that t also is compatible with q (this would contradict (1)). It suffices to

verify that the compatibility criterion 2.3.4 is satisfied for / and q, using the fact that this
criterion holds for ρ and q by (2).

By construction of p, the equations ̂ (0) = i(0) and p(m,j) = t(m,j) for m φ η \J j φ
i are valid. Hence, by (2) and criterion 2.3.4 lot ρ and q, we conclude that for the proof
of the compatibility of t and q it suffices to verify only conditions (2) and (3) of 2.3.4 for
t and q, and, moreover, only for those η and ι which were fixed, beginning with 6.3. But
for these η and i the equation q(n, i) = (0, 0) holds, since q e Qf^ and the set c = (Q^.
h G Seq) is (n, /)-evasive (cf. 6.3). In this situation, 2.3.4 (2,3) obviously holds for / and q
(and for the given η and i).

Thus, the compatibility of t and q has been established. But this fact contradicts
assertion (1) be virtue of the choice of μ > y and q G Qy,^

This contradiction completes the proof of %(y, f, p) and the lemma.
Let us return to the proof of Theorem 6.3 (analysis of case 6.4.4). According to the

lemma just proved, there exist ρ G P(U*) and γ G «j such that / £ Fp(n, i), and we
have

(3)p>poand%(y,f,p).
We define a system U by the conditions U^ = U^ υ Fp(m,j) for all m,j e ω, and a

system V by the conditions Vmj = V^ for m φ η \J j φ i, and VM = V% υ {/}. Taking
into account that / £ U% and ρ e P(U*), we can easily verify that the pair (U, V)
belongs to PS and extends the pair (Ua, V). It is also obvious that ρ e P{U) and
/ e Vni. Now {U, V) ε D follows from (3).

Thus we have found a pair (U, V) G D, extending the pair ({/", V). But this
contradicts the assumption 6.4.4.

Thus, each of the assumptions 6.4.3 and 6.4.4 leads to a contradiction. Therefore the
assumption of the contrary in 6.3 also leads to a contradiction, and Theorem 6.3 is
proved.

6.6 Analytic definability of all constructible sets. Now we can prove proposition (ii) of
the third formulation of the fundamental theorem (cf. 4.1). We fix an arbitrary t/*-g.f. G,
and prove that every constructible r C ω is analytically definable in L[G\. First, we
obtain

COROLLARY 1. // r C ω is constructible, then there exists an η e ω such that

r = {/ G ω: 3 5 Φη(Ξ, i) is true in L[G] }.

PROOF. By 2.5.1, there is an η G ω such that r = gG(n). This η is what is required, by
virtue of Corollary 6.1 and Theorem 6.3.

Now we show that every formula BS Φπ(5, i) determines in L[G] an analytically
definable set.

LEMMA 2. Assume η G ω and r = {/ G u: BS Φη(5, i) is true in L[G]}. Then r G Σ^ + 5

in L[G].
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PROOF. We define Η = {χ e L[G\. the transitive closure of χ is at most countable in

L[G]}, and Ζ = {χ e L: the power of the transitive closure of χ is not greater than <o,L

inL}.

We note that cof is denumerable in L[G] by 2.5.1, and ω/" is nondenumerable in L[G]

(this is derived in the usual way from 2.3.1 and 2.3.3; cf., for example, [4], Lemma 56).

Hence u{*lG] = ω2

£. From this and the definition of Η and Ζ it follows that Ζ = Η η L

= {ζ e Η: "ζ is constructible" is true in H). But the formula "is a constructible set" is

a Σ,-formula (cf. [10], p. 38 or p. 82). Therefore we have

(1) Ζ e 2f; that is, Ζ is definable in Η by some ^-formula.

On the other hand, it is clear that Ζ is the set (//w2)
L- Hence the sets Cn = {(/,/):

/ e ω and / e t/*} and C'n = {(»',/): i e ω and / e F*} belong to Σ ^ + 3 by Lemma

3.9.5. From this and (1), we obtain

(2) The sets Cn and C'n belong to Σ ^ + 3 .

In addition, by the definition of ΦΛ, Cn and C'n we have the equation

r = {i e ω: 3 5 V/[ [(/,/) £ C , ^ S does not cover/]

&[(/,/) e Cn' -> S covers/] ] is true in # } .

This equation and (2) imply

(3) The set r belongs to Σ ^ + 4 .

Finally, the definability in the collection Η of all sets which are hereditarily countable

in L[G] is related to analytic definability in the following way (cf. [11], the lemma on p.

281):

Assume that m > 1 and that a C ω belongs to L\G\. Then α ε Σ " // and only if

a <EZl

m + 1inL[G].

From this and (3) it follows that a G Σ^ + 5 in L[G], and the lemma is proved.

Corollary 1 and Lemma 2 imply the basic result of this section:

THEOREM 3. If r C ω is constructible, then r is analytically definable in L[G] for any

U*-g.f. G.

Combining this theorem with Theorem 4.9, we complete the proof of the fundamental

theorem FT in its third formulation (cf. 4.1).

The author is profoundly indebted to V. A. Uspenskii for valuable discussions.
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