Fully saturated extensions of standard universe

Vladimir Kanovei, Michael Reeken, Saharon Shelah

It seems that it has been taken for granted that there is no distinguished, definable, countably saturated nonstandard model of the reals. Of course $\mathbf{V} = \mathbf{L}$ implies the existence of such an extension (take the first one in the sense of the canonical well-ordering of \mathbf{L}), but the existence provably in **ZFC** was established quite recently in [1]. (Without Choice the existence of *any* elementary extension of the reals, containing an infinitely large integer, is not provable.) The existence of a definable fully saturated (that is κ -saturated for any cardinal κ) elementary extension of the whole set universe of **ZFC** is an even more challenging problem.

Theorem 1 There exists, provably in **ZFC**, a definable fully saturated elementary extension of the whole set universe of **ZFC**.

Such an extension can be viewed as an interpretation of bounded set theory **BST** in **ZFC**, such that the standard core of the interpretation coincides with the **ZFC** universe. (**BST** is an improved, foundations-friendly modification of internal set theory **IST**, in which every set is postulated to belong to a standard set.) Such an interpretation of **BST** was earlier obtained only on the base of Global Choice variants of **ZFC**. It is known that **IST** itself does not admit such an interpretation.

The proof of Theorem 1 consists of an Ord-long chain of consecutive iterated ultrapowers of the set universe of **ZFC**.

 V. Kanovei and S. Shelah, A definable nonstandard model of the reals, JSL 2004, 69, 1, 159–164.

V. Kanovei: IITP, Bol. Karetnyi 19, Moscow 127994, Russia, kanovei@mccme.ru, supported by RFFI and DFG — the contact author.

M. Reeken: University of Wuppertal.

S. Shelah: Jerusalem, Rutgers, supported by ISF.