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Abstract. According to Tzouvaras, a set is nontypical in the Russell sense
if it belongs to a countable ordinal definable set. The class HNT of all
hereditarily nontypical sets satisfies all axioms of ZF and the double inclu-
sion HOD ⊆ HNT ⊆ V holds. Several questions about the nature of such
sets, recently proposed by Tzouvaras, are solved in this paper. In particular, a
model of ZFC is presented in which HOD � HNT � V, and another model
of ZFC in which HNT does not satisfy the axiom of choice.

1. Introduction

One of the fundamental directions in modern set theory is the study of important
classes of sets in the set theoretic universe V, which themselves satisfy the axioms
of set theory. The Gödel class L of all constructible sets traditionally belongs to
such classes, as well as the class HOD of all hereditarily ordinal definable sets,
see [12]. Both L and HOD are transitive classes of sets in which all the axioms
of the ZFC set theory, with the axiom of choice AC, are fulfilled (even if the
universeV itself only satisfies ZF without the axiom of choice). These classes satisfy
L ⊆ HOD ⊆ V, and as it was established in early works on modern axiomatic set
theory, the class HOD can be strictly between the classes L ⊆ V in suitable generic
extensions of L.

Recent studies have shown considerable interest in other classes of sets based on
the key concept of ordinal definability, which also satisfy set-theoretic axioms. In
particular, the classes of nontypical and hereditarily nontypical sets are considered;
Tzouvaras [27, 28] connects this terminology with philosophical and mathematical
studies of Bertrand Russell and the works of van Lambalgen [25] et al. on the
axiomatization of the concept of randomness.

Definition 1.1. The set x is nontypical, for short x ∈ NT, if it belongs to a
countable OD (ordinal definable) set. The set x is hereditarily nontypical, for short
x ∈ HNT, if it itself, all its elements, elements of elements, and so on, are all
nontypical, in other words the transitive closure TC(x) satisfies TC(x) ⊆ NT.

The classes NT and HNT in this definition correspond to NTℵ1
and HNTℵ1

in the basic definition system of [28]. Similarly defined narrower classes NTℵ0

(elements of finite ordinal definable sets) and HNTℵ0
in [28] are precisely the

algebraically definable and hereditarily algebraically definable sets that have been
investigated in recent papers [6, 7, 10, 11] and are not considered in this article.
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The class NT is not necessarily transitive, but the possibly smaller class HNT ⊆
NT is transitive and, as shown in [28], satisfies all axioms of ZF (the axiom of choice
AC not included), and also satisfies the relation HOD ⊆ HNT ⊆ V. As for the
axiom of choice, if V = L (the constructibility axiom), then HNT = HOD = L
obviously holds, so in this case AC holds in HNT.

Problem 1.2 (Essentially Tzouvaras [28, §2]). Is it compatible with ZFC that the
axiom of choice AC does not hold in HNT?

The next problem of Tzouvaras [28, 2.15] aims to clarify the possibility of the
precise equalities in the relation HOD ⊆ HNT ⊆ V.

Problem 1.3. Are the next sentences compatible with ZFC?

(I) HOD = HNT � V;
(II) HOD � HNT = V;
(III) HOD � HNT � V.

We answer all these questions in the positive. This is the main result of this
article. It is contained in Theorems 2.1, 3.1, 4.1, 5.1. The answer will be given
through the construction of four corresponding models of ZFC by the method of
generic extensions of the constructible universe L.

We begin with a model for Problem 1.3(I). Theorem 2.1 proves that it is true in
the extension L[a] of L by a single Cohen generic real a that L = HOD = HNT �
L[a]. This is based on our earlier result [19] that the Cohen real a does not belong
to a countable OD set in L[a]. (Corollary 5 in [6] by G. Fuchs gives a more general
result.)

As for Problem 1.3(II), we make use (Section 3) of a forcing notion P introduced
in [14] in order to define a generic real a ∈ 2ω whose E0-equivalence class [a]E0

is a
lightface Π1

2 set with no OD element.
A positive answer to Problem 1.3(III) is given by means of the finite-support

product P<ω of essentially Jensen’s forcing notion P ∈ L as in [13]. We prove in
Section 4 that HOD � HNT � V holds in P<ω-generic extensions of L.

Further in-depth study of such P<ω-generic extensions in Section 5 demonstrate
that the class HNT in such an extension fails to satisfy the axiom of choice. This
gives a positive solution to Problem 1.2.

2. Model I in which not all sets are nontypical

The following theorem solves Problem 1.3(I) in the positive. We make use of a
well-known forcing notion.

Theorem 2.1. If a ∈ 2ω is a Cohen generic real over L then it is true in L[a] that
L = HOD = HNT � L[a].

Recall that Cohen generic extensions involve the forcing notion C = 2<ω (all
finite dyadic sequences). Countable OD sets in Cohen extensions are investigated
in our papers [19, 22]. In particular, we’ll use the following result here.

Lemma 2.2 ([19, Thm 1.1]). Let a ∈ 2ω be Cohen-generic over the set universe
V. Then it holds in V[a] that if Z ⊆ 2ω is a countable OD set then Z ∈ V.

This result admits the following extension for the case V = L:
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Corollary 2.3. Let a ∈ 2ω be Cohen-generic over the constructive universe L.
Then it holds in L[a] that if X ∈ L and C ⊆ 2X is countable OD then C ⊆ L.

Proof. As C is countable, there is a set Y ⊆ XY ∈ L, countable in L and such that
if c �= d belong to C then c(x) �= d(x) for some x ∈ Y . Then Y is countable and
OD in L[a], so the projection D = {c�Y : c ∈ C} of the set C will also be countable
and OD in L[a]. We have D ⊆ L by the lemma. (The set Y here can be identified
with ω.) Hence, each d ∈ D is OD in L[a]. However, if c ∈ C and d = c�Y , then by
the choice of Y it holds in L[a] that c is the only element in C satisfying c�Y = d.
Hence, c ∈ OD. So c ∈ L, by the homogeneity of Cohen forcing. �

Proof (Theorem 2.1). The fact that L = HOD in L[a] is a standard consequence
of the homogeneity of the Cohen forcing C. Further, it is clear that HOD ⊆ HNT.
Let’s prove the inverse relation x ∈ HNT =⇒ x ∈ L in L[a] by induction on the
set-theoretic rank rkx of sets x ∈ L[a]. Since each set consists only of sets of
strictly lower rank, it is sufficient to check that if a set H ∈ L[a] satisfies H ⊆ L
and H ∈ HNT in L[a] then H ∈ L. Here we can assume that in fact H ⊆ Ord,
since L allows an OD well-ordering. Thus, let H ⊆ λ ∈ Ord. Additionally,
since H ∈ HNT, we have, in L[a], a countable OD set A ⊆ P(λ) containing H.
However, A ∈ L by Corollary 2.3. This implies H ∈ L. �

3. Model II in which there are more nontypical sets than HOD sets

The following theorem solves Problem 1.3(II) positively.

Theorem 3.1. There is a generic extension of the constructible universe L, in
which it is true that HOD � HNT = V.

Before the proof starts, we recall some definitions related to perfect and Silver
trees. By 2<ω we denote the set of all tuples (finite sequences) of terms 0, 1, includ-
ing the empty tuple Λ. The length of a tuple s is lh s, and 2n = {s ∈ 2<ω : lh s = n}
(all tuples of length n). A tree ∅ �= T ⊆ 2<ω is perfect, symbolically T ∈ PT, if it
has no endpoints and no isolated branches. In this case, the set

[T ] = {a ∈ 2ω : ∀n (a�n ∈ T )}

of all branches of T is a perfect set in 2ω.

• If u ∈ T ∈ PT, then a portion (or a pruned tree) T �u ∈ PT is defined by
T �u = {s ∈ T : u ⊂ s ∨ s ⊆ u}.

• Let σ ∈ 2<ω. If v ∈ 2<ω is another tuple of length lh v ≥ lhσ, then
the tuple v′ = σ �v of the same length lh v′ = lh v is defined by v′(i) =
v(i) +2 σ(i) (addition modulo 2) for all i < lhσ, but v′(i) = v(i) whenever
lhσ ≤ i < lh v. If lh v < lhσ, then we just define σ �v = (σ� lh v) �v.

If T ⊆ 2<ω, then the set σ �T = {σ �v : v ∈ T} is a shift of T .
A tree T ⊆ 2<ω is a Silver tree, symbolically T ∈ ST, if there is an infinite

sequence of tuples uk = uk(T ) ∈ 2<ω, such that T consists of all tuples of the form

s = u0
�i0�u1

�i1�u2
�i2� . . . �un

�in

and their subtuples, where n < ω and ik = 0, 1. In this case [T ] consists of all
infinite sequences a = u0

�i0�u1
�i1�u2

�i2� · · · ∈ 2ω, where ik = 0, 1, ∀ k.
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Recall that the equivalence relation E0 is defined on 2ω so that a E0 b iff the
set a Δ b = {k : a(k) �= b(k)} is finite. To prove Theorem 3.1, we will use an OD
E0-equivalence class

[a]E0
= {b ∈ 2ω : a E0 b} = {σ �a : σ ∈ 2<ω}

of a non-OD generic real a ∈ 2ω, introduced in [14] and also applied in [8, 20, 21].
This is done by a forcing notion P having the following key properties, see [14].

(1∗) P ∈ L, P ⊆ ST consists of Silver trees and is ordered by inclusion: smaller
trees are stronger conditions.

(2∗) If u ∈ T ∈ P and σ ∈ 2<ω then T �u ∈ P and σ �T ∈ P—this is the property
of invariance w.r.t. shifts and portions.

(3∗) P satisfies the countable antichain condition CCC in L.
(4∗) The forcing P adjoins a generic real a ∈ 2ω to L, whose E0-class [a]E0

=
{b ∈ 2ω : b E0 a} is a (countable) OD, and even Π1

2 (lightface) set in L[a].
(5∗) If a real a ∈ 2ω is P-generic over L, then a is not OD in the generic exten-

sion L[a]. (This property is an elementary consequence of the invariance
property as in (2∗), see Lemma 7.5 in [14].)

Proof (Theorem 3.1). Let a real a ∈ 2ω be P-generic over L. According to (4∗) the
real a belongs to HNT in L[a]. Moreover let z ∈ L[a] be arbitrary. Then by Gödel
we have z = F (a), where F is an OD function defined on 2ω, in L[a]. It follows that
z ∈ Z = {F (b) : b ∈ [a]E0

}, where Z is a countable OD set along with [a]E0
, hence

z ∈ HNT in L[a]. We conclude that the equality HNT = V holds in L[a]. On the
other hand, a �∈ OD in L[a] by (5∗), thus HOD � HNT in L[a], as required. (A
more thorough analysis based on (2∗) shows that HOD = L in L[a].) �

4. Model III: Nontypical sets in general position

The following theorem positively solves Problem 1.3(III), providing a model in
which hereditarily nontypical sets are strictly between HOD and V.

Theorem 4.1. There is a generic extension of L, in which HOD � HNT � V.

We make use of a forcing notion P ∈ L defined in [17, §7] in order to obtain
a model with a nonempty countable OD set of pairwise generic reals, containing
no OD reals.1 Modulo technical details, this forcing coincides with the Jensen
forcing from [13] (also presented in [12, 28.A]). The crucial step in [17] was the
proof that those key properties of Jensen’s forcing responsible for the uniqueness
and definability of generic reals, previously established for P and its finite products
Pn, for example, in [2], also hold for the countable product P<ω. This forcing and
its derivatives were used in [1] and recently in [5,16,24] for various purposes. This
forcing notion P has the following main properties (1◦)–(5◦), see [17].

(1◦) P ∈ L, P ⊆ PT, P contains the full tree 2<ω, and P is ordered by inclusion,
so that smaller trees are stronger conditions.

(2◦) If u ∈ T ∈ P, then the portion T �u also belongs to P.
(3◦) P satisfies CCC in L: each antichain A ⊆ P is at most countable.

1Note the difference with the model used in Section 3. A countable OD set [a]E0 ⊆ 2ω sans OD
reals, used there, is an E0-equivalence class whose elements by necessity are in close connection
with each other. Now we are getting a countable OD set X ⊆ 2ω sans OD elements such that
its elements are mutually generic, that is, extremely far from each other.
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(4◦) The set P<ω, that is, the weak product, or product with finite support, also
satisfies CCC. To be precise, here P<ω consists of all functions τ : dom τ →
P, where dom τ ⊆ ω is finite, say dom τ = {0, 1, . . . , n} for some n.

(5◦) ForcingP<ω naturally adjoins a generic sequence of the form a = 〈an〉n<ω ∈
(2ω)ω of P-generic reals an ∈ 2ω to L. The corresponding set W (a) =
{an : n < ω} ⊆ 2ω is a (countable) OD, and even lightface Π1

2 (without
parameters) set in the generic extension L[a].

Proof (Theorem 4.1). We consider a P<ω-generic extension L[a] as in (5◦), where
a = 〈an〉n<ω ∈ (2ω)ω is a P<ω-generic, over L, sequence of P-generic reals an ∈ 2ω.
Thus, in L[a], W (a) = {an : n < ω} ⊆ 2ω is a countable OD set containing no OD
elements. In other words, if n < ω then an ∈ HNT �HOD, and hence we have
HOD � HNT in L[a]. (This observation is due to Tzouvaras [28, 2.13].)

Now we prove that HNT � V in L[a]. Utilizing another argument by Tzou-
varas [28, 2.12], we show that in fact a �∈ HNT in L[a]. Suppose to the contrary
that X ∈ L[a], a ∈ X ⊆ (2ω)ω, and it holds in L[a] that X is a countable OD set,
say X = {x ∈ (2ω)ω : ϕ(x,γ)} in L[a], where γ = 〈γ0, . . . , γm〉 is a tuple of ordinals.
This is forced by a condition τ = 〈T0, . . . , Tn〉 ∈ P<ω extended by a, so that

(∗) Ti ∈ P, ai ∈ [Ti] for i ≤ n, and if a sequence b ∈ (2ω)ω is P<ω-generic
over L and extends τ then it is true in the extension L[b] that the set
Xb = {x ∈ (2ω)ω : ϕ(x,γ)} is countable and contains b.

To get a contradiction let B ∈ L be the set of all bijections β : ω
onto−→ ω,

β ∈ L, such that β(j) = j for all j ≤ n. Arguing with the generic sequence
a = 〈an〉n<ω ∈ (2ω)ω as above, if β ∈ B then define the superposition a◦β ∈ (2ω)ω

by (a ◦ β)(j) = a(β(j)) for all j. Consider the set A = {a ◦ β : β ∈ B} in L[a].
First of all A is uncountable in L[a] since B is obviously uncountable in L and

cardinals do not collapse by (3◦).
Secondly if b = a ◦ β ∈ A then b is P<ω-generic over L since so is a and

β ∈ B ∈ L, and obviously L[b] = L[a], so that Xb = Xa. And finally in this case
we have b(j) = a(j) for all j ≤ n by the definition of B, therefore b still extends
the condition τ , and we have b ∈ Xb by 4. To conclude,

A = {a ◦ β : β ∈ B} ⊆
⋃

β∈B

Xb = Xa,

but A is uncountable in L[a] while Xa = X is countable. This contradiction com-
pletes the proof that a �∈ HNT in L[a], and ends the proof of Theorem 4.1. �
Remark 4.2. Further studies in the next section will show that in fact HNT fails
to satisfy AC in P<ω-generic extensions of L. One may ask whether the relation
HOD � HNT � V can be realized by a generic model in which the classHNT still
satisfies the full ZFC with the axiom of choice. The positive answer has recently
been obtained in [23] by means of a (P× the Cohen forcing)-generic extension of L,
where P is the forcing notion used in Section 3. This construction involves rather
lengthy investigation of different properties of Borel maps defined on 2ω × ωω.

5. Model IV: Nontypical sets sans the axiom of choice

The following theorem solves Problem 1.2 in the positive.

Theorem 5.1. It is true in P<ω-generic extensions L[a] as in (5◦) of Section 4
that the class HNT does not satisfy AC.
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The theorem will be a simple consequence of the next lemma.
In the remainder, if W ⊆ 2ω is infinite then C(W ) will denote the Cohen forcing

for adding a generic 1–1 function f : ω
onto−→ W . Thus, C(W ) consists of all 1–1

functions p : dom p → W , where dom p ⊆ ω is finite.

Lemma 5.2. Let a = 〈an〉n<ω be a P<ω-generic sequence over L. Then:

(i) the set W = W (a) (defined as in (5◦)) is not well-orderable in L(W );
(ii) L(W ) ⊆ (HNT)L[a];
(iii) a is a C(W )-generic function over L(W )2;
(iv) if b ∈ Wω is a C(W )-generic function over L(W ) then b is a P<ω-generic

sequence over L in the sense of (5◦) and L(W )[b] = L[b];
(v) if b ∈ Wω, the pair 〈a,b〉 is (C(W ) × C(W ))-generic over L(W ), and

Z ∈ L(W )[a] ∩ L(W )[b], Z ⊆ L(W ), then Z ∈ L(W );
(vi) if Z ∈ L[a], Z ⊆ Wω is a countable OD set in L[a], then Z ⊆ L(W ).3

Proof (Lemma). To prove (ii), note that W is a countable OD set in L[a] by (5◦)
of Section 4, therefore W belongs to HNT in L[a].

Further, (i) is a common property of permutation models.
To prove (iii), assume towards the contrary that there is a set D ∈ L(W )D ⊆

C(W ), dense in C(W ), and such that no condition q ∈ D is extended by a. As an
element of L(W ), the set D is definable in L(W ) in the form:

D = {q ∈ C(W ) : ϕ(q,W, a0, . . . , am, x)},
where x ∈ L, m < ω, and a0, . . . , am are the initial terms of the sequence a. There
is a condition τ ∈ P<ω extended by a, which forces our assumption over L with
P<ω as the forcing notion. That is, if a P<ω-generic sequence b = 〈bn〉n<ω extends
τ then the set

D(b) = {q ∈ C(W (b)) : ϕ(q,W (b), b0, . . . , bm, x) holds in L(W (b))}
is dense in C(W (b)), but no condition q ∈ D(b) is extended by b.

We can w.l.o.g. assume that dom τ = {0, 1, . . . ,m}.
Now consider a condition p ∈ C(W ) defined by p(j) = aj for all j = 0, 1, . . . ,m.

AsD is dense, there exists a condition q∈D extending p. Then dom q = {0, 1, . . . ,m}
∪ U , where U ⊆ {m + 1,m + 2, . . . } is a finite set. If i ∈ U then by definition
q(i) = aki

, where ki ≥ m+ 1 and the map i �−→ ki is injective.

There is a bijection π : ω
onto−→ ω satisfying π(j) = j for all j ≤ m, π(i) = ki

for all i ∈ U , and π(�) = � generally for all but finitely many numbers � < ω, in
particular, π ∈ L. The sequence b = 〈bn〉n<ω, defined by bi = aπ(i) for all i < ω,
is P<ω-generic by the choice of π, and obviously W (b) = W (a) = W . In addition,
bj = aj for all j = 0, 1, . . . ,m, thus b extends τ . We also have D(b) = D(a) = D,
and hence the above-defined condition q belongs to D(b). We finally claim that b
extends q. This contradicts the contrary assumption above and completes the proof
of (iii).

2It is an important point here that the same function or sequence a ∈ Wω can act as both a
P<ω-generic object over L and as a C(W )-generic object over L(W ). Moreover, the extensions
L[a] and L(W )[a] coincide. Such representations of a one-step generic extension as a multi-step
extension (here two-step) are well known, see, for example, [9,26], [15, §7], [18].

3This claim can be compared with a result obtained in Section 4 in the course of the proof of
Theorem 4.1. There we proved that, in L[a], no countable OD set contains a. Here we establish
by (vi) that no countable OD set Z ⊆ Wω contains an element not in L(W ).
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To prove the extension claim, one has to check that q(i) = bi for all i ∈ U . If
i ∈ U then bi = aπ(i) = aki

= q(i) by construction, as required.
To prove claim (iv) of the lemma, suppose otherwise. This is forced by a con-

dition p ∈ C(W ), such that no function b ∈ Wω, C(W )-generic over L(W ) and
extending p, is P<ω-generic over L. Arguing as in the proof of (iii), we get a suit-
able permutation π that yields a function b ∈ Wω, C(W )-generic over L(W ) and at
the same time P<ω-generic over L along with a, and satisfies W (b) = W (a) = W
(as a finite permutation of a), and extends the condition p. Therefore b is C(W )-
generic over L(W ) by claim (iii) already established. This is a contradiction.

(v) This is a generally known fact, yet we add a typical proof. As Z ⊆ L(W ),
there is a set X ∈ L(W ) with Z ⊆ X. Consider C(W )-names s, t ∈ L(W ) such
that Z = s[a] = t[b], where s[a] denotes the a-interpretation of any given C(W )-
name s. By genericity, the equality s[a] = t[b] is forced by a pair of conditions
p, q ∈ C(W ), i.e. a extends p, b extends q, and if a pair 〈a′,b′〉 is (C(W )×C(W ))-
generic over L(W ) and a′ extends p, b′ extends q, then s[a′] = t[b′]. We claim
that the condition p C(W )-decides over L(W ) every sentence of the form x ∈ s[ȧ],
where ȧ is a canonical C(W )-name for the principal generic function in Wω.

Indeed otherwise there exist functions a′, a′′ ∈ Wω, C(W )-generic over L(W ) and
extending the condition p, and an element x ∈ X, such that x ∈ s[a′] but x �∈ s[a′′].
Consider a function b′ ∈ Wω, C(W )-generic both over L(W )[a′] and over L(W )[a′′],
and extending the condition q. Then either pair 〈a′,b′〉, 〈a′′,b′〉 is (C(W )×C(W ))-
generic over L(W ), but at least one of the two equalities s[a′] = t[b′], s[a′′] = t[b′]
definitely fails, which is a contradiction.

Thus p indeed C(W )-decides over L(W ) every sentence x ∈ s[ȧ]. This implies

Z = {x ∈ X : }p C(W )-forces x ∈ s[ȧ] in L(W ) ∈ L(W ).

(vi) To prove this key claim we apply a method introduced in [19]. Consider
a countable OD set Z ⊆ Wω in L[a]. Suppose towards the contrary that
Z �⊆ L(W ).

There is a formula ϕ(z) with an ordinal γ0 as a parameter, such that we have
Z = {z : ϕ(z)} in L[a]. There also exists a condition p0 ∈ C(W ), p0 ⊂ a, which
forces our assumptions, that is

(1) p0 C(W )-forces, over L(W ), that the set {z ∈ Wω : ϕ(z)} is countable and
is not included in L(W ), or equivalently, if b ∈ Wω is C(W )-generic over
L(W ) and extends p0 then it is true in the extension L(W )[b] = L[b] that
the set Φb = {z ∈ Wω : ϕ(z)} is countable and ∃ z (z �∈ L(W ) ∧ ϕ(z)). It

follows from the countability that there is a map fb : ω
onto−→ Φb, fb ∈ L[b].

Let T ∈ L(W ) be a canonical C(W )-name for fb, so fb = T [b]. Then (1) implies:

(2) p0 C(W )-forces ranT [ȧ] = {T [ȧ](n) : n < ω} = {z ∈ Wω : ϕ(z)} �⊆ L(W )
over L(W ), or equivalently, if b ∈ Wω is C(W )-generic over L(W ) and
p0 ⊂ b then it is true in L[b] that

ranT [b] = {T [b](n) : n < ω} = {z ∈ Wω : ϕ(z)} �⊆ L(W ).

Now our goal will be to get a contradiction from (2). Consider an uncountable
cardinal κ > γ0, such that the set Lκ is an elementary submodel of L w.r.t. a frag-
ment of ZFC sufficiently large to prove the part of Lemma 5.2 already established
including both (1) and (2). Then the set Lκ(W ) contains γ0 and the name T . As
elements of the model Lκ(W ) ⊆ Lκ[a], the sets W,T admit canonical P<ω-names
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in Lκ. Consider a countable elementary submodel M ∈ L of Lκ, containing those
names and γ0. Then the sets W,T and the forcing notion C(W ) belong to M(W ).

Consider the Mostowski collapse map π : M(W )
onto−→ Lλ(W ) onto a transitive set

of the form Lλ(W ), countable in L[a], where λ < ωL
1 . As W is countable, we have

π(W ) = W , π(T ) = T , and hence T ∈ Lλ(W ), C(W ) ∈ Lλ(W ).
We assert that there is b ∈ Wω satisfying

(3) L[b] = L[a], b is a C(W )-generic function over L(W ), p0 ⊂ b, and the pair
〈a,b〉 is (C(W )× C(W ))-generic over Lλ(W ).

Indeed, as the set Lλ is countable in L, there exists a bijection h : ω
onto−→ ω, h ∈ L,

equal to the identity on the (finite) domain dom p0 of the condition p0 ∈ C(W ) (see
above on p0), and generic over Lλ in the sense of the Cohen-style forcing notion B
which consists of all injective tuples u ∈ ω<ω. Let b(n) = a(h(n)) for all n, i.e.
b = a ◦ h is a superposition. Let’s check that b satisfies (3).

Indeed, the function a of Lemma 5.2 is generic over L, hence it is generic over
Lλ[h] ∈ L, and hence the bijection h is B-generic over Lλ[a] by the product forcing
theorem. Therefore h is generic over Lλ(W ), a smaller model. However a is C(W )-
generic over Lλ(W ) by (iii) of the lemma. It follows that the pair 〈a, h〉 is (C(W )×
B)-generic over Lλ(W ) still by the product forcing theorem. One easily proves then
that 〈a,b〉 is (C(W )× C(W ))-generic over Lλ(W ).

We further have L[b] = L[a], because h ∈ L. Moreover b is C(W )-generic over
L(W ), since h ∈ L induces an order isomorphism of C(W ) in L(W ). Finally h
is compatible with p0 because h is the identity on dom p0 by construction. This
completes the proof that b = a ◦ h satisfies (3). In particular W (b) = W (a) = W
holds, and ranT [a] = ranT [b] �⊆ L(W ) by (2).

On the other hand, the set Z = ranT [a] = ranT [b] is an element of the
intersection Lλ(W )[a]∩Lλ(W )[b] by construction. We conclude that Z ∈ L(W ) by
(v) of the lemma. (The above proof of (v) is valid for Lλ instead of L as the ground
model.) Therefore definitely Z ⊆ L(W ), contrary to the above. The contradiction
obtained completes the proof of (vi). �

Proof (Theorem 5.1). The set W = W (a) = {an : n < ω} belongs to HNT in L[a]

by (5◦) of Section 4. It remains to prove that W is not well-orderable in HNTL[a].
Suppose to the contrary that such a well-ordering exists. Then there is also a

bijection f ∈ HNTL[a], f : ω
onto−→ W . By definition, such a bijection belongs to

a countable OD set Z ∈ L[a], Z ⊆ Wω. According to claim (vi) of the lemma,
we have Z ⊆ L(W ), so f ∈ L(W ), i.e. W is well-ordered in L(W ), which gives a
contradiction with claim (i) of the lemma. �

6. Comments and questions

We should point to a recent paper [6] by G. Fuchs, containing a comprehensive
further study of the class of nontypical sets and its generalizations in the direction
of sets that do not belong to OD sets of a given cardinality κ, collected under a
common title of blurry definability.

Coming back to the Cohen-generic extensions, recall that if a is a Cohen generic
real over L then HNT = L in L[a] by Theorem 2.1.

Problem 6.1. Is it true in generic extensions of L by a single Cohen real that any
countable OD set consists of OD elements?
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We cannot solve this even for finite OD sets. By the way it is not that obvious
to expect the positive answer. Indeed, the problem solves in the negative for Sacks
and some other generic extensions even for pairs, see [3, 4]. For instance, if a is a
Sacks-generic real over L then it is true in L[a] that there is an OD unordered pair
{X,Y } of sets of reals X,Y ⊆ P(2ω) such that X,Y themselves are non-OD sets.
See [3] for a proof of this rather surprising result originally by Solovay.

See also Remark 4.2 as a comment.
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