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Abstract—Dynamic discrete-time games are generalized to a stochastic environment, in order
to examine the influence of various types of information structures on the course of a game.
It is shown that the information structure of a game, i.e., type and amount of information
available to players and, in particular, asymmetry of information, may lead to unexpected and
sometimes counter-intuitive effects on the game result, i.e., the players’ payoffs. The paper also
develops algorithms for obtaining the Nash equilibrium strategies in such games. These involve
reducing optimal reaction policies to the corresponding dynamic programming algorithms and
generalizing the classical optimal control technique. Results of computer simulations for a
variant of fishery harvesting game are presented.

1. INTRODUCTION

The paper studies a class of stochastic dynamic discrete-time games with explicit account of
information available to the players.

We explore a wide range of information structures in our games in order to study the role of
information available to players in constructing optimal strategies (in other words, we want to study
effects of contextual use of information in the behavior of players). Thus, we are dealing with the
semantic aspect of information (i.e., semantic information).

Two independent players perform control of a common discrete-time dynamic system, which is
also affected by random disturbing effects. At every time step, the players make decisions based
on some information about these effects. Specifically, each player selects his strategy in order to
maximize his total discounted payoff for a long enough time period provided that the other player
follows some fixed strategy. This means that the course of the game is described by the dynamic
Nash equilibrium.

Random effects mentioned above are represented by a random Markov parameter (which may
be multidimensional).

We shall explore a wide range of information structures [1] in our games. In particular, players
may possess various levels of knowledge about realizations of a random parameter, e.g., current or
delayed information [2, 3], or even information obtained from imperfect observation of a random
parameter. Moreover, information structure may be asymmetric; e.g., one player may possess
full current information while the other has only delayed or imperfect information. We shall also
consider cooperative games with different types of information structures, etc.

For each variant of the game, we propose an algorithm that reduces the original problem to a
multiple construction of the Nash equilibrium in a certain finite-dimensional space. Moreover, in
the most complicated case considered in Section 5.3, we construct an algorithm that reduces the
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problem to a multistage construction of the Nash equilibrium points in a function space, which in
turn leads to an iterative stepwise optimization procedure (at every stage).

In Sections 4.1, 5.3, and 8, we provide a set of simple propositions, whose major goal is to clarify
the main concepts and obtained algorithms. Instead of a theoretical analysis of our algorithms,
we performed extensive computations, which demonstrated fast convergence of these algorithms to
natural results for a substantial amount of initial data.

Then we present results of computer simulation for games in which information available to
players influences their optimal strategies (behavior) in a nontrivial way. The authors believe that
examination of effects that demonstrate the influence of available information on the course of the
game (i.e., the result of information utilization in the context of “organism activity”) clarifies the
very concept of “semantic informativeness.”

For a simple example of dynamic games and for demonstrative interpretation of results, following
the long tradition [4, 5], the specific context is taken to be marine fishery.

The authors consider the following observations (obtained in simulations) of information influ-
ence on the players’ behavior to be interesting and (to a certain extent) unexpected.

In the game with symmetric current information (“complete information”), reduction of the cost
of the harvest may lead to reduction of the average payoff (Fig. 2, the area around c = 0.3, solid
curve). In the game with minimum information, a similar situation takes place as well. Moreover,
there exists an area where minimum information leads to higher payoffs than complete information.
However, for the cooperative behavior of players (and symmetric access to information), we obtain
natural and expected results.

For all noncooperative games and all types of information structures, an increase in information
accuracy (starting from a certain level) leads to a decrease in average payoffs. However, cooperative
behavior of players leads to natural results again (see Figs. 3 and 4).

Figure 5 shows that, at certain levels of the environmental variability, information structure may
have unexpected influence on a game result. For example, sometimes minimal information may be
more advantageous for players than complete information.

Figure 6 demonstrates that additional information is beneficial for players only if their degree
of cooperation is high enough.

All the peculiarities of the contextual influence of information mentioned above do not seem
to be evident (to the authors) or to follow from some general considerations. Besides, they seem
to be of interest for a possible formalization of a (non-Shannon and non-Kolmogorov) concept of
information, i.e., semantic information.

Let us say a few words about the interpretation (of the problems examined) that the authors
kept in mind. Intuitively, we have some apprehension of a certain confrontation and cooperation
of two forces, e.g., organism (or cell, population) and environment, individual and society, man
and destiny, etc. A cell (say, of a bacteria) confronts the environment and cooperates with it on
the basis of the genome, which is a certain list of a great number of instructions on biochemical
production (and transportation from the environment) of specific chemical agents (as well as special
instructions that are contained in regulatory parts of the genome and control the instructions
mentioned above, etc.). Sophisticated complexes of instructions turn on or off simultaneously,
depending on the current situation (in the cell or around it). The goal of the cell is maintaining its
certain parameters, while the goal of the environment is also to maintain some other parameters for
the convenience of population (this may be restrictive for the cell and partially antagonistic to its
interests). It is important that both sides at every moment of their action (decision making) possess
incomplete, partly common and partly separate (sometimes, contradictory) information. Thus, the
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question on the character of their cooperation and, in particular, on the (optimal) strategy of
information exchange between them is of great evolutional importance.

For example, the environment may evolve a signal about the number of other cells (of the
same or other types) in a neighborhood of a given cell (feromon). As a result, the cell may stop
splitting, change the virulence, produce an antibiotic (to confront competitors in the environment),
collaborate in creating a biofilm, etc.

Another example of complex “game-like” interactions is the sporulation mechanism, when cells
of a population form a complex configuration (a head and a stalk). Cells that form the head
transform to spores and fly away, while the other cells die. Also mention symbiotic bacteria that
live in the luminous organ of a cuttlefish and interact with it; or seaweeds which secret analogs of
bacterial feromons in order to destroy a population of bacteria colonizing them.

In these examples, various interaction strategies are possible, depending on the level of inter-
action: a separate cell and its environment, interaction within a clone (descendants of one cell),
within a community of clones, etc. In addition, results of the interaction may be quite unexpected:
for example, one successful cell within a population-clone may deceive all the other cells, spawn,
and destroy the community; as a result, the whole clone will die out. Besides, interaction between
clones may be symbiotic or antagonistic. Priority may be given to a particular person or to the
common weal.

It may seem that standard mathematical approaches cannot adequately describe this kind of
systems (about which we presently have extensive and concrete scientific knowledge). One can
consider a space of states “cell (population)–environment” with transfers from a current state R to
the next one R+, where, for a given state R, its estimation v is computed. An area of this space is
attainable depending on the pair S =

〈
Sα, Sβ

〉
, where Sα is the reaction of the cell on Rα, while

Sβ is the result of the environment activity. The authors plan to discuss interpretations of this
kind for a cell–environment system in further publications.

The structure of the paper is as follows: Sections 2 and 3 contain the description of a stochastic
discrete-time two-player game and a brief problem statement. Sections 4 and 5 contain specification
of problem statements and descriptions of algorithms that construct optimal strategies, which give
the Nash equilibrium. These algorithms reduce the original problem (of finding optimal control
policies) to the corresponding dynamic programming algorithms, generalizing the classical optimal
control technique (see, e.g., [6]). Section 6 considers cases of partial or complete cooperation of
players. Section 7 presents computer simulation results. Finally, Section 8 contains some general
facts about games, which are used in the main body of the paper.

2. DESCRIPTION OF A DYNAMIC GAME

In this section, we give a rather general description of a discrete-time nonantagonistic two-person
dynamic game

R
ρ(R, ν, pα, pβ)−−−−−−−−−−−−−−−−−−→ R+.

Here, R and R+ represent the current and the next-step states of the system respectively, ν is a
random disturbance depending on the step (time), and pα and pβ are decisions (actions) of players.
We assume that the next-step system state R+ and current payoffs vα and vβ of the players depend
on the current state R, decisions pα and pβ, and realization of the random disturbance ν for the
current step, i.e.,

R+ = ρ(R, ν, pα, pβ),

vα = vα(R, ν, pα, pβ), vβ = vβ(R, ν, pα, pβ).
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The players’ actions are determined by the current state R of the system and, possibly, by some
additional information ξα and ξβ about disturbance ν:

pα = Pα(R, ξα), pβ = P β(R, ξβ),

where Pα and P β are the players’ control strategies (policies), i.e., functions that depend on the
information that players α and β possess, respectively.

In what follows, we assume that random elements νt (where t is time) are independent and
identically distributed or, in a more general case, constitute a Markov chain with a known transition
distribution. In particular, if νt assumes a finite number n of values, then its transition distribution
is determined by an n× n stochastic matrix.

3. THE INFINITE HORIZON GAME

Let us briefly describe a formulation of the optimal decision-making (control) problem for a
nonantagonistic dynamic game. More precise specifications and technical details of reducing such a
dynamic game to the corresponding dynamic programming formulation can be found in Sections 4
and 6.

For the sake of simplicity, in this section we consider a game with an infinite horizon. Typically,
in infinite horizon games it is assumed that the situation is stationary, that is, the functions ρ, pα,
and pβ and the annual payoff functions vα and vβ do not explicitly depend on t. We also assume
this in the current section.

Each player’s objective in the game is to choose an optimal stationary policy to maximize the
expected discounted sum of his annual payoffs given the policy of his competitor. Thus, player α
will choose Pα conditional on P β to maximize

Uα
(
R0, P

α, P β
)

= E
∞∑
t=0

γtαv
α(Rαt , p

α
t , p

β
t , νt) = E

∞∑
t=0

γtαv
α(Rαt , Pα(Rt, ξαt ), P β(Rt, ξ

β
t ), νt

)
,

while simultaneously β attempts to conditionally maximize Uβ(R0, P
α, P β). Here, the expectation

is taken over all the random variables νt and (in the case of imperfect observation) over all the
measurements ξαt and ξβt .

Thus, we have a two-player game, which consists in finding a Nash equilibrium solution
max
Pα

Uα
(
R,Pα, P β

)
,

max
Pβ

Uβ
(
R,Pα, P β

)
for all possible R. If a pair P̂α, P̂ β constitutes the Nash equilibrium then, by the definition, for all
possible values of R and all policy functions Pα and P β, we haveU

α
(
R, P̂α, P̂ β

)
≥ Uα

(
R,Pα, P̂ β

)
,

Uβ
(
R, P̂α, P̂ β

)
≥ Uβ

(
R, P̂α, P β

)
.

The optimal policies P̂α and P̂ β (and the corresponding optimal average discounted payoffs Ûα

and Ûβ) can be constructed by taking the limit as T →∞ for the corresponding game with finite
horizon T . Algorithms for the corresponding finite horizon games (and also for the nonstationary
case) are considered in Sections 4 and 5.
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4. FINITE HORIZON GAME: PLAYERS HAVE RESULTS OF PERFECT OBSERVATIONS

Let us consider a finite horizon game with final season T . Since, in a finite horizon game, different
moments are not equivalent, we will not restrict ourselves to stationarity. Thus, the functions vατ
and vβτ may be different at different moments τ . Denote a decision policy for player α at time τ
by Pατ and a sequence of decision functions Pατ from the moment t to T by

P α
t =

〈
Pαt , P

α
t+1, . . . , P

α
T

〉
=
〈
Pαt ,P

α
t+1

〉
.

Similarly for player β.
In this section, we assume that random elements νt form a Markov chain (with a finite or infinite

number of states) with a given transition probability.
At time t, each player knows the current state of the system, Rt, and has some information

about the stochastic parameter νt (or a preceding one νt−1 . . . ). Information on νt includes, at the
minimum, the probability transition matrix for this Markovian random sequence.

In this section, we consider two simplest cases: at time t, a player knows the realization of the
stochastic element νt−1 and all the preceding values νt−2, . . . , or also knows the current value of ν,
i.e., νt.

In the next section, we will study the case where players get imperfect information about νt,
which is obtained from measurements. The knowledge structure may be symmetric, with both
players having the same information, or asymmetric, e.g., when one player has current knowledge
of νt while the other has only delayed knowledge νt−1.

4.1. Players Have Current Information

Assume that information held by both players at time t includes the current value of the random
element νt.

Then, at moment t, the expected discounted payoff for player α is

V α
t

(
Rt, νt,P

α
t ,P

β
t

)
= E(νt+1,νt+2,...,νT | νt)

T∑
τ=t

γτ−tα vατ
(
Rτ , ντ , p

α
τ , p

β
τ

)
(1)

(a similar expression for player β), where

pατ = Pατ (Rτ , ντ ), pβτ = P βτ (Rτ , ντ ).

A pair
〈
P̂
α
t , P̂

β
t

〉
provides the Nash equilibrium for a pair

〈
V α
t , V

β
t

〉
if, for all possible values of

Rt and νt, we have 
V α
t

(
Rt, νt, P̂

α
t , P̂

β
t

)
= max

Pαt
V α
t

(
Rt, νt,P

α
t , P̂

β
t

)
,

V β
t

(
Rt, νt, P̂

α
t , P̂

β
t

)
= max

Pβt

V β
t

(
Rt, νt, P̂

α
t ,P

β
t

)
.

(2)

In what follows, we will denote the corresponding Nash equilibrium discounted payoffs asV̂
α
t

(
Rt, νt

)
= V α

t

(
Rt, νt, P̂

α
t , P̂

β
t

)
,

V̂ β
t

(
Rt, νt

)
= V β

t

(
Rt, νt, P̂

α
t , P̂

β
t

)
.

Since the random parameter ν is a Markov process, which is completely determined by its
current value and single-stage transition distribution (i.e., the distribution of νt+1 for any given νt),
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the mathematical expectation E(νt+1,νt+2,...,νT | νt) can be presented as a sequence of conditional
expectations:

E(νt+1,νt+2,...,νT | νt) = E(νt+1 | νt)E(νt+2 | νt+1) . . . E(νT | νT−1).

It follows that V α
t can be expressed through the immediate payoff vαt and V α

t+1:

V α
t

(
Rt, νt,P

α
t ,P

β
t

)
= vαt

(
Rt, νt, p

α
t , p

β
t

)
+ γαE(νt+1 | νt)V

α
t+1

(
ρ(Rt, νt, pαt , p

β
t ), νt+1,P

α
t+1,P

β
t+1

)
. (3)

Note that we can also use expression (3) as an alternative (recursive) definition of the discounted
payoff.

Expression (3) allows one to reduce problem (2) to a series of considerably simpler problems
through a dynamic programming procedure. Assume that

〈
P̂
α
t+1, P̂

β
t+1

〉
are the Nash equilibrium

policies starting from the moment t+ 1 and
〈
V̂ α
t+1, V̂

β
t+1

〉
are the corresponding optimal discounted

payoffs.
By the analogy with classical dynamic programming, define the function

Ṽ α
t

(
Rt, νt, P

α
t , P

β
t

)
= V α

t

(
Rt, νt,

〈
Pαt , P̂

α
t+1

〉
,
〈
P βt , P̂

β
t+1

〉)
,

i.e., the discounted payoff for player α corresponding to arbitrary policies Pαt and P βt at time t and
optimal “tails” P̂

α
t and P̂

β
t , and a similar function for player β.

Then the optimal policies
〈
P̂αt , P̂

β
t

〉
for time t can be obtained by solving, for all possible values

of Rt and νt, the Nash equilibrium problem for the functionsṼ
α
t

(
Rt, νt, p

α
t , p

β
t

)
= vαt

(
Rt, νt, p

α
t , p

β
t

)
+ γαE(

νt+1 | νt
)V̂ α

t+1

(
ρ(Rt, pαt , p

β
t , νt), νt+1

)
,

Ṽ β
t

(
Rt, νt, p

α
t , p

β
t

)
= vβt

(
Rt, νt, p

α
t , p

β
t

)
+ γβE(νt+1 | νt)V̂

β
t+1

(
ρ(Rt, pαt , p

β
t , νt), νt+1

) (4)

with respect to
〈
pαt , p

β
t

〉
. Namely, P̂αt (Rt, νt) = p̂αt and P̂ βt (Rt, νt) = p̂βt , where the pair

〈
p̂αt , p̂

β
t

〉
attains the Nash equilibrium for these functions with given Rt and νt. Thus, the Nash equilibrium
policies can be obtained recursively as

P̂
α
t =

〈
P̂αt , P̂

α
t+1

〉
, P̂

β
t =

〈
P̂ βt , P̂

β
t+1

〉
. (5)

In order to express this more precisely, assume that R ∈ R, the space of the system states;
ν ∈ N , the space of random parameter values; and Dα and Dβ are the spaces of decisions pα

and pβ of players α and β respectively. We will assume that R, N , Dα, and Dβ are measurable
spaces and vαt , v

β
t : R×N ×Dα×Dβ → R and ρ : R×N ×Dα×Dβ →R are measurable mappings.

At each stage t, the strategy Pαt of player α is a measurable mapping from R×N to Dα. Denote
by D̃α the space of all measurable mappings R × N → Dα. Similarly, let D̃β be the space of all
measurable mappings R×N → Dβ.

Now the game with finite horizon T can be considered as the two-player game

Gt,R,ν =
〈
D̃αt , D̃

β
t , V

α
t , V

β
t

〉
R,ν
, R ∈ R, ν ∈ N , t = 1, . . . , T,

with the states of strategies

D̃αt =
T∏
τ=t

D̃α, D̃βt =
T∏
τ=t

D̃β

and with payoff functions V α
t and V β

t defined according to (1).
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More precisely, at any fixed moment t, we have a family of games {Gt,R,ν | R ∈ R, ν ∈ N},
which is parametrized by R and ν. A pair of strategies

〈
P̂
α
t , P̂

β
t

〉
is optimal for this family of

games (is a Nash equilibrium point) if, for any strategies P α
t and P β

t and any R ∈ R and ν ∈ N ,
we have the following inequalities:

V α
t

(
R, ν, P̂

α
t , P̂

β
t

)
≥ V α

t

(
R, ν,P α

t , P̂
β
t

)
,

V β
t

(
R, ν, P̂

α
t , P̂

β
t

)
≥ V β

t

(
R, ν, P̂

α
t ,P

β
t

)
.

Now let us consider the family of games determined by the payoff functions Ṽ α
t and Ṽ β

t ,

G̃t,R,ν =
〈
Dα,Dβ, Ṽ α

t , Ṽ
β
t

〉
R,ν
, R ∈ R, ν ∈ N , t = 1, . . . , T.

The following proposition reduces the problem of constructing optimal strategies for the game
Gt,R,ν to a series of constructions of optimal strategies for the simpler games G̃t,R,ν .

Proposition 4.1. Assume that, for all t starting from t = T down to t = 1 and for arbitrary
R ∈ R and ν ∈ N , the game G̃t,R,ν has a Nash equilibrium point

〈
p̂αR,ν , p̂

β
R,ν

〉
, and that the mappings

P̂αt and P̂ βt defined as

P̂αt (R, ν) = p̂αR,ν , P̂ βt (R, ν) = p̂βR,ν , ∀R ∈ R, ∀ν ∈ N , (6)

are measurable with respect to R and ν. Then, for each t, there exists a pair of strategies
〈
P̂
α
t , P̂

β
t

〉
which provides a Nash equilibrium point for the family of games {Gt,R,ν | R ∈ R, ν ∈ N}.

The optimal strategies P̂
α
t and P̂

β
t are determined recursively by expressions (5) and (6) through

the optimal strategies P̂
α
t+1 and P̂

β
t+1 at the next moment and through the equilibrium points〈

p̂αR,ν , p̂
β
R,ν

〉
for the games G̃t,R,ν .

The payoff functions Ṽ α
t and Ṽ β

t for the game G̃t,R,ν are expressed through the payoff functions
at the next moment (i.e., for the game G̃t+1,R,ν) by formulas (4) and the equalities

V̂ α
t (R, ν) = Ṽ α

t

(
R, ν, p̂αR,ν , p̂

β
R,ν

)
,

V̂ β
t (R, ν) = Ṽ β

t

(
R, ν, p̂αR,ν , p̂

β
R,ν

)
.

Proof. To prove the proposition, it suffices to verify the following “inductive” assertion for
any t = 1, . . . , T : If there exists a Nash equilibrium point

〈
P̂
α
t+1, P̂

β
t+1

〉
for the family of games

{Gt+1,R,ν | R ∈ R, ν ∈ N} and, for any R ∈ R and ν ∈ N , there exists a Nash equilibrium point〈
p̂αR,ν , p̂

β
R,ν

〉
for the game G̃t,R,ν , then

〈
P̂
α
t , P̂

β
t

〉
is a Nash equilibrium point for the family of games

{Gt,R,ν | R ∈ R, ν ∈ N}, where P̂
α
t and P̂

β
t are determined by formulas (5) and (6).

Now, assume that, for some moment t, the pair
〈
P̂
α
t+1, P̂

β
t+1

〉
determines optimal strategies for

the family of games {Gt+1,R,ν | R ∈ R, ν ∈ N}. Let P α
t be an arbitrary strategy for player α.

Consider the payoff function V α
t

(
Rt, νt,P

α
t , P̂

β
t

)
. Using equation (3), we get

V α
t

(
R, ν,P α

t , P̂
β
t

)
= vαt

(
R, ν, pαR,ν , p̂

β
R,ν

)
+ γαE(ν+ | ν)V

α
t+1

(
ρ(R, ν, pαR,ν , p̂

β
R,ν), ν+,P

α
t+1, P̂

β
t+1

)
≤ vαt

(
R, ν, pαR,ν , p̂

β
R,ν

)
+ γαE(ν+ | ν)V

α
t+1

(
ρ(R, ν, pαR,ν , p̂

β
R,ν), ν+, P̂

α
t+1, P̂

β
t+1

)
= vαt

(
R, ν, pαR,ν , p̂

β
R,ν

)
+ γαE(ν+ | ν)V̂

α
t+1

(
ρ(R, ν, pαR,ν , p̂

β
R,ν), ν+

)
= Ṽ α

t

(
R, ν, pαR,ν , p̂

β
R,ν

)
≤ Ṽ α

t

(
R, ν, p̂αR,ν , p̂

β
R,ν

)
= V α

t

(
R, ν, P̂

α
t , P̂

β
t

)
.
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Here, pαR,ν = Pαt (R, ν).

Similarly, V β
t

(
R, ν, P̂

α
t ,P

β
t

)
≤ V β

t

(
R, ν, P̂

α
t , P̂

β
t

)
for any strategy P β

t of player β.

This yields that the pair
〈
P̂
α
t , P̂

β
t

〉
is a Nash equilibrium point in the game Gt,R,ν for all R ∈ R

and ν ∈ N . 4
Note that the Nash equilibrium points

〈
p̂αR,ν , p̂

β
R,ν

〉
for the games G̃t,R,ν can be constructed by

the use of the iteration procedure described in Proposition 8.1.

4.2. Players Obtain Delayed Information

This case looks very similar to the case of current knowledge, except for the fact that the policies
and discounted values at time t depend on not νt but νt−1, i.e.,

pαt = Pαt (Rt, νt−1), pβt = P βt (Rt, νt−1),

and

V α
t

(
Rt, νt−1,P

α
t ,P

β
t

)
= E(νt,νt+1,...,νT | νt−1)

T∑
τ=t

γτ−tα vατ
(
Rτ , ντ , p

α
τ , p

β
τ

)
= E(νt | νt−1)E(νt+1,...,νT | νt)

T∑
τ=t

γτ−tα vατ
(
Rτ , ντ , p

α
τ , p

β
τ

)
= E(νt | νt−1)V̇

α
t

(
Rt, νt,P

α
t ,P

β
t

)
,

where V̇ α
t denotes the discounted value function for the “current information” case.

Thus, the case where both players have delayed information leads to the dynamic programming
procedure with the following Nash equilibrium problem at each step:

Ṽ α
t

(
Rt, νt−1, p

α
t , p

β
t

)
= E(νt | νt−1)

[
vαt
(
Rt, νt, p

α
t , p

β
t

)
+ γαV̂

α
t+1

(
ρ(Rt, pαt , p

β
t , νt), νt

)]
,

Ṽ β
t

(
Rt, νt−1, p

α
t , p

β
t

)
= E(νt | νt−1)

[
vβt
(
Rt, νt, p

α
t , p

β
t

)
+ γβV̂

β
t+1

(
ρ(Rt, pαt , p

β
t , νt), νt

)]
,

where V̂ α
t

(
Rt, νt−1

)
and V̂ β

t

(
Rt, νt−1

)
are the Nash equilibrium values for these functions. Optimal

decision policies P̂αt and P̂ βt are defined as P̂αt (Rt, νt−1) = p̂αt and P̂ βt (Rt, νt−1) = p̂βt , where the
pair

〈
p̂αt , p̂

β
t

〉
attains the Nash equilibrium for these functions with given Rt and νt−1.

4.3. Players Get Asymmetric Information: Current Versus Delayed

Now assume that the first player has current knowledge of ν and the second one has delayed
information. Thus, the first player’s policy depends on νt and νt−1, while the second player’s policy
depends on νt−1 only, i.e.,

pαt = Pαt (Rt, νt−1, νt), pβt = P βt (Rt, νt−1).

In this case, at each dynamic programming step, we have the following (asymmetric) Nash
equilibrium problem:

Ṽ α
t

(
Rt, νt−1, νt, p

α
t , p

β
t

)
= vαt

(
Rt, νt, p

α
t , p

β
t

)
+ γαE(νt+1 | νt)V̂

α
t+1

(
ρ(Rt, pαt , p

β
t , νt), νt+1

)
,

Ṽ β
t

(
Rt, νt−1, p

α
t , p

β
t

)
= E(νt | νt−1)

[
vβt
(
Rt, νt, p

α
t , p

β
t

)
+ γβ V̂

β
t+1

(
ρ(Rt, pαt , p

β
t , νt), νt

)]
.
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Here, the first player utilizes the knowledge of νt−1 to compute the second player’s policy at
time t. However, while the second player can calculate the first player’s policy, he cannot know
his opponent’s actual response (since he does not know νt). Instead, he can only assign to it a
(conditional) probability distribution of νt.

Strictly speaking, a solution to this asymmetric Nash equilibrium problem is a pair of functions
P̂αt (Rt, νt−1, νt) and P̂ βt (Rt, νt−1) which, among all functions Pαt (Rt, νt−1, νt) and P βt (Rt, νt−1), for
all values of Rt, νt−1, and νt, attain the Nash equilibrium for the following pair of functions:

Ṽ α
t

(
Rt, νt−1, νt, P

α
t , P

β
t

)
= vαt

(
Rt, νt, P

α
t (Rt, νt−1, νt), P

β
t (Rt, νt−1)

)
+ γαE(νt+1 | νt)V̂

α
t+1

(
ρ(Rt, νt, Pαt (Rt, νt−1, νt), P

β
t (Rt, νt−1)), νt+1

)
,

Ṽ β
t

(
Rt, νt−1, P

α
t , P

β
t

)
= E(νt | νt−1)

[
vβt
(
Rt, νt, P

α
t (Rt, νt−1, νt), P

β
t (Rt, νt−1)

)
+ γβ V̂

β
t+1

(
ρ(Rt, νt, Pαt (Rt, νt−1, νt), P

β
t (Rt, νt−1)), νt

)]
.

Note that each player can adjust his policy “pointwise,” i.e., for all possible values of his policy
arguments, provided that the other player’s policy is fixed. This, in fact, can be used for computing
optimal policies iteratively. Namely, for some α-policy, we can find an optimum response β-policy.
Then we fix this β-policy and find the corresponding optimum α-policy, and so on.

5. FINITE HORIZON GAME: PLAYERS OBTAIN RESULTS
OF IMPERFECT OBSERVATIONS

Our assumption in Section 4 that the players possess precise knowledge of the realization of a
stochastic element νt is clearly idealization. Typically, its value cannot be determined precisely
but only with a certain error. In this section, we will introduce the notion of a measurement error
in observation of stochastic parameters. In particular, this allows us to formalize various levels of
players’ possession of information.

An imperfect observation of νt can be characterized through the transition probability from
the space of states of the parameter νt to the space of states of the observation ξt. In the case
where these spaces are finite, say, the numbers of states for νt and ξt are n and m, respectively,
the measurement is completely determined by an m× n stochastic matrix. The ith column of this
matrix represents the conditional distribution of the observation ξt when νt is in the ith state.

Thus, assume that information that a player possesses at time t consists of the current system
state Rt and the result of the imperfect measurement ξt of the current parameter νt. Different
players may have results of different measurements ξα and ξβ, or these may be results of the same
measurement. Now, policies of players α and β at time t depend on Rt and on ξαt or ξβt respectively;
that is,

pαt = Pαt (Rt, ξαt ), pβt = P βt (Rt, ξ
β
t ).

If players have the same measurement information, i.e., ξαt = ξβt , we will denote it by ξt. Besides,
we will assume that the random elements ν are independent and identically distributed.

5.1. Players Have Symmetric Information: Optimization of Average Payoff

Assume that the players’ policies depend on the common measurement ξt:

pαt = Pαt (Rt, ξt), pβt = P βt (Rt, ξt),

and each of them maximizes his average discounted payoff Uα and Uβ, where

Uαt
(
Rt,P

α
t ,P

β
t

)
= E(νt,ξt,νt+1,ξt+1,...,νT ,ξT )

T∑
τ=t

γτ−tα vατ
(
Rτ , ντ , P

α
τ (Rτ , ξτ ), P βτ (Rτ , ξτ )

)
. (7)
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As in the previous cases, we can express Uαt through the immediate payoff vαt and the next-step
average discounted payoff Uαt+1, thus obtaining the following recursive expression:

Uαt
(
Rt,P

α
t ,P

β
t

)
= EνtE(ξt | νt)Eνt+1E(ξt+1 | νt+1) . . .EνT E(ξT | νT )

T∑
τ=t

γτ−tα vατ
(
Rτ , ντ , p

α
τ , p

β
τ

)
= EνtE(ξt | νt)

[
vαt
(
Rt, νt, p

α
t , p

β
t

)
+ γαE(ξt+1,νt+1) . . .E(ξT ,νT )

T∑
τ=t+1

γτ−(t+1)
α vατ

(
Rτ , ντ , p

α
τ , p

β
τ

)]
= EνtE(ξt | νt)

[
vαt
(
Rt, νt, P

α
t (Rt, ξt), P

β
t (Rt, ξt)

)
+ γαU

α
t+1

(
ρt
(
Rt, νt, P

α
t (Rt, ξt), P

β
t (Rt, ξt)

)
,P α

t+1,P
β
t+1

)]
.

Denote, as usual, by P̂
α
t and P̂

β
t the optimal policy sequences from the moment t and by Ûαt (Rt)

and Ûβt (Rt) the corresponding average discounted payoffs, i.e.,

Ûαt (Rt) = Uαt
(
Rt, P̂

α
t , P̂

β
t

)
, Ûβt (Rt) = Uβt

(
Rt, P̂

α
t , P̂

β
t

)
.

Let Ũαt
(
Rt, P

α
t , P

β
t

)
and Ũβt

(
Rt, P

α
t , P

β
t

)
be the average discounted payoffs for optimal “tail” poli-

cies, i.e.,

Ũαt
(
Rt, P

α
t , P

β
t

)
= Uαt

(
Rt,

〈
Pαt , P̂

α
t+1

〉
,
〈
Pαt , P̂

α
t+1

〉)
= EνtE(ξt | νt)

[
vαt
(
Rt, νt, P

α
t (Rt, ξt), P

β
t (Rt, ξt)

)
+ γαÛ

α
t+1

(
ρt
(
Rt, νt, P

α
t (Rt, ξt), P

β
t (Rt, ξt)

))]
.

Thus, the optimum policies P̂αt and P̂ βt at moment t attain the Nash equilibrium for the pair of
functions Ũ

α
t

(
Rt, P

α
t , P

β
t

)
,

Ũβt
(
Rt, P

α
t , P

β
t

)
.

(8)

These optimal policies can be found iteratively, pointwise in R (but not in ξ), by using the following
recursive procedure: For a given state R and some fixed policy Pα(1) for player α, find the optimal

response P β(1) for player β, then find the optimal response Pα(2) for α with respect to P β(1), etc., i.e.,

P β(i) = arg max
Pβ

Ũβt
(
R,Pα(i), P

β),
Pα(i+1) = arg max

Pα
Ũαt
(
R,Pα, P β(i)

)
.

Note that, at each iteration step, we have to find the whole function, e.g., Pα(i)(R, ξ), which, in fact,
can be considered as a function of one variable ξ (since we can fix R but have to take the average
over all values of ξ).

However, it is still possible to specify a pointwise procedure for obtaining strategies that provide
the Nash equilibrium in function spaces. In other words, we propose a way of reducing the con-
struction of the Nash equilibrium in function spaces to a similar one in finite-dimensional arithmetic
spaces. To do this, define

Wα
t

(
R, ν, ξ, Pα, P β

)
= vαt

(
R, ν, Pα(R, ξ), P β(R, ξ)

)
+ γαÛ

α
t+1

(
ρt
(
R, ν, Pα(R, ξ), P β(R, ξ)

))
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and a similar function W β
t (R, ν, ξ, Pα, P β) for player β. Then the function Ũαt can be written in

the following form:

Ũαt
(
R,Pα, P β

)
= EνE(ξ | ν)W

α
t

(
R, ν, ξ, Pα, P β

)
= EξE(ν | ξ)W

α
t

(
R, ν, ξ, Pα, P β

)
,

where E(ν | ξ) is the conditional distribution of ν for a given ξ. Here we use the fact that the
mathematical expectation over the joint distribution of ν and ξ can be presented in the forms

E(ν,ξ) = EνE(ξ | ν) = EξE(ν | ξ).

Now assume that, for a fixed ξ, the policies P̂α and P̂ β attain the Nash equilibrium for the
functions Ṽ

α
(
R, ξ, Pα, P β

)
= E(ν | ξ)W

α
t

(
R, ν, ξ, Pα, P β

)
,

Ṽ β
(
R, ξ, Pα, P β

)
= E(ν | ξ)W

β
t

(
R, ν, ξ, Pα, P β

)
.

(9)

This means that, for all R and ξ and for arbitrary policies Pα and P β, we haveṼ
α
(
R, ξ, P̂α, P̂ β

)
≥ Ṽ α

(
R, ξ, Pα, P̂ β

)
,

Ṽ β
(
R, ξ, P̂α, P̂ β

)
≥ Ṽ β

(
R, ξ, P̂α, P β

)
.

Then Ũ
α
(
R, P̂α, P̂ β

)
= EξṼ

α
(
R, ξ, P̂α, P̂ β

)
≥ EξṼ

α
(
R, ξ, Pα, P̂ β

)
= Ũα

(
R,Pα, P̂ β

)
,

Ũβ
(
R, P̂α, P̂ β

)
= EξṼ

β
(
R, ξ, P̂α, P̂ β

)
≥ EξṼ

β
(
R, ξ, P̂α, P β

)
= Ũβ

(
R, P̂α, P β

)
.

Thus, the original Nash equilibrium problem for (8) can be reduced to a similar problem for
functions (9), for which the Nash equilibrium policies can be computed pointwise.

On the other hand, we arrive at the same Nash equilibrium problem if we consider the game for
conditional discounted payoffs

V α
t

(
Rt, ξt,P

α
t ,P

β
t

)
= E(νt,νt+1,ξt+1,... | ξt)

T∑
τ=t

γτ−tα vατ
(
Rτ , ντ , p

α
τ , p

β
τ

)
, (10)

and a similar expression for β. This will be done below.

5.2. Players Have Symmetric Information: Optimization of Conditional Payoff

In the previous subsection, we stated the optimum-decision problem as a problem of optimizing
average discounted payoffs, where the averaging is taken over all random parameters νt and over
all measurement results ξt.

However, it may seem to be more natural to optimize not average but conditional (with respect
to measurement results) discounted payoffs according to expression (10).

By rewriting V α
t in a recursive form, we get

V α
t

(
Rt, ξt,P

α
t ,P

β
t

)
= E(νt | ξt)E(νt+1,ξt+1,...)

T∑
τ=t

γτ−tα vατ
(
Rτ , ντ , p

α
τ , p

β
τ

)
= E(νt | ξt)

vαt (Rt, νt, pαt , pβt )+ γαE(νt+1,ξt+1)

T∑
τ=t+1

γτ−(t+1)
α vατ

(
Rτ , ντ , p

α
τ , p

β
τ

)
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= E(νt | ξt)
[
vαt
(
Rt, νt, p

α
t , p

β
t

)
+ γαE(ξt+1)V

α
t+1

(
ρt(Rt, νt, pαt , p

β
t ), ξt+1,P

α
t+1,P

β
t+1

)]
.

Here, the mathematical expectation E(νt+1,ξt+1) over the joint distribution of the pair (νt+1, ξt+1)
can be represented as a sequence of expectation operations, i.e.,

E(νt+1,ξt+1) = E(ξt+1)E(νt+1 | ξt+1).

This leads to a dynamic programming algorithm, which involves computation of a Nash equi-
librium pair

〈
pαt , p

β
t

〉
for the following functions:

Ṽ α
t

(
Rt, ξt, p

α
t , p

β
t

)
= E(νt | ξt)

[
vαt
(
Rt, νt, p

α
t , p

β
t

)
+ γαE(ξt+1)V̂

α
t+1

(
ρt(Rt, νt, pαt , p

β
t ), ξt+1

)]
,

Ṽ β
t

(
Rt, ξt, p

α
t , p

β
t

)
= E(νt | ξt)

[
vβt
(
Rt, νt, p

α
t , p

β
t

)
+ γβE(ξt+1)V̂

β
t+1

(
ρt(Rt, νt, pαt , p

β
t ), ξt+1

)]
.

Both optimal strategies
〈
Pαt , P

β
t

〉
can now be found pointwise by setting P̂αt (Rt, ξt) = p̂αt and

P̂ βt (Rt, ξt) = p̂βt , where
〈
p̂αt , p̂

β
t

〉
attains the Nash equilibrium for the above functions.

More precisely, computation of the optimal policies
〈
P̂αt , P̂

β
t

〉
at each step can be performed in

two different ways:
(a) Fix R and ξ, find the Nash equilibrium point

〈
p̂α, p̂β

〉
for the functions Ṽ α

t (R, ξ, pα, pβ)
and Ṽ β

t (R, ξ, pα, pβ), and set P̂αt (R, ξ) = p̂α and P̂ βt (R, ξ) = p̂β. Thus, the problem reduces to a
pointwise computation of the Nash equilibrium for all possible values of R and ξ.

Note that the equilibrium pair
〈
p̂α, p̂β

〉
can be found iteratively: for a fixed initial iteration pα(1),

find the optimal response pβ(1), i.e.,

pβ(1) = arg max
pβ

Ṽ β
t

(
R, ξ, pα(1), p

β),
then find the optimal response pα(2) for pβ(1), etc. According to Proposition 8.1, the sequence〈
pα(i), p

β
(i)

〉
(if converges) converges to the Nash equilibrium point

〈
p̂α, p̂β

〉
.

(b) Fix some policy Pα(1) and find the optimal response P β(1), i.e., a policy such that, for all R

and ξ, the function P β(1) maximizes the functional Ṽ β
t (R, ξ, Pα(1)(R, ξ), P

β(R, ξ)) with respect to P β.
Then similarly find Pα(2), etc. It is obvious that, at each step, the optimal response can be found
pointwise (separately for each combination R, ξ) for any (!) policy used by the other player.

5.3. Players Have Different Information

In a more general situation, players may obtain information based on different measurements
ξαt ∈ Xα and ξβt ∈ X β of the random parameter νt ∈ N . Then each player’s policy depends on
the respective information available to him, i.e., pαt = Pαt (R, ξα) and pβt = P βt (R, ξβ), where Pαt
and P βt are measurable mappings:

Pαt : R×Xα → Dα, P βt : R×X β → Dβ.

Denote the spaces of measurable mappings from R × Xα to Dα and from R × X β to Dβ by D̃α
and D̃β, respectively. Then the complete strategies P α

t and P β
t are elements of the corresponding

spaces

D̃αt =
T∏
τ=t

D̃α, D̃βt =
T∏
τ=t

D̃β.
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Consider the game

Gt,R =
〈
D̃αt , D̃

β
t , U

α
t , U

β
t

〉
R
, R ∈ R, t = 1, . . . , T,

in which each player maximizes his average discounted payoff:

Uαt
(
Rt,P

α
t ,P

β
t

)
= E

(νt,ξαt ,ξ
β
t ,...)

T∑
τ=t

γτ−tα vατ

(
Rτ , ντ , P

α
τ (Rτ , ξατ ), P βτ (Rτ , ξβτ )

)
,

and a similar expression for Uβt (Rt,P α
t ,P

β
t ).

Since Uαt can be expressed through Uαt+1,

Uαt
(
Rt,P

α
t ,P

β
t

)
= E

(νt,ξαt ,ξ
β
t ,...)

[
vαt
(
Rt, νt, P

α
t (Rt, ξαt ), P βt (Rt, ξ

β
t )
)

+ γα

T∑
τ=t+1

γτ−tα vατ
(
Rτ , ντ , P

α
τ (Rτ , ξατ ), P βτ (Rτ , ξβτ )

)]
= E

(νt,ξαt ,ξ
β
t )

[
vαt
(
Rt, νt, P

α
t (Rt, ξαt ), P βt (Rt, ξ

β
t )
)

+ γαU
α
t+1

(
ρt
(
Rt, νt, P

α
t (Rt, ξαt ), P βt (Rt, ξ

β
t )
)
, ξαt+1,P

α
t+1,P

β
t+1

)]
,

the problem of constructing optimal strategies
〈
P̂
α
t , P̂

β
t

〉
can also be solved by a dynamic program-

ming procedure. In this procedure, for every moment t, one constructs the optimal strategy pair〈
P̂αt , P̂

β
t

〉
for a certain (more simple) game provided that the solution

〈
P̂
α
t+1, P̂

β
t+1

〉
for the game

Gt+1,R is already found.
Specifically, assume that

Ûαt (Rt) = Uαt
(
Rt, P̂

α
t , P̂

β
t

)
, Ûβt (Rt) = Uβt

(
Rt, P̂

α
t , P̂

β
t

)
, R ∈ R, t = 1, . . . , T,

are the optimal payoffs. The functions

Ũαt
(
Rt, P

α
t , P

β
t

)
= E

(νt,ξαt ,ξ
β
t )

[
vαt
(
Rt, νt, P

α
t (Rt, ξαt ), P βt (Rt, ξ

β
t )
)

+ γαÛ
α
t+1

(
ρt(Rt, νt, Pαt (Rt, ξαt ), P βt (Rt, ξ

β
t )), ξαt+1

)]
,

Ũβt
(
Rt, P

α
t , P

β
t

)
= E

(νt,ξαt ,ξ
β
t )

[
vβt
(
Rt, νt, P

α
t (Rt, ξαt ), P βt (Rt, ξ

β
t )
)

+ γβÛ
β
t+1

(
ρt(Rt, νt, Pαt (Rt, ξαt ), P βt (Rt, ξ

β
t )), ξβt+1

)]
(11)

represent the players’ payoffs provided that the players use arbitrary strategies Pαt and P βt at time t
and optimal strategies P̂

α
t+1 and P̂

β
t+1 at all the following stages.

Let us now consider the game that appears at step t (we assume that the steps from τ = T
down to τ = t+ 1 are already performed) for any fixed R ∈ R:

Ĝt,R =
〈
D̂α, D̂β, Ũαt , Ũ

β
t

〉
R
, R ∈ R, t = 1, . . . , T, (12)

where D̂α and D̂β are the spaces of measurable mappings Xα → Dα and X β → Dβ respectively.

Proposition 5.1. Assume that, for all t from t = T down to t = 1 and for all R ∈ R and
ν ∈ N , the game Ĝt,R has a Nash equilibrium point

〈
p̂αR, p̂

β
R

〉
(where p̂αR ∈ D̂α and p̂βR ∈ D̂β) and

the mappings

P̂αt (R, ξα) = p̂αR(ξα), P̂ βt (R, ξβ) = p̂βR(ξβ), ∀R ∈ R, ∀ξα ∈ Xα, ∀ξβ ∈ X β, (13)
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are measurable with respect to R, ξα, and ξβ. Then, for every t, there exists a pair of strategies〈
P̂
α
t , P̂

β
t

〉
that provides the Nash equilibrium for the family of games {Gt,R,ν | R ∈ R}.

The optimal strategies P̂
α
t and P̂

β
t are determined recursively through the next-stage optimal

strategies P̂
α
t+1 and P̂

β
t+1 and through the equilibrium points

〈
p̂αR, p̂

β
R

〉
for the games Ĝt,R by rela-

tions (5) and (13).
The payoff functions Ũαt and Ũβt for the game Ĝt,R can be expressed through the payoff functions

for the game Ĝt+1,R by equation (11) and the following expressions:

Ûαt (R) = Ũαt (R, p̂αR, p̂
β
R), Ûβt (R) = Ũβt (R, p̂αR, p̂

β
R), R ∈ R.

Proof. The scheme of the proof is similar to that of Proposition 4.1. 4
Unlike the procedure in Proposition 4.1, where constructing optimal strategies reduces to finding

equilibrium points for games of the simplest kind (where the spaces of strategies coincide with the
spaces of elementary decisions Dα and Dβ) and optimal strategies P̂αt and P̂ βt could be constructed
pointwise (over R and ν), Proposition 5.1 leads to games Ĝt,R (where the spaces of strategies D̂α
and D̂β are actually function spaces) and involves the construction of mappings p̂αR(ξα) and p̂βR(ξβ)
(pointwise over R only). However, construction of these mappings itself can be performed pointwise
(over ξα and ξβ) if we apply the iteration procedure of Proposition 8.3 (see the Appendix). Indeed,
for a fixed R and t, game (12) is a game of the type (14).

Combination of Propositions 5.1 and 4.1 leads to the following procedure of constructing optimal
strategies.

Consider the conditional (with respect to ξαt ) discounted payoff for player α:

V α
t

(
Rt, ξ

α
t ,P

α
t ,P

β
t

)
= E

(νt,ξ
β
t ,... | ξαt )

T∑
τ=t

γτ−tα vατ
(
Rτ , ντ , P

α
τ (Rτ , ξατ ), P βτ (Rτ , ξβτ )

)
and a similar expression for V β

t

(
Rt, ξ

β
t ,P

α
t ,P

β
t

)
.

Obviously, Uαt is expressed through V α
t in the following way:

Uαt
(
Rt,P

α
t ,P

β
t

)
= Eξαt V

α
t

(
Rt, ξ

α
t ,P

α
t ,P

β
t

)
,

where Eξαt is the expectation over the distribution of the random element ξαt .
Further, V α

t is expressed through V α
t+1:

V α
t

(
Rt, ξ

α
t ,P

α
t ,P

β
t

)
= E

(νt,ξ
β
t | ξαt )

[
vαt
(
Rt, νt, P

α
τ (Rτ , ξατ ), P βτ (Rτ , ξβτ )

)
+ γαEξαt+1

V α
t+1

(
ρt(Rt, νt, Pατ (Rτ , ξατ ), P βτ (Rτ , ξβτ )), ξαt+1,P

α
t+1,P

β
t+1

)]
.

Together with Propositions 5.1 and 4.1, this leads to the dynamic programming procedure in
which, at every step, one constructs a pair of strategies

〈
P̂αt , P̂

β
t

〉
that provide optimal responses

for each other with respect to the functions

Ṽ α
t (Rt, ξαt , pαt , P

β
t ) = E

(νt,ξ
β
t | ξαt )

[
vαt
(
Rt, νt, p

α
t , P

β
t (Rt, ξ

β
t )
)

+ γαEξαt+1
V̂ α
t+1

(
ρt(Rt, νt, pαt , P

β
t (Rt, ξ

β
t )), ξαt+1

)]
,

Ṽ β
t (Rt, ξ

β
t , P

α
t , p

β
t ) = E

(νt,ξαt | ξ
β
t )

[
vβt
(
Rt, νt, P

α
t (Rt, ξαt ), pβt

)
+ γβE

ξβt+1
V̂ β
t+1

(
ρt(Rt, νt, Pαt (Rt, ξαt ), pβt ), ξβt+1

)]
.
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In particular, the optimal pair
〈
P̂αt , P̂

β
t

〉
satisfies the following conditions:Ṽ

α
t (Rt, ξαt , pαt , P̂

β
t ) ≤ Ṽ α

t

(
Rt, ξ

α
t , P̂

α
t (Rt, ξαt ), P̂ βt

)
,

Ṽ β
t (Rt, ξ

β
t , P̂

α
t , p

β
t ) ≤ Ṽ β

t

(
Rt, ξ

β
t , P̂

β
t , P̂

α
t (Rt, ξ

β
t )
)
.

Note that, in this case, one cannot use algorithm (a) from the previous subsection since now
players (even if they know the strategies Pαt and P βt for each other) cannot predict the real decisions
pαt and pβt for each other (since these decisions are determined by the results of different measure-
ments ξαt and ξβt available to the players). However, iteration algorithm (b) from the previous
subsection can be used.

6. COOPERATIVE BEHAVIOR OF PLAYERS

It is easy to introduce some sort of cooperation (or contradiction) in our model by modifying
the discounted payoffs V α and V β in a simple way, which reflects the “care” of one player about
the other.

Specifically, player α “takes care” of the interests of β by optimizing the linear combination of
payoffs

V α = cααV
α + cαβV

β

instead of his original payoff V α. Similarly, β can optimize the linear combination

V β = cβαV
α + cββV

β.

In fact, this describes (in the case cαα + cβα = 1 and cαβ + cββ = 1) a game with side payments,
where one player knows that he will get a certain fraction of another player’s payoff.

If cαβ > 0, player α tries to increase the income of β and, if cαβ > cαβ, then α cares about β
more than about himself. Conversely, cαβ < 0 means that α tries to “disserve” to β, possibly in
order to exclude him from the business.

An interesting particular case is cαα = cαβ = cβα = cββ = 1
2 . In fact, it represents a sole operator

(monopolist) case.
Note that, if the discount factors are equal, i.e., γα = γβ = γ, then introducing cooperation

coefficients in the problem statement scarcely influences the dynamic programming solution al-
gorithm. Indeed, expressions like vαt (Rt, νt, pαt , p

β
t ) are simply replaced by cααv

α
t (Rt, νt, pαt , p

β
t ) +

cαβv
α
t (Rt, νt, pαt , p

β
t ). For example, in the “current information” case, we will have the following

Nash equilibrium problem at each step:

Ṽ α
t

(
Rt, νt, p

α
t , p

β
t

)
= cααv

α
t

(
Rt, νt, p

α
t , p

β
t

)
+ cαβv

α
t

(
Rt, νt, p

α
t , p

β
t

)
+ γE(νt+1 | νt)V̂

α
t+1

(
ρ(Rt, pαt , p

β
t , νt), νt+1

)
,

Ṽ β
t

(
Rt, νt, p

α
t , p

β
t

)
= cβαv

α
t

(
Rt, νt, p

α
t , p

β
t

)
+ cββv

α
t

(
Rt, νt, p

α
t , p

β
t

)
+ γE(νt+1 | νt)V̂

β
t+1

(
ρ(Rt, pαt , p

β
t , νt), νt+1

)
.

7. COMPUTER SIMULATION

7.1. Split-Stream Harvesting

In the split-stream harvesting model, we assume that each player (fishery fleet) harvests in his
own stream and that the random split factor θ between streams may be unknown or imperfectly
known to the players. The split-stream harvesting game is illustrated by the following diagram:
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R

* Rα - Sα

j

j
Rβ - Sβ

* S - R+

Here, R is the current year’s harvestable stock level, or “recruitment,” and Rα and Rβ are
partial recruitments, in the separate streams, accessible to players α and β respectively. Thus,

Rα = θαR, Rβ = θβR,

where

θα = θ, θβ = 1− θ,

and θ is a random split factor. The residual substream stock, or “escapement,” following the
harvest is denoted by Sα or Sβ respectively. These are determined by

Sα = σα(Rα, pα), Sβ = σβ(Rβ, pβ).

Here, pα and pβ are the players’ harvesting policies for this year (season), which determine what
fraction of the available stock is harvested. We shall define policies as escapement fractions, so that

Sα = pαRα, Sβ = pβRβ.

Finally, the substream escapements combine to form the current year’s total escapement

S = Sα + Sβ,

which is the brood stock, for determining the following year’s recruitment R+ through the so-called
“stock-recruitment relation”:

R+ = F (S).

Each player’s strategy (harvesting policy) depends on the mutually known information structure
of the game and on specific information that a player has when he makes his annual harvest
decisions. We will always assume that both players know the current total recruitment R and also
that each one has some information ξα and ξβ about current and past random disturbances θ.
Thus,

pα = Pα(R, ξα), pβ = P β(R, ξβ),

where Pα and P β are the players’ decision strategies.
The degree of players’ knowledge about the random split factor θ may vary. In all the cases,

we assume that both players know at least the stochastic properties of the random parameter θ.
In addition, a player may have additional information: e.g., full current knowledge (this season’s
value), or only delayed knowledge (the previous season’s value), or the result of imperfect obser-
vation of a current parameter value. Alternatively, he may possess no additional knowledge at all.
Furthermore, the structure of the knowledge may be asymmetric; that is, the players may have
different levels of knowledge.

In each season, a player gets a net return (annual payoff) vαspl or vβspl, which is a given function
of his stream’s recruitment and his own policy, i.e.,

vαspl = vαspl(R
α, pα), vβspl = vβspl(R

β, pβ).
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The player’s payoff in the dynamic game is taken to be a discounted sum of his seasonal returns
over the time span of the game.

It is easily seen that split-stream harvesting can be considered as a particular case of the dynamic
game studied above. Indeed, recalling the notation of Section 2, we put ν = θ, the function ρ has
the form

ρ(R, θ, pα, pβ) = F
(
(θpα + (1− θ)pβ)R

)
,

and the functions vα and vβ are expressed through the corresponding functions vαspl and vβspl as
follows:

vα(R, θ, pα, pβ) = vαspl(θR, p
α), vβ(R, θ, pα, pβ) = vβspl((1− θ)R, p

β).

In all simulation examples considered below, it is assumed that the random variables θt are
independent and identically distributed.

7.2. Details of the Computer Model

In simulations, we use algorithms described above in Sections 4 and 5. Here, we specify a number
of numerical and functional parameters, in particular, the immediate payoff function, described in
Section 7.2.1; growth function, described in Section 7.2.2; and other numerical model parameters
described in Section 7.2.3. Special attention in our simulations is paid to different variants of the
game information structure, which is our primary goal (these variants are described in Section 7.2.4).

All the parameters were varied in simulations, with certain “steps” and in rather wide ranges.
Thus, about a thousand various combinations were studied. Note that the effects described in
Section 7.3 were observed more or less evidently in all of these combinations. Below, we demonstrate
the results for one combination of parameters only, which is typical with respect to the effects
observed. Besides, this combination is natural for the model described in Section 7.1 (i.e., the
numerical values specified below are natural from the bioeconomic point of view).

As usual, in the situation of computer experiment, we cannot claim that in all the computations
the algorithm converged to the sought-for equilibrium point. This is connected with the absence
of a simple and convenient criterion for the algorithm convergence. We have processed about
30 thousands variants of games and, in 96% of the cases, algorithms converged in the following
“practical” sense.

Let δt be an ordinary residual for an iteration procedure. If, for some iteration, this residual
becomes lower than a fixed threshold δ0 and remains to be so during d0 following iterations, then
it is assumed that the algorithm converges and computation is stopped. If the above condition is
not fulfilled during D0 iterations, then the algorithm is considered to be divergent.

Note that, even for one combination, every iteration involves computation of an optimal strategy
as a function of two variables: a continuous one, R (we used a grid with 21 or more nodes, with
linear interpolation between them), and a discrete one, θ or ξ (taking several—usually two—values).
This required a considerable amount of computations.

A theoretical analysis of uniqueness of a pair of Nash equilibrium strategies and of the algorithm
stability with respect to the initial pair of strategies requires a separate deep study.

In the simulations presented in this paper, the initial iteration for a pair of strategies (cor-
responding to the final moment T ) was taken to reflect the absence of the harvest. For all the
other moments t, a pair of optimal strategies obtained at the previous step (i.e., for the subsequent
moment t+ 1) was used as an initial approximation.

At all steps of the algorithm, each player selected his strategy as an optimal reaction with
respect to the strategy of the other player. Specifically, this reaction was constructed by global
optimization on a certain grid.
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In order to check the stability of the algorithm with respect to the initial strategy (and the
uniqueness of the Nash equilibrium point), we used the following conventional approach. Initial
pairs of strategies where selected at random in the space of all such pairs. In all the studied cases,
the algorithm converged to one and the same Nash equilibrium point; i.e., the result did not depend
on the pair of initial strategies.

7.2.1. Immediate payoff function. We define the players’ decisions pα and pβ as the corre-
sponding escapement fractions (for the current season), i.e.,

Sα = pαRα, Sβ = pβRβ.

Then the players’ seasonal harvests are

Hα = (1− pα)Rα, Hβ = (1− pβ)Rβ .

In our simulations, the cost of harvesting is taken into account. We assume that the unit cost
of harvesting for player α is inversely proportional to the current fish stock x in his stream and
equals c

x , where c is a fixed coefficient. Thus, the seasonal price of harvesting for player α can be
obtained as an integral from the player’s escapement Sα up to his current recruitment Rα:

cost =
R∫
S

c

x
dx = −c log(p).

Then his total immediate payoff (for the current season) is

v(R, p) = H − cost = Hα + c log(p).

7.2.2. Growth function. In our studies, we used the growth function F (S) that reflects the
possibility of complete stock extinction (even without harvesting) if its amount falls below a certain
critical level. This means that F (S) < S for small enough S.

A wide enough class of growth functions F (S) can be represented by 3rd-order polynomials that
pass through the point (0, 0):

F (S) = a1S + a2S
2 + a3S

3.

Since a1 is equal to the derivative of this function at zero, for 0 < a1 < 1 we have the possibility
of stock extinction mentioned above. Below, we present simulation results for the natural case
a1 = 0.6. Besides, our function F (S) attains its maximum at the point (1, 1). Thus, our growth
function has the following form:

F (S) = 0.6S + 1.8S2 − 1.6S3.

Its graph is shown in Fig. 1.

7.2.3. Simulation parameters. All simulations presented in this paper were performed for
the split-stream harvesting game from Section 7.1. The default parameter values were the following:

• Payoff function (Section 7.2.1) has cα = cβ = c = 0.2;
• Growth function (Section 7.2.2) has the form shown in Fig. 1;
• States of the random factor θ are θ1 = 0.1 and θ2 = 0.9. States at different moments are

independent and identically distributed with equal probabilities P (θ = θ1) = P (θ = θ2) = 0.5;
• Discount factors are γα = γβ = 0.9 (for both players α and β);
• Cooperation weights from Section 6 are cαα = 1, cαβ = 0, cβα = 0, and cββ = 1 (for pure

competition) or cαα = 0.5, cαβ = 0.5, cβα = 0.5, and cββ = 0.5 (for complete cooperation).
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Fig. 1. Growth function. The circle shows the critical escapement.

In order to vary the “completeness” information about θ, we use imperfect observations (see Sec-
tion 5). We change the “measurement precision” parameter π, which determines the measurement
matrix

M =

(
P (ξ = ξ1 | θ = θ1) P (ξ = ξ1 | θ = θ2)

P (ξ = ξ2 | θ = θ1) P (ξ = ξ2 | θ = θ2)

)
,

(i.e., the matrix of conditional probabilities of the observable ξ for various values of θ) in the
following way:

M =

(
(1 + π)/2 (1− π)/2

(1− π)/2 (1 + π)/2

)
.

Thus, if π = 1 (maximum precision), then M =

(
1 0
0 1

)
, which corresponds to “identical” mea-

surement. If π = 0 (minimum precision), then M =

(
1/2 1/2
1/2 1/2

)
, which results in observations

“independent” of the states of θ.
All simulations ran through a long enough averaging time period of 2000 time steps.

7.2.4. Major types of the game information structure. In our computer simulations, we
studied the following types of the information structure of the game (in parentheses, we give the
name and short notation for each of the cases).

1. At every moment t, players have complete symmetric current information about the random
parameter θ (“current information,” “Cur”).

2. Players know the probability distribution of θ only (“minimal information,” “Min”).
3. Players get asymmetric (current vs. minimal) information: the first player gets current informa-

tion, as in type 1, while the second one gets minimal information only, as in type 2 (“asymmetric
information,” “Cur–Min”).
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Fig. 2. Influence of the harvesting cost c for different types of information structures: “Cur”—players
have complete current information (including all the previous moments), only one curve is shown
since both payoffs are the same; “Cur–Min”—players have asymmetric information: the first player
has current information, while the second one has minimal knowledge only; “Cur Coop”—cooperative
harvesting with current information; “Min”—competitive harvesting with minimal symmetric infor-
mation; “Min Coop”—cooperative harvesting with minimum information.

4. Players have incomplete information, namely, they observe a realization of the random variable ξ,
which is a measurement of the random parameter θ (“incomplete information obtained from
measurements,” “Meas”).

5. Players get incomplete asymmetric information: the first player according to type 4, while the
second one—only minimal—according to type 2 (“incomplete asymmetric information,” “Meas–
Min”).

We also provide simulation results of the cooperative behavior for symmetric information struc-
tures 1, 2, and 4 (since, under cooperative management, it is natural to assume that players
completely interchange all available information).

7.3. Results of Computer Simulations

7.3.1. Influence of the harvesting cost. Here we examine the influence of the harvesting
cost parameter c on the outcome of the split-stream harvesting game (see Section 7.2.1).

The graphs displayed in Fig. 2 show average (over all seasons) payoffs as functions of the
harvesting cost parameter c for the following five types of the game: cooperative harvesting with
current information, cooperative harvesting with minimum information, competitive harvesting
with current information, competitive harvesting with minimal symmetric information, and finally
competitive harvesting with asymmetric (current vs. minimal) information.

The most interesting in the cases where the players compete is the reduction of the mean payoff
when the harvesting cost c is low. It is explained by the fact that, at low cost of the harvest,
competition becomes more aggressive, and this leads to a severe reduction of the stock. This effect
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Fig. 3. Influence of the information accuracy. “Meas”—both players have equal incomplete infor-
mation; “Meas–Min”—the first player (“Meas–Min 1”) obtains measurement information, while the
second one (“Meas–Min 2”) has only minimal knowledge; “Meas Coop”—cooperative harvesting with
equal incomplete measurement information.

is not seen when the players cooperate and, hence, are able to keep the stock at a high enough
level.

Besides, it is seen in Fig. 2 that an informational advantage in the asymmetric knowledge case
is highly beneficial for the first player (“Cur–Min 1”). Moreover, he would not wish to share his
additional knowledge with his competitor and thereby switch to the symmetric complete knowledge
case (“Cur”). Typically, the second player (“Cur–Min 2”) in the asymmetric case would prefer to
get the current knowledge, but not for the low cost (< 0.3), where the asymmetric lack of knowledge
is more beneficial (even for him) than the symmetric complete current knowledge (“Cur”). Fur-
thermore, at low enough costs (< 0.35), minimal information (“Min”) is more beneficial than the
complete current knowledge (“Cur”). Apparently, this is due to the fact that, in the absence of a
precise knowledge, the risk of an accidental stock destruction becomes higher and, as a consequence,
the players behave more “carefully.”

As is noted above, competition becomes especially destructive for the low cost of harvest c, when
overharvest can completely destroy the stock. However, if the players cooperate, their return is
significantly higher, especially when the cost of harvest is low. Cooperatively, in contrast to the
competitive case, they are able to hold expected escapements at relatively high levels.

7.3.2. Information from imperfect observations. In this set of simulations (Fig. 3), infor-
mation about the current θ is obtained from imperfect measurements of the random parameter θ.
The measurement accuracy is a variable parameter, increasing from 0 (no information) to 1 (com-
plete information).

Note that, when the players cooperate (“Meas Coop”), the situation is quite natural: the greater
their (shared) information, the greater their payoff. The sum of the payoffs here will necessarily be
superior to those in competitive situations, with or without informational asymmetry.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 39 No. 3 2003



STOCHASTIC DYNAMIC GAMES 287

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Meas 1    
Meas 2    
Meas−Min 1
Meas−Min 2
Coop 1    
Coop 2    
Coop      

Information accuracy

A
ve

ra
ge

pa
yo

ff

Fig. 4. Influence of the information accuracy under asymmetric environmental conditions. “Meas”—
both players have equal incomplete information; “Meas–Min”—the first player obtains measurement
information, while the second one has only minimal knowledge; “Coop”—cooperative harvesting with
equal incomplete measurement information (in addition to the players’ actual payoffs “Coop 1” and
“Coop 2,” we also show their equal sharing payoff “Coop”).

It is seen from Fig. 3 that, in competitive games with symmetric (“Meas”) and asymmetric
(“Meas–Min”) information structures, additional information below a certain level is beneficial to
both players, even for the player who does not possess additional information (“Meas–Min 2”).
However, further increasing the knowledge level degrades the situation dramatically, presumably
by making harvesting policies more aggressive.

In addition, for a low measurement accuracy, the situation where the second player also accesses
the measurement information is better for him than the situation where he does not (“Meas” versus
“Meas–Min 2”). However, for high enough accuracy levels (> 0.38), he does not benefit from his
additional knowledge.

At the same time, cooperative management (“Meas Coop”) provides a much higher return,
which is constantly growing with the increase of the measurement accuracy.

7.3.3. Balancing asymmetric information against asymmetric environmental condi-
tions. Here, the nature slightly favors the second player (Fig. 4). Specifically, θ takes the values
0.1 and 0.8 with equal probabilities (so, the first player’s fraction of the total recruitment is either
0.1 or 0.8 of the whole recruitment, while the second player receives the fraction either 0.9 or 0.2).
Thus, the mean recruitment for the first player is lower than for the second one.

As one would expect, when the players possess identical information, player 2 (“Meas 2”) will
always do better than player 1 (“Meas 1”). But when player 1 (“Meas–Min 1”) has a strong
informational advantage (measurement accuracy > 0.3), this can overbalance the second player’s
(“Meas–Min 2”) environmental advantages.

On the other hand, the sum of the players’ payoffs will be the greatest with cooperation: the
players share information, with the common objective of maximizing the sum of their returns.
In this case, because of the environmental asymmetry, the direct harvest returns in the two sub-
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Fig. 5. Influence of the environmental variability (characterized by θ1). “Cur”—players have complete
current information; “Cur–Min”—players have asymmetric information: the first player has current
information, while the second one has minimal knowledge only; “Cur Coop”—cooperative harvesting
with current information; “Min”—minimal information; “Min Coop”—cooperative harvesting with
minimum information.

streams (“Coop 1” and “Coop 1”) are not equal. This can be considered as a pure “good-will”
cooperation. Alternatively, the two players agree upon a redistribution of this total return, which
leads to a compensating “side payment” from one player to the other. The case of equal sharing
(“Coop”) is shown in the figure as well.

7.3.4. Influence of the environmental variability. In this set of simulations (Fig. 5), we
change the variance of the stock-split factor θ. Specifically, θ randomly takes two values: θ1 and
θ2 = 1 − θ1, where θ1 may be any fraction between 0 and 0.5. For θ1 = 0.5, there is no variability
(θ = 0.5 always), while for θ1 = 0 the variability is the highest (θ jumps randomly between 0
and 1). For cooperative harvesting with complete knowledge (“Cur Coop”), the increase of the
payoff, as well as an increase of the variability of θ (decrease of θ1) is quite natural. Indeed, with
high variability of θ, almost the entire fish stock goes into one of two streams, and this leads to
a reduction of harvesting cost per unit (cf. Section 7.2.1). Since this cooperative game is fully
symmetric, the average annual payoffs to the two players will be identical.

It seems that the increase of the payoff in competitive games with a decrease of θ1 from 0.5 to 0.4
may have the same explanation. However, at a higher variability (low θ1), the effect of competition
(especially for complete knowledge, “Cur”) becomes dominant. Indeed, if all the stock is in one
stream, the corresponding fleet can harvest almost all the stock at a relatively low cost.

7.3.5. Transition from competition to cooperation. In Section 6, we described a simple
way to introduce “cooperation” into the competitive game. Figure 6 shows the dependence of
average payoffs on the “degree of cooperation” for the cases of complete and minimal information.

Here, the zero degree of cooperation d means the purely competitive behavior, with each player
maximizing his own discounted payoff, while degree-1 cooperation means that both players maxi-
mize the total discounted payoff. For intermediate values of cooperation, each player maximizes a
convex linear combination of his own and his competitor’s discounted payoffs.
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Fig. 6. Increasing degree of cooperation for current and minimum knowledge. “Cur”—current infor-
mation, “Min”—minimal information.

To be precise, cooperation coefficients are expressed through the cooperation degree, denoted
by d, in the following way: cαα = 1− d/2, cαβ = d/2, cβα = d/2, and cββ = 1− d/2. Thus, when d
goes from 0 to 1, the situation changes from “no cooperation” to “complete cooperation.”

It is clearly seen from Fig. 6 that additional information (“Cur”) is beneficial only if there
is a high degree of cooperation. At low degrees of cooperation and especially in the case of pure
competition, additional knowledge leads to a critical drop of escapement and to zero average payoff.

8. APPENDIX: GENERAL INFORMATION ABOUT GAMES

Recall that a nonantagonistic two-player game is determined by a tuple g =
〈
Dα,Dβ , vα, vβ

〉
,

where Dα and Dβ are the spaces of actions (decisions) of players α and β, while vα and vβ are their
payoff functions respectively. More precisely, vα, vβ : Dα × Dβ → R, vα(pα, pβ) and vβ(pα, pβ) are
payoffs for players α and β if their decisions are pα and pβ respectively.

The classical problem of constructing optimal decisions in such a game consists in finding a Nash
equilibrium point, i.e., a pair of (optimal) decisions

〈
p̂α, p̂β

〉
such that any one-sided deviation of a

player from his optimal decision leads to a reduction of his payoff, i.e.,

∀pα ∈ Dα, vα(pα, p̂β) ≤ vα(p̂α, p̂β),

∀pβ ∈ Dβ, vα(p̂α, pβ) ≤ vβ(p̂α, p̂β).

By πα : Dβ → P(Dα), denote the multivalued mapping1 which determines the set of optimal
responses of player α with respect to the decision pβ of player β:

πα(pβ) = arg max
pα

(pα, pβ).

Similarly define πβ : Dα → P(Dβ):

πβ(pα) = arg max
pβ

(pα, pβ).

1 Here and in what follows, P(X ) denotes the set of all subsets of a set X .
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Obviously, a pair
〈
p̂α, p̂β

〉
is a Nash equilibrium point if

p̂α ∈ πα(p̂β), p̂β ∈ πβ(p̂α).

In practice, a Nash equilibrium point
〈
p̂α, p̂β

〉
can be constructed by the following iteration

procedure.
Let pα0 be an arbitrary decision of player α (initial approximation). Assume that pβ0 is an optimal

response of player β with respect to pα0 (pβ0 ∈ πβ(pα0 )). Similarly, let pα1 be an optimal response
of α with respect to pβ0 (pα1 ∈ πα(pβ0 )), etc.:

pαn ∈ πα(pβn−1), pβn ∈ πβ(pαn).

Proposition 8.1. Assume that Dα and Dβ are metric spaces and πα and πβ are everywhere
defined single-valued continuous mappings. If there exists any of the limits

lim
n→∞

pαn = lim
n→∞

(πα ◦ πβ)n(pα0 ) = p̂α

or
lim
n→∞

pβn = lim
n→∞

(
(πβ ◦ πα)n ◦ πβ

)
(pα0 ) = p̂β,

then the other also exists, and the pair
〈
p̂α, p̂β

〉
is a Nash equilibrium point for the game g =〈

Dα,Dβ, vα, vβ
〉
.

Proof. Assume that there exists lim
n→∞

pαn = p̂α. Let us prove that the second limit lim
n→∞

pβn also

exists and is equal to p̂β. Indeed,

p̂β = lim
n→∞

pβn = lim
n→∞

πβ(pαn) = πβ
(

lim
n→∞

pαn

)
= πβ(p̂α).

Similarly, if there exists lim
n→∞

pβn = p̂β, then lim
n→∞

pαn also exists and

p̂α = lim
n→∞

pαn = πα(p̂β).

Thus, the pair
〈
p̂α, p̂β

〉
satisfies the conditions p̂α ∈ πα(p̂β) and p̂β ∈ πβ(p̂α), i.e., is a Nash

equilibrium point. 4
Now assume that the result of a game depends not only on players’ decisions but also on a

random parameter ν (which has a known probability distribution) from a space N . Specifically,
assume that vα, vβ : Dα×Dβ×N → R. Since the players do not know the parameter ν, it is natural
to formulate the optimal decision problem as the problem of maximizing the average payoffs

V α(pα, pβ) = Eνv
α(pα, pβ, ν)

and

V β(pα, pβ) = Eνv
β(pα, pβ, ν).

Thus, we obtain a new game
〈
Dα,Dβ, V α, V β

〉
, which differs from the initial one

〈
Dα,Dβ, vα, vβ

〉
by payoff functions only (V α and V β instead of vα and vβ).

The situation becomes more complicated if the players obtain some information about the ran-
dom parameter ν. Specifically, assume that players α and β obtain results of imperfect observations
of ν, i.e., realizations of certain random elements ξα ∈ Xα and ξβ ∈ X β. Interrelation between ν,
ξα, and ξβ is described by a given joint distribution on the space N ×Xα ×X β.
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Assume that player α gets an observation of the random element ξα. Then his decision pα may
depend on ξα, i.e., is defined as pα = Pα(ξα), where Pα is some decision strategy of player α—
a measurable mapping from Xα to Dα. Similarly, player β may make his decisions based on the
observation ξβ, i.e., pβ = P β(ξβ).

If payers use strategies Pα and P β , their average payoffs are defined as

V α(Pα, P β) = E(ν,ξα,ξβ)v
α
(
Pα(ξα), P β(ξβ), ν

)
,

V β(Pα, P β) = E(ν,ξα,ξβ)v
β
(
Pα(ξα), P β(ξβ), ν

)
.

Thus, in the situation with imperfect observations of the random parameter, we arrive at a new
game

G =
〈
D̃α, D̃β, V α, V β〉.

Here, D̃α and D̃β are function spaces, specifically, spaces of measurable mappings of the form
Xα → Dα and X β → Dβ, respectively, and V α and V β are functionals defined on the space
D̃α × D̃β.

Let us note that the problem of constructing a Nash equilibrium point for this game is consider-
ably more complicated than that for the initial game g. Indeed, in the initial game, strategies are
typically elements of finite-dimensional linear spaces (or even finite sets) while, in the corresponding
game with imperfect observations, strategies are elements of function spaces.

However, in some cases (for example, when both players obtain equal information), it is possible
to reduce constructing optimal strategies for the game G =

〈
D̃α, D̃β, V α, V β

〉
to those for games of

the type
〈
Dα,Dβ, vα, vβ

〉
.

So, assume that both players obtain results of one and the same observation, i.e., ξα = ξβ = ξ ∈
X = Xα = X β.

For a fixed ξ ∈ X , consider the conditional payoff functions

V α
ξ (pα, pβ) = E(ν | ξ)v

α(pα, pβ, ν),

V β
ξ (pα, pβ) = E(ν | ξ)v

β(pα, pβ , ν),

where E(ν | ξ) is the operation of conditional (with respect to ξ) mathematical expectation over ν.
Now, for a fixed ξ ∈ X , consider the “conditional” game

Gξ =
〈
Dα,Dβ, V α

ξ , V
β
ξ

〉
,

which differs from the game G by replacing the distribution of the random element ν with the
conditional distribution of ν with respect to a fixed ξ.

Proposition 8.2 (Bayes principle). Assume that, for any ξ ∈ X , there exists a Nash equilib-
rium point

〈
p̂αξ , p̂

β
ξ

〉
for the game Gξ =

〈
Dα,Dβ, V α

ξ , V
β
ξ

〉
, and the mappings P̂α and P̂ β defined by

the equations
P̂α(ξ) = p̂αξ , P̂ β(ξ) = p̂βξ

are measurable. Then the pair
〈
P̂αξ , P̂

β
ξ

〉
is a Nash equilibrium point for the game

G =
〈
D̃α, D̃β, V α, V β〉.

Proof. Let Pα : X → Dα and P β : X → Dβ be arbitrary measurable mappings. Since the
mathematical expectation operation E(ν,ξ) can be written as a composition E(ν,ξ) = EξE(ν | ξ) of
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expectations over the marginal distribution of ξ and the conditional distribution of ν with respect
to ξ, we have

V α(Pα, P β) = EξE(ν | ξ)v
α(Pα(ξ), P β(ξ), ν),

V β(Pα, P β) = EξE(ν | ξ)v
β(Pα(ξ), P β(ξ), ν).

Thus,

V α(Pα, P β) = EξV
α
ξ (Pα(ξ), P β(ξ)),

V β(Pα, P β) = EξV
β
ξ (Pα(ξ), P β(ξ)).

Now, let us consider V α(Pα, P̂ β). According to the definition, V α
ξ

(
Pα(ξ), p̂βξ

)
≤ V α

ξ

(
p̂αξ , p̂

β
ξ

)
for

all ξ ∈ X . This yields

V α(Pα, P̂ β) = EξV
α
ξ (Pα(ξ), P̂ β(ξ)) ≤ EξV

α
ξ (P̂α(ξ), P̂ β(ξ)) = V α(P̂α, P̂ β).

This implies V α(Pα, P̂ β) ≤ V α(P̂α, P̂ β). By the same argument, we prove that V β(P̂α, P β) ≤
V β(P̂α, P̂ β), i.e.,

〈
P̂α, P̂ β

〉
is a Nash equilibrium point for the game G. 4

Thus, in the game G with equal information, a pair of optimal strategies
〈
P̂α, P̂ β

〉
can be

constructed “pointwise” by considering games Gξ for all the possible values ξ ∈ X . Clearly,
optimal decisions for a conditional game can be constructed according to the procedure for the
initial game g in Proposition 8.1.

Finally, for a game G in the general case, optimal strategies can also be constructed “pointwise,”
but with the use of a more complex iteration procedure.

So, consider the general game
G =

〈
D̃α, D̃β, V α, V β〉 (14)

for the case of different observations ξα ∈ Xα and ξβ ∈ X β for players α and β respectively.
For an arbitrary fixed value ξα ∈ Xα, consider the conditional payoff for player α:

V α
ξα(pα, P β) = E(ν,ξβ | ξα)v

α(pα, P β(ξβ), ν).

Similarly define V β
ξβ

:

V β
ξβ

(Pα, pβ) = E(ν,ξα | ξβ)v
β(Pα(ξα), pβ, ν).

Assume that παξα : D̃β → P(Dα) is a multivalued mapping that represents the set of all optimal
reactions pα of player α with respect to a given strategy P β of player β provided that player α has
observation ξα. Specifically, put

παξα(P β) = arg max
pα

V α
ξα(pα, P β).

In the same way, define πβ
ξβ

: D̃α → P(Dβ) for all ξβ ∈ X β.
Now let us consider the following iteration procedure. Take an arbitrary initial strategy Pα0

(i.e., a measurable mapping Pα0 : Xα → Dα) for player α and construct an optimal reaction
for player β. To do this, for every ξβ ∈ X β put P β0 (ξβ) ∈ πβ

ξβ
(Pα0 ). In the same way, define

Pα1 : Xα → Dα such that Pα1 (ξα) ∈ παξα(P β0 ) for all ξα ∈ Xα, etc.:

Pαn (ξα) ∈ παξα(P βn−1), ∀ξα ∈ Xα,
P βn (ξβ) ∈ πβ

ξβ
(Pαn ), ∀ξβ ∈ X β .
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Proposition 8.3. Let Dα and Dβ be metric spaces. Assume that mappings παξα and πβ
ξβ

,

παξα : D̃β → P(Dα), παξα(P β) = arg max
pα

V α
ξα(pα, P β), ∀ξα ∈ Xα,

παξβ : D̃α → P(Dβ), παξβ(Pα) = arg max
pβ

V β
ξβ

(Pα, pβ), ∀ξβ ∈ X β ,

are everywhere defined, single-valued, equicontinuous with respect to ξα ∈ Xα and ξβ ∈ X β, respec-
tively, and are such that, for all fixed measurable mappings Pα ∈ D̃α and P β ∈ D̃β, the mappings
παξα(P β) and πβ

ξβ
(Pα) are measurable with respect to ξα and ξβ respectively. If there exists one of

the limits
lim
n→∞

Pαn = P̂α, lim
n→∞

P βn = P̂ β,

then the other also exists and
〈
P̂α, P̂ β

〉
is a Nash equilibrium point for the game G.

Proof. Consider a mapping π̂α defined by π̂α(P β)(ξα) = π̂αξα(P β). By the condition, for any
measurable P β ∈ D̃β, the mapping π̂α(P β) : Xα → Dα is also measurable, i.e., π̂α : D̃β → D̃α.
Similarly define π̂β : D̃α → D̃β, i.e., π̂β(Pα)(ξβ) = π̂β

ξβ
(Pα).

The spaces D̃α and D̃β are metric spaces with the uniform metric defined by the metric of the
spaces Dα and Dβ respectively. Thus, the equicontinuity condition for the mappings παξα and πβ

ξβ

immediately implies that the mappings π̂α and π̂β are continuous.
Indeed, the equicontinuity of the mappings παξα , ξα ∈ Xα, at the point P β ∈ D̃β means that

∀ε > 0 ∃δ ∀P ∈ D̃β
[
dD̃β

(
P,P β

)
< δ ⇒ dDα

(
πα(P ), πα(P β)

)
< ε

]
.

However, since
dD̃α (P1, P2) = sup

ξα
dDα (P1, P2) ,

this is equivalent to the continuity of the mapping π̂αξα at the point P β ∈ D̃β:

∀ε > 0 ∃δ ∀P ∈ D̃β
[
dD̃β

(
P,P β

)
< δ ⇒ dD̃α

(
π̂α(P ), π̂α(P β)

)
< ε

]
.

This implies that the conditions of Proposition 8.1 are satisfied (with the obvious substitutions
Dα → D̃α, Dβ → D̃β, πα → π̂α, πβ → π̂β, vα → V α, and vβ → V β). 4
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