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Abstract—We improve a well-known asymptotic bound on the number of monotonic selection
rules for covering of an arbitrary randomness test by frequency tests. More precisely, we prove
that, for any set S (arbitrary test) of binary sequences of sufficiently large length L, where
|S| ≤ 2L(1−δ), for sufficiently small δ there exists a polynomial (in 1/δ) set of monotonic
selection rules (frequency tests) which guarantee that, for each sequence t ∈ S, a subsequence
can be selected such that the product of its length by the squared deviation of the fraction of
zeros in it from 1/2 is of the order of at least 0.5 ln 2 L[δ/ ln(1/δ)](1 − 2 ln ln(1/δ)/ ln(1/δ)).

DOI: 10.1134/S0032946007010061

This paper answers a question stated in [1, Section 2.4]. Let us recall basic definitions and
problem settings from [1] related to the considered problem. The problem itself will be formulated
below.

An arbitrary frequency test for binary sequences of length L is any set S of such sequences.
The specific deficiency δ(S) of S is (L − lb |S|)/L, where lb is the binary logarithm and |S| is
the cardinality of S. Let t denote an arbitrary element of S. A monotonic selection rule is
any selection rule (i.e., a function defined on all finite sequences and taking values 0 and 1) for
selecting a subsequence of t which, at each step i (i = 1, . . . , L), decides (using only the head of
t of length i − 1) whether the ith symbol ti of t should be appended to the subsequence under
construction. A nonmonotonic selection rule differs from a monotonic one in the following way:
it may look through bits of t in an arbitrary order (the decision on appending a bit to the sequence
under construction is made straight before reading this bit, based on the values of previously

examined bits). The specific deficiency of a rule conditional to S is the number
2 lb e

L
multiplied by

the minimum (over all t ∈ S) of the product of the length of a selected subsequence and the squared
deviation of the fraction of zeros in it from 1/2 (here e is the base of the natural logarithm).

Let us briefly recall the reason for this definition (see details in [1]). A normal rule is a rule
that always selects from a sequence of length L subsequences of the same length. Given any rule r,
one can easily construct L normal rules r1, . . . , rL, where each ri selects a subsequence of “its own”
length i and does not change the selection given by r in the cases where r also selects a subsequence
of length i. To each normal rule ri and a given deviation ε there corresponds a set T (frequency
test) of subsequences of length L for which ri selects a subsequence (of length i) with deviation of
the fraction of zeros from 1/2 of at least ε. Using the bound for the large deviation probability
(see [2, p. 93]; sometimes it is called the Chernoff bound), it is easy to show that the specific
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deficiency of T is at least (2nε2 lb e)/L; if ε is small enough and n is large enough as compared
to 1/ε, then δ(T ) ≈ (2nε2 lb e)/L.

We say that a family R of rules δ′-covers S if there exists a partition of S into |R| subsets and a
one-to-one correspondence between the rules and subsets such that the specific deficiency of each
rule conditional to the corresponding subset is larger than δ′. Note that, if the rules are normal,
the meaning of this definition is clear: an arbitrary test S is covered by a family of |R| frequency
tests, and δ′ indicates the “quality” of the frequency tests. Before formulating the main result,
let us consider several examples and briefly describe known facts and open problems.

Example 1. Let L be even and assume that all positions are divided into pairs of neighboring
positions. Consider the set S characterized by the following property: the number of pairs with
two zeros is at most 0.5L(0.25 − ε), i.e., the fraction of such pairs differs by ε from the “proper”
one quarter, where ε < 0.1. Clearly, the specific deficiency of S is larger than some positive number
that depends on ε but is independent of L. Consider two monotonic rules: the first selects the first
bits of all pairs to the subsequence, and the second looks at the first bit of each pair and, if it is 0,
selects the second bit. It is easily seen that either the first rule attains the deviation of the fraction
of zeros in the selected subsequence from 1/2 of at least ε, or so does the second rule; in the latter
case, the length of the subsequence will be at least L(0.5 − ε). Hence, the specific deficiency of at
least one of the rules is not less than (0.8 lb e)ε2; i.e., the deficiency depends only on δ but not on L.
It is clear that the same effect can be attained by using one nonmonotonic rule which first selects
all first bits and then either stops (if the subsequence thus selected has large enough deviation of
the fraction of zeros from 1/2) or selects the second bits in the pairs where the first bit is 0.

Example 2. Assume that all L positions are divided into blocks of even length d (the last block
can be of length less than d; for fixed d and large L, this has no influence on the result). Consider
the set S characterized by the property that the number of zeros in each block is equal to the
number of ones. It is easily seen that the specific deficiency of S depends only on d but not on L
(it is of the order of 0.5(ln d)/d). Consider two monotonic rules: the first rule selects the last bit
of a block only if it is 0, and the second rule, only if it is 1 (it is clear that, when all bits except for
the last are already read, the rule “understands” what the last bit is). Obviously, one of the rules
attains the specific deficiency of approximately (lb e)/d. It is easily seen that the same effect can
be achieved by using one nonmonotonic rule which first finds out what the last bit of each block is
and then selects the bits that form the majority.

A situation where one nonmonotonic rule is “sufficient,” whereas several monotonic rules are
necessary, is quite typical. In particular, the author is unaware of any case where one nonmonotonic
rule is “insufficient”; more precisely, whether there exists some δ > 0 such that, for any ε and
any arbitrarily large L, there exists a set S of specific deficiency at least δ for which there is no
nonmonotonic rule with specific deficiency conditional to S not less than ε. There is only known a
corresponding statement in the case where ε is sufficiently large as compared with δ. More precisely,

it is proved in [1, Theorem 5] that, if we require ε to be not less than
2δ

ln δ
, then there exists S for

which even some exponential (in L) number of nonmonotonic rules is insufficient.
For monotonic rules, the situation with lower bounds (i.e., with proofs that rules are “insuffi-

cient”) is a little better. Thus, in the spirit of a well-known example by Ville (see [3, Section 6.2.2]),
one can easily construct an example where one monotonic rule is “insufficient.” As in Example 1, let
all positions be divided into pairs. Consider a set S characterized by the property that there is no
pair with two zeros. Then, given any monotonic rule, one constructs the following sequence: each
time when the rule does not select the current bit to a subsequence, put it to be 1, and in the bits
that are selected to the subsequence, let the values 0 and 1 alternate. It is clear that a sequence thus
constructed belongs to S and that the rule does not attain any significant specific deficiency on it.
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One can strengthen this lower bound and show that there are cases where of the order of ln(1/δ)
monotonic rules are “insufficient.” As in Example 2, let all L positions be divided into blocks of
the same length d, where d equals 22r, r being the number of rules that we want to “deceive.”
Consider a set S characterized by the property that, in each block, the number of zeros differs
from the number of ones by at most 2r. It follows from the central limit theorem that the specific
deficiency, δ, of S equals c/d for some constant c; hence, r = 0.5(lb(1/δ) + lb c). Let there be r
monotonic rules. Given them, we construct the following subsequence t. Let i be the number of
a current bit, and let Mi be the set of rules that decide to select this bit to a subsequence. If the
set Mi did not occur earlier (i.e., if Mi �= Mj for each j < i), then we put 1 at the ith position;
otherwise, consider the largest j for which Mi = Mj and, at the ith position, put the bit other
than what was put at the jth position (i.e., alternate bits corresponding to the same set of rules).
Obviously, t ∈ S. On the other hand, each rule deciding to select the next bit is “kept company”
by one of the 2r−1 sets of rules, so that the number of zeros in the selected subsequence differs from
the number of ones by at most 2r−1. Clearly, its specific deficiency tends to zero as L → ∞.

Known upper bounds are also related to monotonic rules (the author does not know whether
they can be improved by allowing nonmonotonic rules). One of the first nontrivial upper bounds
was obtained by An.A. Muchnik and is as follows (since a detailed proof of this theorem was never
published (see [1, p. 164] and [4, Section 9.2.1]), we present it at the end of the paper).

Theorem 1. For an arbitrary set S with specific deficiency δ there exist c1
1
δ

monotonic rules
that c2δ

2-cover S (here c1 and c2 are some constants).

Now let us state our main result. It is proved in [1, Theorem 4] that, for any small enough δ > 0,
any L ≥ (1/δ)5, and any set S of sequences of length L with specific deficiency δ, there exists a

family, R, of monotonic rule that δ′-covers S, where δ′ =
δ

ln(1/δ)
(1 − β), and for β one may take

2 ln ln(1/δ)
ln(1/δ)

. The cardinality of R is of the order of an exponent of 1/δ (we mean not necessarily nor-

mal rules). The following theorem improves the bound on the cardinality of R. If δ′ =
δ

ln (1/δ)
(1−β),

then, for fixed β, this cardinality becomes polynomial in 1/δ; for β =
2 ln ln(1/δ)

ln(1/δ)
, it is subexponen-

tial in 1/δ.

Theorem 2. Let δ ∈ (0, expe(−e50)), and let a natural L ≥ (1/δ)5 be fixed. Consider sets of
binary sequences of length L. For an arbitrary set S with specific deficiency of at least δ, there
exists a family of at most

(
1
δ

) 0.6 ln 2 ln(1/δ)
β ln(1/δ)−1.3 ln ln(1/δ)

+6.8

monotonic rules that δ′-covers S, where δ′ =
δ

ln(1/δ)
(1 − β). For β, one may take

2 ln ln(1/δ)
ln(1/δ)

.

Proof. In [1] (see the beginning of the proof of Theorem 4) there is considered a game where
Mathematician and Nature make L moves in turn: at the ith move, Mathematician makes a bet of
xi ∈ [0, 1] on either 0 or 1, and Nature chooses an element ti ∈ {0, 1} so that, after the Lth move, the
constructed sequence t would belong to S. Initially, Mathematician’s capital is zero; then, at each
step, it increases by the bet if Mathematician guesses the next digit ti and decreases by the same
value otherwise (the capital can be negative as well). It is proved there that, for any set S, there
exists a strategy of Mathematician that allows him to win at least Lδ(S) ln 2. The bet at the ith

step is 2
|S1(i)|

|S1(i)| + |S2(i)|
− 1, where S1(i) and S2(i) are two sets of possible extensions of the known

(before the ith move) heads of the sequence t: one set with ti = 0, and the other with ti = 1;
moreover, |S1(i)| ≥ |S2(i)| (Mathematician makes a bet on the bit that corresponds to S1(i)).
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Throughout what follows, when speaking about a game, we always assume that bets are computed
according to this rule.

In the sequel, when speaking about probabilities, we mean the probabilities of events generated
by the uniform distribution of the sought-for element t over the set S. We estimate the probabil-
ities with the help of the following random process corresponding to the above-mentioned game.

Namely, playing with Nature, Mathematician wins at the ith move with probability
|S1(i)|

|S1(i)| + |S2(i)|
and looses, respectively, with probability

|S2(i)|
|S1(i)| + |S2(i)|

. Clearly, any sequence of S can equiprob-

ably appear as the sequence t constructed at the end of the game.

Lemma 1. Let M be a subset of the segment [0, 1], and let a and b be its lower and upper
boundaries, respectively. Assume that n is the number of bets that belong to M , and let d be the
difference between the number of wins and losses (for the considered n moves). Then, for any
ε ∈ (0, 0.1], if L > 20/ε4 and n ≥ Lε, the probability that d < n(a − ε) is not greater than
expe(−0.4Lε3). The same is the estimate for the probability that d > n(b + ε).

Proof. Consider a binary tree T corresponding to the described random process (we represent
it as “growing upwards”). Let us mark its vertices (except for leaves) by bets at them, which
uniquely determine the probabilities of movements along edges. Vertices whose bets belong to M
are refereed to as active. The active height of a vertex v is the number of active vertices along the
way from the root to v (the vertex v itself is not counted). To estimate the probability of the first
event in the statement of the lemma, for an arbitrary fixed n consider the following event A(n, ε):
along the way from the root to a leaf there are precisely n vertices and d < n(a− ε). Let us modify
the tree T as follows. Formally extend each leaf of active height less than n by a subtree (growing
upward) so that new leaves have active height n, and make each vertex of active length n a leaf by
deleting everything above it. Clearly, for the new tree T ′, the probability A(n, ε) does not decrease.

Let us show that the probability of this event also does not decrease under the following trans-
formation: let bets at all active vertices be equal to a (we still consider these vertices as active
even if a /∈ M). Denote by p(k,m) the probability to collect at most k wins in m moves if the
winning probability at each move is (a + 1)/2. Clearly, it suffices to prove the following statement:
for any k, the probability to collect at most k wins on the way to a leaf from a vertex v of active
height h is not greater than p(k, n−h) before the transformation and becomes equal to p(k, n−h)
after it. We prove it by inverse induction on the distance from v to the root. The induction step
is obvious since the transformation does not increase the winning probability.

Since the number of wins in the obtained tree has a Bernoulli distribution with success proba-
bility (a + 1)/2, we may use the large deviation probability bound. We obtain that the probability
of A(n, ε) is at most expe(−2n(ε/2)2) = expe(−0.5nε2). Summing over all n from Lε to L, we get
the desired bound on the probability of the first event in the statement of the lemma. The bound
for the probability of the second event is proved similarly. Note that another way for proving such
bounds is proposed in [1, Proposition 1]. Lemma 1 is proved.

The capital K(M) gained on M is the capital that would be gained if only bets belonging to M
were counted.

Lemma 2. Let M , a, b, n, and d be the same as in Lemma 1. Then, for any ε ∈ (0, 0.1],
if n ≥ Lε, L > 20/ε8, and a ≥ ε, the probability that K(M) > db + 3Lε is not greater than
expe(−0.3Lε6).

Proof. Divide the segment [a, b] into the following parts: semiintervals [a1, b1), [a2, b2), . . . ,
[am−1, bm−1) of length ε and a segment [am, bm] of length at most ε, where a1 = a, a2 = b1, . . . , am =
bm−1, bm = b, m ≤ 1/ε. By bets we mean only bets belonging to M . We exclude from consideration
all parts that contain less than Lε2 bets (note that the total number of bets on them is less than Lε,
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and the total capital is not greater than the number of bets). We enumerate the remaining parts
from left to right and consider the notation ai, bi, ni, and di as related to the ith part.

By Lemma 1, with probability not less than 1 − expe(−0, 4Lε6), each di is nonnegative; hence,
with probability not less than 1 − expe(−0, 3Lε6), all di are nonnegative. Considering the worst
case for Mathematician (where all wins are due to the bet bi, and all losses are due to the bet ai),
we conclude that, with the same probability, the capital gained on the ith part is not greater than

bi(di +
ni − di

2
) − ai

ni − di

2
≤ dibi + niε. Summing over all i and recalling the excluded parts, we

find that, with the above probability,

K(M) ≤ b
∑

i

di + ε
∑

i

ni + Lε ≤ b(d + Lε) + Lε + Lε ≤ bd + 3Lε.

Lemma 2 is proved.

Recall that the guaranteed capital on [0, 1] equals Lδ ln 2. Since the selection rule is aimed at a
large deviation of the fraction of zeros from 1/2, we (bearing in mind the possibility to transform
the strategy into a monotonic rule) split the strategy into two: one makes bets on ti = 0 only,
and the other on ti = 1 only. At least one of these strategies guarantees the capital of (Lδ ln 2)/2
on [0, 1]. Denote this strategy by R.

Lemma 3. Let Mathematician use strategy R,

α =

√
0.5 ln 2(1 − δ0.05)

δ

ln(1/δ)
.

Then the probability to gain capital greater than
Lδ ln 2

2 ln(1/δ)
on the segment [0, α] is not greater than

expe(−Lδ6.7).

Proof. Put K =
Lδ ln 2

2 ln(1/δ)
. Clearly, on the segment [0, δ1.1] it is possible to gain capital of at

most Lδ1.1; therefore, it remains to estimate the probability to gain capital greater than K −Lδ1.1

on the segment Δ = [δ1.1, α], to which we refer our usual notation n and d. Since this capital can
only be gained if n > Lδ1.1, by Lemma 2 (with ε = δ1.1) we get that the probability that the gained
capital is greater than dα+3Lδ1.1 does not exceed expe(−0.3Lδ6.6). Furthermore, by Lemma 1 (with
ε = δ1.1), with probability not less than 1 − expe(−0.4Lδ3.3), we have d ≤ n(α + δ1.1). Thus, with
probability not less than 1−expe(−Lδ6.7), the capital gained on Δ is at most n(α+δ1.1)α+3Lδ1.1.
It is easily seen that this is less than K − Lδ1.1 for small δ. Lemma 3 is proved.

This lemma allows us to concentrate upon bets that are not less than α. In particular, taking
into account Lemma 1, Lemma 3 guarantees that our selection rules are efficient enough, at least
from the point of view of the deviation of the fraction of zeros in the constructed subsequences
from 1/2: for length not less than 0.5Lδ ln 2

(
1 − 1

ln(1/δ)

)
, this deviation is with high probability

not too much less than (1 + α)/2.
Divide the segment [α, 1] into the following parts: semiintervals [a1, b1), [a2, b2), . . . , [am−1, bm−1)

and a segment [am, bm], where a1 = α, a2 = b1, . . . , am = bm−1, bm = 1, bi/ai = k for all
i = 1, . . . ,m − 1, and bm/am ≤ k,

k =
1

1 − β

(
1 − 1.2 ln ln(1/δ)

ln(1/δ)

)
.

Note that k > 1 for β =
2 ln ln(1/δ)

ln(1/δ)
. Let us find an upper bound on the number m of parts.

We have αkm−1 ≤ 1/k; therefore,

m ≤ 1 +
ln(1/α)

ln k
≤ 1 +

0.5(ln(2 lb e) − ln(1 − δ0.05) + ln ln(1/δ) + ln(1/δ))
ln k

≤ 0.6 ln(1/δ)
ln k

.
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As usual, we refer the notation ni and di to the ith part. The capital gained on it is denoted
by Ki. Any subset M of the set of parts defines a selection rule: a symbol of t is selected if and only
if the strategy R makes a bet from a part belonging to M . By definition, the specific deficiency of
this rule conditioned to S is

2 lb e

L

( ∑
di

2
∑

ni

)2 ∑
ni =

lb e

2L
(
∑

di)
2

∑
ni

,

where all sums are over i ∈ M . Thus, we have to prove that with high probability there exists M

for which
(
∑

di)
2∑

ni
is not less than Z = 2L ln 2(1 − β)

δ

ln(1/δ)
. Let us compose M only from parts

where ni ≥ Lδ1.1; since the total capital on the remaining parts is less than Lmδ1.1, we exclude
them from consideration. Denote the set of the remaining parts by M∗. The following lemma gives

a lower bound on the sum
∑
i

d2
i

ni
, where i “runs over” all parts from M∗.

Lemma 4. With probability not less than 1 − expe(−Lδ6.8), we have

∑
i∈M∗

d2
i

ni
>

Lδ ln 2
2k

(
1 − 2

ln(1/δ)

)
.

Proof. By Lemma 1 (with ε = δ1.1), with probability not less than 1 − expe(−0.4Lδ3.3), for
i ∈ M∗ we have the inequality di ≥ ni(ai − δ1.1). By Lemma 2 (with ε = δ1.1), with probability
not less than 1− expe(−0.3Lδ6.6), we have Ki ≤ dibi + 3Lδ1.1, i.e., dibi ≥ Ki − 3Lδ1.1. Hence, with
probability not less than 1 − expe(−Lδ6.7), we have

∑
i∈M∗

d2
i

ni
≥

∑
i∈M∗

di
ni(ai − δ1.1)

ni
=

∑
i∈M∗

diai − δ1.1
∑

i∈M∗
di

≥
∑

i∈M∗

dibi

k
− Lδ1.1 ≥ 1

k

( ∑
i∈M∗

Ki − 3Lmδ1.1

)
− Lδ1.1.

According to Lemma 3 and to the definition of M∗, with probability not less than 1−expe(−Lδ6.7),
we have ∑

i∈M∗
Ki ≥

Lδ ln 2
2

(
1 − 1

ln(1/δ)

)
− Lmδ1.1.

Let us lower bound ln k, taking into account the relation between β and δ. We have

ln k = ln
1

1 − β
+ ln

(
1 − 1.2 ln ln(1/δ)

ln(1/δ)

)
≥ β − 1.3 ln ln(1/δ)

ln(1/δ)
≥ 0.7 ln ln(1/δ)

ln(1/δ)
.

Hence, with probability not less than 1 − expe(−Lδ6.8), for small δ we have

∑
i∈M∗

d2
i

ni
≥ Lδ ln 2

2k

(
1 − 1

ln(1/δ)

)
− Lmδ1.1

k
− 3Lmδ1.1

k
− Lδ1.1

≥ Lδ ln 2
2k

(
1 − 1

ln(1/δ)

)
− 4Lδ1.1 ln2(1/δ)

ln ln(1/δ)
− Lδ1.1 >

Lδ ln 2
2k

(
1 − 2

ln(1/δ)

)
.

Lemma 4 is proved.

Lemma 5. With probability not less than 1−expe(−Lδ6.8) there exists a subset M of M∗ such
that ( ∑

i∈M
di

)2

∑
i∈M

ni
≥ Z.
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Proof. By Lemma 4, with probability not less than 1 − expe(−Lδ6.8), we have

∑
i∈M∗

d2
i

ni
>

Lδ ln 2
2k

(
1 − 2

ln(1/δ)

)
.

Assume that a required M does not exist. Then for any J ⊆ M∗ we have
(∑

i∈J

di

ni
ni

)2

≤ Z

(∑
i∈J

ni

)
.

Repeating the arguments from the proof of Proposition 2 in [1], we obtain the inequality

∑
i∈M∗

d2
i

ni
< Z +

Z

4

(
ln

( ∑
i∈M∗

ni

)
− ln Z

)
.

The proof repeats that of [1] word-by-word; the only slight difference is in justification of the
inequality

∑
i∈M∗

ni > Z, which in our case looks as follows:

∑
ni =

∑ n2
i

ni
≥

∑ d2
i

ni
>

Lδ ln 2
2k

(
1 − 2

ln(1/δ)

)
> Z.

Hence,
Lδ ln 2

2k

(
1 − 2

ln(1/δ)

)
< (1 − β)

2Lδ ln 2
ln(1/δ)

(
1 +

1
4

ln
L

Z

)
,

i.e.,
1
k

(
1 − 2

ln(1/δ)

)
< (1 − β)

4 + ln ln(1/δ) − ln 2 − ln ln 2 + ln(1/δ) − ln(1 − β)
ln(1/δ)

,

which is wrong if

k ≤ ln(1/δ) − 2
(1 − β)(4 + ln ln(1/δ) − ln ln 4 + ln(1/δ) − ln(1 − β))

,

in particular, if

k(1 − β) ≤ ln(1/δ) − 2
ln(1/δ) + 1.1 ln ln(1/δ)

.

It is easy to verify by direct substitution that, for our β and k (if δ ≤ expe(−e50)), this inequality
is satisfied. Lemma 5 is proved.

The proof of Theorem 2 follows the same scheme as in [1]. Namely, the small subset of S (called
exceptional) on which none of the described rules acts is declared to be the new set S, and the
whole construction is iterated on it. There arises a smaller exceptional set, and so on. It remains
to estimate the number of rules. Using the previously obtained estimate for ln k, we have

lb k = lb e ln k ≥ lb e

(
β − 1.3 ln ln(1/δ)

ln(1/δ)

)
=

β ln(1/δ) − 1.3 ln ln(1/δ)
ln 2 ln(1/δ)

.

Therefore, the number of rules at each iteration is not greater than

2m ≤ exp2

(
0.6 lb(1/δ)

lb k

)
=

(
1
δ

) 0.6 ln 2 ln(1/δ)
β ln(1/δ)−1.3 ln ln(1/δ)

.

It follows from Lemma 5 that the number of iterations is at most (1/δ)6.8. Theorem 2 is proved.
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Of special interest might be selection rules for which the set of accounted bets is connected
and simply described. Therefore, of interest might be the question of corresponding estimates on
the specific deficiency and the number of rules for which this set consists of one segment (let us
call them segment rules conditional to S). The result of An.A. Muchnik formulated in Theorem 1
in fact states that, for δ′ of the order of δ2, for a δ′-covering of a set S (where δ(S) = δ), a linear
(in 1/δ) number of monotonic segment rules conditional to S (more precisely, threshold rules, i.e.,
those with the segment of accounted bets of the form [p, 1]) is sufficient.

Our technique allows to obtain an estimate for segment rules that cover though not all the set S
but almost all. More precisely, we have the following result.

Theorem 3. Let a number δ ∈ (0, expe(−e50)) and a positive integer L ≥ (1/δ)5 be fixed. Con-
sider sets of binary sequences of length L. For an arbitrary set S of specific deficiency not less
than δ there exists a family of at most 0.6 ln(1/δ) monotonic segment rules conditional to S that
δ′-cover almost all S except for, possibly, a subset of cardinality not greater than |S| expe(−Lδ6.8),

where δ′ =
1

2.5e

δ

ln(1/δ)
.

Proof. We construct the set of parts in the same way as in the proof of Theorem 2 but with
k = e. Let us only consider rules for which the set of bets is some segment of the form [ai, bi]. It fol-
lows from Lemma 3 that, with probability not less than 1 − expe(−Lδ6.7), on some segment there

is gained capital Ki ≥ Lδ ln 2
2m

(
1 − 1

ln(1/δ)

)
. The rule corresponding to it has specific deficiency

D =
lb e

2L

d2
i

ni
. By Lemma 1 (with ε = δ1.1), with probability not less than 1 − expe(−0.4Lδ3.3), we

have di ≥ ni(ai − δ1.1). Hence, with the same probability, D ≥ lb e

2L
ni(ai − δ1.1)2. On the other

hand, by Lemma 2 (with ε = δ1.1), with probability not less than 1 − expe(−0.3Lδ6.6), we have

Ki ≤ dibi +3Lδ1.1, i.e., di ≥
Ki − 3Lδ1.1

bi
. Hence, with the same probability, D ≥ lb e

2L

(Ki − 3Lδ1.1)2

b2
i ni

.

Since the first estimate for D increases with ni, and the second decreases, the smallest possible

value of D is attained if ni(ai − δ1.1)2 =
(Ki − 3Lδ1.1)2

b2
i ni

, i.e., if ni =
Ki − 3Lδ1.1

bi(ai − δ1.1)
. For this ni, taking

into account estimates for Ki and m and using the inequalities bi/ai ≤ k, bi > α, we obtain that,
with probability not less than 1 − expe(−Lδ6.8), for small δ we have

D ≥ lb e

2L
(ai − δ1.1)(Ki − 3Lδ1.1)

bi
≥ lb e(ai − δ1.1)

2Lbi

Lδ ln 2
1.2 ln(1/δ)

(
1 − 2

ln(1/δ)

)

≥ (1/e) −
√

δ

2.4
δ

ln(1/δ)

(
1 − 2

ln(1/δ)

)
≥ 1

2.5e
δ

ln(1/δ)
.

The number of rules is at most m ≤ 0.6 ln(1/δ). Theorem 3 is proved.

Remark. It is easily seen that, by reducing the range of possible values of δ, the constant 0.6 in
the statement of Theorem 2 can be made arbitrarily close to 0.5; the constant 6.8 in Theorems 2
and 3, arbitrarily close to 6; and the constant 2.5 in Theorem 3, to 2.

Let us now present a proof of Theorem 1.

Proof of Theorem 1. As was already mentioned, all our rules will be threshold rules; i.e.,
decision on selecting a current bit to a subsequence is made if the bet (computed according to the
rule described in the beginning of the proof of Theorem 2) is not less than a certain threshold. Let
us say that an ordered pair 〈r1, r2〉 of two integers is good if r2−r1 ≤ εδ, where ε is the number that
determines the relation between c1 and c2 (for example, ε = 0.1). As we know, there exists a strat-
egy R which, first, matches the selection rule (in the sense that it “knows” what bits it should select
more) and, second, gains capital of at least 0.5Lδ ln 2. Thus, if we do not count some set of good
pairs 〈r1, r2〉 of bets, where the bet r1 losses, then the counted capital is still at least Lδ(0.5 ln 2−ε).
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Assume that a game played according to strategy R is over and all bets are marked on the
real line, with indication of wins and losses. Let us delete pairs of bets according to the following
rule: look through bets in the ascending order and, for each (not yet deleted) losing bet r1, check
whether there exists a (not yet deleted) winning bet r2 forming a good pair 〈r1, r2〉; if exists, take
the largest of such bets r2 and delete the pair 〈r1, r2〉. It is clear that, after all deletions, all remain-
ing losses are less than all remaining wins, and the interval between these two sets (denote them
by P and V , respectively) is greater than εδ. Let us set thresholds beginning from 0, with step εδ;
then the number of rules is approximately (εδ)−1. If P is empty, consider the threshold T = 0;
otherwise, consider the smallest threshold T in the interval between P and V . Let us show that,
for any deleted pair 〈r1, r2〉, we cannot have r2 < T ≤ r1. Indeed, if we assume this possibility,
then, according to the way of deleting pairs, the winning bet r2 would have already been paired
with the largest element of P before the deletion, and this element would have been deleted.

Thus, in any case, the difference d between the number of actual (i.e., lying not below the
threshold T ) wins and losses is not less than |V |. Taking into account that |V | ≥ Lδ(0.5 ln 2 − ε),
we get the following bound on the specific deficiency D of the rule (here n is the length of the
selected subsequence):

D =
2 lb e

L

(
d

2n

)2

n =
d2 lb e

2Ln
≥ L2δ2(0.5 ln 2 − ε)2

2L2
= 0.5 lb e(0.5 ln 2 − ε)2δ2,

which proves the theorem.

The author is deeply grateful to An.A. Muchnik, who attracted his attention to this subject and
made many valuable remarks, which helped the author to considerably improve the text.
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