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Abstract—We propose a linear time and linear space algorithm which constructs a minimal
sequence of operations rearranging one structure (directed graph of cycles and paths) into
another. Structures in such a sequence may have a varying number of edges; a list of operations
is fixed and includes deletion and insertion of a fragment of a structure. We give a complete
proof that the algorithm is correct, i.e., finds the corresponding minimum.
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1. INTRODUCTION

In Section 2 we present formulations and definitions related to the problem considered in the
paper and problems close to it. There are many publications devoted to such problems, among
which we note the fundamental work [1]. Below we only mention some papers most close to the
present paper; see also [2]. These problems are evoked by biological and medical subjects, so terms
from these areas are commonly used in their settings. However, we consider the mathematical
component of these problems only; the obtained solutions can also be applied, for example, in
engineering issues.

In [3] there were proposed operations for rearranging chromosome structure (see Section 2); in
what follows they are referred to as standard operations and are a part of our more general set
of operations. In [3] there is also given an algorithm to compute the number of operations in the
minimal (in the number of operations) sequence transforming one structure into another if the
structures consist of paths (“linear chromosomes”) only; the algorithm is almost linear in time, and
no estimate for the runtime is presented. These operations being applied to paths only correspond
to reversals, translocations, fusions, and fissions previously considered in [4]. In the case where
all intermediate structures also consist of linear chromosomes, an algorithm for computing the
minimum number of operation is also given in [4]. The general case of genomes having equal gene
content and equal cost of operations was solved in [5] using ideas from [3,4].

In the case of genomes with unequal gene content one needs additional operations: deletion and
insertion of strings of unique genes, which were proposed in [6, 7].

Papers [6–8] uses the notion of an adjacency graph: its vertices are adjacencies of extremities
(heads and tails) of genes that belong to both structures and ends of the original paths. Two
adjacencies from different structures are joined by an edge if they represent the head or tail of
the same gene. Furthermore, an end of the original path is assumed to be adjacent to an “empty
extremity” (telomere); between adjacent extremities of common genes of two structures there can

1 The research was carried out at the Institute for Information Transmission Problems of the Russian
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be a string of genes belonging to only one structure (unique genes), and in this case it is a label of
this vertex. Such a graph is graph obviously different from the graph defined below. In these papers
there was proposed a linear time algorithm constructing a minimal sequence of rearrangements of
one structure into another using the same operations as in the present paper. In [6, 7], costs of
all operations equal 1; in [8] the cost of a standard operation is 1, and the costs of insertion and
deletion are the same and less than 1. It is unclear whether the algorithm of those papers can be
related to our algorithm. The authors are unaware of where a proof of correctness of the algorithm
from [6–8] is given; remarks contained in these works do not allow to obtain such a proof.

In [9–11] a linear algorithm is proposed based on completing both original structures with unique
genes. Thus, the problem reduces to the case of equal gene content, and the total number of genes
increases by k+t, where k and t are the numbers of unique genes in the original structures. A graph
is used which additionally comprises two extremities of each unique gene, which results in enlarging
the graph that their algorithm works with as compared with the graph proposed in [3, 12]. The
graph and algorithm proposed in [2,12] are distinct from those in [9–11]. In [11] there is described
a generalization of the algorithm of [9,10] to the case where all chromosomes are cyclic, the cost of
standard operations is 1, and the costs of insertion and deletion are equal. The proof of correctness
given in [11] contains, in our opinion, some gaps.

Note the works [13, 14]. In [13] there is considered a generalization of the double-cut-and-join
operation to the case of an arbitrary number of breaks with gluing the obtained fragments; other
operations are not considered. Algorithms are given for finding the minimal sequence in the case
where structures have equal gene content and only cyclic chromosomes. One of the algorithms
has runtime O(n0.5k−2) + O(n), where n is the size of original structures and k is the maximum
number of breaks; another one has runtime linear in n but requires preprocessing time exponential
in k. A graph is used which in this special case coincides with our graph. In [14], the problem is
considered of finding the length of a minimal sequence of rearrangements taking on structure to
another provided that they have equal gene content and only linear chromosomes. In this paper, no
algorithm is proposed but explicit lower bounds on the length are given, as well as results showing
that they are rather tight. Here the problem is solved by reduction to the case of structures with
only cyclic chromosomes; for that, gluing of gene endpoints is used. The authors were unaware of
the works [13,14] and, unfortunately, did not consider such rearrangements.

In the present paper, for a directed graph consisting of an arbitrary set of paths and cycles
(“chromosomes”) and all the above-mentioned operations except for the generalized rearrangements
from [13, 14], we for the first time (as far as we know) give a complete proof of correctness of a
linear time and linear space algorithm that we propose in the case of unequal gene content and
equal operation costs. The case of different operation costs is considered by the authors in [2].

2. PROBLEM AND BASIC NOTIONS

2.1. Problem Statement

Let us give all necessary definitions. A structure is a finite set of directed graphs (“components”),
each component being either a linear path or a cycle, including a loop. An edge is referred to as
a gene; a component, as a chromosome. A gene is assigned with its number, a natural number,
which, in general, may occur repeatedly. In the present paper, such repetitions are forbidden; the
case with possible repetitions (“paralogs” of genes) is considered in [2, 15].

Usually, there are many components. All the structures can be considered as a directed graph
of a special form (sometimes called a CC-graph).

Let two structures, a and b, be given, and let a set of operations that transform one structure into
another be fixed. Every operation is assigned with a positive rational number, its cost (sometimes
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called the weight). In the present paper all operation costs are assumed to be equal to 1 (or,
equivalently, to be the same).

The problem consists in finding the shortest sequence of operations transforming a into b. Clearly,
“the shortest” means a sequence with the minimal total cost of all operations. This minimal cost
will be referred to as the shortest cost. In the case considered here, we speak about the minimal
sequence and call the shortest cost the minimum length. Reduction of a to b means using the
shortest sequence of operations transforming a into b; this sequence is said to be reducing. If a = b,
then the reduction is formally made by an “empty sequence of operations,” which is assigned with
zero cost and length.

Usually, the set of operations contains an inverse to each of the operations; therefore, it makes
no difference whether we reduce a to b or b to a. Costs of a direct and inverse operations may be
different.

This problem in a particular case where a and b have the same gene content and costs of all
operations equal 1 is solved in [5] using a more complicated algorithm than in [12].

Below, on a strictly mathematical level, we solve this problem under unequal gene content. Some
technical details of computations used in proofs of Theorems 1, 2, and 5 are deferred to the Ap-
pendix given at http://lab6.iitp.ru/ru/pr_chromo/. The obtained result was presented at con-
ferences [15–18], including the description of the algorithm and proofs, and is also described in [2].

Let us mention results that take place in the case of unequal costs. In this case, specific con-
ditions on the costs must be imposed, since the problem is assumed to be NP-complete and in
the general form cannot be solved by not only linear but also any polynomial algorithm. At the
above-mentioned conferences there were presented linear time and linear space algorithms for solv-
ing this problem in the case of unequal costs; see also [2]. The first two variants of the costs are
as follows: c2 ≤ c1 ≤ c′1 ≤ c1.5 (cyclic) and c1 ≤ c′1 ≤ c1.5 ≤ c2 (linear); here we indicate the
relations between the costs c1 of a fission, c′1 of a fusion, c1.5 of a 1.5-break, and c2 of a 2-break;
the gene content is assumed to be equal. The third variant is as follows: the cost of an insertion is
1 + ε with 0 ≤ ε ≤ 1, and the cost of the other operations is 1; gene content is unequal. For the
third variant, the corresponding algorithm constructs a sequence of total cost differing from the
minimum possible by at most ε.

2.2. Notions of a Common Graph

Our original approach is based on the proposed notion of a common graph; in fact, we also use
the definition of its quality [12].

We denote gene extremities by ij , where i1 is the tail of gene i and i2 is its head; a loop in
the structure means a gene whose head coincides (is adjacent) with the tail. We first define the
notion of a common graph in the particular case where structures a and b have equal gene content,
i.e., their edges are assigned with the same collection of natural numbers without repetitions, for
instance, all numbers from 1 to n. A common graph of structures a and b is a (now undirected)
graph a+ b whose vertices are extremities ij of all genes from a (or from b, since the sets of genes
and extremities are the same), and edges join the extremities adjacent in a or in b; each edge is
labeled by the name of the structure where adjacency occurs, i.e., by names a or b. Some edges in
a + b can be parallel: one edge from a, and the other from b; these are cycles of length 2, which
will be referred to as 2-cycles.

It is easily seen that components of the common graph a + b are alternating (a, b)-paths and
(a, b)-cycles. As will be seen below, the algorithm for finding the minimum length does not use
labels ij assigned to the vertices.
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Now consider a nontrivial definition of a + b for the case where a and b have unequal gene
content. We refer to genes belonging to both structures a and b as common, and the others, as
unique. Inclusion-maximal fragments in a or b consisting of unique genes only are called blocks;
the name of a block is the set of names of genes contained in it. Vertices of the graph a + b are
extremities ij of all common genes (ordinary vertices) and special vertices, which correspond to
blocks and are labeled with their names. We identify a special vertex with its name. Furthermore,
we label a special vertex by name a or b depending on the belonging of the block.

Define edges in a + b. Ordinary vertices are joined if they are adjacent in a or b (as in the
case of equal gene content). If a block with name A is a cyclic component (including a loop), then
we draw a loop at the isolated vertex A. This loop is said to be special. If a block A is a linear
component, then A remains an isolated vertex. Isolated special vertices are assumed to be odd
paths of length −1, and isolated ordinary vertices are even paths of length 0.

If a linear block A is between two extremities of common genes (i.e., the block is neither a whole
path nor a whole cycle), then these extremities are joined by edges with this special vertex A.
If a linear block A is joined in the structure with only one extremity of a common gene, then this
extremity in the common graph is joined by an edge with the special vertex A (a hanging edge).
An edge incident to two ordinary vertices is said to be ordinary ; an edge incident to a special vertex
is said to be special. �

By a final (or final-form) graph we call a common graph with ordinary edges consisting of
2-cycles and isolated ordinary vertices.

An operation is performed over one or two component(s) (chromosomes) belonging to the struc-
ture. An operation over a pair of structures 〈a, b〉 is defined as an operation over one of the
components; the other component remains unchanged. An operation over a pair 〈a, b〉 is naturally
transferred to their common graph, the name of the operation is kept the same; it is important
that the corresponding diagram is commutative.

The considered problem in the language of a common graph is formulated as follows. Find the
shortest sequence which reduces a given common graph a + b to a final form; for the cost of an
operation applied to b we take the cost of the inverse operation. Operations allow to distinguish
application to a or to b.

It is convenient to store a common graph a+b as an array M with indices varying from −n to n;
negative indices correspond to tails of the similar genes, and positive to heads, in the structures
a and b. The value M [i] is a pair of indices of extremities to which the extremity i is adjacent in
a and b (and the value 0 if it is not adjacent). Such storing ensures linear time and space of the
algorithm for constructing the graph a+ b given the structures a and b, as well as a fast screening
of its components and backward transition from an operation over a+b to an operation over a or b.

2.3. Original Operations over a Structure and a Common Graph

We consider the following operations over a structure: cutting two adjacencies and rejoining the
four extremities in another way (double-cut-and-join, or a 2-break); cutting two adjacencies and
joining one extremity with some free (i.e., nonadjacent) extremity (1.5-break); cutting an adjacency,
thus forming two free extremities and the inverse operation of merging two free extremities (fission
and fusion, respectively). These operations, sometimes referred to as standard, were proposed
in [3] and more accurately in [5]. In the case of unequal gene content, one must also use additional
operations: deletion or insertion of a fragment of unique genes. In a form convenient for us, they
are described in the beginning of Section 3.1.

Accordingly, to the graph a + b the following operations are applied similar to standard ones.
2-break: deletion of two identically labeled edges and joining their four endpoints by two new
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nonincident edges with the same labels; 1.5-break: deleting an edge and joining (by an edge with
the same label, say a) one of its endpoints with an ordinary vertex not incident to an edge with
this label, or with a special vertex of degree at most 1 with this label; fusion: adding an edge
(say with label a) between vertices, and ordinary one not incident to an edge with label a, or a
special of degree at most 1 with label a; fission: deleting an edge. If some operation results in
occurrence of an edge with special endpoints (both belonging to a or both to b), it is replaced with
a special vertex, whose name is the union of names of the endpoints (the number of special vertices
reduces by 1).

3. REDUCTION OF STRUCTURES IN THE CASE OF UNEQUAL GENE CONTENT
AND EQUAL OPERATION COSTS

Recall that gene contents in two structures a and b can be different, and besides the four standard
operations there can be used additional operations of insertion and deletion. Cost of all operations
are the same. It is required to find a minimal (“reducing”) sequence from a to b. Recall (in a
somewhat more general form): in an arbitrary structure, an inclusion-maximal fragment consisting
of special genes all of them belonging to a or all belonging to b is called a block.

It is convenient to think that the problem consists in finding a structure c to which a and b are
independently reduced by sequences minimal in aggregate (then a can be reduced to b through c),
which is equivalent to reducing a+ b to c+ c, and the latter graph is already of a final form.

Exterior extremities/genes are adjacent to the block. Recall that an ordinary edge joins ordinary
vertices, a special edge joins either a special extreme vertex in a path with an ordinary vertex
(“hanging edge”) or an interior special vertex in a path or a cycle with an ordinary one.

The length of a path or a cycle is the number of ordinary edges in it plus half the number of
special nonhanging edges. Odd (even) paths are paths of odd (even) lengths.

A common graph is said to be special (of a special form) if it contains no loops and if all edges
that do not enter 2-cycles are special. 2-cycles may contain special and ordinary edges, and isolated
vertices can be both special and ordinary.

Reducing a graph to a special form is the first step of our algorithm, and the second consists
in reducing the special graph to a final form. Essential is that it is better to delete special edges
jointly, thus saving on the number of operations, which is desirable; and ordinary edges should be
deleted one by one in any order.

Operations are performed successively, starting from the given structure; therefore, each opera-
tion is considered together with the structure to which it is applied. We say that an operation is
ordinary (special) if performing it does not change (strictly reduces) the number of special vertices.
From the definitions in Section 2.3 it is seen that a special operation reduces this number precisely
by 1. Indeed, performing a 2-break, 1.5-break, or fusion results in no more than one new edge
joining special vertices, which merge thereupon into one. The deletion operation also deletes only
one special vertex.

The idea of the algorithm is as follows: first we apply ordinary operations only and delete
ordinary edges until the fraction of special edges becomes the maximal; a graph of a special form
appears; we mainly apply to it special operations to get rid of special vertices; a graph of a final
form appears.

3.1. Additional Deletion and Insertion Operations. Possibility of Doing without One of Them

A subblock is a connected fragment of a block (i.e., the maximality condition is dropped). We
call it an a-subblock if it consists of genes that belong to a only. A b-subblock is defined similarly.

The deletion operation is deleting an a-subblock; it is admissible if the subblock:
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(a) was strictly inside a linear or cyclic chromosome, then the two endpoints of the exterior genes
become joined;

(b) was at the end of a linear chromosome, then the endpoint of the exterior gene becomes free;
(c) was a separate chromosome.

The insertion operation is inserting a b-subbslock, which is admissible if the subblock is joined:

(a′) strictly inside a linear or cyclic chromosome, the insertion position being cut;
(b′) at the end of a linear chromosome if the subblock is a linear path;
(c′) as a separate chromosome.

Deletions and insertions defined in items (a) are said to be rigid, those defined in (b) are called
semirigid, and those in (c) are free.

An a-block consists of genes of the structure a. An insertion operation splits an a-block if it
is linear and the subblock is inserted between two of its genes. 2-break, 1.5-break, and fission
operations split an a-block if they comprise one or two cut(s) inside a linear a-block or two cuts in
a cyclic a-block. A deletion operation splits an a-block if only a part of it is deleted.

Theorem 1. Among minimal sequences reducing a to b there exists a sequence in which

1. No operation splits an a-block ;
2. All deletions are made before all insertions.

Proof. Some actually obvious computations are deferred to the Appendix at http://lab6.

iitp.ru/ru/pr_chromo/.

For brevity, we will refer to a-blocks as blocks, since no other blocks will be considered. Denote
by r(a, b) the minimum length for structures a and b.

Lemma 1. If a structure d′ is obtained from a structure d by deleting one gene g from a block,
then r(d, b) ≥ r(d′, b).

Proof. Use induction on r(d, b). If r(d, b) equals 1, then b is obtained from d by one deletion, and
r(d′, b) = r(d, b). Otherwise, consider the fist operation in the minimal sequence from d to b; denote
it by o. It corresponds to an operation o′ over d′ (maybe empty) such that the structure o′(d′) either
coincides with the structure o(d) or is obtained from it by deleting the gene g. By the induction
hypothesis, r(o(d), b) ≥ r(o′(d′), b). Hence, r(d, b) = r(o(d), b) + 1 ≥ r(o′(d′), b) + 1 ≥ r(d′, b). �

Lemma 2. If a structure d′ is obtained from a structure d by adding to a block a gene g not
belonging to b, then r(d, b) = r(d′, b).

Proof. Use induction on r(d, b). If r(d, b) = 1, then b is obtained from d and d′ by a deletion,
and the claim is proved. Otherwise, consider the first operation in the minimal sequence from d
to b; denote it by o. It corresponds to an operation o′ over d′ such that o′(d′) is obtained from
o(d) by adding g to some block. By the induction hypothesis, r(o(d), b) = r(o′(d′), b). Hence,
r(d, b) = r(o(d), b) + 1 = r(o′(d′), b) + 1 = r(d′, b). �

An operation which does not split a block will be referred to as integral. A sequence of integral
operations will be called integral. A contraction of a block is deleting genes from it, and an
extension of a block is adding genes to it that do not belong to b. A structure d′ is a simplification
of a structure d if d′ is obtained from d by contraction or extension of blocks (i.e., a block cannot
appear in d′ in a place where in d there were no blocks).

Corollary 1. There exists a minimal sequence of operations from a to b all deletions in which
are integral.

Proof. In an arbitrary minimal sequence, consider the first nonintegral deletion. Denote by d
the structure obtained after applying this operation. Replace this operation by an integral deletion:
delete the whole block and obtain a structure d′. By Lemma 1 we have r(d, b) ≥ r(d′, b). Thus, we
can lengthen the head of the minimal sequence that does not contain nonintegral deletions. �

PROBLEMS OF INFORMATION TRANSMISSION Vol. 53 No. 1 2017



LINEAR ALGORITHM FOR MINIMAL REARRANGEMENT 61

Corollary 2. There exists a minimal sequence of operations from a to b all deletions and in-
sertions in which are integral.

Proof. By Corollary 1 there exists a minimal sequence S all deletions in which are integral.
Consider the first nonintegral insertion in it which splits some block r. Denote by d the structure
obtained after applying this insertion. Now change the place of insertion: insert the same fragment
at any end of the block r. The obtained structure d′ is a simplification of d, since it is obtained
from it by deleting one block (any part of the split block) and extending another block (the other
part of the split block). By Lemmas 1 and 2 we have r(d, b) ≥ r(d′, b), and by Corollary 1 there
exists a minimal sequence of operations from d′ to b containing only integral deletions. Thus, we
can lengthen the head of the minimal sequence that does not contain nonintegral insertions. �

All operations except for deletion and insertion will be referred to as rejoins.

Lemma 3. Let, to some structure d, a rejoin o splitting a block r be applied. There exists an
integral rejoin operation o′ (maybe empty) for which o′(d) is a simplification of o(d).

Scheme of the proof. For each operation o one can specify a “substituting” operation o′ which
does not split the block: the cut that splits the block in o is moved to the end of the block. �

A detailed proof of Lemma 3 is deferred to the Appendix at http://lab6.iitp.ru/ru/pr_

chromo/.

Corollary 3. There exists a minimal integral sequence of operations from a to b.

Proof. By Corollary 2, there exists a minimal sequence S in which all deletions and insertions
are integral. Consider the first nonintegral rejoin operation o in it; denote by d the structure
obtained by applying this operation. By Lemma 3 (taking into account Lemmas 1 and 2), there
exists an integral rejoin o′ such that r(o′(d), b) ≤ r(o(d), b). By Corollary 2, there exists a minimal
sequence of operations transforming o′(d) into b in which all deletions and insertions are integral. Let
us transform the sequence S by removing nonintegral rejoins from it and preserving the integrality
of deletions and insertions. Corollary 3 and therefore Claim 1 of Theorem 1 are proved. �

The next lemma makes it possible to move special operations to the head of a minimal sequence.

Lemma 4. Let d be a structure, and let f = o2(o1(d)), where o1 is an ordinary operation, o2 is
special, and both are integral. There exist integral operations o3 and o4 (one of them may be empty)
such that the structure o4(o3(d)) is a simplification of f and o4 is an ordinary operation.

Scheme of the proof. Consider arbitrary operations o1 and o2. Since o1 is an ordinary op-
eration, it preserves all blocks. First we can join the two blocks that were joined by o2 and then
“complete” what was done by o1. �

A detailed proof of Lemma 4 is deferred to the Appendix at http://lab6.iitp.ru/ru/pr_

chromo/.

A minimal integral sequence of operations transforming a into b will be called canonical if all
special operations in it precede all ordinary ones.

Corollary 4. There exists a canonical sequence of operations transforming a into b.

Proof. By Corollary 3 there exists a minimal integral sequence S transforming a into b. If there
is an ordinary operation in it preceding a special one, we swap them by Lemma 4. After finitely
many such swaps, S takes the desired form. �

In a canonical sequence of operations, all deletions are made before all insertions, which proves
Claim 2 of Theorem 1. �

Due to Theorem 1, in what follows we may consider only five operations; in fact, they are
considered over a common graph only. Thus, over a common graph there can be performed four
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original operations (Section 2.3) and the deletion operation. This is deletion of a special vertex
(block): if it is of degree 2, it is deleted and edges incident to it merge into a single edge with the
same label; if it is of degree 1, it is deleted together with the incident edge; if it is of degree 0 or
has a loop, the vertex and the loop are deleted.

Corollary 5. The problem of finding a minimal sequence transforming a into b reduces to the
problem of reducing a common graph a+ b to a final form c+ c using original operations and only
one additional operation of deleting a block.

In fact, these problems are equivalent, but the above-stated one-way implication is sufficient for
our purposes.

Proof. A solution of the second problem is a pair of sequences (S1, S2) such that the first
transforms a into some structure c, and the second transforms b into the same structure c. By the
solution length we call the sum of the numbers of operations in S1 and S2. Concatenation of S1

and the reverse of S2 gives a sequence of the same length transforming a into b. It remains to
prove that it is minimal. To this end, it suffices to show that a solution of the second problem
has length not greater than a solution of the first. By Theorem 1, the first problem has a solution
satisfying properties 1 and 2 of this theorem. In the correspondent sequence S, take the structure c
obtained after all deletions but before all insertions. Then all operations to the left of it do not
contain insertions and do not split a-blocks. Consider the part of the sequence S between c and b
written in the reverse order. This a minimal sequence transforming b into c. By Theorem 1 there
exists a sequence of the same length which transforms b into c and does not contain insertions and
operations that split b-blocks. Together with the initial part of S, it gives a solution of the second
problem of the same length as the solution of the first. �

By a segment in a common graph we call a maximal fragment of ordinary edges (possibly a
cycle) not contained in a 2-cycle. A segment is said to be odd (even) if the number of edges in it is
odd (even). A segment is extreme if it contains an edge incident to no more than one edge of the
graph. Note that an isolated vertex is not a segment, and an isolated ordinary edge is an extreme
segment.

3.2. Algorithm for the Reduction of a Common Graph to a Special Form

Delete all special loops. For any noncyclic segment s in the graph a + b do: while in s there
is an edge e incident to two nonhanging edges of the graph at least one of them being ordinary,
circularize e by a 2-break; there appears a cycle of two ordinary edges. Thus two adjacent edges
merge into one (special if one of them was special; see Fig. 1a). This operation is ordinary and
corresponds to cutting two adjacent ordinary edges from s.

As a result, the number of edges in s becomes either 1 or 2 (if s does not vanish). If this number
is 2, then either s is a path of length 2 without special edges (it is circularized by a 1.5-break;
see [12, Fig. 3b]) or s contains an edge located between another edge in s and a hanging edge.
In the latter case it is circularized by a 2-break into a 2-cycle; then a neighboring edge becomes
hanging (see Fig. 1b). This operation is ordinary and corresponds to cutting two adjacent edges
from s, whereupon s vanishes.

Let the number of edges in s be 1. If a segment s is not extreme, then its unique edge is between
two special edges; one or two of them can be hanging. It is circularized by a special 2-break into a
2-cycle (see Fig. 1c).

If s is an extreme segment, then its unique edge forms a path of length 1 (it is either circularized
by an ordinary fusion; see [12, Fig. 3c]) or has exactly one neighboring edge (possibly, hanging).
It is circularized by an ordinary 1.5-break into a 2-cycle (see Fig. 1d).
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Fig. 1. To the algorithm for reducing a common graph to a special form: (a) Deleting a pair of
ordinary edges (main case). Special vertices are denoted by big black circles; (b) Deleting a pair of
ordinary edges (additional case); (c) Deleting an ordinary edge (three cases). In the third case two
special vertices merge into one isolated special vertex; (d) Deleting an extreme ordinary edge (two
cases).

Every cyclic segment is reduced to a final form by 2-break operations, which isolate 2-cycles
from it (see [12, Fig. 3d]).

It is clear that as a result we obtain a graph of a special form.

By the length of a segment we call the number of edges in it. For each segment, the number of
ordinary operations in the algorithm equals half the segment length if it is even, is less by 0.5 if it
is odd and the segment is not extreme, and is greater by 0.5 if it is odd and the segment is extreme.
For each cyclic segment, the number of ordinary operations is less by 1 than one half of its length.

3.3. Algorithm for the Reduction of a Common Graph to a Final Form

A graph a+ b is given. The following steps are executed.
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Step 1. Delete all special loops (i.e., blocks nonadjacent to anything). Transform ordinary edges
that do not belong to 2-cycles into 2-cycles. After that, only special edges, 2-cycles, and isolated
vertices remain. The result of this step is a graph B(a + b) constructed in Section 3.2. Now our
goal is splitting all cycles of lengths strictly greater than 2 and paths of lengths strictly greater
than 0 into 2-cycles, and deleting all special edges from them. This results in a graph of a final
form.

Step 2. To each cycle and each path in B(a+ b) we assign its type.

An a-path is either an odd path whose extreme nonhanging edges are labeled with a or a path
which is an isolated vertex labeled with b. A b-path is defined similarly.

To a cycle, we assign the type “cycle.” For an a-path, its type is defined as follows: 1a if it has
one hanging edge; 2a if it either has two such edges or it is an isolated vertex labeled with b; 3a
if it has no hanging edges. For a b-path, the definition is analogous. For an even path, its type is
defined as follows: 1 if it has one hanging edge; 2 if it has two such edges; 3 if it has no hanging
edges; 0 if it is an isolated ordinary vertex. For even paths, there is no need for distinguishing
a- and b-paths.

Step 3. Let us describe the totality of sets, each set in which is assigned with its weight, the
sum of weights of all its elements. Each element is a set of paths in the graph B(a+ b). A set must
consist of pairwise disjoint elements.

The weight of an element specifies the gain in the number of ordinary operations when applying
the algorithm to the element. The algorithm uses any set M of the maximal weight from this
totality; it will also be inclusion-maximal. It remains to determine what types of paths may occur
in an element and assign a weight to it.

Thus, admissible elements are those composed of paths of the following types, one path from
each type; the weight of an element is given in parentheses: {1a, 1b} (2), {2a, 3b} (1), {2b, 3a} (1),
{2, 3} (1), {1a, 2b, 3} (2), {1b, 2a, 3} (2), {1a, 3b, 2} (2), {1b, 3a, 2} (2), {1a, 2} (1), {1b, 2} (1),
{1a, 3} (1), {1b, 3} (1), {1a, 1a, 2b, 3b} (3), {1b, 1b, 2a, 3a} (3), {1a, 1a, 2b} (2), {1b, 1b, 2a} (2)
{1a, 1a, 3b} (2), {1b, 1b, 3a} (2), {1a, 1a} (1), {1b, 1b} (1), {1a, 2b} (1), {1b, 2a} (1), {1a, 3b} (1),
{1b, 3a} (1), {2a, 2b, 3, 3} (2), {3a, 3b, 2, 2} (2), {2, 2, 3a} (1), {2, 2, 3b} (1), {3, 3, 2a} (1),
{3, 3, 2b} (1), {2a, 2b, 3} (1), {3a, 3b, 2} (1). The size of an element takes values from 2 to 4.

Step 4. Cycles, as well as paths that do not belong to M , are finalized separately and indepen-
dently of each other. Namely, paths of length −1 are deleted. In 2-cycles and paths of length 0,
special edges are deleted. Cycles of length strictly greater than 2 are split into 2-cycles, from which
special edges are deleted. Paths of lengths strictly greater than 0 are circularized into cycles, which
are finalized as is described above. Here an odd path is circularized by joining its ends. An even
path is circularized by a 1.5-break with cutting an extreme ordinary vertex (possibly, with a hang-
ing edge, which is deleted after that) and joining the obtained extremity with the opposite end of
the path.

Step 5. For each element e in M , define a graph G(e) consisting of paths contained in e and
finalize it as follows. Below we consider one (the first) of the possible cases; the second case is
similar.

A path is said to be special if it entirely consists of special edges. We apply Step 4 to the results
of the following substeps. It is worth noting that in all the substeps the operation is special.

5.1. Element of the type {1a, 1b}. A 1.5-break. In the 1a-path we make an exterior cut (i.e.,
cut the extreme nonhanging edge), and join the special vertex with the end of the hanging edge of
the 1b-path. This results in a path of type 0 and a special even path of type 1 (by applying Step 4
to it, we finalize it independently of other paths).
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5.2. Element of the type {1a, 1a} or {1b, 1b}. Join the ends of the hanging edges of two 1a-paths.
This results in a special odd 3a-path.

5.3. Element of the type {1a, 2b} or {1b, 2a}. In the 1a-path we make an exterior cut and join
the special vertex with either the end of the hanging edge of the 2b-path or with the isolated special
vertex (if the 2b-path is such), a 1.5-break. This results in a path of type 0 and a special even path
of type 2. Hereinafter, up to Step 5.8, we use a 1.5-break.

5.4. Element of the type {1a, 3b} or {1b, 3a}. In the 3b-path we make an exterior cut and join
the special vertex with the end of the hanging edge of the 1a-path. This results in a path of type 0
and a special even path of type 3.

5.5. Element of the type {1a, 2} or {1b, 2}. In the 1a-path we make an exterior cut and join the
special vertex with the end of the hanging edge of the 2-path. This results in a path of type 0 and
a special odd path of type 2a.

5.6. Element of the type {1a, 3} or {1b, 3}. In the 3-path we make a cut of the extremal b-edge
and join the special vertex with the end of the hanging edge of the 1a-path. This results in a path
of type 0 and a special odd path of type 3a.

5.7. Element of the type {2a, 3b} or {2b, 3a}. In the 3b-path we make an exterior cut and join
the special vertex with either the end of the hanging edge of the 2a-path of with the isolated special
vertex (if the 2a-path is such). This results in a path of type 0 and a special even path of type 1.

5.8. Element of the type {2, 3}. In the 3-path we make an exterior cut and join the special
vertex with the end of the hanging edge of the 2-path, a 1.5-break. This results in a path of type 0
and a special even path of type 1.

5.9. Element of the type {1a, 1a, 2b} or {1b, 1b, 2a}. To the two 1a-paths we apply Step 5.2.
This results in a special odd path of type 3a. To it and the initial 2b-path, we apply Step 5.7.

5.10. Element of the type {1a, 1a, 3b} or {1b, 1b, 3a}. To the paths 1a and 3b we apply Step 5.4.
This results in a special even path of type 3 and a path of type 0. To the first of them and the
second initial 1a-path, we apply Step 5.6.

5.11. Element of the type {1a, 2b, 3} or {1b, 2a, 3}. To the paths 1a and 2b we apply Step 5.3.
This results in a special even path of type 2 and a path of type 0. To the first of them and the
initial 3-path, we apply Step 5.8.

5.12. Element of the type {1a, 3b, 2} or {1b, 3a, 2}. To the paths 1a and 3b we apply Step 5.4.
This results in a special even path of type 3 and a path of type 0. To the first of them and the
initial 2-path, we apply Step 5.8.

5.13. Element of the type {2a, 2b, 3}. In the 3-path we cut the exterior b-edge and join the
special vertex with either the end of the hanging edge of the 2a-path or the isolated special vertex
(if the 2a-path is such), a 1.5-break. This results in a special odd path of type 1a and a path of
type 0. Then to the pair of paths {1a, 2b} we apply Step 5.3.

5.14. Element of the type {3a, 3b, 2}. In the 3a-path we make an exterior cut and join the
special vertex with the end of the hanging edge of the 2-path, a 1.5-break. This results in a special
odd path of type 1a and a path of type 0. Then to the pair of paths {1a, 3b} we apply Step 5.4.

5.15. Element of the type {2a, 3, 3} or {2b, 3, 3}. To the pair of paths {2a, 3} we apply the first
operation of Step 5.13. This results in a special odd path of type 1a and a path of type 0. To the
pair of paths {1a, 3} we apply Step 5.6.

5.16. Element of the type {3a, 2, 2} or {3b, 2, 2}. To the pair of paths {3a, 2} we apply the first
operation of Step 5.14. This results in a special odd path of type 1a and a path of type 0. To the
pair of paths {1a, 2} we apply Step 5.5.
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5.17. Element of the type {2a, 2b, 3, 3}. To the triple of paths {2a, 2b, 3} we apply Step 5.13.
This results in a special even path of type 2 and a path of type 0. To the obtained 2-path and the
second initial 3-path, we apply Step 5.8.

5.18. Element of the type {3a, 3b, 2, 2}. To the triple of paths {3a, 3b, 2} we apply Step 5.14.
This results in a special even path of type 3 and a path of type 0. To the obtained 3-path and the
second initial 2-path, we apply Step 5.8.

5.19. Element of the type {1a, 1a, 2b, 3b} or {1b, 1b, 2a, 3a}. To the pair of paths {1a, 2b} we
apply Step 5.3. This results in a special even path of type 2 and a path of type 0. To the other
pair of initial paths {1a, 3b} we apply Step 5.4. This results in a special even path of type 3 and a
path of type 0. To the obtained 2-path and 3-path, we apply Step 5.8.

3.4. Correctness and Linear Complexity of the Algorithm
for the Reduction of a Common Graph to a Final Form

1. From the description of the algorithm it is seen that it reduces the graph G = a+ b to a final
form. Let us estimate the runtime of the algorithm. Let the number of vertices in G be n. Then
deleting special loops requires no more than n operations; deleting ordinary edges also requires at
most n operations. When constructing a set M , we add one by one no more than n sets of paths of
sizes from 2 to 4; when finalizing components that do not belong to M , each component of size m
requires at most one operation of circularizing a path, at most m operation of cutting 2-cycles
from a cycle, and at most m operations of deleting a block; when finalizing sets of paths, each set
of size m requires at most three operations of interaction between the components, at most one
operation of circularizing a path, at most m operations of cutting 2-cycles from a cycle, and at
most m operations of block deletion. Thus, the algorithm runtime is linear in n.

By the definition of a sequence reducing a+ b to a final form, the number of special operations
equals B, where B is the number of special vertices (blocks) in the graph G.

2. Define the defect of a component of the graph B(a+ b) to be
• 0 if it is a cycle or a path of type 2a, 2b, 0, 1, or 2;
• 1 if it is a path of type 1a, 1b, 3a, 3b, or 3.

Intuitively, the defect is the number of ordinary operations in the minimal sequence for this com-
ponent.

Let D be the sum of defects of all components of the graph B(a + b), P be the weight of M ,
and S be the sum of integer parts of halved segment lengths in the graph a+ b plus the number of
odd extreme segments minus the number of cyclic segments. In the next subsection, we present an
algorithm for constructing a set M .

The number of ordinary operations in a sequence constructed by the algorithm is S + D − P
(Lemma 5).

3. Introduce the notation t(G) = B + S +D − P . Any operation changes the value of t(G) by
at most 1 (Theorem 5).

4. Any sequence of operations of length strictly less than t(G) does not reduce the graph G to
a final form (Theorem 6).

Items 2–4 imply the correctness of the algorithm; i.e., it produces a minimal sequence. Claims
given in these items are proved in Section 3.6.

3.5. Algorithm for Constructing a Set of Elements of the Maximum Weight

In the general case, finding a set of maximum cardinality in a given collection of sets is an
NP-hard problem. In our case this is overcome due to a special order in our collection of sets. As
a result, we get a linear complexity algorithm.
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We will refer to types 1, 2, and 3 as even, and to types 1a, 1b, 2a, 2b, 3a, and 3b as odd. Types 0
and “cycle” do not enter the elements. In the proof, we essentially use the following two bijections
on the set of path types. The first of them maps members of the pairs (1a, 1b), (2a, 2b), and (3a, 3b)
into each other and fixes even types; we call it the horizontal automorphism. The second bijection
maps members of the pairs (2a, 3a), (2b, 3b), and (2, 3) into each other and fixes the other types;
we call it the vertical automorphism. Both bijections “preserve admissibility of the type” of an
element in the sense that any automorphism maps an admissible type to an admissible type.

A set M of maximum-weight elements is constructed by successively adding elements to it.
Initially, M is empty. If T is the type of an element, we define the increment of M by T to be
adding to M the maximal number of elements of type T disjunctive with each other and with M ;
a distribution of paths among these elements can be arbitrary. This number equals the minimum
(over types t in T ) cardinality of a set of paths of type t that are not contained in a current M .
A path which is not contained in M will be called free.

The algorithm consists of the following successive increments.

By type {1a, 1b}, after which there are either no free paths of type 1a or no free paths of type 1b.
We consider the first case; otherwise, in all subsequent steps a should be changed to b.

Then by types {2a, 3b} and {2b, 3a}; by type {2, 3}; by types {1a, 2b, 3} and {1a, 3b, 2}; by
types {1a, 2} and {1a, 3}; by type {1a, 1a, 2b, 3b}; by types {1a, 1a, 2b} and {1a, 1a, 3b}; by type
{1a, 1a}; by types {1a, 2b} and {1a, 3b}; by types {2a, 2b, 3, 3} and {3a, 3b, 2, 2}; by types {2, 2, 3a}
and {3, 3, 2a}; by types {2, 2, 3b} and {3, 3, 2b}; by types {2a, 2b, 3} and {3a, 3b, 2}.

The algorithm does not require specifying all admissible elements, it suffices to group paths in
B(a+ b) according to their types.

Theorem 2. The algorithm constructs a set M of the maximum weight.

Scheme of the proof. We assume that the algorithm constructs a set M by adding elements
to it one by one according to the order described above. It suffices to show that at each step a
current set M is a subset of some maximum-weight set (call it a maximum set). We proceed by
induction on the construction of M .

Let at a current step an element e be added to M . Let there be some maximal set M ′ that
does not contain e but contains all elements of M . Let us show that it is possible to reorganize
the set M ′ so that it will remain to be maximal and contain e. Consider the set K of elements
of M ′ containing at least one path from e. Denote the set of paths contained in elements of K
by I(K), and the set of paths contained in e, by I(e). Looking over possible combinations of types
of elements of K, we make sure that, in all the cases, from paths of the set I(K)\ I(e) it is possible
to compose a set K ′ of pairwise disjoint elements of total weight not less than w(K)−w(e), where
w(K) is the total weight of elements of K and w(e) is the weight of e. Replacing in M ′ the set K
with the union of K ′ and e, we obtain the desired maximal set. Note that a certain order of adding
elements to M is essential: when looking over possible types in K, we use the fact that from paths
in the union of I(K) and I(e) one cannot compose any element of a type that was added to M
earlier (in particular, K contains no element of such a type). �

Technical details of the proof of Theorem 2 are deferred to the Appendix at http://lab6.iitp.
ru/ru/pr_chromo/.

3.6. Formulation of Auxiliary Statements from Section 3.4 and Their Proofs

Lemma 5. The algorithm for finalizing a graph G constructs a sequence of t(G) operations.

Proof. It is clear that the number of special operations in the algorithm equals B; it remains to
count the number of ordinary operations. It is seen from the description of reduction of a common
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graph a + b to a final form that the number of ordinary operations in it equals S. Finalizing all
components of B(a+b) separately requires D ordinary operations (this follows from the description
in Section 3.3, Step 4; see also Theorem 3). Using “reductions” with the help of sets of minimum
weight reduces this estimate by P (this follows from the description in Section 3.3, Step 5; see also
Theorem 4). �

Theorem 3. If a special common graph has a single component C, then D(C) ≥ p, where p is
the number of ordinary operations in a minimal sequence.

Proof. The inequality D(C) ≤ p is also valid (see Corollary 6 below), but we do not use it.
Consider all kinds of a graph C. If it is a cycle, we proceed by induction on its length. For length 2,
no ordinary operations are needed. For an arbitrary length, take two (special) edges with the same
label separated by precisely one edge. By a 2-break with deleting these edges we split the cycle
into two cycles so that one cycle is of length 2 and the other is special (see Fig. 2a).

This operation is special, two blocks are merged into one. By the induction hypothesis, a special
cycle of smaller length can be finalized by a sequence of special operations. Then C is also finalized
by such a sequence, as required. Consider the case of a linear component.

Case of odd paths (see Fig. 2b).

Type 1. By joining the end of a hanging edge with the opposite end of the path, we obtain a
special cycle (ordinary operation), the top arrow in Fig. 2b. By what was proved above, a special
cycle can be finalized by a sequence of special operations. Then C can be finalized by a sequence
consisting of special operations and one ordinary operation, as required.

Type 2. If C is a path of length −1, no ordinary operations are needed. Otherwise, by joining the
ends of hanging edges, we obtain a special cycle (special operation), the bottom arrow in Fig. 2b.
Further reasoning is similar to the above.

Type 3. By joining the ends of the path by an edge, we obtain a cycle with one ordinary edge
(such a cycle will be called semispecial), the middle arrow in Fig. 2b; the upper block of the cycle
is regarded as absent. This is an ordinary operation. If the cycle is of length 2, there is nothing
to prove. Otherwise, by deleting an ordinary edge from the cycle (as in the algorithm for reducing
a graph to a special form), we obtain that a semispecial cycle can be finalized by a sequence of
special operations. Then the graph C is finalized by a sequence consisting of special operations
and one ordinary operations, as required.

Case of even paths (see Fig. 2c).

Type 0. The claim is obvious.

Type 1. If the path length is 0, the claim is obvious. Otherwise, we make a special 1.5-break by
cutting an extreme nonhanging edge (we call this an exterior cut) and joining the end of a hanging
edge with the extreme special vertex, the top arrow in Fig. 2c. We obtain a special cycle and a
path of type 0. Thus, the graph C is finalized by a sequence of special operations, as required.

Type 2. If the path length is 0, the claim is obvious. Otherwise, we make a special 1.5-break
with an exterior cut of an extreme nonhanging edge and join of an extreme special vertex with the
end of the opposite hanging edge, the bottom arrow in Fig. 2c. This results in a special cycle and
a path of length 0 with one hanging edge. Further reasoning is obvious.

Type 3. Make a 1.5-break with an exterior cut and join of an extreme special vertex with the
opposite end of the path, the middle arrow in Fig. 2c. This is an ordinary operation, which results
in a special cycle and a path of type 0. �

For any element e, denote by G(e) the graph consisting of its paths; by D(e), the sum of defects
of all paths in e; and by c(e), the weight of e.
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Fig. 2. To the proof of Theorem 3: (a) Special operation of splitting a cycle into two; (b) Circulariza-
tion of odd paths (top and middle: ordinary operations; bottom: special operation); (c) Circularizaton
of even paths (top and bottom: special operations; middle: ordinary operation).

Theorem 4. The number p of ordinary operations in a minimal sequence for G(e) is not greater
than D(e)− c(e).

Proof. One can easily check that in each of Cases 5.1–5.19 described in Section 3.3, for joining
the paths in an element e into a single path, only special operations are used and that the defect
of the resulting path equals D(e) − c(e). By Theorem 3, this path is finalized using at most
D(e) − c(e) ordinary operations. Thus, finalizing the graph G(e) requires at most D(e) − c(e)
ordinary operations. To simplify this check, we present results of each case as an equality: the
left-hand side is the sum of initial defects of a path, the right-hand side is the type of the resulting
path, and in the square brackets we give the difference of the sum of defects of the left-hand paths
and the defect of the right-hand path, which equals c(e). Then
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5.1. 1a+ 1b = 1 [2];
5.2. 1a+ 1a = 3a [1];
5.3. 1a+ 2b = 2 [1];
5.4. 1a+ 3b = 3 [1];
5.5. 1a+ 2 = 2a [1];
5.6. 1a+ 3 = 3a [1];
5.7. 2a+ 3b = 1 [1];
5.8. 2 + 3 = 1 [1];
5.9. 1a+ 1a+ 2b = 3a+ 2b = 1 [2];
5.10. 1a+ 1a+ 3b = 1a+ 3 = 3a [2];
5.11. 1a+ 2b+ 3 = 2 + 3 = 1 [2];
5.12. 1a+ 3b+ 2 = 3 + 2 = 1 [2];
5.13. 2a+ 2b+ 3 = 2a+ 1b = 2 [2];
5.14. 3a+ 3b+ 2 = 3a+ 1b = 3 [1];
5.15. 2a+ 3 + 3 = 1a+ 3 = 3a [1];
5.16. 3a+ 2 + 2 = 1a+ 2 = 2a [1];
5.17. 2a+ 2b+ 3 + 3 = 1a+ 1b = 1 [2];
5.18. 3a+ 3b+ 2 + 2 = 1a+ 1b = 1 [2];
5.19. 1a+ 1a+ 2b+ 3b = 2 + 3 = 1 [3]. �

The inequality D(e) − c(e) ≤ p is also valid (see Corollary 6 below), and therefore Theorem 4
holds with equality.

Theorem 5. For any operation o and any common graph G we have the inequality t(G)− 1 ≤
t(o(G)) ≤ t(G) + 1.

Scheme of the proof. A component of a common graph will be called standard if it has no
special edges. For a connected nonstandard component C of a graph a + b we denote by B′(C)
a nonfinal component of the graph B(C) (clearly, it is unique). The following lemma allows to
quickly determine for each component C of the original graph a+ b the type of the corresponding
component in B(a+ b). Thus, the classification of components of a special common graph by their
types is extended to components of an arbitrary common graph.

Lemma 6. The following statements hold true.

1. A graph B(C) is of a final form if and only if the component C is standard ;
2. B′(C) is a special cycle if and only if C is a nonstandard cycle;
3. B′(C) is a path of type 1a (similarly for 1b) if and only if C is a nonstandard odd a-path ending

on one side with an extreme even segment (or this segment is absent; then we assume it to be
an even segment of length 0) and on the other side with either a hanging edge or an extreme
odd segment ;

4. B′(C) is a path of type 2a (similarly for 2b) if and only if C is a nonstandard odd a-path ending
on both sides with either a hanging edge or an extreme odd segment (this type includes also an
isolated special vertex labeled with b);

5. B′(C) is a path of type 3a (similarly for 3b) if and only if C is a nonstandard odd a-path ending
on both sides with an extreme even segment ;

6. B′(C) is a path of type 1 if and only if C is a nonstandard even path ending on one side with
an extreme even segment and on the other side with either a hanging edge or an extreme odd
segment ;

7. B′(C) is a path of type 2 if and only if C is a nonstandard even path ending on both sides with
either a hanging edge or an extreme odd segment ;

8. B′(C) is a path of type 3 if and only if C is a nonstandard even path ending on both sides with
an extreme even segment.
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Proof. We say that a component C is of kind i, i = 1, 2, . . . , 8, if it corresponds to the description
on the right-hand side of the equivalence proved in item i of Lemma 6. Clearly, each component
has a unique kind. Therefore, it suffices to prove all the equivalences from the right to the left. For
the proof, it suffices to check that each operation in the algorithm of reducing a graph to a special
form does not change the kind of a component to which it is applied, which is obvious. �

Further proof of Theorem 5 consists, in essence, in examining all possible types of an operation o
and its arguments. For all operations except for a 2-break the examination is straightforward. For
instance, let o be the operation of deleting an isolated special vertex (recall that it is considered to
be a path of type 2a or 2b). Then, when passing from a graph G to o(G), the value of B reduces
by 1 and the values of S and D do not change. The value of P is either unchanged or reduced by 1.
Indeed, it cannot reduce by more than 1, since any element of weight 2 (respectively, 3) after deleting
from it a path of type 2a or 2b transforms into an element of weight 1 (respectively, 2). Thus, the
value of t(G) is either kept unchanged or reduces by 1, which implies the desired statement.

The case of a 2-break applied to either a single component or two components which are a path
and a cycle is considered similarly. In the case where a 2-break o is applied to two path, a direct
search of possibilities is difficult because there are too many of them. More precisely, difficult is
the case where there are no blocks on one side of some cut in o. Then the question reduces to
the case of a 1.5-break or a fusion, as is described in item 5.3.2 of the proof of Theorem 5 at
http://lab6.iitp.ru/ru/pr_chromo/, where this proof is given in full detail. �

Theorem 6. The algorithm for reducing a graph a + b to a final form constructs a minimal
sequence of operations. The algorithm runtime is linear in the size of the common graph of the two
initial structures.

Proof. For a final graph we have t(G) = 0. Reducing the initial value of t(G) to 0 in less than
t(G) operations is possible only if some operation reduces t(G) by more than 1. This contradicts
Theorem 5. The linearity of the algorithm runtime follows from its description. �

Corollary 6. In the notation of Theorems 3 and 4 we have the estimates D(C) ≤ p and
D(e) − c(e) ≤ p.

Proof. Clearly, t(C) = B +D(C), where B is the number of blocks in C. If the component C
could be finalized using less than D(C) ordinary operations, then in total we would use less than
t(C) operations. This contradicts Theorem 6 taking into account Lemma 5. The proof of the
second inequality is similar, taking into account the obvious equality t(G(e)) = B +D(e) − c(e),
where B is the number of blocks in G(e). �

The authors are grateful to a reviewer for valuable remarks.
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