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1. Introduction

Let PA; be the second-order Peano arithmetic without the schema of (contable) Choice
in this paper. Discussing the structure and deductive properties of PA,, Kreisel [1, §1II,
page 366] wrote that the selection of subsystems “is a central problem”. In particular,
Kreisel notes, that

[...] if one is convinced of the significance of something like a given axiom schema,
it is natural to study details, such as the effect of parameters.

Recall that parameters in this context are free variables in various axiom schemata in PA,
PA;, ZFC, and other similar theories. Thus the most obvious way to study “the effect of
parameters” is to compare the strength of a given axiom schema S with its parameter-free
subschema 5*. (The asterisk will mean the parameter-free subschema in this paper.)

Some work in this direction was done in the early years of modern set theory. In
particular Levy [2] proved that the generic collapse of cardinals below X, (called the Levy
collapse, see Solovay [3]) results in a generic extension of L in which AC}, fails, where AC(,
is the parameter-free subschema of the (countable) choice schema AC,, in the language of
PA;. Later Guzicki [4] established that the Levy-style generic collapse below XN, results in
a generic extension of L in which AC,, (in the language of PA;) fails, but the parameter-free
subschema AC}, holds, so that AC}, is strictly weaker than AC,,. This can be compared
with an opposite result for the dependent choice schema DC, in the language of PA,, which
happens to be equivalent to its parameter-free subschema DC* by a simple argument given
for instance in [4].

Some results related to parameter-free versions of the Separation and Replacement
axiom schemata in ZFC also are known from [5-7].

This paper is devoted to further clarification of the role of parameters in the Choice
schema AC,, and comprehension schema CA in PA,. Special attention will be paid to the
evaluation of those proof theoretic tools used in the arguments. That is, we show that the
formal consistency of PA, suffices. This is a crucial advantage comparably to some earlier
results, like e. g. the abovementioned results by by Levy [2] and Guzicki [4] which definitely
cannot be obtained on the base of the onsistency of PA;.

The following theorems 1, 2, 3 are the main results of this paper.

Theorem 1. In ZF, let L be the constructible universe. Then:

(i)  There is a cardinal-preserving generic extension of L in which AC,,(OD) (that is, AC,, for
ordinal-definable relations) holds, but the full AC,, fails in the domain of reals.

(i) If PA;, is consistent then PAy + AC;, does not prove AC,, .

Theorem 1 is entirely new. Part (i) greatly surpasses the abovementioned result of
Guzicki [4] by the requirement of cardinal-preservation. This is a condicio sine qua non for
Claim (ii) to be derived as a consequence, because involvement of uncountable cardinals in
the arguments, as in [4], is definitely beyond the formal consistency of PA;.

In the next theorem, PAJ is the subtheory of PA; in which the full schema CA is
replaced by its parameter-free version CA*, and the Induction principle is formulated as a
schema rather than one sentence.

Theorem 2. In ZF, let L be the constructible universe. Then:
(i)  There is a cardinal-preserving generic extension of L, and a set M C & (w) in this extension,
such that 2 (w) NL C M and M models PA} + CA(Z}) + — CA.

(i) If PAy is consistent then PAj + CA(Z}) does not prove CA.
This is a new result as well, appeared in our recent ArXiv preprint [8].

The next theorem, albeit not entirely new, is added in for good measure as its proof
involves basically the same type of generic extensions.
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Theorem 3. In ZF, let L be the constructible universe. Then:
(i)  There is a cardinal-preserving generic extension of L in which AC, fails.

(i) If PA; is consistent then PAy does not prove AC,.

Part (i) of this theorem was essentially established by Enayat [9], where it is shown that
using the finite-support infinite product of Jensen’s minimal-A} -real forcing [10] results in
a permutation model of ZF with an infinite Dedekind-finite I} set of reals, which easily
yields the refutation of ACy,.

The paper is organized as follows. After a short review of PA; preliminaries in
Section 2, we take some space to briefly describe the aforementioned cardinal-collapse
models by Levy [2] and Guzicki [4] in Sections 3 and 4.

The first claims of all three theorems will be established by means of a complex
iteration of the Sacks forcing which resembles the generalized iteration by Groszek and
Jech [11], but is carried out in a pure geometric way that avoids any machinery of forcing
iterations. We call this technique arboreal Sacks iterations. The associated coding by degrees
of constructibility is also involved, approximately along the lines discussed in [12, page 143].

Our basic forcing notion Perf = P is introduced in Section 5; it consists of iterated
perfect sets. The structure of P-generic extensions L[G] of L is studied in Sections 6 and 7. In
particular, Theorem 5 contains several important results on the degrees of constructibility
of reals and the relation of true <y -successor in the generic extensions considered.

The proof of Theorem 3(i) is carried out in Section 8 modulo an important lemma
established in Section 9. Basically, a generic extension that proves Theorem 3(i) will be
obtained as a certain subextension of a P-generic extension L[G].

Claims (i) of Theorems 1 and 2 will be established in Sections resp. 10, 11, also via
different subextensions of a P-generic extension.

Finally Section 12 contains the proof of claims (ii) of all three theorems. To do this, we
will redo proofs of claims (i) in some uniform manner.

The paper ends with a usual conclusion-style material.

It remains to note that topics in subsystems of second order arithmetic remain of big
interest in modern studies, see e. g. [13], and our paper contributes to this research line.

2. Preliminaries

Following [1,14,15] we define the second order Peano arithmetic PA; as a theory in
the language £(PA;) with two sorts of variables — for natural numbers and for sets of them.
We use j, k, m, n for variables over w and x, y, z for variables over & (w), reserving capital
letters for subsets of & (w) and other sets. The axioms are as follows in (1), (2), (3), (4):

(1) Peano’s axioms for numbers.
(2) The Induction schema: ®(0) AVk (P(k) = P(k+1)) = VkP(k), for every for-
mula @ (k) in L(PA;), and in O (k) we allow parameters, i.e., free variables other than

k. (We do not formulate Induction as one sentence here because the Comprehension
schema CA will not be assumed in full generality in Section 11.)

(3) Extensionality for sets of natural numbers.

(4) The Comprehension schema CA: 3xVk (k € x < ®(k)), for every formula ® in
which x does not occur, and in ® we allow parameters.
PA; is also known as A, (see e.g. an early survey [14]), as Z; (see e.g. Simpson [15] and
Friedman [16]), az Z, (in [17] or elsewhere). Note that the schema of Choice (see below) is
not included in PA,.
The following schemata are not assumed to be parts of PA;, yet they are often consid-
ered in the context of and in the connection with PA,.

The Schema of Choice AC,,: VkIx®(k,x) = FxVkd(k, (x)x)), for every formula @,
where we allow parameters in @, and (x); = {j:2%(2j +1) — 1 € x}, as usual.
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We use AC,, instead of AC, more common in PA; studies, because AC is the general axiom
of choice in the ZFC context.

Dependent Choices DC: Vx3y®(x,y) = FxVkP((x), (x)ks1)), for every formula
@, and in ¢ we allow parameters.

We let CA* be the parameter-free sub-schema of CA (that is, ®(k) contains no free
variables other than k). We define the parameter-free sub-schema AC}, C AC,, the same
way. The parameter-free sub-schema DC* C DC can be defined as well, but this does not
make much sense because DC* is known to be equivalent to DC by a simple argument,
see e.g. [4].

In set-theoretic setting, AC,, and DC can be considered in the assumption that
is a set-theoretic binary relation on w x & (w), whose type can be restricted in this or
another way depending on the context. In particular, AC,,(OD) assumes that ® is an OD
(ordinal-definable) relation. (See [18] on ordinal definability.) In addition, say AC},(I1})
or AC,,(I1}) means the restriction to the type of lightface IT3 (parameter-free) or resp.
boldface I'[}) (with parameters in & (w) allowed) formulas.

3. A cardinal-collapse model where the parameter-free AC;, fails

Here we recall an old model by Levy [2] in which the parameter-free AC;, fails for
a certain (lightface) I} relation. This is basically any model of ZF + (®; = RL). To get
this model, Levy makes use of the collapse below R, i.e., a Cohen-style generic sequence

f = (fn)n<w of (generic) collapse maps f, : w onig NL is adjoined to the Godel constructible
universe L. Consider the set F = {f,:n < w} and the class N = HOD(F) of all sets
hereditarily F-ordinal-definable in L[f]. Then N is a model of ZF + (R; = RL).

We may note that the set &(w) N N of all reals in N is equal to the set Z(w) N
Unceo LUfor o0 fol-

To prove that AC,, fails under ®; = XL, Levy considers the relation
R(n, f) = n<w, f € w¥, and f codes a well-ordering of length > RL.

Then, first, AC,, fails for R under R; = NE, by obvious reasons, and second, R can be
presented as a lightface I1} relation.

To prove the second claim, we may note, following Levy, that R(n, f) is equivalent to
the following relation:

R'(n,f):= n<w, f €wY, f codes a well-ordering, whose length we denote by &, and,
for every countable transitive set X which models ZF minus the Power Set axiom, if
a € X then itis true in (X; €) that “there are at least n 4 1 infinite cardinals < a”.

To see that R is a I1} relation, Levy uses well-founded relations on w as a substitution for
countable transitive sets. Since the well-foundedness is a IT] property, the definition of R’
can be converted to a I} form.

From a more modern perspective, we may note that R’ is a ITHC relation, where
HC = H,, is the transitive set of all hereditarily countable sets, and then make use of the
conversion theorem (see e.g. Theorem 25.25 in [18]) saying that ITHC relations on the reals
are the same as I1} relations.

4. A cardinal-collapse model where the parameter-free AC;, holds but the full AC,, fails

The Guzicki model with such an effect appeared in [4]. It is similar to Levy’s model
of [2], yet it makes use of the Levy collapse below R, . To get such a model, we adjoin,
to the Godel constructible universe L, a Cohen-style (finite-support) generic sequence
f={feec W of (generic) collapsing maps fz : w ontg N]g“. Consider the set F = {f[B:
B < wl} and the class N of all sets hereditarily F-real-ordinal definable in L[f]. Then N is
amodel of ZF + (R = R ).

The set #(w) N N of all reals in N is equal to Z(w) N Uﬁ<w{_ L(fTB].
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To check that AC,, fails in N for a 1'[% relation, let p € N, p C w code a strictly
increasing map g = ¢p : w — w} whose range is cofinal in w. Accordingly the sequence
of cardinals N;(n) € N is cofinal in RL ,)- This allows to accomodate the arguments in

Section 3, with minor changes mutatis mutandis, and prove that AC,, fails in N for a H%
relation similar to R but defined with p as a parameter.

To see that the parameter-free AC;,, and even AC,,(OD) for all ordinal-definable
relations holds in N, let ¢(k, x, ) be an €-formula with an ordinal vy as the only parameter.
Assume that Vk3x C w @(k, x,y) holds in N. Then for every k there exist ordinals p < w{“
such that a set x C w satisfying ¢(k, x,) in N exists in L[f [ B]. Let Bx be the least such an
ordinal. The sequence (B )<« immediately belongs to L[f]. Yet using the homogeneous
character of the product collapse forcing that yields f, one can prove that in fact the
sequence (By)n<w in fact belongs to L. Therefore B = sup, B, < wk, and accordingly for
any k there is a set x C w, x € L[f[ B] satisfying ¢(k, x,y) in N. It remains to note that

LIfIB] S N.

5. Iterated perfect sets

Here we begin the proof of Theorems 1, 2, 3. The proof involves the engine of
generalized iterated Sacks forcing developed in [19,20] on the base of earlier papers [11,21,
22] and others. We consider the constructible universe L as the ground model.

Arguing in L in this section, we define, in L, the set

I = wy“~{A}; I€L;

of all non-empty tuples i = (o, ...,{u), n < w, of ordinals ¢, < w, partially ordered by
the extension C of tuples. I is a tree without the minimal node A (the empty tuple), which
we exclude.

Our plan is to define a generic extension L[a] of L by an array a = (a;);ey of reals
a; C w, in which the structure of “sacksness” is determined by this set I, so that in
particular each a; is Sacks-generic over the submodel L[(aj)jc;]. Then Theorems 1, 2, 3
will be obtained via submodels of the basic model L[a].

Let E be the set of all countable and finite initial segments (in the sense of C) ¢ C I.
If { € E then IS; is the set of all initial segments of (.

Greek letters ¢, 77, ¢, ¢ will denote sets in &.

Characters i, j are used to denote elements of I.

For any i € { € E, we consider initial segments {[Ci] = {j € { : j C i} and
([Zil={jeC:jZi}, and {[Ci], {[¢i] defined analogously.

We consider Z(w) as identic to 2%, so that both #(w) and £(w)¢ for ¢ € E are
homeomorphic Polich compact spaces. Points of & (w) will be called reals.

Assume that § C & € E. If x € Z(w)® then let x| € Z(w)" denote the usual
restriction. If X C 2 (w)¢ thenlet X[ = {x[75 : x € X}. To save space, let X[-; mean
X[¢[ci], X[¢; mean X [¢[Zi], etc.

Butif Y C 2 (w)" thenweput Y[ 1 &= {x € P(w)¢:x[ye€Y}.

To describe the idea behind the definition of iterated perfect sets, recall that the Sacks
forcing consists of perfect subsets of #(w), that is, sets of the form H”#(w) = {H(a) :

a € P(w)}, where H: 2(w) 28 Xisa homeomorphism.

To get a product Sacks model, with two factors (the case of a two-element unordered set
as the length of iteration), we have to consider sets X C #(w)? of the form X = H” 2 (w)?
where H is any homeomorphism defined on 22 (w)? so that it splits in obvious way into a
pair of one-dimentional homeomorphisms.

To get an iterated Sacks model, with two stages of iteration (the case of a two-element
ordered set as the length of iteration), we have to consider sets X C % (w)? of the form X =
H”2(w)?, where H is any homeomorphism defined on & (w)? such that if H(ay,a3) =
(x1,x2) and H(a},a}) = (x{,x5) then a1 = 4] <= x1 = x].

The combined product/iteration case results in the following definition.
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Definition 1 (iterated perfect sets, [19,20]). For any ¢ € E, Perf; is the collection of all sets
X C 2(w)% such that there is a homeomorphism H : 2 (w)® oo x satisfying

xol§=x1[¢ <= H(x0)[¢=H(x1)[¢

forall xp, xy €domH and ¢ € &, { C {. Homeomorphisms H satisfying this requirement
will be called projection—keeping. In other words, sets in Perf; are images of P (w)¢ via
projection—keeping homeomorphisms.

We put Perf = gz Perf:. U

Remark 1. Note that &, the empty set, formally belongs to E, and then 2 (w)? = {&},
and we easily see that 1 = { @} is the only set in Perfy. [

For the convenience of the reader, we now present five lemmas on sets in Perf;

established in [19,20].

Lemma 1 (Proposition 4 in [20]). Let { € E. Every set X € Perf; is closed and satisfies the

following properties:

1. Ifie fandz € X[c; then Dx,(i) = {x(i):x € X Ax[c; = z} is a perfect set in
P(w).

2. If ¢ €ISy, andaset X' C X is open in X (in the relative topology) then the projection X'| &
is open in X [ ¢. In other words, the projection from X to X ¢ is an open map.

3. If&nelS, xeX[Z yeXln,andx[(ENn)=yl(ENn), then xUy € X[({Un).

Proof (sketch). Clearly & (w)¢ satisfies P-1, P-2, P-3, and one easily shows that projection—
keeping homeomorphisms preserve the requirements. [J

Lemma 2 (Lemma 5 in [20]). Suppose that ¢,{,0 € &, UL C &, W € Perfy, CC W[ is
any set, and U =W N (C[719). Then U&= (W[E)N(CI(ENY) 7).

Lemma 3 (Lemma 6 in [20]). If { € E, X € Perf;, ¢ € IS, then X[ € Perfe.

Lemma 4 (Lemma 8 in [20]). If { € E, X € Perf;, aset U C X isopenin X, and xo € U,
then there is a set X' € Perf;, X' C U, clopen in X and containing xy.

Lemma 5 (Lemma 9 in [20]). Suppose that { € B, n € IS;, X € Perf;, Y € Perfy, and
Y C X|#. Then Z = XN (Y |71 {) belongs to Perf;.
In particular Y717 € Perf;, since obviously P(w)t € Perf;.

Corollary 1. Assume that ¢,n € E, ¢ = U1, X € Perfg, Y € Perfy, and X[ (Ny) =
Y[ (ENy). Then Z = (X1 9) N (Y]~ 9) € Perfy.

Proof. The bigger set X’ = X |1 ¢ belongs to Perfy by Lemma 5. In addition, X' [ =
X1 (&ENny) 7! 4 by Lemma 2 (with C = X, W = £(w)?). It follows that Y C X'|7,
because Y| (¢N#y) = X[(£N7). We conclude that X’ N (Y |71 ) € Perfy by Lemma 5.
Finally, we have X' N (Y |71 9) = Z by construction. [

Corollary 2. Assume that o, 1,82, -+ € & are pairwise disjoint, ¢ = Uy Gx, and Xj € Perfg,
for each k. Then the set Z = i (Xy | ~1 ©) belongs to Perfy, Z| & = Xy and Z < X for all k.

Proof. For each k, there exists a projection—keeping homeomorphism Hj. : & (w )%k ontg Xk.

Define H : Z(w)? — 2(w)? by H(x)[& = Hi(x[&) for all k. Then H is projection—
keeping and H : #(w)? MMz O
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Still arguing in L, we let IT be the group of all permutations 7 of the index set I, i.e.

all bijections 77 : I % T such that i C j <= 71(i) C 7(j). Any such a permutation 77 € I1
induces a transformation acting on several types of objects as follows.

e Iffe & orgenerally ¢ C I, then n¢ = "¢ = {n(i):i €}.

e If&CTIandx € Z(w)’ then mx € P(w)7™ is defined by mx(rt(i)) = x(i) for all
i € ¢. Thatis, formally 7x = x o 77!, the superposition.

e IffCTIand X C Z(w) then nX = {7x:x € X}.

e If G C Perf then G = {nX: X € G}.

The following lemma is obvious.

Lemma 6. If X € Perf: then X € Perf ;.
Moreover 1t is an order preserving automorphism of Perf. [

6. The forcing notion and the basic extension

This section introduces the forcing notion we consider and the according generic
extension called the basic extension.

We continue to argue in L. Recall that a partially ordered set I € L is defined in
Section 5, and Z is the set of all at most countable initial segments § C I in L. For any
7 €&, let Py = (Perf;)L.

The set P = Py = Uzez P; € L will be the forcing notion.

To define the order, we put || X|| = { whenever X € P;. Now weset X <Y (i.e. X is
stronger than Y) iff { = ||Y|| C || X|| and X[ C Y.

Remark 2. We may note that the set 1 = {@} as in Remark 1 belongs to P and is the <-
largest (i. e., the weakest) element of P. [

Now let G C IP be a P-generic set (filter) over L.

Remark 3. If X € P; in L then X is not even a closed set in 2 (w)¢ in L[G]. However we
can transform it to a perfect set in L|G] by the closure operation. Indeed the topological
closure X* of such a set X in &?(w)¢ taken in L[G] belongs to Perf; from the point of view
of L[G]. O

It easily follows from Lemma 4 that there exists a unique array a[G| = (a;[G]);cy, all
a;[G] being elements of & (w), such that a[G][ ¢ € X* whenever X € G and || X| = ¢ € &.
Then L[G] = L[(a;[G]);e1] = L[a[G]] is a IP-generic extension of L, which we call the basic
extension.

For the sake of convenience, let a5 [G] = @.

Theorem 4 (Thm 24 in both [19] and [20]). Every cardinal in L remains a cardinal in L[G].
Every a;[G] is Sacks generic over the model L]a[G]|;].

Proof (idea). The forcing Perf has the following property in L, common with the ordinary
one-step Sacks forcing:

(%) if sets D, C Perf are open dense in Perf, and X € Perf, then there is a stronger
condition Y € Perf, Y < X, and finite sets D), C D,, pre-dense in Perf below Y, in the
sense that any stronger Z € Perf, Z < Y, is compatible with some Z’' € D,,.

This property, established in [19], [20] by means of a splitting/fusion technique, easily
implies the preservation of all L-cardinals in [P-generic extensions of L. [

Here follow several lemmas on reals in P-generic models L[G], established in [19]. In
the lemmas, we let G C [P be a set P-generic over L.
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Lemma 7 (Lemma 22 in [19]). Suppose that sets 17, & € & satisfy Vj € n3i € & (j Ci). Then
al[GlIn € L[a[G]I¢]. O

Lemma 8 (Lemma 26 in [19]). Suppose that K € L is an initial segment in I, and i € I\ K.
Then a;[G] ¢ L[a[G][K]. O

Lemma 9 (Corollary 27in [19]). If i # j then a;[G] # a;[G] and even L[a;[G]] # L[a;[G]]. O

Lemma 10 (Lemma 29 in [19]). If K € L is an initial segment of I, and r € &(w) NL[G],
then either r € L[a[G]| K] or a;[G] € L[r] for some i € INK. [

7. Structure of the basic extension

We apply the lemmas above in the proof of the next theorem. Let <1, denote the Godel
wellordering on #(w), so that x <y y iff x € L[y]. Let x < y mean that x < y but
y £1 x, and x =1 y mean that x <y y and y <, x.

Say that y is a true <p-successor of x (where x,y € & (w)) iff x <p y and any real
z € P(w) satisfies z < y = z <, x.

Theorem 5. Let G C IP be a set P-generic over L, and i € I. Then we have the following:

() ifjeIandjCithen aj[G] < a;[G];

(i) if j€ Iandj & ithen aj[G] £L a;[G] ;

(iii) if r € L[G]N P (w) and r <y a;[G] then r € L or r = a;[G] forsomej € 1,jCi;

(iv) ifiel, y<wk, then a;,[G] is a true <y -successor of a;[G] ;

(v) ifi€l, andy € P(w)NL[G] isatrue <p-successor of a;[G], then thereis v < wk such
that y =y, a;~.[G];

(vi) if v < W, then a;[G] is a true <y-successor of ax[G];

(vil) if y € P(w) NL[G] is a true <y -successor of ap[G], then there is v < wk such that
X =1 a<,y> [G] .

Proof. (i) Apply Lemma 7 with 7 = {j} and ¢ = {i}.

(ii) Apply Lemma 8 with K = [C i].

(iii) If there are elements j € Z, j C i, such that a;[G] € L[r], then let j be the largest
such one. Let ¢ = [C j] (a finite initial segment of I). By Lemma 10, either r € L[a[G][¢],
or there is i’ ¢ & such that a;[G] € L[r]. In the “either” case, we have r € L[a;[G]] by (i),
so that L[r] = L[a;[G]] by the choice of j. In the “or” case we have a;[G] € L[a;[G]], hence
i’ C i by (ii). But this contradicts the choice of j and #’.

Finally if thereisno j € Z, j C i, such that a;[G] € L[r], then the same argument with
¢ =@ givesr € L.

(iv) The relation a;[G] <t a,~,[G] is implied by Lemmas 7 and 8. If now z <y, a;~, [G]
then z € L or z =g, a;[G] for some j C i" by (iii), and in the latter case in fact j C i",
hence j C i, and then z <y, a;[G].

(v) As y £L a;[G], by Lemma 10 there is j € I such that j Z i and a;[G] <r y. If
a;[G] <y y strictly then a;[G] < a;[G] by the true <p-successor property, hence j C i by
(ii), contrary to the choice of j. Therefore in fact a;[G] = y. Then we have i C j still by the
true <y -successor property and (i), (ii). This implies j = i "7 for some 7 < w}, because if
say j = i7" "0 then z = a;., [G] is strictly between a;[G] and a;[G], contrary to the true
<L-successor property.

(vi) Similar to (iv). Recall that a5 [G] = @ € L. This implies a, [G] <L a(,)[G]. On the
other hand, a,)[G] €1 as[G] holds by Lemma 8 with K = @. If now z <y, a(,)[G] then
z € L or z =t a;[G] for some j C () by (iii), and in the latter case in fact j = (), hence

then z =g a,)[G], contrary to the choice of z.
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(vii) As y &1 ap[G] € L, by Lemma 10 (with K = @) there is j € I such that
a;[G] <p y. If a;[G] < y strictly then a;[G] <t aA[G] by the true <p-successor property,
hence a;[G] € L, contrary to Lemma 8 with K = @. Therefore in fact a;[G] =t y. This
implies j = (7) for some 7 < wr, because if say j = (7,6) then y = a[G] is strictly
between a[G] and y =t a;[G], contrary to the true <p-successor property. [

Now consider the following formula:

A(n, ¥):= ¥ = (x0,x1,...,Xxn) is a tuple of reals x; C w such that xyg = @ and each x;
(0 < k < n)isatrue <y -successor of xj_1.

Thus 2A(n, X¥) separates tuples of true successor iterations, of length 7.

Remark 4. 2A(n, X) is a I1} relation, absolute for any transitive model of ZF containing the
true wy, and componentwise =y -invariant in the arqument X = (xq,x1,...,xy). Indeed to see
that 2 is IT} note that ‘being a true <y -successor’ is I1} by direct estimation. To see the
absoluteness note that both ‘being a true < -successor’ and 2 are relativized to the lower
<p-cone of the arguments. The invariance is obvious. [

Corollary 3 (of Theorem 5). Let G C IP be a set P-generic over L.
@) Ifi={(y1,v2--.,n) €I, domi=n>1,and

aci[G] = (aa[Gl, a(y,)[Glagy, 1) (Gl -/ 2y 5,90 (G @

then 2(n,ac;[G]) holds in L[G].

(ii) Conversely if X = (xg,x1,...,%,) € L[G] and A(n, X) holds in L|G] then there is
i=(y1,72,...,7n) € I such that X =1 ac;|G| componentwise, that is, xo =1 ax[G],
1 =1 84) Gl X2 Z1a0y,9,) (Gl 0 S A, .90 (C]- O

8. A model in which the parameter-free AC}, fails

Here we prove Theorem 3(i). Let us fix a set G C P, [P-generic over L and consider the
according P-generic array a[G| = (a;[G]);cr and the P-generic extension L[G| = L[a[G]].
The goal is to define a sub-extension of L[G] in which the parameter-free AC}, fails.

e Let () € L be the set of all finite or L-countable initial segments § C I such that there
is a number n < w satisfying domi < n forall i € ¢.

e Let W[G] € L[G] be the set of all restrictions of the form a[G][ ¢, ¢ € ), of the generic
array a[G].

e Let OD(W[G])C! be the class of all sets W[G]-ordinal-definable in L[G]. Thus x €
OD(W[G])LC] iff x is definable in L[G] by a set-theoretic formula with parameters in
W[G] U Ord.

Here Ord is the class of all ordinals, as usual. See [18], [23] on ordinal definability.

o Let Mg = HOD(W[G])LIC! be the class of all sets x € L[G], hereditarily W[G]-ordinal-
definable in L[G], i.e., it is required that x itself, all elements of x, all elements of
elements of x, etc., belong to the above defined class OD(W|[G])L(¢] in L[G].

Theorem 6. If a set G C P is P-generic over L then M is a model of ZF in which the
parameter-free AC;,(I1}) fails.
It follows that Mg N P (w) is a model of PA; + ~AC (I1}).

Proof. That classes of the form HOD(X) model ZF see [18], Chapter 13.
Note that if i € I then a;[G] € Mg = HOD(W[G])"C! via the initial segment ¢ = [C
aj={jeI:jCi}e O, andhence ac;[G] € Mg as well. It follows by Corollary 3(i) that
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JxA(m, x) is true in M, where m = domi. Our goal will be to show that the parameter-
free formula 3 xVm A(m, (x),), the right-hand side of AC,,, fails in M, meaning that
AC}, fails in Mg for the formula 2A.

Suppose to the contrary that there is x € Mg satisfying V m A(m, (x),,). This obvi-
ously results in a sequence (Vm)m<w € Mg of tuples ¥ = (Y, y¥, ..., yn) € Mg of
reals y!' C w satisfying 2(k, i), that is, yJ' = @ and each y; (0 < k < m) is a true
<y -successor of yi_1.

By definition there is an e-formula ¢(m, k,y,a[G]| ) with free variables m, k,y, a
parameter of the form a[G]| [ ¢, where ¢ € (), and some ordinals as parameters — such that
ifk <m<wandy e M;N P(w) then ¢(m,k,y,a[G][ () is true in L[G] iff y = y]'. (The
case of several parameters of the form a[G][ ¢, ¢ € (), can be easily reduced to the case of
one parameter.)

As ¢ € ), there is a number 1 < m < w such that domi < m for all i € {. Fix this
m and consider the tuple ¥ = (yiL, ¥t ..., ylt) € Mg = HOD(W[G])LC]. By Corollary
3(ii), there is a tuple j = (y1,72,...,7m) € I, such that i, = ac;[G] componentwise,
thatis, yi' =v aj[G] = a,, ,,...4,) [G] forall k < m.

Note that j ¢ ¢ by the choice of m. There is a number n < m such that still iy =
(Y1,7Y2,---»Yn—1,Tn) & € but the shorter tuple i = (y1,72,...,74—1) belongs to &, and
hence ac;[G] € HOD(W[G])MC). Then by Corollary 3 the L-degree [a;,[G]]p = {a C w:
a =y, a;,|G]} is definable in L[G] by the next formula, in which (a[G][¢)(i) = a;[G].

P(a,a[G][¢) :=a C wis a true <y -successor of (a[G][{) (7).

To conclude, ip ¢ ¢ € () and the L-degree [a;,[G]]y is definable in L|G] by an e-formula
with a[G][ ¢ and ordinals as parameters. But this contradicts Lemma 11 that follows in the
next Section. The contradiction refutes the contrary assumption above.

We finally note that 2 is a IT3 formula by Remark 4. [

9. The non-definability lemma

Here we prove the following lemma.

Lemma 11. If aset G C P is P-generic over L, { € E, and iy € I\ ¢ then the L-degree
[a;,[G]]L = {a € w:a =y a;,[G]} cannot be defined in L|G] by an €-formula with a[G][ ¢ and
ordinals as parameters.

Proof. Suppose to the contrary that i(x, a[G|[ &) is a formula as indicated, and it holds
in L[G] that [a;,[G]]r = {x C w:¢(x,a[G][{)}. Then there is a “condition” Xy € G such
that
Xo |- [ai[GllL = {x Cw:9p(xalGlI1E)}, @

where ||- is the P-forcing relation over L, and G is the canonical P-name for the generic
filter G. Let { = ||Xol|, so that X € IP;.

We argue in L. Thus X € Perf;. See Section 5 on permutations of I.

As ¢, ¢ are countable initial segments of I, it does not take much effort to define, in L,
a permutation 7t € I1 satisfying the following;:

(A) [ is the identity;
(B) m(ip) #idg,andif i € (&) then 7(i) & I\ ¢.

Coming back to (2) above, we put Yy = 71Xy, j, = 7(ip). Note that Yy € Py by
Lemma 6, where {’ = 7t{ = 71”{. We claim that

Yo |- [aj,[Glle = {x C w:y(x,a[G]18)} ®)

To prove the claim, let H "C Pbe P-genericover L, and Yy € H ’. We have to check that, in
L[H'], [aj)[H']]lL = {x C w:p(x,a[H'][{)}.
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The set H = 71 'H’ is P-generic over L and obviously X, € H. It follows from
(2) that [a;)[H]]p = {x Cw:¢(x,a[H|[{)} in L[H]. Yet L[H] = L[H'] (since m € L),
a[H'[[¢ = a[H|[{ by (A), and finally aj [H'] = a;,[H| by construction. Thus, indeed
[aj,[HlL = {x C w:¢(x,a[H'][{) } in L[H'], as required. This completes the proof of (3).
The next step is to establish
(C) Xp and Y are compatible in P.

We check this claim arguing in L, so that Xo € Perf; and Yq € Perf;, where {' = n{ = 7"
It follows from (A), (B) that the set y = { N ¢ € E satisfies y = ' N¢ = ' N{, and in
addition Xo[7 = Yy|#n.Let 9 = U". Then Z = (X |71 9) U (Yy| ! ®) belongs to Perfy
by Corollary 1. Thus Z € P, hence (C) holds. This implies (3) since Z < X, Y is obvious.

But it follows from (2) and (3) that X, and Y force contradictory statements (because
iy # jo, and hence [a;[G]]L # [a;,[G]]L). The contradiction obtained completes the proof
of the lemma. This accomplishes the proof of Theorem 6 as well. [

10. A model in which the parameter-free AC;, holds but the full AC,, fails

Here we prove Theorem 1(i). The model will be a modification of the model studied
in Section 8. We still fix a set G C P, P-generic over L and consider the P-generic array
a[G] = (a;[G])jer and the P-generic extension L[G] = L[a[G]|. We are going to define a
sub-extension of L[G] in which the parameter-free AC;, holds but the full AC,, fails.

e Let () € L be the set of all finite or L-countable initial segments ¢ C I such that for
any y < wj there is a number n = n, < w satisfying domi < n for all i € ¢ satisfying

i(0) = 7.

e Let W[G] € L[G] be the set of all restrictions of the form a[G][¢&, & € (Y, of the

generic array a[G].

e Let OD(W'[G])MC! be the class of all sets W'[G]-ordinal-definable in L[G]. Thus x €

OD(W'[G])"C! iff x is definable in L[G] by a set-theoretic formula with sets in W/[G] U

Ord as parameters.

o Let M. = HOD(W'[G])LIC! be the class of all sets x € L[G], hereditarily W'[G]-

ordinal-definable in L[G].

Theorem 7. If aset G C IP is P-generic over L then M is a model of ZF in which the parameter-
free ACY, holds, even AC,,(OD) (with ordinals as parameters) holds, but the full AC,,(I13)
fails. It follows that Mg N P (w) is a model of PAy + AC;, + —~AC,, (I}).

Proof. Let 2/(n, ¥) be the formula ‘2(n, X¥) A xg = a()[G]". (See the definition of 2 in
Section 7.) Note the parameter a () [G] in this formula. Similarly to the proof of Theorem 6, if
i € I then a;[G] € M; and ac;[G] € M. It still follows by Corollary 3(i) that Fx 2 (1, x)
is true in Mg, where n = domi. Moreover, arguments pretty similar to the proof of
Theorem 6, which we leave for the reader, show that the formula 3xVm (k, (x),,), the
right-hand side of AC,,, fails in DJT’G Thus ACw(H},) (with real parameters) fails in Smé;

It remains to prove that AC,,(OD) (with ordinals as parameters) holds in 9. Sup-
pose towards the contrary that ¢(k, x) is an €-formula with ordinals as parameters, such
that AC,, fails for ¢ in 9. Thus there exists a condition X* € G satisfying

(t) X* | “itholdsin My = HOD(W'[G])HY that Vk 3 x ¢ (k, x) but ~ Ix Yk ¢(k, (x)i)”.

Here || is the P-forcing relation over L, and G is the canonical P-name for the generic
filter G, as above.

As Vk3x ¢(k, x) holds in My;, there is a sequence (xg)r, € L[G] of reals x; € M,
xp C w, satisfying ¢(k,x;), Vk. By definition, for any k there is a set & € ) such
that x, € HODIa[G] | &]¢! (meaning that only a[G]|d; and ordinals are admitted as
parameters), and the sequence (Jy )<, belongs to L[G] as well. Furthermore, as the forcing
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relation is definable in L, there exist sequences (Xy)x<«. € L of conditions Xy € P (possibly
X ¢ G), and (T )k« € L of sets 7, € (), such that

Xy |- 3x € HOD[a[G] [ 7] (M b= o(k, x)). 4)

Now, arguing in L, we let & = || Xi||, 7x = & U %, and &* = || X*||. Thus ¢* and
all 7, ¢k, nx belong to E. Clearly there exists a sequence of permutations 7, € II (see
Section 5), k < w, such that the sets 1, = "y = {m(i) :i € n} € E are pairwise
disjoint and disjoint with ¢*.

Let X} = m Xy, so that X} € Perfgl/c in L by Lemma 6, where & = 7 "¢ = {m (i) :
i € 8} C . Define { = &* U Ui¢y; ¢ € E. It follows by Corollary 2 that the set
X' = (X*1712) N Mk(X; 171 ¢) belongs to Perf; and X' < X*, X’ < X| forall k.

On the other hand, the sets 7, = 71, "7 belong to () (because so do 7;) and are
pairwise disjoint (because so are the sets 17, = ¢} U 7). However () is closed in L under
countable disjoint union, hence v = U, 7/ € (Y.

We still work in L. Starting with (4) and arguing as in the proof of Lemma 11 (the
proof of 3 on page 11), we deduce that, for all k,

X |- 3x € HOD[a[G][ 7{] (M} k= o(k x)),

and hence
X" |- Vk3x € HOD[a[G][ '] (M k= ¢(k,x)), ®)
because X’ < X} and 7, C 7'.

Finally, if H is P-generic then the class HODJ[a[H]|| 7’| has a well-ordering, say <y,
also {a[H]|[| 1’ }-ordinal-definable in HODJ[a[H]| 7']. See e.g. [18], Section 13, the class
HODJ[a[H]| '] is identic to HODJ[a[H]|[1'] as in [18]. Therefore, if H is any P-generic
set over L containing X’, then, arguing on the basis of (5), we can define y C w in 90},
such that, for each k, ()i is equal to the <p-least set x C w in HOD[a[H] [ 7'], satisfying
@(k, x). This proves that M}, = FyVk ¢(k, (y)x) for any such H, and hence

X' |- (MG = 3y Vko(k, (v)i)-
But this contradicts (1) above since X’ < X*. O

11. Models in which the parameter-free CA* holds but the full CA fails

Here we sketch a proof of Theorem 2(i). See a full proof in our recent ArXiv preprint
[8]. Thus the goal is to define a set X C & (w) in a cardinal-preserving generic extension
of L, which is a model of PAj (with the parameter-free Comphehension CA*) in which the
full CA fails.

Following the arguments above, assume that G C P is a set IP-generic over L, define
a;[G] C w (i € I) and the array a[G| = (a;[G]);er as above, and consider the set

JIGI={r"0":y < An<w}U{y"0""1:y <wi An € a,[G]}.

Here 770" = (7,0,...,0),97°0""1 = (7,0,...,0,1), 7"1 = (7,1).
7 (v )y (v 0,1), 7 {(r,1)
n 0s n 0s

Thus J[G] C I and J[G] € L[G]. (Not necessarily J[G] € L.) We put

Mg = Z2(w) N U L{a; [G],...,a;,[G]]; Mg C Z(w).
i1,in€J[G]

Theorem 8. If aset G C P is P-generic over L then Mg is a model of PA; (with the parameter-
free Comprehension CA*) in which the full CA(X}) holds but the full CA(L}) fails.

Proof (sketch, see [8] for a full proof). That M is a model of CA(X}) (with parameters)
follows by the Shoenfield absoluteness theorem, because M is Godel-closed downwards
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by construction. That the parameter-free AC;, holds in Mg follows by the ordinary
permutation technique by a method rather similar to the verification of AC}, in the proof
of Theorem 7 above.

Finally, M fails to satisfy the full CA. Indeed the reals a,;[G] (7 < w1) do not belong
to Mg, since "1 ¢ J[G] by construction. On the other hand, each a, ~;[G] is analytically
definable in Mg as the set containing the numbers n > 1 such that the structure of true <p -
successors above a,.)[G] has a split at n-th level, and possibly containing or not containing
0. Note the role of a(,y[G] € Mg as a parameter in this definition of a, - [G] in M. The

ensuing definability formula for a. -, [G] is X} by direct estimation, because it is based on

7
the IT} definability of the relation of ‘being a true < -successor’. [

Another model of PAJ, in which CA fails even in the most elementary form of the
nonexistence of complements of some its members, is also presented in [8]. It has the form
M= (Z(w)NL)U{yn:n < w}, where (y,)n<w is a Cohen-generic sequence over L.
Note that the complements y,, = w \ y, are not adjoined to M, so that CA is violated in
M evenin the form IxVk (k € x <= k ¢ y,), with y,, as a parameter. On the other hand,
the parameter-free CA* holds in M by ordinary permutation arguments.

12. Working on the basis of the consistency of PA;

This section is devoted to claims (ii) of our main Theorems 1, 2, 3. We recall that the
consistency of PA; is a common assumption in claims (ii). As the proofs of claims (i) of the
theorems, given above, contain a heavy dose of the forcing technique, first of all we have to
adequately replace PA, with a more ZFC-like, forcing-friendly theory. This will be ZFC™,
a subtheory of ZFC obtained as follows:

(a) the Power Set axiom PS is excluded;

(b) the Axiom of Choice AC is replaced with the wellorderability axiom WA saying that
every set can be wellordered;

(c) the Replacement schema, which is not sufficiently strong in the absence of PS, is
replaced with the Collection schema;

See, e.g., [24] for a comprehensive account of main features of ZFC™.
Two more principles are considered in the context of ZFC™, namely

HC: every set is finite or countable,

V = L: every set is Godel-constructible, i.e., the axiom of constructibility.

Theorem 9. Theories PA; and ZFC™ + HC + (V = L) are equiconsistent. In fact they are
interpretable in each other.

Proof. This has been a well-known fact since while ago, see e.g. Theorem 5.25 in [14]. A
more natural way of proof is as follows.

Firstly the theory Z~ (i.e., ZFC™ without WA and Collection) is interpreted in PA, by
the tree interpretation described e. g. in [14], § 5, especially Theorem 5.11, or in [15], Definition
VIL.3.10 ff. Kreisel [1], VI(a)(ii), attributed this interpretation to the category of “crude”
results. Secondly the whole theory ZFC™ + HC + (V = L) is interpeted in Z~ by means of
the same tree interpretation, but restricted to only those trees that define sets constructible
below the first gap ordinal, see a rather self-contained proof in [25]. This second part belongs
to the category of “delicate” results of Kreisel [1], VI(b)(ii)) O

Theorem 9 allows us to replace the consistency of PA; in claims (ii) of our Theorems 1,
2, 3 by the equivalent consistency of ZFC™, which is a much more forcing-friendly theory.

This makes it possible to argue in the frameworks of ZFC™ in the following proof
of Theorem 3(ii). The proof is an adaptation of the proof of the statement (i) of the same
Theorem 3, on the basis of ZFC™ + HC+ (V =1L).
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Proof of Claims (ii) of Theorems 1, 2, 3. We argue on the basis of ZFC~ + HC+ (V =1L).
In other words, all sets are countable and constructible, so that the ground universe
behaves like L, in many ways. Yet, to avoid unnecessary misunderstanding, we accept
the following.

Definition 2. The ground universe of ZFC~ + HC + (V = L) is denoted by L™. Accord-
ingly w; will be the collection (a proper L™ -class) of all ordinals in L™. [J

Emulating the construction in Section 5, we define proper classes I = (w; )< ~ {A}
and E, and sets IS, {[Ci], {[Zi], etc., similar to Section 5. But coming to Definition 1,
we face a problem. Indeed, each space #(w)¢ and any homeomorphism H : £ (w)¢ —
2 (w)°¢ is now a proper class, hence Perf; as by Definition 1 is a class of proper classes,
which cannot be considered. Therefore we have to parametrize homeomorphisms by sets.

Definition 3 (ZFC™~ form of Definition 1). Arguingin L™, let { € E. Define
Qe = {x € P(w)* : the set { (i, k) : x(i)(k) = 1} is finite};

this is a countable dense subset of #(w)¢ in ZFC ™.

Let h : Qf — 2(w)¢ be any map (a set in L™). Let [h] be its extension defined on
2(w)¢ by [h](x) = limy_x h(y) whenever the limit exists, so [i] : dom [] — Z(w)¢ is a
continuous map defined on dom [/], a topologically closed “subset” or rather subclass of
P (w)¢ (also a proper class).

We define H to be the class of all maps /i : Qz — &(w)* such that dom [h] = 2(w)*,
[h] is 1 — 1 and [}] is a projection-keeping homeomorphism.

Finally if h € H; thenlet X, = [h]”2(w)¢ = {[h](x) : x € 2(w)¢}.

Then Perf; = H; and Perf™ = (Jzcg Perf, are proper classes, of course. L[]

It is quite obvious that in the ZFC setting Perf: coincides with the collection of all sets
Xp, h € Hg. This allows us to use the map h — X}, as a parametrization of Perf in L™, so
that Perf ™ is the set of codes for the Perf and each particular Perf, = H; is the set of codes

for Perf;. We will use Perf™ as a forcing notion, that is, put P~ = Perf ", with the order
g < hiff X¢ < Xj, in the sense of Section 5.
Hote that both P~ and the order are definable proper classes in L™ .
Conditions & € P~ should be informally identified with corresponding objects (para-
metrically defined proper classes) X.
The property () in the proof of Theorem 4 transforms to the following property of
the forcing Perf ™ has a property in L™:
(x) if a parametrized sequence of classes D,, C Perf ™~ is such that each D, is open dense
in Perf~, and X € Perf, then there is a stronger condition Y € Perf, Y < X, and
finite sets D}, C D,, pre-dense in Perf ~ below Y.

In other words, Perf ~ is a pretame forcing notion in L™ in the sense of [26] or [27].

It follows (see e.g. [27]) that any Perf ™ -generic extension of L™ is still a model of
ZFC™, and the forcing and definability theorems hold similar to the case of usual set-size
forcing. Furthermore all constructions and arguments involved in the proofs of Theorems
6, 7, 8 above (i.e., claims (i) of Theorems resp. 3, 1, 2), as well as the results of [19,20]
cited in the course of the proofs, can be reproduced mutatis mutandis on the basis of
the theory ZFC™ + HC + (V = L). In particular, Theorem 6 takes the form asserting
that the & (w)-part of a certain subextension of any P~ -generic extension of L™ satisfies
PA, + —AC; (I1}).

Metamathematically, this means that the formal consistency of ZFC~ + HC + (V =1L)
implies the consistency of PA; + —AC},(I1}). However the consistency of ZFC~ + HC +
(V = L) is equivalent to the consistency of PA, by Theorem 9. This concludes the proof of
Claim (ii) of Theorem 3.
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Pretty similarly, Theorems 7 and 8 take appropriate forms sufficient to infer the
consistency of resp.

PA; + AC}, + ~AC, (IT}), PA; 4+ CA(Z}) + —CA(ITL}),

from the consistency of PA;, as required.
(Claims (ii) of Theorems 1,2,3) [

13. Conclusions, remarks, and problems

In this study, the method of generalized arboreal iterations of the Sacks forcing is
employed to the problem of obtaining cardinal-preserving models of ZFC, and models of
ZFC™ and the second-order Peano arithmetic PA;, in which the parameter-free version
of the Comprehension or Choice schema holds but the full schema fails. These results
(Theorems 1, 2, 3 above) contribute to the ongoing study of both subsistems and extensions
of PA; as in [15], [28], [29] among many others, as well as to modern studies of forcing
extensions in class theories and ZFC™ -like theories as in [24], [30], [31], [32].

From our study, it is concluded that the technique of generalized arboreal iterations
of the Sacks forcing succeeds to solve important problems in descriptive set theory and
second-order Peano arithmetic related to parameter-free versions of such crucial axiom
schemata as Comprehension and Choice, by our Theorems 1, 2, 3.

From the results of this paper, the following remarks and problems arise.

Remark 5. Identifying the theories with their deductive closures, we may present the
concluding statements of Theorems 1, 2, 3 as resp.

PA; + AC;, S PA; + AC,, PA;+ CA(Z)) SPA;, PA, C PA; +AC. (6)

Studies on subsystems of PA; have discovered many cases in which S & S’ holds for a
given pair of subsystems S, S, see e.g. [15]. And it is a rather typical case that such a strict
extension is established by demonstrating that S’ proves the consistency of S. One may
ask whether this is the case for the results in (6). The answer is in the negative: namely

the theories PA;, PA; + CA(L}), and the full PA, are equiconsistent

by a result in [16], also mentioned in [17]. This equiconsistency result also follows from a
somewhat sharper theorem in [33], 1.5. O

Remark 6. There is another meaningful submodel of the basic model L[G] = L[a[G].
Namely, consider the set W of all finite or countable well-founded initial segments
¢ € L, ¢ C I, instead of the sets W (as in Section 8) and W’ (as in Section 10). Define a
corresponding submodel 9 accordingly. Then AC,, holds in M but DC(IT3) fails. Yet
a better model is defined in [29], in which AC,, holds but even DC(H%) (the best possible
in this case) fails. [

We proceed with a list of open problems.

Problem 1. Is the parameter-free countable choice schema AC}, in the language £(PA;)
true in the models defined in Section 11 ?

Problem 2. Can we sharpen the result of Theorem 8 by specifying that CA(Z}), rather
than £}, is violated? The combination CA(E!) plus = CA(X}) over PA} would be optimal
for Theorem 2. Can we similarly sharpen the result of Theorems 6 and 7 by specifying
that AC,(Z}), resp., AC(Z3) are violated? As suggested by V.Gitman, Jensen’s iterated
forcing introduced in [29] may lead to a solution.

Problem 3. As a generalization of Problem 2, prove that, for any n > 2, PA} + CA(Z])
does not imply CA(Z! +1)- In this case, it would be possible to conclude that the full
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schema CA is not finitely axiomatizable over PAj. There are similar questions related to
Theorems 6 and 7, of course. Compare to Problem 9 in [14, § 11]. We expect that methods
of inductive construction of forcing notions in L that carry hidden automorphisms, recently
developed in our papers [34-38], may lead to solutions.

Problem 4 (Communicated by Ali Enayat). A natural question is whether the results of
this note also hold for second order set theory (the Kelley-Morse theory of classes). This
may involve a generalization of the Sacks forcing to uncountable cardinals, as in Kanamori
[39], and new models of set theory recently defined by Fuchs [40].
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