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Abstract: The following two consequences of the axiom of constructibility V = L will be established
for every n ≥ 3: 1. Every linear Σ1

n set is the projection of a uniform planar Π1
n−1 set. 2. There is a

planar Π1
n−1 set with countable cross-sections, not covered by a union of countably many uniform

Σ1
n sets. If n = 2 then claims 1,2 hold in ZFC alone, without the assumption of V = L .
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1. Introduction

The following theorem is the main result of this paper. It relates to the problems of uniform
projection and countable uniform covering in descriptive set theory.

Theorem 1. Assume that n ≥ 2 , and either (I) the axiom of constructibility V = L holds, or (II) n = 2 . Then

(a) (uniform projection) any Σ1
n set X ⊆ ωω is the projection of a uniform Π1

n−1 set P ⊆ (ωω)2;
(b) (countable uniform non-covering) there is a Π1

n−1 set P ⊆ (ωω)2 with countable cross-sections, not
covered by a union of countably many uniform Σ1

n sets.

Uniform projection problem. By definition [1,2], a set X in the Baire space ωω belongs to Σ1
n+1

iff it is equal to the projection dom P = {x : ∃ y P(x, y)} of a planar Π1
n set P ⊆ (ωω)2 = ωω × ωω,

hence in symbol Σ1
n+1 = proj Π1

n . The picture drastically changes if we consider only uniform sets
P ⊆ (ωω)2, i. e., those satisfying P(x, y) ∧ P(x, z) =⇒ y = z .

Remark 1. As it is customary in texts on modern set theory, we use dom P for the projection dom P = {x :
∃ y P(x, y)} of a planar set P to the first coordinate, and we use more compact relational expressions like
P(x, y) , Q(x, y, z) etc. instead of ⟨x, y⟩ ∈ P, ⟨x, y, z⟩ ∈ Q etc..

Proposition 1 (Luzin [3,4], see also [1,2]). The following three classes coincide:

− class ∆1
1 of all Borel sets in ωω;

− class proj unif ∆1
1 of projections of uniform ∆1

1 (that is, Borel) sets in (ωω)2;
− class proj unif Π1

0 of projections of uniform Π1
0 (that is, closed) sets in (ωω)2.

Thus symbolically, proj unif Π1
0 = proj unif ∆1

1 = ∆1
1 ⫋ Σ1

1 = proj Π1
0.

In Luzin’s monograph [4], it is indicated that after constructing the projective hierarchy, "we
immediately meet" with a number of questions, the general meaning of which is: can some properties
of the first level of the hierarchy be transferred to the following levels? Luzin raised several concrete
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problems of this kind in [4, pp. 274-276,285], related to different results on Borel (∆1
1 ), analytic (Σ1

1 ),
and coanalytic (Π1

1 ) sets, already known by that time. In particular, in connection with the results of
Proposition 1, Luzin asked a few questions in [4], the common content of which can be formulated as
follows:

Problem 1 (Luzin [4]). For any given n ≥ 2 , figure out the relations between the classes ∆1
n ⫋ Σ1

n =

proj Π1
n−1 and proj unif Π1

n−1 ⊆ proj unif ∆1
n .

Proposition 1 handles case n = 1 of the problem, of course.
Case n = 2 in Problem 1 was solved by the Novikov – Kondo uniformization theorem [5,6], which

asserts that every Π1
1 set P ⊆ (ωω)2 is uniformizable by a Π1

1 set Q , that is, Q ⊆ P is uniform and
domQ = dom P , and hence

proj unif Π1
1 = proj unif ∆1

2 = Σ1
2 = proj Π1

1 , (1)

which by the way implies Theorem 1(a) in case n = 2.
Thus we have pretty different state of affairs in cases n = 1 and n = 2. In this context, the result

of our Theorem 1(a) answers Luzin’s problem, under Gödel’s axiom of constructibility, in such a way
that V = L implies

proj unif Π1
n−1 = proj unif ∆1

n = Σ1
n = proj Π1

n−1 . (2)

for all n ≥ 3, pretty similar to the solution in case n = 2 given by (1).

Countable uniform non-covering problem. Assertion (b) of Theorem 1 also has its origins in
some results of classical descriptive set theory. It concerns the following important result.

Proposition 2 (Luzin [3,4], Novikov [7], see also [1,2] for modern treatment). Every “planar” Σ1
1 set

P ⊆ (ωω)2 with all cross-sections Px = {y : ⟨x, y⟩ ∈ P} (where x ∈ ωω) being at most countable, is covered
by the union of a countable number of uniform ∆1

1 sets .

Luzin was also interested to know whether this result transfers to levels n ≥ 2.

Problem 2 (Luzin [4]). For any given n ≥ 2 , find out if it is true that every Σ1
n set P ⊆ (ωω)2 with countable

cross-sections Px is covered by the union of countably many uniform ∆1
n sets .

Our Theorem 1(b) solves this problem in the negative, outright for n = 2 and under the assumption
of the axiom of constructibility for n ≥ 3. We may note that this solution seems to be strongest possible
under the assumption (I)∨ (II) of Theorem 1, since this assumption implies that every planar Π1

n−1 set,
and even Σ1

n set, with countable cross-sections can be covered by a union of countably many uniform
∆1

n+1 sets.
On the other hand, even much stronger non-covering results are known in generic models of

ZFC . For instance it is true in the Solovay model [8,9] that the Σ1
2 set P = {⟨x, y⟩ ∈ (ωω)2 : y ∈ L[x]}

is a set with countable cross-sections not covered by a countable union of uniform projective sets of
any class, and even real-ordinal definable sets. Different models containing a Π1

2 set with the same
properties, were defined in [10,11], and, unlike the Solovay model, without the assumption of the
existence of an inaccessible cardinal.

The axiom of constructibility and consistency. As for the axiom of constructibility in Theorem 1,
it was proved by Gödel [12] that V = L is consistent with ZFC , therefore all its consequences like (a),
(b) of Theorem 1, are consistent as well. We have recently succeeded [13, Theorem 74.1] to prove that
the negations of (a), in the forms Σ1

n ̸⊆ proj unif Π1
n and ∆1

n ̸⊆ proj unif Π1
n−1 , for any given n ≥ 3,

hold in appropriate generic models of ZFC .
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Corollary 1. If n ≥ 3 then each of the following three statements is consistent with, and independent of ZFC :
Σ1

n = proj unif Π1
n−1 , Σ1

n ̸⊆ proj unif Π1
n , ∆1

n ̸⊆ proj unif Π1
n−1 .

No consistency result related to a positive solution of Problem 2 is known so far; in particular
both V = L and generic models tend to solve the problem in the negative. This raises the problem of the
consistency of the positive solution (Problem 5 in the final Section), which can definitely inspire further
research.

Outline of the proof. We’ll make use of a wide range of methods related to constructibility
and effective descriptive set theory. Section 2 contains a brief introduction to universal sets and
constructibility and presents some known results used in the proof of Theorem 1; it is written for the
convenience of the reader.

Section 3 contains a proof of Claim (a) of Theorem 1. To prove the result we define the class Γ as
the closure of Σ1

n−1 ∪ Π1
n−1 under finite intersections and countable pairwise disjoint unions. Then we

prove, under V = L , that every set in Γ is a uniform projection of a Π1
n−1 set (Lemma 1, an easy result),

and that every set in Σ1
n is a uniform projection of a set in Γ . To prove the latter result (Lemma 2),

we make use of such a consequence of V = L as a ∆1
2 well-ordering <L of the reals. However this

method (sketched e.g. in [2, Chapter 5]) does not seem to immediately work. Therefore we have to
combine it with an elaborate technique of effective descriptive set theory due to Harrington [14], which
is not a trivial and easily seen modification.

Section 4 contains a proof of Claim (b) of Theorem 1. The proof evolves around the set U = U[n]
of all pairs ⟨x, f ⟩ ∈ ωω × 2ω such that f is the indicator function of a Σ1

n(x) set u ⊆ ω . We prove that
U is not covered by countably many uniform Σ1

n sets (Lemma 3, rather elementary), and then prove
that U is Σ1

n (Lemma 4) by quite a complex argument. Finally a Π1
n−1 set with necessary properties is

obtained from U by Claim (a) of Theorem 1.
Section 5 contains some conclusions and offers several problems for further study.

2. Preliminaries

We make use of the modern notation [1,2,15] Σ1
n , Π1

n , ∆1
n for classes of the projective hierarchy

(boldface classes), and Σ1
n , Π1

n , ∆1
n for the corresponding effective (or lightface) classes, of sets in the

spaces of the form (ωω)m × ωk , m, k < ω — which we’ll call product spaces. As usual, elements
a, b, · · · ∈ ωω will be called reals. If a, b, . . . ∈ ωω is a finite list of reals then Σ1

n(a, b, . . . ) , Π1
n(a, b, . . . ) ,

∆1
n(a, b, . . . ) are the effective classes relative to a, b, . . . . Every real x ∈ ωω is formally a subset of ω2,

hence it can belong to one of the effective classes say ∆1
n or ∆1

n(a) .

Proposition 3 (universal sets). (i) If n ≥ 1 , X is a product space, and K is a class of the form Σ1
n or

Σ1
n(a), a ∈ ωω, then there is a set U ⊆ ω ×X , universal in the sense that if X ⊆ X belongs to K

then there exists m such that X = Um = {x : ⟨m, x⟩ ∈ U} .
(ii) If n ≥ 1 then there is a Σ1

n set W ⊆ ωω × ω × ω, such that if a ∈ ωω and a set x ⊆ ω belongs to
Σ1

n(a) then there is m < ω satisfying X = Wam = {k : ⟨a, m, k⟩ ∈ W} .

Proof (sketch). (i) is a well-known standard fact, see e.g. [2] or [16, Theorem 4.9 in Chapter C.8].
To prove (ii) let U ⊆ ω × (ωω × ω) be a universal Σ1

n set as in (i) for X = ωω × ω . Then put
W = {⟨a, m, k⟩ : ⟨m, a, k⟩ ∈ U} .

Constructible sets were introduced by Gödel [12] as those which can be obtained by a certain
transfinite construction. The axiom of constructibility claims that all sets are constructible, symbolically
V = L , where V = all sets, L = all constructible sets. See [15,17] as modern reference on theory of
constructibility. Analytical representation of Gödel’s constructibility is well-known since 1950s, see
e.g. Addison [18,19], and Simpson’s book [20]. The next proposition gathers some major facts:

Proposition 4 (see [2,15] for proofs and an extended survey). Assume V = L . Then :
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(i) there exists a ∆1
2 well-ordering <L of the set ωω of order type ω1 ;

(ii) if n ≥ 2 , K is a class of the form Σ1
n(b) , b ∈ ωω, and P ⊆ (ωω)3 is a set in K , then

U = {⟨y, z⟩ : ∀ x <L y P(x, y, z)} and V = {⟨y, z⟩ : ∃ x <L y P(x, y, z)}

are still sets in K . The same for K = Π1
n(b) and ∆1

n(b) .

Corollary 2 (essentially Addison [18,19]). Let n ≥ 2 and a ∈ ωω. Then

(i) if K is a class of the form ∆1
n , Σ1

n , ∆1
n(a) , or Σ1

n(a) , then every set P ⊆ ωω ×ωω in K is uniformizable
by a set Q ⊆ P still in K ;

(ii) any Σ1
n set X ⊆ ωω is the projection of a uniform ∆1

n set ;
(iii) any non-empty Σ1

n , resp., Σ1
n(a) set X ⊆ ωω contains a ∆1

n , resp., ∆1
n(a) real x ∈ X ;

(iv) if x, y ∈ ωω and x <L y then x ∈ ∆1
2(y) .

Proof. (i) If P ∈ ∆1
n(a) then the set Q = {⟨x, y⟩ ∈ P : ∀ y′ <L y¬ P(x, y′)} obviously uniformizes

P , whereas Q ∈ ∆1
n(a) follows from Proposition 4(ii). Now suppose that P ∈ Σ1

n(a) . There is a
Π1

n−1 set C ⊆ (ωω)3 satisfying P = {⟨x, y⟩ : ∃ z C(x, y, z)} . Using a canonical homeomorphism H :

(ωω)2 onto−→ ωω , and the result for ∆1
n(a) already established, we can uniformize C , as a ∆1

n(a) subset
of ωω × (ωω)2 , via a ∆1

n(a) set D ⊆ C , so that, for any x ∈ ωω , ∃ y, z C(x, y, z) =⇒ ∃ ! y, z D(x, y, z) .
It remains to define Q = {⟨x, y⟩ ∈ P : ∃ z D(x, y, z)} .

(ii) If X ∈ Σ1
n then X ∈ Σ1

n(a) for some a ∈ ωω. By definition, X = dom P for some Π1
n−1 set

P ⊆ ωω × ωω . Let Q ⊆ P be a ∆1
n(a) set that uniformizes P , by (i).

(iii) Define 0 ∈ ωω by 0(k) = 0, ∀ k . If X ∈ Σ1
n(a) then the set P = {0} × X = {⟨0, x⟩ : x ∈ X}

is Σ1
n(a) as well, and hence by (i) it can be uniformized by a Σ1

n(a) set Q ⊆ P . In fact Q = {⟨0, x0⟩}
for some x0 ∈ X . To see that x0 is ∆1

n(a) use the equivalence

x0(j) = k ⇐⇒ ∃ x
(
Q(0, x) ∧ x(j) = k

)
⇐⇒ ∀ x

(
Q(0, x) =⇒ x(j) = k

)
.

(iv) If f ∈ ωω and m < ω then define ( f )m ∈ ωω by ( f )m(k) = f (2m(2k + 1)− 1) , ∀ k . The set
X = { f ∈ ωω : ∀ x′ <L y ∃m (x′ = ( f )m)} belongs to ∆1

2(y) by Proposition 4(ii). Thus X contains a
∆1

2(a) element f ∈ X by (iii). Then x = ( f )m ∈ ∆1
2(y) for some m .

3. Proof of the uniform projection theorem

Here we prove Theorem 1(a). We may note that Case (II) (n = 2) of this statement is covered by
the Novikov–Kondo uniformization theorem, and hence we can assume that n ≥ 3 and Case (I): the
axiom of constructibility V = L holds.

Thus we fix a number n ≥ 3 and assume V = L in the course of the proof.
Note that the result will be achieved not by a reference to the Π1

n−1 uniformization claim, which
actually fails for n ≥ 3 under V = L .

Definition 1. Let Γ be the closure of the union Σ1
n−1 ∪ Π1

n−1 under the operations 1) of finite
intersections and 2) of countable unions of pairwise disjoint sets — both operations for sets in one and
the same space, of course.

The proof of Theorem 1(a) consists of two lemmas related to this intermediate class.

Lemma 1. Every Γ set X ⊆ ωω is the projection of a uniform Π1
n−1 set.

Proof. The proof goes on by induction on the construction of sets in Γ from initial sets in Σ1
n−1 ∪ Π1

n−1 .
The result for Π1

n−1 sets is obvious, and for Σ1
n−1 sets it follows from Corollary 2(ii). Now the step.
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Assume that sets X0, X1, X2, . . . ⊆ ωω are pairwise disjoint, and, by the inductive hypothesis,
Xk = dom Pk and Pk ∈ Π1

n−1 , Pk ⊆ ωω × ωω is uniform for each k < ω . Then the set X =
⋃

k Xk
satisfies X = dom P , where P =

⋃
Pk is uniform and belongs to Π1

n−1 . (Since the class Π1
n−1 is closed

under the countable operations
⋃

and
⋂

.)
Now assume that X0, X1 . . . ⊆ ωω , and, by the inductive hypothesis, Xk = dom Pk and Pk ∈ Π1

n−1 ,
Pk ⊆ ωω × ωω is uniform for each k = 0, 1. We put

P = {⟨x, y, z⟩ : ⟨x, y⟩ ∈ P0 ∧ ⟨x, z⟩ ∈ P1} and Q = {⟨x, G(y, z)⟩ : ⟨x, y, z⟩ ∈ P},

where G : ωω × ωω onto−→ ωω is a homeomorphism. Then the set X = X0 ∩ X1 satisfies X = domQ ,
where Q is uniform and belongs to Π1

n−1 .

Lemma 2. Every Σ1
n set X ⊆ ωω is the projection of a uniform Γ set.

Proof. This is a much more involved argument. Consider a Σ1
n set X ⊆ ωω, so that X = dom P,

where P ⊆ ωω × ωω is Π1
n−1 . We can w. l.o.g. assume that in fact P ⊆ ωω × 2ω , where

2ω ⊆ ωω (all infinite dyadic sequences) is the Cantor discontinuum. (If this is not the case
then replace P with P′ = {⟨x, F(y)⟩ : P(x, y)} , where F : ωω → 2ω is the injection defined by
F(y) = 1⌢0y(0)⌢1⌢0y(1)⌢1⌢0y(2)⌢ . . . .)

Note that P belongs to Π1
n−1(a) for some a ∈ ωω. We assume that in fact P is lightface Π1

n−1 ,
and hence X is Σ1

n ; the general case does not differ. Then there exists a Σ1
n−2 set C ⊆ (2ω)3 satisfying

P = {⟨x, y⟩ ∈ (ωω)2 : ∀ z C(x, y, z)} .
Note that x ∈ X ⇐⇒ ∃ y ∀ z C(x, y, z) . Consider the set

W = {⟨x, w⟩ ∈ (ωω)2 : ∀ y <L w ∃ z <L w¬C(x, y, z)}.

Quite obviously if x ∈ ωω then the cross-section Wx = {w : ⟨x, w⟩ ∈ W} is non-empty (contains the
<L-least element of ωω ), is closed in ωω in the sense of the order <L , and satisfies ⟨x, y⟩ ∈ P ∧ w ∈
Wx =⇒ w ⩽L y . We conclude that if x ∈ X then there exists a <L-largest element wx ∈ Wx . Saying it
differently,

(A) if ⟨x, y⟩ ∈ P then wx exists and wx ⩽L y .

Now define the relation B(x, y, w) := w ∈ Wx ∧ ∀w′ ⩽L y (w <L w′ =⇒ w′ /∈ Wx). It follows
from (A) that

(B) B(x, y, w) ⇐⇒ w = wx , whenever ⟨x, y⟩ ∈ P .

The next claim makes use of an idea presented in Harrington’s paper [14].

(C) if x ∈ X then there is y ∈ ∆1
n−1(x, wx) such that ⟨x, y⟩ ∈ P .

To prove this crucial claim, we fix x ∈ X , and let f ∈ ωω be the <L-least element of the difference
ωω ∖∆1

n−1(x, wx) . We assert that

(D) if z ∈ ωω then the equivalence z <L f ⇐⇒ z ∈ ∆1
n−1(x, wx) holds.

Indeed, in the nontrivial direction, suppose that the left-hand side fails, i. e., f ⩽L z . Then f ∈ ∆1
2(z)

by Corollary 2(iv). We conclude that z /∈ ∆1
n−1(x, wx) . (Indeed, otherwise f ∈ ∆1

n−1(x, wx) , contrary
to the choice of f . ) This completes the proof of (D).

Taking z = wx in (D), we obtain wx <L f , and hence f /∈ Wx . By definition, there exists y <L f
satisfying

(E) ∀ z <L f C(x, y, z) .
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Fix such a real y . We assert that ⟨x, y⟩ ∈ P. Suppose otherwise. Then the Π1
n−2(x, y) set Z = {z :

⟨x, y, z⟩ /∈ C} is non-empty, and hence there is a ∆1
n−1(x, y) real z ∈ Z by Corollary 2(iii). However

y <L f by construction. We conclude by (D) that y ∈ ∆1
n−1(x, wx) . This implies z ∈ ∆1

n−1(x, wx) ,
which contradicts (D), (E) an the choice of z . The contradiction ends the proof of ⟨x, y⟩ ∈ P, and
thereby completes the proof of (C) as well since y ∈ ∆1

n−1(x, wx) is already established. Recall the
following technical notation.

Definition 2. The indicator function χu ∈ 2ω of a set u ⊆ ω is defined by χu(k) = 1 in case k ∈ u , and
χu(k) = 0 in case k /∈ u .

If h ∈ ωω, m < ω, then define (h)m ∈ ωω by (h)m(j) = h(2m(2j + 1)− 1) , ∀ j .

In continuation of the proof of Lemma 2, we recall that Proposition 3(ii) yields a Σ1
n−1 set

D ⊆ (ωω)2 × ω , universal in the sense that

(F) if x, w ∈ ωω and a real y ∈ 2ω belongs to Σ1
n−1(x, w) , then there is m < ω such that y =

( f [x, w])m , where f [x, w] = χD[x,w] and D[x, w] = {k : D(x, w, k} .

The set Q = {⟨x, f [x, wx]⟩ : x ∈ X} is obviously uniform, and domQ = X by (A). Thus it remains to
prove that Q ∈ Γ . This is the last step in the proof of Lemma 2. We claim that

(G) Q = {⟨x, f ⟩ : f ∈ 2ω ∧ ∃m P(x, ( f )m) ∧
∧ ∀ j

(
f (j) = 1 ⇐⇒ ∃w (B(x, ( f )m, w) ∧ D(x, w, j))

)
} .

Direction ⊆ in (G). Suppose that x ∈ X and f = f [x, wx] . By (C), take y ∈ ∆1
n−1(x, wx) such that

⟨x, y⟩ ∈ P . Note that y ∈ 2ω as P ⊆ ωω × 2ω was assumed in the beginning of the proof. Then by (F)
we have y = ( f )m for some m .

Finally, to check the equivalence ∀ j
(

. . .
)

in (G), let j < ω . Assume that f (j) = 1 (direction =⇒ ).
Take w = wx . Then j ∈ D[x, wx] , that is, D(x, wx, j) holds, whereas B(x, ( f )m, w) holds by (B) in the
presence of P(x, ( f )m) . Now assume that some w witnesses B(x, ( f )m, w)∧ D(x, w, j) (direction ⇐= ).
Then w = wx yet again by (B), hence j ∈ D[x, wx] and f (j) = 1 by construction. This ends the proof
of ∀ j

(
. . .

)
and completes the direction ⊆ in (G).

Direction ⊇ in (G). Let ⟨x, f ⟩ belong the right-hand side of the equality (G); we have to prove that
⟨x, f ⟩ ∈ Q , that is, f = f [x, wx] . As P(x, ( f )m) holds for some m , (B) implies B(x, ( f )m, w) ⇐⇒ w =

wx once again, and hence the second line in (G) takes the form ∀ j
(

f (j) = 1 ⇔ D(x, wx, j)
)

, obviously
meaning that f = f [x, wx] , as required.

The proof of (G) is accomplished. It remains to prove that Q is a set in Γ . We recall that C is
Π1

n−2 , hence W is Π1
n−2 as well by Proposition 4(ii), and then B is ∆1

n−1 still by Proposition 4(ii).
Finally D is Σ1

n−1 . Therefore we can rewrite the subformula ∀ j
(
· · · ⇐⇒ . . .

)
in (G) as ∀ j

(
· · · =⇒

. . .
)
∧ ∀ j

(
· · · ⇐= . . .

)
, which yields the conjunction of a Σ1

n−1 formula and a Π1
n−1 formula. Finally

P is Π1
n−1 . Thus Q can be represented in the form (*) Q =

⋃
m<ω(Sm ∩ Tm) , where Sm ∈ Σ1

n−1 ,
Tm ∈ Π1

n−1 , ∀m .
To get a representation in Γ , we let S−

m = ωω ∖ Sm and T−
m = ωω ∖ Tm . Then (*) implies

Q =
⋃

m<ω

(
(Sm ∩ Tm) ∩ [

⋂
j<m(S

−
j ∪ (Sj ∩ T−

j ))]
)

, where all unions in the right-hand side are
pairwise-disjoint unions. This Q ∈ Γ , as required.

Proof of Theorem 1(a), case (I). Immediately from Lemma 1 and Lemma 2.

4. Proof of the uniform covering theorem

Here we prove Theorem 1(b). An essential part of the arguments will be common for both case (I)
and case (II) of the theorem.

Note that unlike Theorem 1(a), no classical result is known to immediately imply the result for
n = 2. Our plan is to first define a Σ1

n set U ⊆ (ωω)2 with the required properties, and then convert it
to a Π1

n−1 set using claim (a) already proved.
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Thus we fix n ≥ 2 and assume that either (I) n = 2 or (II) V = L holds.
Let ϑ(k, x, j) be a Σ1

n formula universal in the sense that for any Σ1
n formula ψ(x, j) there is

k < ω such that ϑ(k, x, j) ⇐⇒ ψ(x, j) for all x ∈ ωω and j < ω .
Let fkx ∈ 2ω be the indicator function (see Definition 2) of the set ukx = { j : ϑ(k, x, j)} .

Definition 3. We define U = U[n] := {⟨x, fkx⟩ : x ∈ ωω ∧ k < ω} .

Thus, by the universality of ϑ , we have

(∗) U = {⟨x, f ⟩ ∈ ωω × 2ω : f = χu is the indicator function of a set u ∈ Σ1
n(x), u ⊆ ω}.

Lemma 3. U ⊆ ωω × 2ω is a set with countable cross-sections, not covered by a union of countably many
uniform Σ1

n sets.

Proof. Suppose towards the contrary that U ⊆ ⋃
m Um , where all sets Um ⊆ ωω × 2ω are Σ1

n and
uniform. There is x ∈ ωω such that every Um belongs to Σ1

n(x) . Then every non-empty cross-section
Umx = { f : ⟨x, f ⟩ ∈ Um} is a Σ1

n(x) singleton whose only element is ∆1
n . Thus the whole cross-section

Ux = { f : ⟨x, f ⟩ ∈ U} contains only ∆1
n elements. Thic contradicts (∗) above because there exist sets

u ⊆ ω in Σ1
n(x)∖∆1

n(x) .

Lemma 4. U is a Σ1
n set.

Proof. The argument is somewhat different in the two cases considered.

Case (I): V = L. First of all, if φ is an analytic formula and z ∈ ωω then let φz be the formal
relativization of φ to {y ∈ ωω : y <L z} , so that all quantifiers ∃ y , ∀ y over ωω are replaced by resp.
∃ y <L z , ∀ y <L z .

Let f z
kx ∈ 2ω be the indicator function of { j : ϑz(k, x, j)} . Proposition 4(ii) implies:

(1) The set {⟨k, x, z, f z
kx⟩ : k < ω ∧ x, z ∈ ωω} is ∆1

2 .

The Σ1
n formula ϑ(k, x, j) has the form ∃ y ψ(y, k, x, j) , where ψ is a Π1

n−1 formula.
The following set E belongs to ∆1

n by (1), the choice of ψ and Proposition 4(ii):

E = {z ∈ ωω : ∀ k, j ∀ x, y <L z (ψz(y, k, x, j) ⇐⇒ ψ(y, k, x, j))}.

Corollary 2(iii) implies the next claim:

(2) If k < ω, z ∈ E, x <L z , and ∆1
n(x) ∩ ωω ⊆ Cz = {c ∈ ωω : c <L z} then f z

kx = fkx.

In addition, we have the following claim by standard model-theoretic arguments:

(3) If C ⊆ ωω is countable then there is z ∈ ωω with C ⊆ Cz = {c ∈ ωω : c <L z} .

We now prove that

(4) U = {⟨x, f ⟩ : ∃ k ∃ z (z ∈ E ∧ x <L z ∧ f <L z ∧ f = f z
kx)} .

Indeed suppose that ⟨x, f ⟩ ∈ U , so that f = fkx for some k . Let, by (3), z ∈ ωω satisfy
{ f } ∪ (∆1

n(x) ∩ ωω) ⊆ Cz . Then x, f <L z , and hence we have f = f z
kx by (2).

Conversely suppose that x, f <L z ∈ E and f = f z
kx . We have two cases, A and B:

A: ∆1
n(x) ∩ ωω ⊆ Cz . Then f z

kx = fkx by (2), as above, hence f = fkx and ⟨x, f ⟩ ∈ U .

B: there is a ∆1
n(x) real y satisfying z ⩽L y . Then f , x <L y , hence f ∈ ∆1

2(y) by Corollary 2(iv).
We conclude that f ∈ ∆1

n(x) by the choice of y . Now ⟨x, f ⟩ ∈ U easily follows from (∗). This ends
the proof of (4).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 October 2024 doi:10.20944/preprints202410.1379.v1

https://doi.org/10.20944/preprints202410.1379.v1


8 of 11

We finally note that the right-hand side of (4) is definitely a Σ1
n set because E is ∆1

n , <L is Σ1
2 ,

and the equality f = f z
kx is ∆1

2 by (1). Thus U is Σ1
n , and we are done with case V = L in Lemma 4.

Case (II): n = 2 , sketch. As the axiom of constructibility is not assumed any more in this case,
we are going to use the technique of relative constructibility. For any real a ∈ ωω (and in principle for
any set x , but we don’t need such a generality here) the class L[a] is defined similarly to L itself, see
[15, Chapter 12]. All major consequences of V = L are preserved mutatis mutandis under the relative
constructibility V = L[a] . In particular:

1◦. There exists a Σ1
2 formula ζ(a, x) such that for all a, x ∈ ωω : x ∈ L[a] ⇐⇒ ζ(a, x) .

2◦. For any a ∈ ωω there is a well-ordering <L[a] of ωω ∩ L[a] of order type ω
L[a]
1 such that the

ternary relation x, y ∈ L[a] ∧ x <L[a] y on (ωω)3 is Σ1
2 .

3◦. If a, b ∈ ωω , V = L[a] holds, m ≥ 2, K is a class of the form Σ1
m(a, b) , b ∈ ωω, and P ⊆ (ωω)3

is a set in K , then similar to Proposition 4(ii) the sets

U = {⟨y, z⟩ : ∀ x <L y P(x, y, z)} and V = {⟨y, z⟩ : ∃ x <L y P(x, y, z)}

are still sets in K . The same for K = Π1
m(a, b) and ∆1

m(a, b) .

After these remarks, let’s prove that the set U = U[2] (Definition 3) belongs to Σ1
2 without any

reference to the axiom of constructibility or anything beyond ZFC .
Indeed the proof of Lemma 4 in Case (I): V = L and with n = 2 can be compressed to the

existence of a Σ1
2 formula u(x, f ) such that U = {⟨x, f ⟩ : u(x, f )} under V = L . The relativized

version, essentially with nearly the same proof based on 2◦ and 3◦, yields a Σ1
2 formula u′(a, x, f ) such

that:

4◦. If a ∈ ωω and V = L[a] then U = {⟨x, f ⟩ : u′(a, x, f )} .

Now let u′′(x, f ) be the formula: x, f ∈ ωω ∧ f ∈ L[x] ∧ u′(x, x, f ) . Clearly u′′ is Σ1
2 by 1◦

and the choice of u′ . Thus it suffices to prove that U = {⟨x, f ⟩ : u′′(x, f )} (in ZFC with no extra
assumptions).

Suppose that ⟨x, f ⟩ ∈ U . Then f ∈ L[x] by the Shoenfield absoluteness theorem [21]. It follows by
4◦ (with a = x ) that u′(x, x, f ) holds in L[x] , and hence holds in the universe by the same Shoenfield’s
absoluteness. Thus we have u′′(x, f ) as required.

Conversely assume u′′(x, f ) , so that f ∈ L[x] and we have u′(x, x, f ) . Then u′(x, x, f ) holds in
L[x] by Shoenfield, and hence ⟨x, f ⟩ ∈ U still by 4◦ (with a = x ), as required.

Proof of Theorem 1(b). As U is Σ1
n by Lemma 4, Theorem 1(a) implies that there exists a Π1

n−1 set
Q ⊆ (ωω)3 such that U = dom2 Q := {⟨x, y⟩ : ∃ z Q(x, y, s)} (the projection on (ω)2 ), and Q is
uniform in (ω)2 × ω , i. e., Q(x, y, z) ∧ Q(x, y, z′) =⇒ z = z′ . Then each cross-section Qx = {⟨y, z⟩ :
Q(x, y, z)} is at most countable by the choice of U and Q .

We claim that Q is not covered by a countable union of Σ1
n sets uniform in ωω × (ωω)2 . Indeed

assume to the contrary that Q ⊆ ⋃
m Qm , where each Qm is Σ1

n and uniform in ωω × (ωω)2, i. e.,
Q(x, y, z) ∧ Q(x, y′, z′) =⇒ y = y′ ∧ z = z′ . Then each set Um = dom2 Qm is still Σ1

n and is uniform in
ωω × ωω by the uniformity of Qm . On the other hand, U ⊆ ⋃

m Um by construction, which contradicts
Lemma 3.

Finally let P = {⟨x, H(y, z)⟩ : Q(x, y, z)} , where H : (ωω)2 onto−→ ωω is an arbitrary
homeomorphism. Then P witnesses (b) of Theorem 1.

5. Conclusions and problems

In this study, methods of effective descriptive set theory and constructibility theory are employed
to the solution of two old problems of classical descriptive set theory, raised by Luzin in 1930, under
the assumption of the axiom of constructibility V = L (Theorem 1). In addition, we established
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(Corollary 1) an ensuing consistency and independence result. These are new results, and they make a
significant contribution to descriptive set theory in the constructible universe. The technique developed
in this paper may lead to further progress in studies of different aspects of the projective hierarchy
under the axiom of constructibility.

The following problems arise from our study.

Problem 3. Find a “classical” proof of Theorem 1(b) in case n = 2 without any reference to “effective”
descriptive set theory and constructibility.

Problem 4. Instead of the set U = U[n] as in Definition 3, one may want to consider a somewhat
simpler set U′[n] = {⟨x, f ⟩ ∈ (ωω)2 : f is ∆1

n(x)} . Does it prove Theorem 1(b) ?

Problem 5. Find a model of ZFC in which Problem 2 In Section 1 is solved in the positive, at least in
the following form: for a given n ≥ 3, every Π1

n−1 set P ⊆ (ωω)2 with countable cross-sections is
covered by a union of countably many uniform Σ1

n sets.

As for the Problem 5, we hope that it can be solved by the method of definable generic forcing
notions, introduced by Harrington [22,23]. This method has been recently applied for some definability
problems in modern set theory, including the following applications:

− a generic model of ZFC , with a Groszek–Laver pair (see [24]), which consists of two
OD-indistinguishable E0 classes X ̸= Y , whose union X ∪ Y is a Π1

2 set, in [25];
− a generic model of ZFC , in which, for a given n ≥ 3, there is a ∆1

n real coding the collapse of
ωL

1 , whereas all ∆1
n reals are constructible, in [26];

− a generic model of ZFC , which solves the Alfred Tarski [27] ‘definability of definable’ problem,
in [28].

We hope that this study of generic models will eventually contribute to a solution of the following
well-known key problem by S. D. Friedman, see [29, P. 209] and [30, P. 602]: find a model of ZFC , for a
given n , in which all Σ1

n sets of reals are Lebesgue measurable and have the Baire and perfect set properties, and
in the same time there exists a ∆1

n+1 well-ordering of the reals.
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