
Line comments to [H 1909a]:
Die Graduierung nach dem Endverlauf

This paper accomplishes Hausdorff’s cycle of publications devoted to the pro-
blem of graduation (Graduierungsprobleme) of real functions according to their
behaviour at infinity. The first part of the paper (§§ 1 and 2) is an improved
and significantly sharpened review of principal results of [H 1907a, Chapter V],
while the second part has three remarkable additions: the existence of panta-
chies that are, in the same time, ordered non-archimedian fields in the sense
of componentwise operations modulo finitely many positions (§ 3), the theorem
of the existence of (ω1, ω

∗
1)-gaps (§ 4), and thoroughful study of the nature of

“canonical” convergence/divergence gaps in arbitrary Pantachien (§ 5).
In the course of these Line comments, we’ll sometimes refer to our Essay

Gaps in partially ordered sets and related problems (Commentary to [H 1909a]
and [H 1936b] in this Volume), which will be called simply Gaps and partially
ordered sets throughout these Comments.

[1] S. 297 das Verhalten von Funktionen f(x) . . . zu graduieren
Hausdorff begins with an introduction into the Graduierungsproblem, that
is, the problem of calibration or graduation of real functions defined on [0,+∞)
according to their rate of growth, or, more generally, according to their beha-
viour at +∞ . Although the rate of growth comparison of real functions belongs
to basics of analysis, it was only Du Bois-Reymond who considered the noti-
on of growing faster or slower as a certain relation ≺ (see Comment [5]) on real
functions in all their totality in Sur la grandeur relative. . . , Ann. di Mat. (2), 4
(1870), 338–353 and subsequent papers. Du Bois-Reymond’s main technical
achievement was his famous diagonal construction, which, given a countable
family F of real positive increasing functions, allowed to define 1) a function
increasing faster than all functions in F , 2) a function increasing slower than
all functions in F , 3) given a gap in F , a function increasing with precisely
such rate of growth as to fill in the gap.

Somewhat later Du Bois-Reymond interpreted functions growing faster
as those representing stronger (larger) quantitative or ordinal infinities of so-
me sort in Ueber asymptotische Werke. . . , Math. Ann., 8 (1875), 363–414, in
fact following somewhat earlier ideas of J. Thomae, Abriss einer Theorie der
complexen Functionen. . . , Halle, Nebert, 1870.

Hausdorff cites several papers and books related to this problem in
[H 1907a, Chapter V], footnote 1 on page 105. Some references can be added
to his list, most notably J. Hadamard, Sur les caractères de convergence des
séries. . . , Acta Math., 18 (1894), 319–336, G. Hardy, A theorem concerning
the infinite cardinal numbers, Quarterly Journ., 35 (1903), 87–94, and especi-
ally G. Hardy, Orders of Infinity, Cambridge University Press, 1910, with a
good account of earlier studies in this direction and additional references.

As of modern historical surveys in matters of studies of Du Bois-Rey-
mond and his close successors and their influence on Hausdorff, see a sub-
stantial paper of G. Fischer, The infinite and infinitesimal quantities of du



Bois-Reymond and their reception, Arch. Hist. Exact Sci., 24 (1981), 101–
163, very interesting historical comments to early Hausdorff’s papers by
J. M. Plotkin in Hausdorff on ordered sets, translated, edited and commen-
ted by J. M. Plotkin, History of Mathematics, 25, AMS and LMS, 2005, and the
essays Die Hausdorffsche Theorie der ηα-Mengen and ihre Wirkungsgeschichte
and Zum Begriff des topologischen Raumes in Band II.

[2] S. 298 die Anodnung der Funktionen nach gleichem, stärkerem,
schwächerem Unendlich in Betracht zu ziegen
Hausdorff suggests to abandon attempts to project every function conside-
red onto a pre-defined scale of infinities, but rather to compare the degrees of
infinity by means of direct comparison of functions. See our Essay Gaps and
partially ordered sets, Section 14, on this idea.

[3] S. 298 Eine wirkliche Schwierigkeit
Hausdorff observes that different attempts to compare functions in accor-
dance with their rate of growth lead to the existence of incomparable functions.
See our comment to Page 299 for more on that.

[4] S. 298 die Forderung stellen, daß. . .
Hausdorff suggests to consider only those graduation orderings < which
satisfy f < g =⇒ f <fro g , where <fro is the strict final Rangordnung (see
Comment [5]). But this turns out to be a too restrictive condition since the
orderings C and <∗ (see below) fail to satisfy it.

[5] S. 298 bisher vorgeschlagenen Graduierungen
Hausdorff obviously prefers to view a partial ordering as a combination of
a strict partial order < (and hence > as well) and an associated equivalence
relation, which he tends to denote with the equality symbol =. Nowadays it
is more in custom to consider non-strict partial quasi-orders (pqos) (formally,
transitive reflexive relations) ≤ , each of which has an associated equivalence
relation x ≡ y if both x ≤ y and y ≤ x , and an associated strict order
x < y if x ≤ y but y 6≤ x . (And x ≡ y does not necessarily imply the exact
mathematical equality x = y .)

The graduation ordering based on the eventual size of the difference f(x)−
g(x) is the final Rangordnung . We denote it by 6fro (non-strict form) and <fro

(strict form) in these Comments, with ≡fro being the associated equivalence
relation. Thus f <fro g iff there is x0 such that f(x) < g(x) for all x ≥ x0 ,
f ≡fro g iff there is x0 such that f(x) = g(x) for all x ≥ x0 , and f 6fro g iff
f <fro g or f ≡fro g . The index fro stands for “final Rangordnung”.

The graduation based on the limit limx→∞
f(x)
g(x) is the original rate of grow-

th ordering by Du Bois-Reymond, see, e. g., his Sur la grandeur relative. . . ,
Ann. di Mat. (2), 4 (1870), 338–353, or Ueber asymptotische Werke. . . , Math.
Ann., 8 (1875), 363–414. We denote it by 4 (non-strict form) and ≺ (strict
form) in these Comments, with ∼ being the associated equivalence relation.



The graduation on the base of lim supx→∞
f(x)
g(x) was discussed in [H 1907a],

p. 106. We denote it by E (non-strict form) and C (strict form) in our Gaps
and partially ordered sets, with ./ being the associated equivalence relation. 1

Elsewhere in [H 1936b] Hausdorff studies the eventual domination orde-
ring (for infinite sequences): f 6∗ g iff there is x0 such that f(x) ≤ g(x) for all
x ≥ x0 , with the associated equivalence relation ≡∗ and the non-strict ordering
<∗ defined by general rules.

[6] S. 299 Es existiert weder die ”Infinitäre Pantachie“ von P. du Bois-Reymond,
in der jedes functionale Unendlich seinen bestimmten Platz einnimmt. . .
Du Bois-Reymond was not quite clear in his description of the idea of “in-
finitary pantachy” 2 in his book Die allgemeine Funktionentheorie, Tübingen,
1882, pp. 282–284. That is, on the one hand, he puts all ∼-equivalence classes
into his “infinitary pantachy”, but on the other hand he seems to view the re-
sult as a linearly ordered collection, in the ignorance of the (obvious for us but
not for him?) existence of incomparable functions. Nevertheless the meaning of
Hausdorff’s negative claim seems to be that there is no natural method of
graduation of functions defined on [0,+∞) (or infinite sequences of reals) in
accordance with their rate of growth, so that any two functions (or sequences)
are comparable, unless the method is restricted to very particular domains,
like e. g. the domain of all polynomial-exponential-logarithmic functions, as in
a paper by O. Stolz, Zur Geometrie der Alten, insbesondere über ein Axiom
des Archimedes, Mathematische Annalen, 22 (1883), 504–519.

The mathematical content of this negative claim deserves some comments.
First of all, adopting Hausdorff’s restrictive condition (that for f < g it is
necessary that f(x) > g(x) for all sufficiently large x , see Comment [4]), one
proves the existence of incomparable elements by elementary counterexamples
outlined by Hausdorff on p. 298. But the problem becomes less trivial in
the absense of the restrictive condition. See more on this in Gaps and partially
ordered sets, Section 14.

[7] S. 300 eine Pantachie nennen
Thus, in modern terminology, Hausdorff’s pantachy is a maximal chain (a
subset linearly ordered in the sense of the strict order) in a given partially
quasi-ordered set. The logic of study leads Hausdorff to linearly ordered
subdomains of the partially ordered general domain (of functions or sequences),
including maximal ones, i. e., the pantachies.

And here we encounter interesting questions that go back to the universal
graduation problem. Suppose that L ⊆ RN is a pantachy in 〈RN ; 6fro〉 , that
is, a maximal <fro-linearly ordered set. Say that L is a potential graduation

1 Note that in our Essay Gaps and partially ordered sets relations 4, ≺, ∼ , as well as
those based on lim sup , are considered in their differential rather than fractional forms. But
this does not matter much at least as long as functions with positive values are considered,
because the logarithm transforms the fractional form to the differential one.

2 Die Bezeichnung soll an das griechische Wort πανταχη̃ (an allen Stellen, allerorten)
erinnern. – Copied from Band II, p. 650.”



scale, if there is a map π : RN → L such that

a ≡fro b=⇒ π(a) = π(b) , a <fro b=⇒ π(a) <fro π(b) ,

for a, b ∈ RN , and π is the identity on L . In this case, the induced relation
a ≤ b iff π(a) 6fro π(b) is obviously an lqo on RN that can be considered
as a universal graduation method based on L . Then, is any/every pantachy in
〈RN ; 6fro〉 a potential graduation scale? We don’t know an answer to such a
form of the universal graduation problem. It can be expected that CH still
solves it in the positive.

[8] S. 300 Der Beweis, daß solche Pantachien existieren
The existence proof that follows, implicitly introduces what is now called the
maximal principle.

[9] S. 304 Die Rangordnung der Zahlenfolgen
Obviously any ordering of functions f : [0,+∞)→ R of real variable has a dis-
crete analog for infinite sequences {an}n∈N of reals an. The natural question,
whether the properties of the “continual” (that is, for functions, not necessarily
continuous) and the discrete structures are the same, is easily answered in the
positive in some cases, but is still open, and probably difficult, in other cases,
see our Gaps and partially ordered sets in this Volume, Section 3

[10] S. 304 A < B , A = B , A > B , A ‖ B
Hausdorff’s idea to use = for the final equality is in clear contradiction with
the modern understanding of equality in mathematics (equal things is one and
the same thing). We use ≡fro and <fro (see Comment [5]) to denote the final
equality and the strict final ordering.

[11] S. 304 Bereich
Hausdorff defines a Bereich to be any <fro-chain P ⊆ RN, that is, any two
a 6= b ∈ P are <fro-comparable: a <fro b or b <fro a. It follows that any
≡fro-class of elements of RN contains at most one element of P . Recall that a
pantachy is just a maximal <fro-chain.

[12] S. 304 Fundamentalsatz I
Theorem I (= Theorems (C) and (D) in [H 1907a,V]) goes back to the original
Du Bois-Reymond’s theorem that any countable set of real functions has a
strict upper bound in the sense of the Du Bois-Reymond ordering ≺ , see,
e. g., pp. 363–365 in Ueber asymptotische Werke. . . , Math. Ann., 8 (1875), 363–
414. 3 See more on the history of related notions and results in the surveys by
G. Fischer and G. Hardy, mentioned in Anmerkung [1], and U. Felgner’s
essay in Band II. The proofs for typical graduation orderings like ≺, C, <fro,

3 Es ist also zu beweisen, dass, wenn eine unbegrenzte Schaar von fort und fort langsamer zunehmen-
den Functionen: λ1(x), λ2(x), λ1(x), . . . vorliegt, die für jedes r die Bedingung lim

λr(x)
λr+1(x)

= ∞
erfüllen, man immer eine Function ψ(x) angeben kann, die mit x unendlich wird, aber langsamer als
irgend eine Function jenen Schaar. — S. 365 of the paper cited.



<∗ are slightly different in details, yet follow one and the same Du Bois-Rey-
mond’s idea, historically the first exposition of the diagonal argument usually
attributed to Cantor (see, e. g., Felgner in Band II, S. 650). 4

[13] S. 305 Satz II: it claims, in modern terms, that any pantachy is an
η1-order. Generally, an ηα-order is a linearly ordered set L such that for any
pair of subsets A,B ⊆ L of cardinality < ℵα, if A < B (i. e., a < b for all
a ∈ A , b ∈ B ) then there is an element c with A < c < B . See U. Felgner’s
essay Die Hausdorffsche Theorie der ηα-Mengen and ihre Wirkungsgeschichte
in Band II regarding Hausdorff’s theory of order types ην and their modern
applications.

[14] S. 306 Wenn die wohlgeordneten Bereiche höchstens von der zweiten Mäch-
tigkeit sind, so ist jede Pantachie mit Ω konfinal und mit Ω koinitial. . .
In context of the paper, the assumption means that any set of countable se-
quences, which is well-ordered by <fro , has length < ω2 . This is a consequence
of the continuum-hypothesis CH (c = ℵ1 ), or course. Ω is ω1 , as usual. Ha-
usdorff cites some results of his earlier papers.

[15] S. 306 Wenn sie dann keine ΩΩ∗-Lücken enthält
Hausdorff refers to a result in his earlier paper [H 1907a], Satz III on S. 128,
accordingly to which if a linear order S of type η1 (that is, H ), does not
contain (ω1, ω

∗
1)-gaps then S has the cardinality ≥ 2ℵ1 . Following Solovay

(see Footnote 5), we render the proof in modern terms is as follows. Let W =
2ω1 , the set of all maps w : ω1 → 2 (or all dyadic sequences of length ω1 ).
Order W lexicographically. Let W0 consist of all w ∈ W such that the set
|w| = {ξ < ω1 : w(ξ) = 1} is at most countable. One easily defines an order
preserving map Φ : W0 → S, using the fact that S, as a set of order type η1 ,
is uncountably cofinal, uncountably coinitial, and has no (ω, ω∗)-gaps.

Now consider the set W1 of all w ∈ W such that both the set |w| and its
complement ω1 r |w| are uncountable. Clearly any w ∈W1 defines a (ω1, ω

∗
1)-

gap in W0, and between two different elements of W1 there is an element
of W0. Since S has no (ω1, ω

∗
1)-gaps, there is an order preserving extension

Ψ : W0 ∪W1 → S of Φ. This yields the result since obviously cardW1 = 2ℵ1 .
In particular, if S is a pantachy (maximal chain) in the partial ordering

〈RN ; 6fro〉, and S contains no (ω1, ω
∗
1)-gaps 5, then S has an η1-type, and

4Recall that Cantor introduced his method, in the proof that no set is equinumerous
with its power set, essentially later than Du Bois-Reymond did in his studies of the rate of
growth. In fact the common part of both arguments (with Cantor’s one in the form that no
countable sequence of sets Xn ⊆ N contains all subsets of N) can be described as follows:
given an infinite sequence {Xn}n∈N we define a function f on N so that any term f(n)
depends only on X0, . . . , Xn. In the Du Bois-Reymond case, Xn = fn : N→ R (we consider,
for the sake of brevity, infinite sequences instead of functions), say, f(k) = k supn≤k fn(k)
for all k, in Cantor’s case f(k) = 1 iff k 6∈ Xk.

5 In this particular, but fully sufficient case, the proof of Satz III of [H 1907a] is given in
R. Solovay, Introductory note to Gödel *1970a, *1970b, *1970c, in: K. Gödel, Collected
works, Vol. III, Clarendon, NY, 1995, 405–420, where there is no any related reference to Ha-



hence cardS ≥ 2ℵ1 . But on the other hand S ⊆ RN , so that cardP ≤ 2ℵ0 . It
follows that the existence of such a pantachy S implies the equality 2ℵ0 = 2ℵ1 .

Hausdorff proved in [H 1909a] the existence of pantachies containing
(ω1, ω

∗
1)-gaps. In fact this is an easy consequence of his famous theorem on

the existence of such gaps in the whole structure 〈RN ; <fro〉 established in
[H 1909a]. As for those containing no (ω1, ω

∗
1)-gaps, the problem of their exi-

stence 6 remains open, and in fact it seems to be the oldest open problem in
set theory explicitly stated in a suitable mathematical publication !

Let us call gapless any pantachy that does not have a (ω1, ω
∗
1)-gap. If a

gapless pantachy exists then 2ℵ0 = 2ℵ1 (see above), therefore, the continuum-
hypothesis fails ! Remarkably, Gödel 7 used this fact in his attempt to prove
2ℵ0 = ℵ2 from a plausible list of axioms. In fact Gödel’s interest to Haus-
dorff’s results on pantachies and their applications to the continuum problem
goes back to the the first part of 1960s. See more details related to this story,
including Gödel’s exchange with Cohen and Ulam in 1964, in A.Kanamori,
Gödel and set theory , Bull. Symb. Log., 13 (2007), 153–188.

It can hardly be expected that the theory ZFC plus 2ℵ0 = 2ℵ1 outright
proves or refutes the existence of gapless pantachies. In such a case, the practice
of the forcing era in set theory leads to consistency questions. One can ask:

(A) is the existence of gapless pantachies consistent with ZFC + 2ℵ0 = 2ℵ1 ?

(B) is the absence of gapless pantachies consistent with ZFC + 2ℵ0 = 2ℵ1 ?

Both questions seem to remain unanswered. A somewhat stronger form of (A)
(with the additional requirement that the pantachy does not contain strictly
increasing or decreasing sequences of cardinality ≤ ℵ2 ) is in the list of (two)
open questions in Solovay’s note cited in Footnote 5. Solovay observes that
the major problem in the construction of a model satisfying (A) is to avoid
Hausdorff’s (ω1, ω

∗
1)-gaps.

[16] S. 306 Typus H :
The type H is η1 in the modern notation, see Comment [13]. Hausdorff notes
that any two η1-orders of cardinality ℵ1 are order isomorphic. The proof, by an
argument now called the back-and-forth method , was given in [H 1907a], p. 127,
Satz II. In particular, under the assumption of CH, there is a unique (modulo
order isomorphism) H-set, thus H = η1 is the order type of any pantachy in
this case.

usdorff, or any other relevant reference. Section 4 in Solovay’s “Note” is entitled Axioms
3 and 4 entail Luzin’s hypothesis, where Axioms 3 and 4 should be understood together as
the existence of a pantachy in 〈RN ; 6fro〉 containing neither (ω1, ω∗1)-gaps (Axiom 4) nor
ascending or descending sequences of cardinality ≥ ℵ2 (Axiom 3), while Luzin’s hypothesis
is 2ℵ0 = 2ℵ1 . In fact Axiom 3 is not really involved in the argument. However if a pantachy
S satisfies both Axioms 3 and 4 then all gaps in S (except for limits) are (ω1, ω∗)-gaps and
(ω, ω∗1)-gaps, a remarkable uniformity similar to the Dedekind completeness of the reals.

6 Explicitly posed and discussed by Hausdorff in an earlier paper [H 1907a, S. 151].
7 K. Gödel, Some considerations leading to the probable conclusion that the true power of

the continuum is ℵ2 , in: K. Gödel, Collected works, Vol. III, Clarendon, NY, 1995, 420–422.



[17] S. 307 so folgt aus a S b auch A S B
In modern terms, this means that the map, say ϕ , which sends any functi-
on f : [0,+∞) → R to the sequence {f(n)}n∈N , is a homomorphism of the
{<fro,≡fro}-structure of functions into 〈RN ; 6fro〉 , that is,

f <fro g =⇒ ϕ(f) <fro ϕ(g) and f ≡fro g =⇒ ϕ(f) ≡fro ϕ(g) .

The inverse implications obviously fail, e. g., for f(x) = sinπx and g(x) ≡ 0.
This means that ϕ is not a reduction.

It is an interesting problem to find a true reduction in this case, i. e., a map
ϕ from functions to sequences such that

f 6fro g⇐⇒ ϕ(f) 6fro ϕ(g)

holds for all functions considered, say for all continuous f, g : [0,+∞) → R ,
to begin with. Such a reduction from continuous functions to RN does exist in
the weaker sence of the associated equivalence relation, that is, f ≡fro g⇐⇒
ϕ(f) ≡fro ϕ(g) holds for all f, g ∈ C[0,+∞), see Section 13 in Gaps and
partially ordered sets. But as far as the rate of growth order 4 is concerned,
we don’t know of any reduction even in the weaker sense of the associated
equivalence relation ∼ .

On the other hand, a reduction from sequences to continuous functions can
be defined by just a simple interpolation.

[18] S. 307 A ≺ B , A ∼ B , A � B
These relations are just the restrictions of the Du Bois-Reymond rate of grow-
th ordering (see Comment [5]) to the domain RN of all infinite real sequences.

[19] S. 308 eingeschränkter Gebiete von Zahlenfolgen
Hausdorff notes that Fundamentalsatz I (see Comment [12]) remains true
within several important subdomains of the whole domain RN of countable
real sequences, including e. g. the domain of all sequences that converge to a
specific limit a (including a = +∞ and a = +∞), but fails for the domain of
convergent all sequences since this domain is countably cofinal.

[20] S. 309 Satz III: the converse is not true !

[21] S. 311 rationaler Bereich, rationale Pantachie
Hausdorff’s definitions on S. 311 amount to the following. Suppose that
R ⊆ RN is a Bereich (for instance, a pantachy, see Comment [11]). Then for
any a, b ∈ R there is at most one c ∈ R such that c(n) = a(n) + b(n) for
all but finite n. (Because a Bereich has at most one element in common with
each ≡fro-class). Such an element c — if it exists in R — is denoted by a+ b .
(Note that a+ b depends on R , too, not only on a, b .) Similarly, Hausdorff
defines a− b and ab , and also a

b provided b(n) 6= 0 for all but finite n. All of
them are elements of R if exist.

If each constant sequence x̄ (x ∈ R) represents its ≡fro-class in R then
every b ∈ R except for the constant 0 is eventually 6= 0, which is compatible



with a field structure. Thus, a Bereich or a pantachy is rational if it is a field
in the sense of the abovedefined operations.

One may ask whether there exist pantachies P ⊆ RN that are fields in
the sense of straightforward componentwise operations, that is, for instance,
a+ b = c iff c(n) = a(n) + b(n) for all n . This easily answers in the negative.
Indeed, otherwise by a−a the constant 0 belongs to P and is the null element
of P as a field. It follows that any other c ∈ P satisfies c(k) 6= 0 for all k .
Then we have a(k) 6= b(k) for all k and a 6= b ∈ P, and hence for any r ∈ R
and k there is at most one a = ark ∈ P with ark(k) = r. Now define b ∈ RN

so that b(n) 6= ark(n) for all k < n — then a ≡fro b is impossible for any
a ∈ P , contrary to the maximality of P .

[22] S. 312 Unser Ziel ist, eine rationale Pantachie herzustellen
Hausdorff defines a pantachy that is a real closed field (an algebraic pantachy
in his terminology). The principal tool is the same as in the construction of a
pantachy with no algebraic properties, but the step of adding an element to
a non-maximal rational or algebraic Bereich is now much more difficult (Satz
VIII on S. 319).

[23] S. 319 direkte und inverse Ähnlichkeit aller Pantachienstrecken
By simple rational transformations, every rational pantachy is order isomorphic
to any its open interval (including semiinfinite intervals), also in the sense of the
inverse order. Hausdorff studied this type of homogeneous pantachies else-
where in [H 1907a] and some other earlier papers. The problem of the existence
of non-homogeneous pantachies was discussed in [H 1907a, S. 152].

CH easily implies that all pantachies, and all open intervals of pantachies,
are order-isomorphic, therefore all pantachies are homogeneous.

On the other hand, the existence of a non-homogeneneous pantachy is con-
sistent with ZFC (by necessity, with the negation of CH). Indeed, it is consi-
stent with ZFC that there exist towers of different cofinalities (even of many
different cofinalities), see P. Dordal, Towers in [ω]ω and ωω , Annals of Pure
and Appl. Logic, 45 (1989), 247-276. Extending a pair of towers of different
cofinalities to pantachies, we get a pair of pantachies of different cofinalities,
hence, non-isomorphic. “Gluing” together such a pair of pantachies, we obtain
a non-homogeneous one.

It is perhaps still an open problem whether the non-existence of non-
homogeneous pantachies is consistent with the negation of CH , for instance,
with 2ℵ0 = 2ℵ1 . Clearly, MA (the Martin axiom) plus not-CH implies that
at least all pantachies have the same cofinality. But we don’t know whether
MA implies that moreover all pantachies are order isomorphic. The straight-
forward back-and-forth construction fails because we may encounter an empty
(ω1, ω

∗
1)-gap in one of the pantachies while the corresponding gap in the other

pantachy will be non-empty.

[24] S. 320 die Existenz einer ΩΩ∗-Lücke beweisen
This is Hausdorff’s famous gap existence theorem in its first established



form: the structure 〈RN ; <fro〉 contains (ω1, ω
∗
1)-gaps. The proof follows on

pp. 320–323.

[25] S. 321 die jeden Abschnitt von A ungleichmäsig übertrifft
Here Hausdorff means any proper cut, that is, different from A itself.

[26] S. 324 folgende Fragen kleiden
Hausdorff shows that all three questions are equivalent to each other. While
the equivalence of 1) and 2) is quite obvious, the equivalence of 1) and 3) is
non-obvious and requires rather elaborate arguments in the remainder of § 4.
This equivalence was re-established much later by F.Rothberger, On some
problems of Hausdorff and of Sierpiński , Fund. Math., 35 (1948), 29–46 for the
suborder 〈NN ; <fro〉 of 〈RN ; <fro〉 . It has to be noted that the strength of Ha-
usdorff’s methods related to this equivalence and the gap existence theorem
is such that they easily accomodate to other similar structures.

[27] S. 327 . . . Konvergente und divergente Reihe
Hausdorff calls a real sequence a ∈ RN convergent in § 5 iff so is the series∑
n a(n), and divergent otherwise. Any sequence a convergent in this sense

satisfies limn→∞ a(n) = 0, but not the other way around.

[28] S. 328 I
Hausdorff demonstrates that Fundamentalsatz I remains true in the domain
RN
+ of all positive real sequences, with certain specifications that reflect the

phenomena of convergece and divergence.

[29] S. 330 üblichen ”Skalen“ von Konvergenz- und Divergenzkriterien
Hausdorff means different countable scales of calibrating sequences with po-
sitive terms (or positive real functions), in which every next sequence (function)
converges (or diverges) slower (or, on the contrary, faster) than the previous
one. In particular several such scales were given by Du Bois-Reymond, see,
e. g., Ueber asymptotische Werke. . . , Math. Ann., 8 (1875), S. 364. It follows
from Hausdorff’s Satz I (S. 328) that no such countable scale can universally
calibrate convergent and divergent series.

[30] S. 330 das Gebiet positiver Funktionen
The functions f(x) considered have to be summable on every finite interval as
otherwise any analogy with sequences fails.

[31] S. 330 “ideale” Elemente (Reichen oder Funktionen)
Fischer in his survey mentioned in Comment [1] gives an account of studies
of the rate of growth, including the controversy related to “ideal functions”,
that is, here, an imaginary function separating convergent series from divergent
(which Hausdorff obviously dismisses).

[32] S. 331 II
Working in the domain RN

+ of sequences with strictly positive (non-0) re-
al terms, Hausdorff considers the “canonical convergence-divergence gap”



P = Pc ∪Pd of an arbitrary pantachy P ⊆ RN
+ , which consists of the initial

segment Pc of all sequences convergent in the sense of Comment [27] and the
final segment Pd of all sequences divergent in the sense of Comment [27]. It
follows from Satz II that there are pantachies P ⊆ RN

+ such that the convergent
part Pc contains a <fro-largest element, that can be interpreted as “the largest
convergent sequence” in the sense of P , and similarly there are pantachies P
such that the divergent part Pd contains a <fro-least element, viewed accor-
dingly as “the least divergent sequence”. This clearly undermines any plan to
use arbitrary pantachies in the role of graduation methods that respect such
an important analytic phenomenon as the partition of series into convergent
and divergent.

[33] S. 334 Ob auch der Fall Pc = 0 hier realisierbar ist
Here Hausdorff most likely assumes that P is a pantachy in the domain of
monotone positive real sequences.

Indeed, it had been already established in [H 1907a], p. 150, that the-
re exists a pantachy P in the structure 〈RN

+ ; <fro〉 (of all positive real se-
quences, not necessarily monotone), such that Pc = ∅ . (That is, P contains
no sequences convergent in the sense of Comment [27].) The construction of
[H 1907a] involves a transformation of infinite sequences called mixing . Haus-
dorff begins in [H 1907a], p. 148, with a pantachy, say D ⊆ RN

+ , which contains
the constant-1 sequence 1 and is homogeneous enough for the sub-pantachies
D< = {a ∈ D : a <fro 1} and D> = {b ∈ D : 1 <fro b} to be order-isomorphic.

Let f : D<
onto−→ D> be any order isomorphism. Then (p. 150) Hausdorff in-

troduces a pantachy, say P , by mixing corresponding elements from D< and
D> . More exactly, if a ∈ D< and b = f(a) ∈ D> then the sequence c , defined
so that c(2n) = a(n) and c(2n + 1) = b(n) for all n , belongs to P , and P
consists of only such sequences c .

That P is a pantachy follows by an agrument on p. 147. For instance,
suppose towards the contrary that c ∈ RN

+ satisfies c <fro P . Then the subse-

quence a(n) = c(2n) of all even terms of c still belongs to RN
+ and obviously

satisfies a <fro D< , which contradicts to the assumption that D is a pantachy.
Moreover P obviously consists of sequences divergent in the sense of Com-

ment [27], so that Pc = ∅ , as required.
But this argument does not seem to work in the subdomain (RN

+)mon of

monotone sequences in RN
+ because the mixture, in the abovedefined sense, of

two monotone sequences is not necessarily monotone. Generally speaking, it is
perhaps still an open problem whether there is a pantachy P in the structure
〈(RN

+)mon ; <fro〉 such that Pc = ∅ .
In fact continuum-hypothesis CH easily yields such a pantachy, and the

key observation in the construction is that

1) if g ∈ ((RN
+)mon)d and f ∈ ((RN

+)mon)c then there is a sequence h ∈
((RN

+)mon)d such that h <fro g but f 6<fro h , and



2) if X ⊆ ((RN
+)mon)d is at most countable then, by the Fundamentalsatz,

there is a sequence g ∈ ((RN
+)mon)d such that g <fro g

′ for all g′ ∈ X .

Now, if X ⊆ ((RN
+)mon)d is a countable pre-pantachy (that is, X is linearly

ordered by <fro ), then choose g by 2) and h by 1), thus X ∪ {h} is still a
pre-pantachy, but no pantachy P satisfying X ∪ {h} ⊆ P can contain f .

What happens under the negation of CH is not known.


