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Abstract—An increasing ω1-sequence of Borel equivalence relations on a Polish space that is
cofinal (in the sense of Borel reducibility) in the family of all Borel equivalence relations is
defined as a development of Rosendal’s construction. It is proved that equivalence relations
from this sequence are generated by explicitly defined Borel ideals.
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INTRODUCTION

In Moscow in August 2004, an international mathematical conference was organized that was
dedicated to the 100th birthday of Lyudmila Vsevolodovna Keldysh. The authors of the present
paper were among the participants of this conference. One of research directions of L.V. Keldysh
in descriptive set theory was the construction of effective examples (i.e., those defined by explicit
formulas) of sets of higher Borel classes. (These examples were also called arithmetic examples
because they were defined by formulas of arithmetic character; see the final work by Keldysh [10]
in this field.)

In modern descriptive set theory, effective examples of Borel sets have become of more complex
character: usually, one deals with an example of a set with additional properties within a fixed
structure. In this relation, of particular interest is the structure of Borel reducibility ≤b of equiv-
alence relations on Polish (i.e., complete separable metric) spaces. Recall that the relation E ≤b F
(where E and F are equivalences on Polish spaces X and Y , respectively) implies the existence of
the injection of E-classes into F-classes that admits a Borel lifting X → Y (exact definitions are
given below).

The family of Borel and then analytic equivalence relations, together with the Borel reducibility
≤b, has been the object of intensive study in descriptive set theory since the early 1990s. The
interest in this problem is motivated by its close relation to many classification problems in which
the equivalence relation is defined as an isomorphism between two mathematical structures in a
fixed class of structures (see, for example, Hjorth’s monograph [5]).

The structure of Borel reducibility starts from smooth Borel equivalence relations defined by the
condition E ≤b DR, where DX is the equality relation on X, which is considered as an equivalence
relation. The classification of these equivalence relations (in the sense of ≤b) is based directly
on the number of equivalence classes: a finite number, a countable number ℵ0, or a continuum
c = 2ℵ0 . The Vitali equivalence relation on the real axis R (i.e., two numbers are equivalent if their
difference is a rational number) is ≤b-minimal among all nonsmooth Borel equivalence relations
according to the theorem by Harrington, Kechris, and Louveau [4] (see also the survey [7]). Further
investigations (see, for example, the survey written by Kechris [12]) have shown that there exist
mathematically meaningful Borel equivalence relations E1, E2, and E3 that are ≤b-minimal over
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the Vitali equivalence and ≤b-incomparable with each other. Wide classes of Borel and analytic
equivalence relations have been considered, for example, countable equivalence relations (i.e., such
that all equivalence classes are countable [1]), c0-equalities [2], and many others. The general
theorem by Louveau and Velickovic [14] shows that the structure of Borel equivalence relations (as
a partially ordered set with the relation ≤b) is quite complicated.

There is a maximal element, called a complete (or universal) analytic equivalence relation, at the
uppermost level in the structure of Borel reducibility of analytic equivalence relations; it can easily
be determined starting from the universal analytic set (see Example 6 below). Complete analytic
equivalence relations are also known in certain classes of special equivalence relations, especially
those induced by the actions of topological groups on Polish spaces.

On the other hand, complete Borel equivalence relations (i.e., those that are ≤b-maximal among
all Borel equivalence relations) do not exist (see, for example, [3, 6]). Moreover, there exist strictly
≤b-increasing ≤b-cofinal ω1-sequences of Borel equivalence relations: indeed, any complete analytic
equivalence relation naturally generates such a sequence on the basis of its decreasing sequence of
upper Borel approximations (see Theorem 16 in Section 6).

The goal of the present paper is to construct a cofinal sequence of this kind that has a number
of additional properties according to the following theorem.

Theorem 1. There exists an ω1-sequence of Borel equivalence relations Eν , ν < ω1, in the
space 2ω with the following properties : this sequence is ≤b-cofinal in the family of all Borel equiva-
lence relations, the relations Eν have mathematically meaningful definitions, and, moreover,

(i) the relation Eν belongs to the Borel class Σ0
1+2ν+1;

(ii) the relation Eν is generated by an ideal Iν ⊆ P(N) of the class Σ0
ω+2ν+1 in the sense that, for

any x, y ∈ D, the relation x Eν y is equivalent to the fact that the set {n ∈ N : x(n) �= y(n)}
belongs to Iν , and the ideals Iν also have mathematically meaningful definitions.

Several remarks concerning Theorem 1. The index ν enters the definition of the relations Eν via
the restriction on the ranks of certain trees. Namely, each Eν is actually defined as the (ων + 2)th
canonical upper Borel approximation Eων+2

nt of the same complete analytic equivalence relation Ent

(the equivalence relation of normal trees), which was earlier defined in [13] and then investigated
in [17].

A complete analytic equivalence relation can be defined by an elementary construction that
employs a universal analytic set (Example 6). This construction is inapplicable to the Borel classes
Σ0

ξ and Π0
ξ (although they also contain universal sets). Nevertheless, complete relations are known

for certain initial Borel classes, for example, for the class of σ-compact sets (a part of the class
Σ0

2 = Fσ; see, for example, [17]). Relations that are “complete” for higher Borel classes in a certain
weaker sense (namely, completeness with respect to the equivalence relations induced by continuous
actions of the group of all permutations of N) were constructed in [6]. Unfortunately, for the present,
our methods do not allow the construction of complete equivalence relations for Borel classes.

The paper is organized as follows. The first three sections contain auxiliary material, which is
mainly related to different types of trees on countable sets and their transformations, including the
concept of normal tree in Section 1 and one key transformation in Section 3. Then, in Section 4, we
introduce an equivalence relation Ent for normal trees from [13, 17] and, in Section 5, introduce an
ω1-sequence of its upper Borel approximations Eξ

nt. We establish that all Eξ
nt are Borel equivalence

relations and estimate their Borel class. It turns out that the sequence of equivalence relations Eξ
nt

is ⊆-decreasing,
⋂

ξ<ω1
Eξ
nt coincides with Ent, and this intersection has an important canonical

intersection property (Section 6), which is known from classical works on constituents. Then, in
Section 7, we show that the approximating Borel equivalence relations Eξ

nt are related to certain
Borel ideals in the same way as Ent itself is related to a certain analytic ideal according to a
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result of [17]. This actually completes the proof of Theorem 1, because it only remains to set
Eν = Eων+2

nt .
Then, in Section 8, we consider a problem of the completeness of approximating equivalence

relations in appropriate Borel classes.
In the final Section 9, we discuss certain open questions.
For the reader’s convenience, the material is presented so that, in addition to the proof of

Theorem 1, we give the proofs of a number of related results from [13, 17], because they are obtained
in fact from the same technical lemmas. The approach of the present paper is a generalization of
the corresponding points in [13, 17] in the sense that, instead of the property of ill-foundedness
of certain trees, we consider the property “to have rank ≥ ξ,” where ξ is a given countable ordinal
(which involves the ill-foundedness by definition).

1. NOTATIONS

We will use conventional set-theoretic notations, including notations related to the Borel pro-
jective classes, as well as other concepts of descriptive set theory (see [11] or [8]). In particular,
“analytic” means “belonging to the class Σ1

1.”
If P is an n-ary relation, then P (x1, . . . , xn) denotes 〈x1, . . . , xn〉 ∈ P .
If X is a countable set, then 2X is considered as a topological space with the product topology;

this is a Polish space (a separable space metrizable by a complete metric) that is homeomorphic to
the Cantor discontinuum. The degree set P(X) = {Y : Y ⊆ X} is also considered as a Polish space
that is isometric to 2X by a map that assigns to each Y ⊆ X its characteristic function χY ∈ 2X .

The symmetric difference is denoted by X ∆ Y = (X \ Y ) ∪ (Y \ X).

Equivalence relations. As regards the Borel reducibility of equivalence relations, the expres-
sion E ≤b F implies that E and F are equivalence relations on certain Polish spaces X and Y and
that there exists a Borel map ϑ : X → Y such that x E x′ ⇔ ϑ(x) F ϑ(x′) for any x, x′ ∈ X. Such a
map ϑ, called a (Borel) reduction of E to F, obviously induces an injection of E-classes into F-classes
that is defined as [x]E �→ [ϑ(x)]F.

The associated equivalence is denoted by ∼b, i.e., E ∼b F if E ≤b F and F ≤b E. Finally, <b is
the strict reducibility relation, i.e., E <b F when E ≤b F but not F ≤b E.

Ideals. Any ideal I on the set X (I ⊆ P(X), I is closed with respect to finite unions and is
⊆-closed downward) generates an equivalence relation EI on P(X) so that, for any Y,Z ⊆ X, the
relations Y EI Z and Y ∆ Z ∈ I are equivalent. Using the above-mentioned identification, one can
also define EI as an equivalence relation on 2X such that, for any a, b ∈ 2X , the relations aEI b and
{x ∈ X : a(x) �= b(x)} ∈ I are equivalent.

Trees. For any set X, denote by Xn the set of all sequences of length n that consist of elements
of X and denote by X<ω =

⋃
n∈N

Xn the set of all finite sequences of elements of X.
Λ is an empty sequence; it belongs to X<ω for any X �= ∅.
lh s is the length of a finite sequence s.
s ⊆ t implies that the sequence t continues s (possibly, t = s).
s∧x is the sequence obtained by adding x as the rightmost element to s.
x∧s is understood similarly: x becomes the leftmost element.
A tree on a set X is an arbitrary subset T ⊆ X<ω that is closed with respect to restrictions; i.e.,

if t ∈ T , s ∈ X<ω, and s ⊆ t, then s ∈ T . Below, we will consider trees on products of sets. Note
that any s ∈ (X1 × . . . × Xn)<ω is formally a sequence of n-tuples 〈x1, . . . , xn〉, where xi ∈ Xi ∀ i;
however, we will identify such s with the n-tuple 〈s1, . . . , sn〉, where all si ∈ Xi

<ω have the same
length as s itself and s(i) = 〈s1(i), . . . , sn(i)〉 for any i.
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Ranks. Let ∞ stand for a formal element that is greater than all the ordinals. It is well-known
that any tree R ⊆ X<ω admits a rank function, a unique map rnkR : R → Ord∪ {∞} that satisfies
the following conditions:

(a) rnkR(r) = −1 for any r /∈ R;
(b) rnkR(r) = supr∧n∈R rnkR(r∧n) for any r ∈ R.2 In particular, rnkR(r) = 0 if and only if

r ∈ R is the ⊆-maximal element of R;
(c) rnkR(r) = ∞ if and only if R has an infinite branch that contains r, i.e., there exists γ ∈ Xω

such that γ �n ∈ R for any n and γ � lh r = r.

In addition, set rnk(∅) = −1 for the empty tree ∅ and rnk(R) = rnkR(Λ) for any nonempty tree R.
(Note that the empty sequence Λ belongs to any tree ∅ �= R ⊆ X<ω.) A tree R is well-founded
(i.e., does not have infinite branches) when rnk(R) < ∞.

Normal trees. If X is an ordered set (for example, X = N) and s, t ∈ X<ω, then s ≤cw t
means that lh s = lh t and s(i) ≤ t(i) for any i < lh s. (This is a componentwise order, which
is different from the lexicographic order.) If a binary operation of addition + is defined on X (for
example, X = N) and s, t ∈ X<ω, lh s = lh t, then s +cw t is a sequence of the same length defined
in terms of the componentwise addition (s +cw t)(i) = s(i) + t(i) for all i. The following definition
introduces a class of trees that plays a key role in the present study.

Definition 2 (see [13, 17]). A tree T on 2 × N is called normal if, for any u ∈ 2<ω and
s, t ∈ N

<ω such that lhu = lh s = lh t and s ≤cw t, we have 〈u, s〉 ∈ T ⇒ 〈u, t〉 ∈ T .
NT is the set of all nonempty normal trees T ⊆ (2 × N)<ω. �
For example, (2 × N)<ω itself is a normal tree.

2. TRANSFORMATIONS OF TREES

Here we consider certain transformations of trees on N. The main goal is to estimate the rank
of transformed trees compared with the rank of initial trees.

Finite union. Consider any pair of trees S, T ⊆ N
<ω. We argue that rnk(S ∪ T ) =

max{rnk(S), rnk(T )}. Indeed, it suffices to prove the equality

(∗) rnkS∪T (r) = max{rnkS(r), rnkT (r)}
for any r ∈ S ∪T . If rnkS∪T (r) = ∞, then the tree S ∪T contains an infinite branch; hence, this is
valid at least for one of the trees S and T , so we also have max{rnkS(r), rnkT (r)} = ∞. It remains
to verify (∗) by means of transfinite induction on rnkS∪T (r) in the case when rnkS∪T (r) < ω1. If
this ordinal is equal to 0, then r is ⊆-maximal in S ∪ T , which obviously implies that rnkS(r) ≤ 0,
rnkT (r) ≤ 0, and at least one of these ranks is exactly 0. If 0 < rnkS∪T (r) < ω1, then, by the
induction hypothesis,

rnkS∪T (r) = sup
n

{
rnkS∪T (r∧n)

}
= sup

n
max

{
rnkS(r∧n), rnkT (r∧n)

}
= max

{
rnkS(r), rnkT (r)

}
,

which was to be proved.

Contraction. Let S ⊆ 2<ω be a tree. Fix a bijection b : N
2 onto−−→ N once and for all. For

any finite sequence s = 〈k0, k1, . . . , kn〉 ∈ 2<ω of length lh s = n + 1 ≥ 2, we define a sequence
ŝ = 〈b(k0, k1), k2, . . . , kn〉 of length n. Denote by Ŝ = {Λ} ∪ {ŝ : s ∈ S ∧ lh s ≥ 2} a contracted tree.
Then, rnk(Ŝ) = rnk(S) − 1, where ∞− 1 = ∞, λ − 1 = λ for any limit ordinal λ or λ = 0, and,
finally, (ξ + 1) − 1 = ξ.

2We define supΩ for Ω ⊆ Ord as the least ordinal that is strictly greater than all ordinals in Ω. We also define
sup Ω = ∞ when Ω contains ∞.
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Countable union. The equality rnk(S ∪T ) = max{rnk(S), rnk(T )} is obviously violated for
countable unions. However, there is another useful operation. For any sequence of trees Tn ⊆ N

<ω,
let

∑∗
n Sn denote the tree T = {Λ}∪{n∧t : t ∈ Tn}. It is clear that rnkT (n∧t) = rnkTn

(t); therefore,
rnk(T ) = supn rnk(Tn).

Countable intersection. Given a sequence of trees Tn ⊆ N
<ω, how should one find a tree T

that satisfies rnk(T ) = infn rnk(Tn)? In principle, one may use an equal-length subproduct of the
usual Cartesian product

∏
n∈N

Tn. Indeed, let T consist of all t ∈
∏

n∈N
Tn such that lh t(n) =

lh t(m) for any m,n ∈ N with componentwise ordering (s � t when s(n) ⊆ t(n) for any n); this
tree T is the required one. However, this construction is not quite useful for our purposes because
the tree T is generally uncountable.

To solve this problem, we define
∏∗

n Tn as the set of all finite sequences of the form t =
〈t0, . . . , tn〉, where tn ∈ Tn and lh tk = n for any k ≤ n. We assume that 〈t0, . . . , tn〉 � 〈s0, . . . , tm〉
when n ≤ m and tk ⊆ sk (in N

<ω) for any k ≤ n. In addition, we introduce Λ in T by setting Λ � t
for any t ∈ T . It is obvious that 〈T ;�〉 is an at most countable tree that is order-isomorphic to a
certain tree in N

<ω.
Lemma 3. Suppose that Tn, n ∈ N, are trees in N

<ω and T =
∏∗

n Tn. Then, rnk(T ) ≤
minn∈N rnk(Tn) + n. Moreover, rnk(T ) = ∞ is equivalent to rnk(Tn) = ∞ for any n.

Proof. Simple arguments involving transfinite induction on rnkT (t) show that rnkT (t) ≤
rnkTn

(tn) whenever n ≤ m and t = 〈t0, . . . , tm〉 ∈ T . Hence, rnk(T ) ≤ n+mint∈Tn, lh t=n rnkTn
(tn);

therefore, rnk(T ) ≤ rnk(Tn) + n. This inequality also holds when rnk(Tn) < n (i.e., Tn does not
contain sequences of length ≥n); then in fact rnk(T ) ≤ n. Thus, in any case, rnk(T ) ≤ rnk(Tn)+n.

Note also that an infinite branch in T can easily be obtained once an infinite branch is contained
in every tree Tn; conversely, the existence of an infinite branch in the tree T immediately implies
the existence of infinite branches in all the trees Tn. �

The additional term +n in the lemma is annoying; however, it is insignificant in the most
important case of application of the lemma in this paper: rnk(T ) ≤ λ whenever λ is a limit ordinal
and rnk(Tn) < λ for any n.

Componentwise sum. Set S +cw T = {s +cw t : s ∈ S ∧ t ∈ T ∧ lh s = lh t} for any trees
S, T ⊆ N

<ω. The following technical lemma will be repeatedly used below. It shows that compo-
nentwise summation of trees behaves to a certain extent like an equal length Cartesian product,
i.e., S × T = {〈s, t〉 : s ∈ S ∧ t ∈ T ∧ lh s = lh t}.

Lemma 4. Let S, T ⊆ N
<ω be arbitrary trees and W = S +cw T .

If s ∈ S, t ∈ T, and lh s = lh t, then rnkW (s +cw t) ≥ min{rnkS(s), rnkT (t)}.
Conversely, for any w ∈ W, there exist sequences s ∈ S and t ∈ T such that lh s = lh t = lhw,

s +cw t = w, and rnkW (w) = min{rnkS(s), rnkT (t)}.
Therefore, rnk(W ) = min{rnk(S), rnk(T )}.
Proof. The first inequality is proved by induction on the ordinal µst = min{rnkS(s), rnkT (t)}.

If µst = 0, then there is nothing to prove. Suppose that µst = µ + 1. By definition, there exist
numbers i, j ∈ N such that s′ = s∧i ∈ S, t′ = t∧j ∈ T , and µs′t′ ≥ µ. Then, rnkW (s′ +cw t′) ≥ µ by
the induction hypothesis and, hence, rnkW (s +cw t) ≥ µ + 1 because s′ +cw t′ = (s +cw t)∧(i + j).
The limit step, i.e., when µst is a limit ordinal < ω1, and the step in the case when one or both
ranks rnkS(s) and rnkT (t) are equal to ∞ (the case of ill-founded trees) are considered similarly.

Let us prove the second assertion by induction on µw = rnkW (w).
If µw = µ + 1 (a nonlimit induction step), then there exists k ∈ N such that w′ = w∧k ∈ W .

Applying the induction hypothesis, we find s′ = s∧i ∈ S and t′ = t∧j ∈ T such that w′ = s′ +cw t′

and rnkW (w′) = min{rnkS(s′), rnkT (t′)}. Now, it is obvious that s +cw t = w and rnkW (w) =
min{rnkS(s), rnkT (t)}.
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Consider the limit induction step: µw = λ < ω1 is a limit ordinal. For any ξ < λ, there exists
kξ ∈ N such that w∧kξ ∈ S and rnkW (w∧kξ) ≥ ξ; hence, by the induction hypothesis, there exist
s′ξ = sξ

∧iξ ∈ S and t′ξ = tξ
∧jξ ∈ T such that s′ξ +cw t′ξ = w∧kξ and min{rnkS(s′ξ), rnkT (t′ξ)} ≥ ξ.

Then, sξ +cw tξ = w for any ξ < λ; in particular, sξ and tξ belong to the finite set {t ∈ N
lhw :

t ≤cw w}. Hence, there exist s ∈ S and t ∈ T such that lh s = lh t = lhw and s +cw t = w, and we
have sξ = s and tξ = t for a set of ordinals ξ that is cofinal in λ. It is clear that these s and t are
such as required.

Finally, assume that µw = ∞; thus, there exists a γ ∈ N
ω such that γ � lhw = w and γ �n ∈ W

for any n. Then, for any n, there exist sn ∈ S and tn ∈ T of length n that satisfy sn +cw tn = γ �n.
Then, the sequences sn and tn belong to the set {t ∈ N

<ω : t ≤cw γ � lh t}, which is a tree with
finite branchings. Therefore, according to König’s lemma, there exist infinite sequences α, β ∈ N

ω

such that ∀m ∃n ≥ m (α �m = sn �m ∧ β �m = tn �m). Obviously, α +cw β = γ and, at the same
time, α �m ∈ S and β �m ∈ T hold for any m. Let us define s = α � lhw and t = β � lhw; then,
rnkS(s) = rnkT (t) = ∞ and w = s +cw t, which was to be proved. �

3. THE LOUVEAU–ROSENDAL TRANSFORM

Consider an arbitrary Σ1
1-set A in the space 2ω × 2ω. It is well known from the elementary

topology of Polish spaces that any Σ1
1-set in a Polish space S coincides with the projection of a

certain closed subset of the space S ×N
ω onto S. Thus, there exists a closed set P ⊆ 2ω × 2ω × N

ω

that satisfies A = domP = {〈x, y〉 : ∃ z P (x, y, z)}. Next, there exists a tree R ⊆ (2 × 2 × N)<ω

(a tree on 2 × 2 × N) such that P = [R] = {〈x, y, γ〉 : ∀n R(x � n, y �n, γ �n)}; therefore,

〈x, y〉 ∈ A ⇔ ∃ γ ∈ N
ω ∀n R(x �n, y �n, γ �n) ⇔ Rxy is ill-founded, (1)

where, for any tree R ⊆ (2 × 2 × N)<ω and any x, y ∈ 2ω, Rxy = {s ∈ N
<ω : R(x � lh s, y � lh s, s)}.

(It is clear that Rxy is a subtree of N
<ω.) If A is an arbitrary Σ1

1-set, then one can hardly establish
anything concerning the structure of the tree R, which generates A in the sense of (1). However,
assuming that A = E is an equivalence relation on 2ω, we can hope that R behaves better, and it
really does.

Theorem 5. Suppose that Q ⊆ (2 × 2 × N)<ω is a tree and the set

E =
{
〈x, y〉 ∈ 2ω × 2ω : ∃ γ ∈ N

ω ∀n Q(x �n, y �n, γ �n)
}

=
{
〈x, y〉 : Qxy is ill-founded, i.e., rnk(Qxy) = ∞

}
(2)

is an equivalence relation on 2ω. Then, there exists a tree R ⊆ (2 × 2 × N)<ω that satisfies the
following conditions:

(i) symmetry : R(u, v, s) ⇔ R(v, u, s), and then Rxy = Ryx for all x, y ∈ 2ω;

(ii) if u ∈ 2ω, s ∈ N
ω, and lh s = lhu, then R(u, u, s);

(iii) normality, as in Section 1: if R(u, v, s), t ∈ N
ω, and s ≤cw t, then R(u, v, t);

(iv) transitivity : if R(u, v, s) and R(v,w, t), then R(u,w, s +cw t);

(v) for any x, y ∈ 2ω, rnk(Rxy) = ∞ if and only if rnk(Qxy) = ∞; therefore, (2) also holds for
the tree R instead of Q.

This theorem is equivalent to Theorem 4 in [13].
Proof. Part 1. Note that the tree

Q̂ = Q ∪
{
〈u, u, s〉 : u ∈ 2ω ∧ s ∈ N

ω ∧ lh s = lhu
}
∪ {〈u, v, s〉 : Q(v, u, s)}
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satisfies Q̂xy = Qxy ∪ Qyx ∪ Dxy, where Dxy = N
<ω for x = y and Dxy = ∅ otherwise. However, if

x = y, then xEy (since E is an equivalence relation); therefore, rnk(Qxy) = ∞. Hence, rnk(Q̂xy) =
max{rnk(Qxy), rnk(Qyx)} for any x and y (we refer to the result for unions in Section 2); hence, (2)
still holds for Q̂. Moreover, it is obvious that Q̂ satisfies both (i) and (ii) and Q̂ is ξ-bounded if
so is Q.

Thus, we may assume from the very beginning that Q satisfies (i) and (ii).

Part 2. Under this assumption, to satisfy (iii), we set

Q̂ =
{
〈u, v, t〉 ∈ (2 × 2 × N)<ω : ∃ 〈u, v, s〉 ∈ Q (s ≤cw t)

}
.

This is still a tree on 2 × 2 × N that includes Q and satisfies (i), (ii), and (iii). In addition, we
have Q̂xy = Qxy +cw 2<ω for any x, y ∈ 2ω; therefore, rnk(Qxy) = rnk(Q̂xy) according to Lemma 4;
hence, (2) holds for Q̂ and Q̂ is ξ-bounded if so is Q.

Thus, we may assume from the very beginning that Q satisfies conditions (i), (ii), and (iii).

Part 3. A slightly more difficult problem is to satisfy (iv). Proceeding directly, we could
determine a new tree R so that it would contain all triples of the form 〈u0, un+1, s0 +cw . . . +cw sk〉,
where 〈ui, ui+1, si〉 ∈ Q for any i = 0, 1, . . . , k. However, for this procedure to be correct, such a
construction must be equipped with a counter for the number k of steps in the finite chain involved.
Let us proceed to the implementation of this idea.

Reasoning under the assumption that Q satisfies (i), (ii), and (iii) (see Part 2), we determine
a tree R ⊆ (2 × 2 × N)<ω as follows. Suppose that n ∈ N, u, v ∈ 2n, s ∈ N

n, k ∈ N, and
i, j ∈ 2 = {0, 1}. We say that 〈u∧i, v∧j, k∧s〉 ∈ R if

∃u0, u1, . . . , uk ∈ 2n
(
u0 = u ∧ uk = v ∧ ∀ � < k Q(u�, u�+1, s)

)
. (3)

In addition, we naturally assume that 〈Λ,Λ,Λ〉 ∈ R (where Λ is an empty sequence). It is clear
that R is a tree on 2 × 2 × N because so is Q.

We argue that, under our assumptions, the tree R satisfies all the conditions (i)–(v).

(i) If u0, . . . , uk guarantee R(u∧i, v∧j, k∧s), then the reverse sequence uk, . . . , u0 guarantees
R(v∧j, u∧i, k∧s) in the sense of (3) because the tree Q satisfies (i).

(iii) Suppose that 〈u∧i, v∧j, k∧s〉 ∈ R, and let u0, . . . , uk guarantee (3). Denote n = lhu =
lh v = lh s = lhu� ∀ �. Assume that k ≤ k′ and s ≤cw s′ (hence, lh s′ = n). Set u� = v whenever
k < � ≤ k′. Then Q(u�, u�+1, s) also holds for k < � < k′ according to (ii) for Q (indeed, u� = u�+1

in this case). Hence, Q(u�, u�+1, s
′) holds for any � < k′ according to (iii) for Q. By definition, this

guarantees that 〈u∧i, v∧j, k′ ∧s′〉 ∈ R, which was to be proved.

(ii) If k = 0 and u = v, then (3) holds in view of obvious arguments (with an empty list of
intermediate sequences u1, . . . , uk−1); therefore, R(u∧i, u∧j, 0∧s) holds for any u ∈ 2ω and s ∈ N

ω

of equal length; in particular, R(u, u, 0n) for any n and u ∈ N
ω with lhu = n. It remains to apply

property (iii), which we have just proved.

(iv) Suppose that the triples 〈u∧i, v∧j, k∧s〉 and 〈v∧j, w∧ρ, κ∧σ〉 belong to R and n is the length
of each of the sequences u, v, s, w, and σ. Assume that u0, . . . , uk guarantee R(u∧i, v∧j, k∧s) in
the sense of (3) and, accordingly, v0, . . . , vκ guarantee R(v∧j, w∧ρ, κ∧σ). (All u� and v� belong
to 2n.) Since Q satisfies (iii), the same sequences guarantee R(u∧i, v∧j, k∧t) and R(v∧j, w∧ρ, κ∧t),
where t = s +cw σ (componentwise). This implies that the combined complex u0, . . . , uk−1, uk = v0,
v1, . . . , vκ guarantees R(u∧i, w∧ρ, (k + κ)∧t), which was to be proved.

(v) Notice that, by definition, Q(u, v, s) ⇒ R(u∧i, v∧j, 1∧s) for any i, j = 0, 1. Hence, for any
x, y ∈ 2ω, s ∈ Qxy ⇒ 1∧s ∈ Rxy; therefore, Rxy is ill-founded if so is Qxy.
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The converse implication in (v) requires more effort. This reasoning belongs to Louveau and
Rosendal [13]. Suppose that rnk(Rxy) = ∞, i.e., there exists an infinite sequence δ ∈ N

ω such
that ∀n R(x � n, y �n, δ �n). Set k = δ(0) and γ(m) = δ(m + 1) for any m so that δ = k∧γ. By
definition, for any n, there exist sequences un

0 , . . . , un
k ∈ 2n that satisfy un

0 = x �n, un
k = y �n, and

Q(un
� , un

�+1, γ �n) for any � < k. Each (k + 1)-tuple 〈un
0 , . . . , un

k〉 ∈ (2n)k+1 can be considered as an
n-tuple in (2k+1)n. According to König’s lemma, there exist infinite sequences x0, . . . , xk ∈ 2ω such
that, for any m, there exists a number n ≥ m that satisfies x� �m = un

� �m for any � ≤ k. Hence,
x0 = x and xk = y, and since Q is a tree, Q(x� �m,x�+1 �m,γ �m) holds for any � < k and any m.
We conclude that x� E x�+1 for any � < k according to (2) for Q; this implies that x E y since E is
an equivalence relation. Finally, Qxy is ill-founded in view of (2) for Q. �

4. EQUIVALENCE OF NORMAL TREES

Recall that an analytic (i.e., Σ1
1) equivalence relation U is complete when F ≤b U holds for any

other analytic equivalence relation F. The elementary construction that results in such a relation is
well known.

Example 6 (“universal” complete analytic equivalence relation). We begin with a Σ1
1-set

U ⊆ N 3 that is universal in the sense that, for any Σ1
1-set P ⊆ N 2, there exists an x ∈ N such that

P coincides with the section Ux = {〈y, z〉 : 〈x, y, z〉 ∈ U}. (See [11] about the existence of universal
sets in Borel and projective classes.) Define a set P ⊆ N 3 so that each section Px coincides with
the closure of the section Ux in the sense of equivalence, i.e., with the least equivalence relation that
includes Ux. Formally, 〈y, z〉 ∈ Px when there is a finite sequence y = y0, y1, y2, . . . , yn, yn+1 = z
such that, for any k ≤ n, either 〈yk, yk+1〉 belongs to Ux, or 〈yk+1, yk〉 belongs to Ux, or just
yk = yk+1.

It is clear that P is still a Σ1
1-set in N 3 and each section Px is an (analytic) equivalence relation.

Moreover, if Ux itself is an equivalence relation, then simply Px = Ux. Thus, the family of all
sections Px, x ∈ N , is identical to the family of all analytic equivalence relations on N . We argue
that an (analytic) equivalence relation U on N 2 defined so that 〈x, y〉 U 〈x′, y′〉 when x = x′ and
〈y, y′〉 ∈ Px is complete. Indeed, take an arbitrary analytic equivalence relation F on N . Then,
F = Px for an appropriate x according to the aforesaid, and so the map ϑ(y) = 〈x, y〉 is a continuous
reduction of F to U, which was to be proved. �

However, the nature of the completeness property of the equivalence relations defined by such
a general method is not quite convenient for certain applications. This is the reason why one
sometimes considers other examples of complete relations in which the completeness is realized
in a more special way. To give an important example of such a more special complete analytic
equivalence relation, we apply the concept of a normal tree (see Definition 2).

Definition 7 (equivalence of normal trees [13]). Suppose that S, T ∈ NT. By Emb(S, T ) we
will denote the set of all finite sequences f ∈ N

<ω such that 〈u, s〉 ∈ S ⇒ 〈u, s +cw (f �n)〉 ∈ T for
any n ≤ lh f , u ∈ 2n, and s ∈ N

n.
It is clear that Emb(S, T ) is a tree in N

<ω that contains Λ.
We assume that S ≤nt T when the tree Emb(S, T ) is ill-founded, or, which is equivalent,

∃ γ ∈ N
ω ∀n ∀u ∈ 2n ∀ s ∈ N

n
(
〈u, s〉 ∈ S ⇒ 〈u, s +cw γ �n〉 ∈ T

)
.

We say that S Ent T when S ≤nt T and T ≤nt S. 3 �
Thus, S ≤nt T points to the existence of a certain translation embedding of T in S. The relation

≤nt is a partial order on NT; accordingly, Ent is an equivalence relation on NT. Next, applying
3In [17], ≤nt and Ent are denoted by ≤∗

max and E∗
max, respectively.
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componentwise addition to the sequences γ that guarantee ≤nt, we can easily show that S Ent T is
equivalent to the existence of a γ ∈ N

ω such that, for any n and any u ∈ 2n and s ∈ N
n, we have

simultaneously the following:

〈u, s〉 ∈ S ⇒ 〈u, s +cw γ �n〉 ∈ T and 〈u, s〉 ∈ T ⇒ 〈u, s +cw γ �n〉 ∈ S. (4)

One may notice that, by definition, any T ∈ NT is a subset of the countable set (2 × N)<ω.
Thus, NT is a subset of the Polish space P((2 × N)<ω), which, as usual, can be identified with the
product 2(2×N)<ω . (Straightforward calculations show that NT is a closed set.) Thus, formally, the
relations ≤nt and Ent are subsets of P((2 × N)<ω) × P((2 × N)<ω).

Theorem 8 (≈ [13, Theorem 5]). Ent is a complete analytic equivalence relation on NT.
Proof. The fact that ≤nt and Ent are Σ1

1-relations can be verified by direct evaluation. (The
principal quantifier expresses the existence of γ ∈ N

ω with certain properties.) To verify that Ent is
an equivalence relation, it suffices to verify that ≤nt is a transitive relation. Suppose that R ≤nt S
and S ≤nt T , where R, S, and T are normal trees in (2 × N)<ω. Then the trees U = Emb(R,S)
and V = Emb(S, T ) (the trees on N

<ω) are ill-founded; formally, rnk(U) = rnk(V ) = ∞. Hence,
according to Lemma 4, the tree W = U +cw V satisfies rnk(W ) = ∞. On the other hand, one
can easily verify that W ⊆ Emb(R,T ). Thus, the tree Emb(R,T ) is ill-founded, which was to be
proved.

To prove the completeness of Ent, consider an arbitrary analytic equivalence relation E on 2ω.
Then, E is a Σ1

1-subset of 2ω × 2ω; therefore, there exists a closed set P ⊆ 2ω × 2ω × N
ω such that

E = domP = {〈x, y〉 : ∃ zP (x, y, z)}. Next, there exists a tree Q ⊆ (2×2×N)<ω (a tree on 2×2×N)
such that P = [Q] = {〈x, y, γ〉 : ∀n Q(x �n, y �n, γ �n)}. In other words,

x E y ⇔ Qxy is ill-founded ⇔ rnk(Qxy) = ∞ for any x, y ∈ 2ω. (5)

It follows from Theorem 5 that there exists another tree R ⊆ (2 × 2 × N)<ω that satisfies condi-
tions (i)–(v) of Theorem 5. In particular, according to (v), the tree Qxy is ill-founded if and only if
Rxy is ill-founded. We do not assert that the map

x �→ ϑ(x) =
{
〈u, s〉 ∈ (2 × N)<ω : R(u, x � lhu, s)

}
, x ∈ 2ω, (6)

is a Borel reduction of E to Ent. One can easily verify that ϑ is a Borel, and even continuous,
map. It follows immediately from (iii) that ϑ(x) ∈ NT. The reduction property is derived from the
following lemma.

Lemma 9. If a tree R ⊆ (2×2×N)<ω satisfies conditions (i)–(iv) of Theorem 5 and x, y ∈ 2ω,
then Emb(ϑ(x), ϑ(y)) = Rxy.

Proof. Suppose that f ∈ Emb(ϑ(x), ϑ(y)) and m = lh f . Then, by definition, we obtain
R(u, x � m, s) ⇒ R(u, y �m, s +cw f) for any u ∈ 2m and s ∈ N

m. Take u = x �m and s = 0m

(a sequence of m zeros); then, R(x �m,x � m, 0n) ⇒ R(x �m, y �m, f). However, the left-hand side
holds according to (ii). Hence, the right-hand side also holds because f ∈ Rxy.

To prove the reverse inclusion, we assume that f ∈ Rxy, i.e., R(x �m, y �m, f), where m = lh f ,
and therefore R(x � n, y � n, f �n) holds for any n ≤ m since R is a tree. Let n ≤ m, u ∈ 2n,
and s ∈ N

n. We must prove that R(u, x � n, s) ⇒ R(u, y �n, s +cw (f �n)). Thus, we assume
that R(u, x �n, s). On the other hand, as pointed out above, we have R(x �n, y �n, f �n). Now,
R(u, y �n, s +cw (f �n)) follows from (iv), which was to be proved. �

To complete the proof of Theorem 8, consider arbitrary x, y ∈ 2ω. Then x E y is equivalent to
the fact that the tree Qxy is ill-founded, then to the fact that the tree Rxy is ill-founded, then to the
fact (by Lemma 9) that Emb(ϑ(y), ϑ(x)) is ill-founded, and finally, to the fact that ϑ(x) Ent ϑ(y)
(by Definition 7). �
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5. BOREL APPROXIMATIONS

According to Theorem 8, Ent is a complete analytic equivalence relation on NT, so that any
Σ1

1-equivalence relation E satisfies E ≤b Ent. What can be said about Borel equivalence relations,
which constitute a proper part of analytic relations? Quite general arguments (see Section 6 below)
show that an ω1-decreasing sequence of canonical upper Borel approximations of any complete
analytic equivalence relation contains a cofinal subsequence consisting of Borel equivalence relations
and that any such subsequence proves to be ≤b-cofinal among all Borel equivalence relations.

In the case of the equivalence relation Ent, it turns out that such an approximating sequence of
Borel equivalence relations can be determined directly in a mathematically sensible way.

Definition 10. Suppose that S, T ∈ NT and ξ < ω1.
Set S ≤ξ

nt T when the tree Emb(S, T ) satisfies rnk(Emb(S, T )) ≥ ξ.
Define S Eξ

nt T when S ≤ξ
nt T and T ≤ξ

nt S hold. �
We stress that the inequality rnk(Emb(S, T )) ≥ ξ implies that either Emb(S, T ) (a tree in N

<ω)
is well-founded and its rank is a countable ordinal ≥ ξ, or Emb(S, T ) is ill-founded and then, by
definition, rnk(Emb(S, T )) = ∞ is greater than any ordinal.

Recall that the set NT of all normal trees is a closed subset of the Polish space P((2 × N)<ω)
(which is identified with the product 2(2×N)<ω homeomorphic to the Cantor discontinuum), and
therefore NT itself is a Polish space.

Lemma 11. (i) The relations Eξ
nt are Borel equivalence relations on NT.

(ii) More precisely, if ν < ω1, then the relation Eων
nt is a Π0

1+2ν-set in the space4 P((2×N)<ω)×
P((2 × N)<ω) and the relation Eων+k

nt , k ≥ 1, is a Σ0
1+2ν+1-set.

(iii) Moreover, ≤nt =
⋂

ξ<ω1
≤ξ

nt and Ent =
⋂

ξ<ω1
Eξ
nt.

Proof. (i) The fact that Eξ
nt is an equivalence relation can be verified as in the proof of

Theorem 8 with reference to Lemma 4.
(iii) The equalities follow from the fact that a tree R ⊆ N

<ω is ill-founded when rnk(R) = ∞;
i.e., rnk(R) ≥ ξ for any ξ < ω1.

(ii) To estimate the Borel class of ≤ξ
nt and Eξ

nt, consider the sets

T ξ = {T ∈ T : rnk(T ) ≥ ξ} and T ξ
s = {s ∈ T ∈ T : rnkT (s) ≥ ξ},

where ξ < ω1, s ∈ N
<ω, and T is the set of all trees T ⊆ N

<ω. (It is clear that T is a closed subset
of the Polish space P(2<ω), which can be identified with the product 2N

<ω.) We argue that each T ξ
s

is a Borel set; moreover,

(∗) T ων
s is a Π0

2ν -subset of T , i.e., the intersection of T (a closed set) with a Π0
2ν-set, while

T ων+k
s , k ≥ 1, is a Σ0

2ν+1-subset of T . 5

This assertion is proved by induction on ξ simultaneously for all s. If ξ = 0, then it is obvious that
the set T ξ

s = {T ∈ T : s ∈ T} is even open–closed in T . The inductive step is easily performed
using the equalities T ξ+1

s =
⋃

k∈N
T ξ

s∧k for every ξ and T λ
s =

⋂
ξ<λ

⋃
k∈N

T ξ
s∧k for any limit ordinal

λ < ω1.
Hence, each set T ων = T ων

Λ belongs to Π0
2ν as a subset of T ; accordingly, each set T ων+k, k ≥ 1,

belongs to Σ0
2ν+1 as a subset of T .

However, by definition, ≤ξ
nt coincides with the h-preimage of the set T ξ, where h(S, T ) =

Emb(S, T ) for any S, T ∈ NT. Elementary calculations show that h, as a function from the closed
4Or in the space NT× NT, which is equivalent in the present case since NT is closed.
5Recall that the product of ordinals αν is equal to the sum of ν copies of the ordinal α, which, generally speaking,
is different from να. For example, 2ω = ω < ω · 2 = ω + ω.
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set NT×NT into the closed set T , is a Σ0
2-measurable function; i.e., the h-preimages of open sets

belong to the class Σ0
2. (More precisely, for any f ∈ N

<ω, the set {〈S, T 〉 : s ∈ Emb(S, T )} is closed,
while the set {〈S, T 〉 : s /∈ Emb(S, T )} is open in NT × NT.) Thus, each relation ≤ων

nt
and, hence,

each Eων
nt is a Π0

2ν -combination of sets from the class Σ0
2, i.e., a set from Π0

1+2ν ; an analogous result
is derived for the relations ≤ων+k

nt
and Eων+k

nt , k ≥ 1. �

6. A CANONICAL INTERSECTION PROPERTY

The intersections mentioned in Lemma 11(iii) belong to a remarkable type.
Definition 12. The intersection Z =

⋂
ξ<ω1

Zξ of sets Zξ of a fixed Polish space X has a
canonical intersection property (cip) when, for any Π1

1-set C in X that satisfies Z ⊆ C, there exists
an index η < ω1 such that

⋂
ξ<η Zξ ⊆ C already holds. �

A general method for constructing intersections that satisfy the cip is known from the classical
descriptive set theory. It is based on the following result, which was actually obtained in [16]. We set

T ∞ = {T ∈ T : T is an ill-founded tree}

and recall that T stands for the set of all trees T ⊆ N
<ω; in addition, we set T ξ = {T ∈ T :

rnk(T ) ≥ ξ} for every ξ < ω1.
Proposition 13. T ∞ =

⋂
ξ<ω1

T ξ, and this intersection satisfies the cip.

Proof (sketch). The complementary Π1
1-set T∞ = {T ∈ T : T is well-founded} admits a de-

composition T∞ =
⋃

ξ<ω1
Tξ into Borel constituents Tξ = {T ∈ T : rnk(T ) = ξ}. The following

index restriction theorem by Luzin and Sierpiński is the key result of [16]: any Σ1
1-set Y ⊆ T∞ is

covered by a union of a countable number of constituents Tξ. This immediately implies the cip for
the sequence of sets T ξ. �

Lemma 14. The intersections indicated in assertion (iii) of Lemma 11 satisfy the cip.
Proof. For any pair of trees S, T ∈ NT, we set ϕ(S, T ) = Emb(S, T ). Thus, ϕ is a Borel

map NT2 → T , and it follows immediately from the definitions that S ≤nt T is equivalent to
ϕ(S, T ) ∈ T ∞. In other words, ≤nt coincides with the ϕ-preimage of the set T ∞, and similarly, each
≤ξ

nt coincides with the ϕ-preimage of the set T ξ. This allows us to immediately derive the cip for
the intersection ≤nt =

⋂
ξ<ω1

≤ξ
nt from the same property for the intersection T ∞ =

⋂
ξ<ω1

T ξ. �
Corollary 15. If E is a Borel equivalence relations on a Polish space X, then there exists an

ordinal ξ < ω1 such that E ≤b Eξ
nt.

Proof. According to Theorem 8, we have E ≤b Ent. Therefore, there exists a Borel map
ϑ : X → NT such that x E y ⇔ ϑ(x) Ent ϑ(y). Set ϕ(x, y) = 〈ϑ(x), ϑ(y)〉. The map ϕ is also Borel;
moreover, the ϕ-image ϕ(P ) of the set P = (X × X) \ E is a Σ1

1-set that does not intersect Ent.
Hence, according to Lemma 14, there exists an ordinal ξ < ω1 such that ϕ(P ) does not intersect Eξ

nt.
This means that ϑ is a reduction of the relation E not only to Ent but also to the approximating
Borel equivalence relation Eξ

nt. �
For the reader’s convenience, we give an elementary proof of the following result, which is

“folklore” in descriptive set theory.
Theorem 16. Suppose that E is a Σ1

1-equivalence relation on a Polish space X, E =
⋂

ξ<ω1
Eξ,

all sets Eξ are Borel subsets of X×X, and the sequence of sets Eξ is ⊆-decreasing and satisfies the
cip. Then, the set of all ordinals ξ < ω1 such that Eξ is an equivalence relation is cofinal in ω1.

If it is known in addition that E is a complete Σ1
1-equivalence relation, then, for any Borel

equivalence relation F, there exists an ordinal ξ < ω1 such that Eξ is an equivalence relation and
F ≤b Eξ.
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Proof. To prove the first assertion, it suffices to verify that, for any ξ < ω1, there exists an
ordinal ν, ξ < ν < ω1, such that Eν is an equivalence relation.

Step 1. We argue that, for any ξ < ω1, there exists an ordinal ζ = ζ(ξ), ξ < ζ < ω1, such
that 〈x, y〉 ∈ Eζ ⇒ 〈y, x〉 ∈ Eξ. Indeed, the set P = {〈x, y〉 : 〈y, x〉 ∈ Eξ} is a Borel superset of E in
X×X (since E is a symmetric relation). In this situation, the cip provides an ordinal ζ, ξ < ζ < ω1,
such that Eζ ⊆ P .

Step 2. We argue that, for any ξ < ω1, there exists an ordinal η = η(ξ), ξ < η < ω1, such that
〈x, z〉 ∈ Eξ for any x and z such that, for a certain y, the pairs 〈x, y〉 and 〈y, z〉 belong to Eη. The
argument includes two steps. First, we consider the set

P =
{
〈x, y〉 : ∀ 〈y, z〉 (〈y, z〉 ∈ E ⇒ 〈x, z〉 ∈ Eξ)

}
.

It is a Π1
1-set in X ×X and a superset of E because E is a transitive relation. Thus, due to the cip,

there exists an ordinal ζ, ξ < ζ < ω1, that satisfies Eζ ⊆ P . This means that we have 〈x, z〉 ∈ Eξ

whenever 〈x, y〉 ∈ Eζ and 〈y, z〉 ∈ E. Now, consider the set

Q =
{
〈y, z〉 : ∀ 〈x, y〉 (〈x, y〉 ∈ Eζ ⇒ 〈x, z〉 ∈ Eξ)

}
.

According to the aforesaid, it is a Π1
1-set and a superset of E; therefore, there exists an ordinal η,

ζ < η < ω1, such that Eη ⊆ Q. It is clear that η possesses the required properties.
Final argument. Set ξ0 = ξ and ξn+1 = η(ζ(ξn)) for any n. The ordinal ν = supn ξn possesses

the required properties.
To derive the second assertion of the theorem, we can argue as in the proof of Corollary 15. �

7. REDUCTION TO IDEALS

It is not quite clear from Definition 7 that the equivalence relations Ent and Eξ
nt can somehow

be reduced to ideals. However, this is actually the case.
The possibility of generating Ent by a Σ1

1-ideal was established in [17]. To expound this result,
we denote by I the ideal on (2 × N)<ω that is finitely generated by all sets of the form S ∆ T ,
where S, T ⊆ (2 × N)<ω are normal trees and S Ent T . In other words, I consists of all subsets of
(2×N)<ω that admit a covering by unions of a finite number of symmetric differences S ∆ T of the
aforementioned type.

Theorem 17 (proved in [17]). The ideal I is a Σ1
1-set in the Polish space P((2 × N)<ω). In

addition, the equivalence relation Ent coincides with EI �NT; this means that S Ent T is equivalent
to S ∆ T ∈ I for any S, T ∈ NT.

Proof. The fact that I belongs to the class Σ1
1 is quite clear: the principal quantifier expresses

the existence of a finite set of elements in NT whose properties can also be expressed by a Σ1
1-relation

because Ent is a Σ1
1-set.

Assuming that S ∆ T ∈ I, let us prove that S Ent T (nontrivial direction). By definition, we
have S ∆ T ⊆

⋃k
i=1(Si ∆ Ti), where Si, Ti ∈ NT and Si Ent Ti. Then, by definition, the trees

Ri = Emb(Si, Ti) and R′
i = Emb(Ti, Si) are ill-founded. We must derive that the trees Emb(S, T )

and Emb(T, S) have the same property. To prove the ill-foundedness of Emb(S, T ), note that the
tree R = R1 +cw . . . +cw Rk satisfies rnk(R) ≥ min{rnk(R1), . . . , rnk(Rk)} according to Lemma 4;
therefore, R is ill-founded. Thus, it remains to verify that R ⊆ Emb(S, T ). To this end, consider
an arbitrary r = r1 +cw . . . +cw rk ∈ R, where all sequences ri ∈ Ri, i = 1, . . . , k, have the same
length, say m.

To prove that r ∈ Emb(S, T ), suppose the contrary, i.e., r /∈ Emb(S, T ); in other words, there
exists a pair 〈u, s〉 ∈ S that satisfies 〈u, s +cw (r �n)〉 /∈ T , where n = lhu = lh s. Under this
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assumption, 〈u, s +cw t〉 /∈ T whenever t ∈ 2n and t ≤cw r �n. In particular, 〈u, s〉 /∈ T , so
〈u, s〉 ∈ S ∆ T and thus 〈u, s〉 ∈ Si1 ∆ Ti1 for a certain 1 ≤ i1 ≤ k. However, we know that
ri1 ∈ Ri1 = Emb(Si1 , Ti1). This implies 〈u, s1〉 ∈ Si1 ∩ Ti1 , where s1 = s +cw (ri1 �n).

However, according to the aforesaid, 〈u, s1〉 ∈ S \T ; therefore, repeating the same procedure, we
obtain 〈u, s1〉 ∈ Si2 ∆ Ti2 for a certain 1 ≤ i2 ≤ k. In this case, i2 �= i1 because 〈u, s1〉 ∈ Si1 ∩ Ti1 .
This implies 〈u, s2〉 ∈ Si2 ∩ Ti2 , where s2 = s1 +cw (ri2 �n), since ri2 belongs to the tree Ri2 =
Emb(Si2, Ti2). Moreover, 〈u, s2〉 still belongs to Si1 ∩ Ti1 because all Si and Ti are normal trees.

After k steps of this construction, all indices 1 ≤ i ≤ k will be considered, and the final sequence
sk = s+cw (r �n) will satisfy 〈u, sk〉 ∈ Si ∩Ti for any i = 1, . . . , k. Hence, 〈u, sk〉 /∈ S ∆T . However,
〈u, sk〉 ∈ S since 〈u, s〉 ∈ S and S is a normal tree. Thus, 〈u, sk〉 belongs to T , which contradicts
our assumptions. �

What about the equivalence relations Eξ
nt? If we replace Ent by Eξ

nt in the definition of I above,
then the theorem remains valid: Eξ

nt coincides with I �NT for the “new” I. However, for such an
ideal I, which depends on ξ, it is impossible to establish a class better than Σ1

1, which is of little
interest because the relations Eξ

nt are Borel. However, a more complex variant of this construction
gives Borel ideals that generate the relations Eξ

nt.
In the arguments below, the variables d and e denote natural numbers.
Definition 18. For any d ∈ N, d ≥ 1, the d-width Widd(X) of a set X ⊆ (2× N)<ω is the set

of all finite sequences f ∈ N
<ω such that, for any n ≤ lh f and u ∈ 2n, one has

∀ s1 ∈ N
n ∃ t1 ∈ N

n ∀ s2 ∈ N
n ∃ t2 ∈ N

n . . . ∀ sd ∈ N
n ∃ td ∈ N

n

(
if 〈u, s1 +cw t1 +cw . . . +cw sk−1 +cw tk−1 +cw sk〉 ∈ X for any 1 ≤ k ≤ d, then

t1 +cw . . . +cw td ≤cw f �n and τ <cw s1 +cw t1 +cw . . . +cw sd +cw td whenever 〈u, τ〉 ∈ X
)
. �

It is clear that Widd(X) is a tree in N
<ω (possibly, an empty tree).

The definition of Widd(X) can be interpreted in terms of a game Gd
fnu(X) of length d,

where n ∈ N and u ∈ 2n; player I makes moves s1, . . . , sd ∈ N
n, while player II makes moves

t1, . . . , td ∈ N
n; I must play so that 〈u, s1+cwt1+cw. . .+cwsk−1+cwtk−1+cwsk〉 ∈ X for any k, whereas

II must play so that t1 +cw . . . +cw td ≤cw f �n; finally, II wins if τ <cw s1 +cw t1 +cw . . .+cw sd +cw td
for any τ ∈ N

n such that 〈u, τ〉 ∈ X. Moreover, II also wins when, for a certain k ≤ d, I cannot
make a move sk such that 〈u, s1 +cw t1 +cw . . . +cw sk−1 +cw tk−1 +cw sk〉 ∈ X; accordingly, I wins
when t1 +cw . . . +cw tk �≤cw f �n for a certain k ≤ d.

In this terminology, f ∈ Widd(X) is equivalent to the fact that II wins the game Gd
fnu(X)

(i.e., has a winning strategy in this game) whatever n ≤ lh f and u ∈ 2n. Thus, the assumption
f ∈ Widd(X) can be informally understood as the possibility to leave X in at most d jumps whose
total length is no greater than f .

Here, it is relevant to note that Widd(X) ⊆ Widd+1(X). Indeed, assume that f ∈ Widd(X).
Then, for any n ≤ lh f and u ∈ 2n, a winning strategy for player II in Gd+1

fnu(X) is to simply follow
any winning strategy in the game Gd

fnu(X). After d moves, I has no admissible move sd+1; hence,
II wins.

Lemma 19. If X,Y ⊆ (2×N)<ω and d, e≥ 1, then Widd(X)+cwWide(Y )⊆Widd+e(X ∪ Y ).

Proof. Consider arbitrary f ∈ Widd(X) and g ∈ Wide(Y ) with lh f = lh g and prove that
h = f +cw g belongs to Widd+e(X ∪ Y ). Suppose that n ≤ lh f and u ∈ 2n. Fix an arbitrary
winning strategy for II in the game Gd

fnu(X) and call it an X-strategy. Fix an arbitrary winning
strategy for II in Ge

gnu(Y ) and call it a Y -strategy. A winning strategy for II in Gd+e
hnu(X ∪ Y ) can

be determined as follows. Let s1, t1, . . . , sd+e, td+e be a complete sequence of moves. By definition,
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Sk = s1 + t1 + . . . + sk−1 + tk−1 + sk ∈ X ∪ Y for every k. Define K = {k : Sk ∈ X} and K ′ =
{k : Sk ∈ Y \ X}. Let K = {k1, . . . , km} and K ′ = {k′

1, . . . , k
′
m′} in increasing order. It is obvious

that m + m′ = d + e.
(a) Consider a derived sequence σ1, τ1, . . . , σm, τm such that τi = tki

and

σi = ski−1+1 +cw tki−1+1 +cw ski−1+2 +cw tki−1+2 +cw . . . +cw ski−1 +cw tki−1 +cw ski

for any 1 ≤ i ≤ m. Assume that II plays in Gd+e
hnu(X ∪ Y ) so that each move tki

= τi is made
according to the X-strategy applied to the subsequence σ1, τ1, . . . , σi−1, τi−1, σi. This determines all
the moves tk, k ∈ K, and, assuming that II follows this strategy, we immediately obtain m ≤ d.

(b) Define another derived sequence σ′
1, τ

′
1, . . . , σ

′
m′ , τ ′

m′ so that τ ′
i = tk′

i
and

σ′
i = sk′

i−1+1 +cw tk′
i−1+1 +cw sk′

i−1+2 +cw tk′
i−1+2 +cw . . . +cw sk′

i−1 +cw tk′
i−1 +cw sk′

i

for any 1 ≤ i ≤ m′. Assume that II plays in Gd+e
hnu(X ∪ Y ) so that each move tk′

i
= τ ′

i is made
according to the Y -strategy applied to the subsequence σ′

1, τ
′
1, . . . , σ

′
i−1, τ

′
i−1, σ

′
i. This determines all

the moves tk′ , k′ ∈ K ′, and, assuming that II follows this strategy, we immediately obtain m′ ≤ e.
Items (a) and (b) completely determine the strategy for II in the game Gd+e

hnu(X ∪ Y ). Let us
show that this is a winning strategy. Indeed, it follows from the aforesaid that m = d and m′ = e.
Moreover, we have τ <cw τm and τ <cw τ ′

m′ whenever 〈u, τ〉 ∈ X and 〈u, τ〉 ∈ Y (according to the
choice of the X- and Y -strategies, respectively). Therefore, td+e (irrespective of whether this is τm

or τ ′
m′) satisfies τ <cw td+e for every τ such that 〈u, τ〉 ∈ X ∪ Y , which was to be proved. �
Definition 20. Let Int be the family of all sets X ⊆ (2× N)<ω such that, for a certain d ≥ 1

(and hence for any d′ ≥ d), the tree Widd(X) is ill-founded.
For any ξ < ω1, let Iξ

nt be the family of all sets X ⊆ (2 × N)<ω such that rnk(Widd(X)) ≥ ξ
for a certain d ≥ 1. �

Recall that each ideal I ⊆ P(D) on a set D generates an equivalence relation EI on P(D) such
that X EI Y when X ∆ Y ∈ I. In the following theorem, D = (2 × N)<ω.

Theorem 21. (i) The sets Int and Iξ
nt (for any ξ < ω1) are ideals on (2 × N)<ω.

(ii) The equivalence relation Ent coincides with EInt
�NT, where EInt

is the equivalence relation
on P((2 × N)<ω) generated by the ideal Int.

(iii) Similarly, for any ξ, Eξ
nt coincides with EIξ

nt

�NT.

(iv) Int is a Σ1
1-set (as a subset of the Polish space P((2 × N)<ω)), and each Iων+k

nt
is a

Σ0
ω+2ν+1-set ; hence, Iων+k

nt
is a Σ0

2ν+1-set provided that ν ≥ ω.

Proof. (i) Suppose that sets X,Y ⊆ (2 × N)<ω belong to Iξ
nt and, hence, the trees Widd(X)

and Wide(Y ) have ranks ≥ ξ. By Lemma 19, Widd(X) +cw Wide(Y ) ⊆ Widd+e(X ∪ Y ). Then,
we obtain rnk(Widd+e(X ∪ Y )) ≥ ξ according to Lemma 4; therefore, X ∪ Y ∈ Eξ

nt. Finally, to
see that Z = (2 × N)<ω does not belong to Iξ

nt, we note that Widd(Z) = ∅ for any d by obvious
considerations.

(ii) Consider a pair of trees S, T ∈ NT. We must prove that SEntT is equivalent to S∆T ∈ Int.
Suppose that SEntT . Then the trees E = Emb(S, T ) and F = Emb(T, S) are ill-founded; therefore,
the tree G = E +cwF is also ill-founded according to Lemma 4. However, it is clear that G ⊆ E∩F .
(Indeed, S and T are right ≤cw-transitive.) Thus, it suffices to prove that E ∩ F ⊆ Wid1(S ∆ T ).
Consider an arbitrary f ∈ E ∩F . By definition, for any pair 〈u, s〉 ∈ S ∪T , lhu = lh s = n ≤ lh f ,
we have 〈u, s +cw (f �n)〉 ∈ S ∩ T . In particular, since 〈u, s〉 ∈ S ∆ T ⇒ 〈u, s +cw (f �n)〉 /∈ S ∆ T ,
it follows immediately that f ∈ Wid1(S ∆ T ).
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To prove the converse implication, suppose that S ∆ T ∈ Int, i.e., the tree Widd(S ∆ T ) is
ill-founded for a certain d ≥ 1. It suffices to prove that Widd(S ∆ T ) ⊆ Emb(S, T ). Suppose the
contrary, i.e., f ∈ Widd(S ∆ T ), but f /∈ Emb(S, T ). The latter means that there exists a pair
〈u, s〉 ∈ S, lhu = lh s = n ≤ lh f , such that 〈u, s +cw (f �n)〉 /∈ T . Then, 〈u, s〉 does not belong
to T either; therefore, both pairs 〈u, s〉 and 〈u, s +cw (f �n)〉 belong to S \ T . Hence,

(∗) 〈u, s + g〉 ∈ S \ T for any g ∈ N
n, g ≤cw (f �n).

Now, consider a play in the game Gd
fnu(S ∆ T ) in which player II follows his winning strategy

(which exists because f ∈ Widd(S ∆ T )), while I plays sk = 0n (a sequence of n zeros) at each
move k. Let tk, 1 ≤ k ≤ d, be a sequence of moves of player II. Since sk = 0n ∀ k, we have
t1 +cw . . . +cw tk ≤cw (f �n) by definition provided that 〈u, s +cw t1 +cw . . . +cw tk−1〉 ∈ S ∆ T ;
therefore, according to (∗), t1 +cw . . . +cw tk ≤cw (f � n) and 〈u, s +cw t1 +cw . . . +cw tk〉 ∈ S ∆ T for
any k. In particular, 〈u, s+cw t1 +cw . . .+cw td〉 ∈ S ∆ T , which contradicts the choice of the strategy.

(iii) The same arguments lead to the required result. Now, the reference to Lemma 4 at the
beginning of the proof of (ii) looks as follows: the trees E = Emb(S, T ) and F = Emb(T, S) have
ranks ≥ ξ; hence, the tree G = E +cw F also has this property.

(iv) For any d ≥ 1, the map X �→ Widd(X) is a function of a finite Borel level. Hence, for any
Σ0

α-family H of subsets of (2 × N)<ω, the set
{
X ⊆ (2 × N)<ω : ∃ d ≥ 1 (Widd(X) ∈ H)

}

belongs to Σ0
ω+α. It remains to recall that the set T ων+k of all trees T ⊆ N

<ω satisfying rnk(T ) ≥
ων + k belongs to the class Σ0

2ν+1 according to (∗) in the proof of Lemma 11. �
Rosendal proved in [17] that any Borel equivalence relation is Borel-reducible to an equivalence

relation of the form EJ , where J is a Borel ideal. The ideals J in this proof are chosen as appropriate
upper Borel approximations of a certain Σ1

1-ideal I. (The ideal I was defined at the beginning of
this section.) The following result shows that the Borel ideals in the Rosendal theorem can be
chosen by a more direct and efficient method.

Corollary 22. For any Borel equivalence relation E on a Polish space, there exists an ordinal
ξ < ω1 such that E ≤b EIξ

nt

.

Proof. According to Corollary 15, there exists an ordinal ξ < ω1 such that E ≤b Eξ
nt. On the

other hand, Theorem 21(iii) implies that Eξ
nt ≤b EIξ

nt

. �
Lemma 11, Corollary 15, and Theorem 21 allow us to rapidly complete the proof of Theorem 1:

the sequence of equivalence relations Eν = Eων+2
nt , where ν < ω1, possesses the required properties.

(Naturally, we must apply an arbitrary homeomorphism from P((2 × N)<ω) to the space 2ω that
carries over the domain NT of all equivalence relations Eων+2

nt to a certain closed set D ⊆ 2ω.)

8. ARE APPROXIMATING RELATIONS COMPLETE
FOR THEIR BOREL CLASSES?

The equivalence relations Eξ
nt lead to other questions, the most interesting of which is the

question of completeness of these relations in the Borel classes pointed out in Lemma 11(ii) (cf.
the completeness of the relations Ent in Theorem 8). We do not know the answer for the present;
however, there is a promising approach.

Definition 23. For any tree R ⊆ (2 × 2 × N)<ω, we define

A(R) =
{
〈x, y〉 ∈ 2ω × 2ω : rnk(Rxy) = ∞

}
,

Aξ(R) =
{
〈x, y〉 ∈ 2ω × 2ω : rnk(Rxy) ≥ ξ

}
,
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where, according to (1), Rxy = {s ∈ N
<ω : R(x � lh s, y � lh s, s)}. A tree R ⊆ (2 × 2 × N)<ω is said

to be ξ-bounded, where ξ < ω1, if A(R) = Aξ(R). �
Thus, A(R) is a Σ1

1-set in 2ω × 2ω, any Σ1
1-set A ⊆ 2ω × 2ω admits a representation in such a

form, and the intersection A(R) =
⋂

ξ<ω1
Aξ(R) possesses the cip. (To derive the cip, note that

the sets A(R) and Aξ(R) are the preimages of the sets T ∞ and T ξ, respectively, in the sense of the
continuous map 〈x, y〉 �→ Rxy. It remains to recall that T ∞ =

⋂
ξ T ξ satisfies the cip according to

Proposition 13.)
The following lemma represents a classical result. We refer to [15] for very similar results and

constructions. We call an arbitrary set X ⊆ 2ω × 2ω such that 〈x, y〉 ∈ X ⇔ 〈x′, y′〉 ∈ X holds
whenever x, x′, y, y′ ∈ 2ω satisfy x �m = x′ �m and y �m = y′ �m an m-Lipschitz set. Obviously,
any such set is open–closed in 2ω × 2ω.

Lemma 24. If R ⊆ (2 × 2 × N)<ω is a tree, ν < ω1, and k ≥ 1, then Ak(R) is a k-Lipschitz
set, Aω(1+ν)(R) belongs to Π0

1+2ν , and Aω(1+ν)+k(R) belongs to Σ0
1+2ν+1.

Conversely, if ν < ω1, k ≥ 1, and A ⊆ 2ω × 2ω is a k-Lipschitz set, or a Π0
1+2ν-set, or

a Σ0
1+2ν+1-set, then there exists a tree R ⊆ (2 × 2 × N)<ω such that A = Ak(R) = A(R), or

A = Aω(1+ν)(R) = A(R), or A = Aω(1+ν)+k(R) = A(R), respectively. 6

Proof. The verification of the first assertion is analogous to evaluating the Borel class of the
relations Eξ

nt in the proof of Lemma 11(ii). Set

Rs
xy =

{
t ∈ N

<ω : s∧t ∈ Rxy

}
and Aξ

s(R) =
{
〈x, y〉 ∈ 2ω × 2ω : rnk(Rs

xy) ≥ ξ
}

for any x, y ∈ 2ω, s ∈ N
<ω, and ξ < ω1. We argue that, under the hypotheses of the lemma, Ak

s(R)
is a (lh s + k)-Lipschitz set, A

ω(1+ν)
s (R) belongs to Π0

1+2ν , and A
ω(1+ν)+k
s (R) belongs to Σ0

1+2ν+1.
To verify the first assertion, it suffices to note that Ak

s(R) is equal to the set of all pairs 〈x, y〉 such
that Rxy contains at least one sequence of the form s∧t, where t ∈ N

k. The two other assertions
are derived by induction by means of the following obvious equalities:

Aξ+1
s (R) =

⋃

j∈N

Aξ
s∧j(R) and Aλ

S(R) =
⋂

ξ<λ

⋃

j∈N

Aξ
s∧j(R) for a limit λ.

Finally, note that Aξ(R) = Aξ
Λ(R).

The converse assertions of the lemma are proved by induction on ν and k.
The case of Lipschitz sets. Consider a k-Lipschitz set A ⊆ 2ω×2ω. There exists a set P ⊆ 2k×2k

such that
A =

{
〈x, y〉 ∈ 2ω × 2ω : ∃ 〈u, v〉 ∈ P (u ⊂ x ∧ v ⊂ y)

}
.

Define R as the tree of all triples 〈u, v, s〉 ∈ 2<ω × 2<ω × N
<ω such that lhu = lh v = lh s and

there exists a pair 〈u′, v′〉 ∈ P such that u is comparable with u′ (i.e., u ⊆ u′ or u′ ⊆ u) and v is
comparable with v′. Thus, we have Rxy = N

<ω when 〈x, y〉 ∈ A; otherwise, Rxy does not contain
any sequence of length k. Hence, A = Ak(R) = Aω(R) = A(R).

The case of Σ0
1+2ν+1. Each Σ0

1+2ν+1-set A ⊆ 2ω×2ω is equal to a union of the form A =
⋃

n An,
where all An are sets from Π0

1+2ν . Then, by the induction hypothesis, for any n, there exists a tree
Rn ⊆ (2×2×N)<ω such that An = A(Rn) = Aω(1+ν)(Rn). Define a tree R ⊆ (2×2×N)<ω as follows:
R(u∧i, v∧j, n∧s) when Rn(u, v, s) for any i, j = 0, 1 and n ∈ N (and, separately, 〈Λ,Λ,Λ〉 ∈ R).
Then, Rxy = {Λ} ∪ {n∧s : s ∈ Rn

xy} for any x, y ∈ 2ω, and, hence, the cross-section tree Rxy

coincides with
∑∗

n Rn
xy (see Section 2 for the operation of countable sum). Hence, rnk(Rxy) =

6Note that 1 + ν = ν and 1 + 2ν = 2ν for ν ≥ ω.
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suprnk(Rn
xy).7 In particular, rnk(Rxy) = ∞ if and only if rnk(Rn

xy) = ∞ for a certain n. Hence,
A = A(R) according to the choice of the trees Rn. Next, if 〈x, y〉 /∈ A, then 〈x, y〉 /∈ An for
any n, so rnk(Rn

xy) < ω(1 + ν), and this implies rnk(Rxy) < ω(1 + ν) + 1. We conclude that
A = A(R) = Aω(1+ν)+1(R) = Aω(1+ν)+k(R) for any k ≥ 1, which was to be proved.

The case of Π0
1+2ν . Here, ν < ω1 may be either a limit or a nonlimit ordinal. Any Π0

2ν-set
A ⊆ 2ω × 2ω coincides with an intersection of the form A =

⋂
n An, where each An is a set from the

class Σ0
1+2ηn+1, ηn < ν, or simply a kn-Lipschitz set for a certain kn in the case when ν = 0 (then Π0

1

are closed sets). By the induction hypothesis, for every n, there exists a tree Rn ⊆ (2×2×N)<ω such
that An = A(Rn) = Aω(1+ηn)+1(Rn) or An = A(Rn) = Akn(Rn) for ν = 0. In this situation, one can
easily define a tree R ⊆ (2× 2×N)<ω such that, for any x, y ∈ 2ω, Rxy is isomorphic to

∏∗
n∈N

Rn
xy.

(See Section 2 for the operation of countable product. The tree R can actually be defined as the set
of all triples of the form 〈u, v, σ〉, where u and v belong to 2m for a certain m and σ = 〈s0, . . . , sm〉,
where each sk belongs to N

m and 〈u, v, sk〉 ∈ Rk, with the ordering 〈u, v, σ〉 � 〈u′, v′, σ′〉 for u ⊆ u′,
v ⊆ v′, and σ � σ′ in the sense pointed out in Section 2.)

According to Lemma 3, rnk(Rxy) = ∞ if and only if rnk(Rn
xy) = ∞ for any n. Hence,

A = A(R) due to the choice of the trees Rn. Next, if 〈x, y〉 /∈ A, then 〈x, y〉 /∈ An and, hence,
rnk(Rn

xy) ≤ ω(1 + ηn) < ω(1 + ν) (or < kn < ω for ν = 0) for at least one n. On the other hand,
the inequality rnk(Rxy) ≤ minn rnk(Rn

xy)+n holds by virtue of Lemma 3, so rnk(Rxy) ≤ ω(1+ν).
Thus, A = A(R) = Aω(1+ν)(R), which was to be proved. �

In the light of this lemma, we could try to prove the completeness of, say, the relation E
ω(1+ν)+2
nt

for the Borel class Σ0
1+2ν+1 in the following way. Consider a certain Σ0

1+2ν+1-equivalence relation E
on 2ω. Thus, E, as a set of pairs, is of class Σ0

1+2ν+1 in 2ω × 2ω. It follows from Lemma 24 that
there exists a tree Q ⊆ (2 × 2 × N)<ω such that E = Aω(1+ν)+1(Q) = A(Q), or, in other words,

x E y ⇔ rnk(Qxy) ≥ ω(1 + ν) + 1 ⇔ rnk(Qxy) = ∞

for any x, y ∈ 2ω. In particular, Q is an (ω(1 + ν) + 1)-bounded tree in the sense of Definition 23.
Conjecture 25. In this particular case, there exists a tree R ⊆ (2 × 2 × N)<ω that satisfies

conditions (i)–(v) of Theorem 5 and the following additional condition: R is an (ω(1+ν)+2)-bounded
tree and, therefore,

x E y ⇔ rnk(Rxy) ≥ ω(1 + ν) + 2 ⇔ rnk(Rxy) = ∞

for any x, y ∈ 2ω. �
Accepting this conjecture, we obtain

x E y ⇔ ϑ(x) E
ω(1+ν)+2
nt ϑ(y) ⇔ ϑ(x) Ent ϑ(y),

where the map ϑ is defined according to (6) in Section 4. (Indeed, due to Lemma 9, the equality
Emb(ϑ(x), ϑ(y)) = Rxy holds for any x and y.) Thus, as in the proof of Theorem 8, the map ϑ

is a Borel reduction of the relation E to E
ω(1+ν)+2
nt . In view of the arbitrary character of E in the

class Σ0
1+2ν+1, the relation E

ω(1+ν)+2
nt turns out to be complete for the class of all Σ0

1+2ν+1-equiv-
alence relations. Thus, since E

ω(1+ν)+2
nt itself belongs to Σ0

1+2(1+ν)+1 according to Lemma 11(ii),
we conclude that, for ν ≥ ω (then 1 + ν = ν), the class Σ0

1+2ν+1 contains a complete equivalence
relation.

However, this argument is based on Conjecture 25, which, to our regret, we could neither prove
nor disprove for the present.

7Recall that supX denotes the least ordinal that is strictly greater than any ordinal in X, or ∞ if X contains ∞.
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9. OPEN QUESTIONS

There are good grounds to assume that Eη
nt <b Eων

nt <b Eων+n
nt for η < ων and n ≥ 1. Here,

the main idea is that there do not exist ≤b-maximal Borel equivalence relations (as pointed out
in [6]); therefore, the sequence of equivalence relations Eξ

nt must have countably many <b-increasing
indices (in the strict sense). On the other hand, it is likely that Eων+n

nt ∼b Eων+n+1
nt for n ≥ 1.

There are a few more interesting questions.
What Borel classes contain complete equivalence relations?
Here, one can consider another similar problem. Some time ago, it seemed quite possible (see, for

example, [9]) that the equivalence relation T, called the equality of countable sets of real numbers,8

is not Borel-reducible to any equivalence relation EI generated by a Borel ideal I ⊆ P(N). How-
ever, Rosendal [17] disproved this conjecture: there exists a Borel ideal of the form Iξ

nt such that
T ≤b EIξ

nt

(see Corollary 22 above). What is the minimal ordinal ξ that guarantees this relation?
In conclusion, note that all estimates for the Borel classes of equivalence relations in this paper

concern only real Borel classes in spaces of the Cantor discontinuum type. A somewhat more
fundamental concept of “potential” Borel classes of equivalence relations introduced in [6] may
require appropriate modification of the proofs.
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