
Uspekhi Mat. Nauk 40:3 (1985), 117-155 Russian Math. Surveys 40:3 (1985), 135-180

The development of the descriptive theory of
sets under the influence of the work of Luzin

V.G. Kanovei

CONTENTS

Introduction 135
§0. Euclidean and Baire spaces 139
§1. Research on the structure of Borel classes 140
§2. Projective sets. Construction of the hierarchy 144
§3. The sieve operation and its applications to projective sets of the first 146

level
§4. The first projective level: sets with special sections 149
§5. The theory of operations on sets. C-sets and .R-sets. The second 152

projective level
§6. Difficulties of the classical theory of projective sets. Search for new 156

paths. The main trends of the contemporary development of the
descriptive theory

§7. Luzin's problems on the sequence of constituents 162
§8. Equivalence relations: Luzin's remarks and contemporary research 166
§9. Problems and results connected with the axiom of choice and transfinite 170

constructions
References 175

Introduction

In the science of mathematics one cannot find too many examples of
discoveries, ideas, and investigations made by a single scholar that turned out
in the course of decades to have a definite influence on the establishment
and development of an entire branch of mathematics. This can only be the
product of enormous talent and intuition, and that is just how one speaks
with full justification about the founder of the descriptive theory of sets
Nikolai Nikolaevich Luzin.

Luzin came to the descriptive theory in the second decade of the 20th
century, a young, already known mathematician, the author of recognized
papers on the theory of functions. At that time the descriptive theory was
essentially still in its infancy. In 1905 Henri Lebesgue proposed the study
of "definable" point sets, that is, sets that can be determined unambiguously,



136 V.G. Kanovei

without recourse to the axiom of choice. The original systematic investigations
of the "definable" mathematical objects was limited to the Borel sets of a
Euclidean space and to Baire functions of one or several real variables.
(These sets and functions were discovered by Emile Borel and Rene Baire at
the very end of the last century in connection with the development of
mathematical analysis and function theory.) Despite some successes (which
manifested themselves specifically in the construction of a transfinite
classification of the Baire functions and the Borel sets and the proof by
Lebesgue in [28] of the fact that this classification can be extended through
the countable ordinals), for a long time the cardinality problem for Borel sets
evaded solution.

This problem was posed by Luzin before the participants of the seminar on
the theory of functions, which he organised until the first world war at the
University of Moscow. The solution was found in 1916 by one of the
participants, the great topologist P.S. Aleksandrov. Aleksandrov showed that
an uncountable Borel set in a Euclidean space necessarily contains a perfect
subset, and so has the cardinality of the continuum. In other words,
Cantor's continuum hypothesis holds for Borel sets.

The ^-operation introduced by Aleksandrov for the solution of the
cardinality problem for Borel sets allowed Suslin, also a participant of the
Luzin seminar, to construct a new class of "definable" sets containing all
Borel sets but not exhausted by them. Suslin called these new sets "the sets
{A)", but they are also known as A -sets, analytic sets (Luzin's term), Suslin
sets (Hausdorff's term). In essence, it was only after the discovery of A -sets
and the early research of Suslin and Luzin on A -sets (the results of these
investigations were set forth in the notes [31] and [2] and in more detail in
the article [24]) that the descriptive theory became an independent branch
of mathematics. From that moment on and throughout more than two
decades the development of the descriptive theory progressed under the
conceptual leadership and the direct involvement of Luzin. Luzin's creative
activity was the definitive pivot of the classical period of the development of
the descriptive theory, in the course of which the object of study (Borel sets,
/1-sets, projective sets, and certain other types of "definable" set) was
defined, specific methods of investigating these sets were created (such as
sieves), deep results about them were obtained and, finally, problems were
formulated that did not yield to a solution, the limits of the techniques of
classical mathematics were reached, and prerequisites for the modern
development of the descriptive theory were established.

Luzin's pupils Novikov and Keldysh, who compiled and edited in 1958
the second volume of Luzin's collected works ([23]), distinguished three
cycles of Luzin papers on the descriptive theory. To the first main cycle
they referred studies of concrete types of "definable" sets. Within this cycle
one can indicate several basic trends.
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Firstly, the study of the A -sets discovered by Suslin, where Luzin
obtained important results such as the theorem on their measurability and
their Baire property (see the end of §2 of our survey) and the separation
theorem (§3).

Secondly, the search for various types of plane sets (or in other terminology:
implicit functions), particularly in connection with the uniformization
problem. Here Luzin and Novikov obtained a number of fundamental results
(see §4), which later were further developed in works of other experts.

Thirdly, the development of the sieve operation and the decomposition into
constituents—the main technical apparatus of the theory of A -sets and their
complementary C4-sets. §3 of our survey is devoted to sieves and constituents.

The fourth trend we would entitle the deeper study of the structure of
the classes of the Borel hierarchy, where Luzin also obtained important results
such as the separation theorems. Much was also done by Luzin's students
Lavrent'ev and Keldysh. We say more about this in §1.

Finally, a fifth trend, the discovery of projective sets and the construction
of the projective hierarchy (see §2). The yl-sets and C4-sets, which were
already fairly well understood at the moment of the discovery of projective
sets (1924-1925) form only the first level of the projective hierarchy.
Naturally. Luzin attempted to study sets on higher levels. This was totally
unsuccessful: the methods that "worked" well in the domain of A -sets and
C/l-sets gave nothing at all for "arbitrary" projective sets. In particular,
there remained open the questions of measurability, the Baire property, and
the cardinality of projective sets. However, it undoubtedly took the
intuition of a great mathematician to look as Luzin did at this phenomenon
not as a consequence of the inadequacy of the technical apparatus of the
theory, but as the significantly deeper phenomenon of the incompleteness in
principle and the insufficiency of the traditional mathematical tools and
methods of argument as applied to projective sets and to predict that "it is
impossible and never will be possible" to reach a solution of the problem of
Lebesgue measurability, the Baire property, and the cardinality of projective
sets. This prediction, which Luzin made in 1925, was confirmed by the
subsequent development of the descriptive theory; a strict proof of the
undecidability of these problems was obtained by Novikov (1951) and
Cohen (1970) only after methods of proof for undecidability within the
framework of axiomatic set theory had been worked out.

To the present day projective sets remain at the centre of attention of
experts in descriptive theory. Of the main directions of current research on
projective sets we shall talk in §6.

That was the first cycle of Luzin papers on the descriptive theory.
Bordering on these are papers by Selivanovskii, Novikov, Kolmogorov,
Lyapunov on C-sets and Λ-sets—a distinctive category of "definable" set
lying between the first and second level of the projective hierarchy, and
investigations of Novikov on the second projective level (§5).
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In the 3O's, when the ideas of the classical descriptive theory of sets were
near exhaustion and the limits of their applicability were fairly well
recognized, Luzin gradually moved away from the direct investigation of
distinct types of projective sets and turned his attention to the most
important problems of the descriptive theory such as the problem of the
cardinality of C4-sets and the problem of the effective existence of a point
set of cardinality χ,. Work in this direction forms the second cycle of
Luzin's investigations. Attempting to define the nature of the obstacle on
the path to a solution of these problems and of the famous continuum
problem, Luzin introduced into mathematics the fundamental concept of a
collection of Borel sets of bounded class (nowadays one says: bounded in
rank); he raised some problems on the construction of such collections,
among them some formulated with the help of sieves and constituents. Luzin
regarded problems in this series as "weakened forms" of the continuum
problem; in fact they turned out to be significantly more difficult and deeper
than the former and have found their solution only in papers of the last few
years. We consider these problems and results connected with them in § 7.

Recently in the descriptive theory a new direction has been intensively
developed, which is concerned with the study of equivalence relations; here
the fundamental role of Borel sets of bounded classes becomes manifest.
This topic is treated in §8. Luzin himself did not seriously work on
equivalence relations, however, one might say that he did stand at the source
of this trend, because as early as 1927 he selected such main problems as the
evaluation of the number of equivalence classes and the effective existence
of a set that chooses from each equivalence class just one point. An
adequate technical apparatus for the study of these problems was not
developed until the 70's.

Finally, the third cycle of Luzin's papers in the descriptive theory is
connected with the application of the axiom of choice. On the whole, Luzin
was critical in the use of this axiom in mathematical reasonings on account of
its extremely non-constructive character, which becomes manifest in the fact
that existence proofs obtained by means of the axiom of choice do not give
concrete "definable" sets with the required properties. However, he also
paid a certain respect to the axiom of choice in the derivation of consequences
of the existence of point sets with such unexpected properties that it would
be hopeless to realize by more effective constructions. Of Luzin's work in
connection with the axiom of choice and the much later response to it we talk
in the concluding §9.

Speaking of Luzin's role in the development of the descriptive theory it
would be wrong not to mention that Luzin paid much attention to
mathematical-philosophical problems in the foundation of mathematics and
contributed a number of deep ideas on the nature of the difficulties in this
area. Unfortunately, this side of Luzin's creativity has escaped the attention
of our national philosophy of science. It is impossible not to recall also
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Luzin's extremely important and fruitful didactic activity which is well
documented in articles published in Uspekhi Mat. Nauk (1974), 29:5
(= Russian Math. Surveys 29:5 (1974), 173-208), and also in the gazette of
the Kemerovsk State University "Progress in science", 7 September 1983 and
in the Vestnik Akad. Nauk SSSR, 1984, No. 11.

Concluding this preface, the author believes it would be only right to
point out the great influence on the presentation and selection of the
material for the present article (particularly, as regards § § 1 -5 , which are
devoted to the classical Luzin period in the descriptive theory) which the
papers [49], [50], [51], [59], [61], [71], [74], [77], written by students
and successors of Luzin in the descriptive theory, had and also discussions
with Uspenskii and Taimanov.

The bulk of our paper is preceded by a §0, in which we are concerned with
the interrelationships between the various spaces which are considered in
work on the descriptive theory.

§0. Euclidean and Baire spaces

Initially the descriptive theory of sets was developed almost exclusively in
the Euclidean spaces Rm. But even towards the end of the 20's it became
clear that the results, methods, and arguments specific to the descriptive
theory in Euclidean spaces, go over quite easily without change (or in
individual cases with changes that usually simplify matters) to sets in the
Baire space .Λ* and the spaces d™, where m > 1.

The Baire space jf (of countable weight) is formed by all infinite
sequences iax, a2, a3, ...) of natural numbers at and thus is the topological
product of countably many copies of the set of natural numbers (see [30],
155, where this space is denoted b y 5 X o ) . The space jf* is homeomorphic
to the set of all irrational points on the real line R (or on any interval of R)
([30], 155).

In what follows we agree to call all the J'"m, m > 1, Baire spaces (they
are all homeomorphic to JV).

The development of the descriptive theory showed that the Baire spaces are
more appropriate to the principal descriptive constructions than the Euclidean
spaces (see, for example, [50], Remark 42). Already in Luzin's "Leqons sur
les ensembles analytiques" [11] the space .#* (in the form of the set of
irrational points) plays the role of the basic descriptive space (Luzin's
"fundamental domain"). The account in the surveys [61] and [77], which
in a certain sense summarize the classical period of the descriptive theory, is
also constructed around the Baire space. Somewhat later Addison [80]
showed that the Baire spaces, in contrast to the Euclidean spaces, allow the
use of formulae of a special fairly simple language to describe point sets and
to formalize computations by means of which one succeeds in shortening
quite substantially the classical "geometric" proofs, achieving at the same
time a greater clarity of the substance of the matter.
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Of course, the Baire spaces lose out to the Euclidean spaces from the
point of view of geometric intuitivity, however, this feature is not essential
because one can identify the points of JT with the irrational points of the
real line. Thanks to this, the structure of the descriptive theory in Euclidean
and Baire spaces leads to essentially identical theorems (except in individual
cases, say, closedness corresponding to compactness, continuity to countable
discontinuity, etc).

The exposition in the present survey is arranged so that it covers both the
Baire and the Euclidean spaces, and we point out differences in definitions
and results for the two types of space in those few cases where they occur.
As regards the system of references, following a tradition in the descriptive
theory going back to Luzin's times, we refer to publications in which
theorems under discussion were first proved (or stated), irrespectively of
what spaces (that is, Euclidean or Baire) were in fact considered in these
original papers.

§ 1. Research on the structure of Borel classes

Uspenskii's article in the current issue of the Uspekhi Mat. Nauk makes it
unnecessary to dwell here on the history of the discovery of Borel sets and
the important investigations of Borel, Baire, and Lebesgue. We begin
straightaway with an account of the modern concept of a Borel set.

The Borel sets (or .β-sets) in a given space form the smallest class of sets
in that space that contains all open sets and is closed under the operations
of complementation, countable union, and countable intersection. The
Borel sets can be organized into Borel classes, which form the Borel
hierarchy. At present, in papers on the descriptive theory it is customary to
adopt the following construction of the Borel hierarchy.

The Borel classes are denoted by 1\, Πξ, Δ£, where 1 < % < ω 1 ; and ωλ is
the first uncountable transfinite ordinal. The classes are constructed by
induction on ξ. To the first class SJ there belong all the open sets of the
given space. If the class Σξ has already been constructed, then to the class
Π| there belong all sets that are complements to sets in Σξ, and to Δ | all sets
that themselves as well as their complements belong to Σ | , that is,
Δ| = Σ£ Π Πξ°. Finally, if % > 2, the class Σ£ is formed by all countable
unions of sets belonging to the classes Πη, where 1 < η < %.

Clearly, the classes Ώ° and Δ£ consist, respectively, of the closed and open-
and-closed sets, while the classes Σ° and Π° are the same as the classes Fa

and G&.
Every Borel set belongs to one of the classes Σ | , Π|, or Δ£. When this is

so, let us note, it also belongs to every Borel class with an index greater
than ξ, since the Borel classes satisfy the condition of increase

ΣΐυΠ|$Δί! for
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It is known that the inclusion here is strict, so that none of the Borel classes
exhausts the totality of all Borel sets.

In papers on the descriptive theory in the 20's to the 40's it was customary
to consider another system of classification of Borel sets, which was
introduced by de la Valle-Poussin and worked out in detail by Luzin.
Without dwelling on the construction of the de la Vallee-Poussin-Luzin
hierarchy (see [77]), we remark only that every class K% of this hierarchy
coincides with the class Ar+j, and that sets to be called elements of the class
K^ (they were often considered in classical studies) are identical with the
n|-sets ([77], §10).

In the theory of Borel sets one can distinguish two trends. Firstly, a deep
study of the classification, and secondly, a study of Borel sets in relation to
certain other notions of the descriptive theory such as projective sets and
sieves. In this section we limit ourselves to a survey of the achievements in
the first direction, leaving the other one to § §3 and 4, where we consider
these important concepts and where the corresponding theorems about Borel
sets connected with them turn out to be better placed.

1.1. Theorems of separation and reduction.
Let X and Υ be a pair of disjoint sets. If some third set U contains all the
points of X and has no points in common with Y, then we say that the set
U separates X from Y. The concept of separation was introduced in
descriptive theory by Luzin in [7].

Usually in connection with separation one considers the following main
problem: to clarify which of the following three theorems (which are also
called principles) are satisfied in a given class Κ of point sets (for example,
the Borel class nj 7 ).

First separation theorem. Any two disjoint sets of the class Κ can be
separated from one another by a set that belongs to Κ itself as well as its
complement.

Second separation theorem. If from two arbitrary sets X and Υ of the class
Κ we remove their common part, then the resulting remainder sets Χ- Υ
and Y~ X can be included in disjoint sets that are complementary to sets of
the class K.

Inseparability theorem. There exists a pair of disjoint sets of the class Κ
that cannot be included in pairwise disjoint sets complementary to sets of
the class K.

Luzin's investigation in [10] and [11], Ch. II of the laws of separation
for the Borel classes in Baire spaces showed that for any ordinal ξ with
1 < ξ < ωχ the class Π| satisfies the first separation theorem (the separating
set being in At) and the second separation theorem (with separating sets in
Sj), while Σ* satisfies the inseparability theorem. Almost the same holds in



142 V.G. Kanovei

Euclidean spaces, except that the class nfdoes not satisfy the separation
theorems. We remark that the Borel classes Δ? being closed under the
operations of complementation and taking the difference between two sets
automatically satisfy the separation theorems.

Closely connected with separation is the reduction theorem in Kuratowski's
[62], which reads as follows:

For any pair of sets X and Υ in the class Κ we can find a pair of disjoint
sets i ' C I and Y' C γ in Κ whose union is the same as that of X and Y.

The reduction theorem holds for the Borel classes Σ2 (and, of course,
for Δ|), but not for IIjj. This inversion by comparison with the separation
theorems is however not unexpected: the fact of the matter is that when
the reduction theorem holds in some class K, then so do both separation
theorems for the class of complements and (for the classes Σ2 and the
projective classes 2}, and Π},) the inseparability theorem for Κ itself.

1.2. Subclasses.
Lavrent'ev's note [35] uncovered a very interesting structure of the classes
Κ ξ — ΔΪ+JL, which allow a decomposition into subclasses formed on the basis
of the least possible length of a transfinite or finite chain of Hjj-sets that are
distinguished from one another in a peculiar way and reach in their union a
given set of class \\ +v Later these subclasses were studied by Luzin in [ 10],
[11], Lyapunov [55], Sierpinski and others.

In the book [63] §37.IV the following construction is presented, which
reduces to the Lavrent'ev classes but differs somewhat from their original
definition. It turns out that for every Ajj+^set X one can choose a number
θ < ωχ and a ^-decreasing sequence of sets Xv, where ν < θ, of class 11= such
that A* = [Ι ν(λ' ν — X-v+i), where the union is over all even numbers ν < θ
(and if ϋ itself is odd, then one must define additionally Χθ = φ). All the
sets that can be obtained in this way for fixed θ and £ form the 0-th
subclass (the small class θ in [63]) of At+ 1.

A systematic study of various methods of forming subclasses was quite
recently made by Louveau [119]. Burgess [107] discovered an interesting
application of the subclasses to the theory of C-sets and R-sets.

1.3. Invariance of classes.
Lavrent'ev proved in [34] the following theorem on the topological
invariance of Borel classes. Let Κ be one of the Borel classes (other than
SJ, IIJ, Δ", Σ°2, Δ"). Then every point set homeomorphic to any set in Κ
itself belongs to K. An analogous theorem is valid for the subclasses of
Borel classes, and also for the projective and some other classes of point sets
(see, for example, [66], §36).

This gives rise to the problem of extending the result to maps of a more
general kind than homeomorphisms. By considering open continuous
transformations (that is, the image of any open set must be open) Keldysh
[69] established that every Borel set is a continuous open image of a
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suitable set of class A°3, so that Borel classes of level three and above are not
preserved under continuous open maps.

A different picture emerges for closed compact maps, which are
characterized by the following two conditions: 1) the image of every closed
set is closed, and 2) the inverse image of every point is compact. Taimanov
(for £ > ω, see [94]) and Saint Raymond [100] (for finite £) established
that for £ > 3 the classes Σ?, Π§, Δ?, and also the class Π° are preserved
under continuous closed compact maps.

In Euclidean spaces the theorems of Lavrent'ev and Taimanov-Saint
Raymond remain in force for the classes Σ° and Δ°.

1.4. Canonical sets and the problem of universality.
The work of Lavrent'ev, Keldysh, and other mathematicians drew attention
to the study of the topological properties of Borel sets. Considerable
interest was raised by the problem proposed by Luzin in [10] and [11] of
selecting in each class lli a special family of canonical sets, restrictive
enough so that all sets of this family are pairwise homeomorphic, but rich
enough so that every Πξ-set can be obtained in a simple manner from the
canonical sets in Π?.

In the class ITj of closed sets there are three types of canonical sets:
points, homeomorphic images of the Cantor discontinuum, and closed sets
homeomorphic to a Baire space (and for the real line intervals in place of the
latter). Every closed set is a union of countably many canonical closed sets.

In the class Π? (=(74) Aleksandrov and Uryson singled out one type of
canonical sets: the homeomorphic images of a Baire space. Every set in Π5
is the union of a single such canonical set and countably many Δ£ -sets.

A definition of a canonical Ilf-set for if > 3 was given by Keldysh in [70].
This definition contains two items: 1) the given Πξ-set Χ is of the first
category in its closure, and 2) every non-empty intersection Χ η Β of X
with a basic open-and-closed set Β of the relevant space Λ""1 is a universal
Ilj-set. (The requirement of universality means that for every Πϊ-set Υ there
is a perfect set Ρ such that Υ is homeomorphic to the intersection Χ Π Β Π Ρ.)
Keldysh found that for £ > 3 the canonical sets of class Πξ are pairwise
homeomorphic and every II|-set is the union of a single canonical set and
countably many sets of class Π,", where 1 < η < £.

So far the following problem which was stated in [70] (and also in [50],
Remark 50) has remained unsolved; is every strictly nf-set universal?
{Strictly ng-sets are those Ilfsets that do not belong to the dual class Zg.
Every universal Πϊ-set, and such sets exist in every class Π|, is a strictly
Il|-set.) For an affirmative answer it would be sufficient to show that every
strictly Ilf-set X contains a subset that is closed in X and homeomorphic to
one of the universal Πί'-sets. In connection with this problem we mention an
interesting result of Steel [121] : in a Cantor discontinuum for % > 3 any
two sets of the first category that are strictly n|-sets in the intersection with
a basic interval are homeomorphic to each other.
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§2. Projective sets. Construction of the hierarchy

The principal role in the construction of projective sets is played by the
operation of projection: we have in mind a projection onto a subspace with
one axis less, when every point (x, y u, v) is carried into the point
(x, y, ..., u). Thus, the projection of a set in the Baire space jf""*1 (or the
Euclidean space FT*1) is situated in . i m (or in Rm).

Projective sets in the Baire spaces Λ"™, where m > 1, form the smallest
class of sets in these spaces that is closed under the operations of projection
and complementation and contains all open sets. Projective sets in Euclidean
spaces are defined in exactly the same way only instead of open sets one
must take sets of the class Fa.

Projective sets can be organised in a hierarchy of projective classes on the
basis of the least number of operations of complementation and projection
that are necessary to construct the given set, starting out from the open sets
(or the /vsets in the Euclidean case). The projective classes are denoted in
modern work on the descriptive theory by Σι

η, Π},, and Λ,}, where η > 0 is
any natural number. (These symbols were introduced by Addison in [80].)
In contrast to the Borel hierarchy, here it is not necessary to resort to
transfinite indices, because the construction breaks off at the stage ω.

In the Baire spaces the initial class Σί consists of all open sets, that is, it
coincides with the Borel class I'j. In Euclidean spaces one has to include in
ΣΙ all sets Fa, that is, Σό = Σ2°.

Next, for any η the class Ώ\ is formed by the complements to all sets in
Σ},, and then Σ},+, by the projections of sets in Π},. Finally, as in the
definition of the Borel hierarchy, the class Δ], is defined to be the intersection
of Σ}, and IT*.

In the more traditional system of notation introduced by Luzin the classes
S},, Π},, Δ|, were denoted, respectively, by An, CAn, and Bn. For details on
Luzin's construction of the projective classes, see the article by Uspenskii
[132].

Luzin's discovery of projective sets in 1925 (the definition of a projective
set first appeared in the note [4]) was one of the most significant events in
the development of the descriptive theory of sets. These sets have remained
up to the present at the centre of attention of experts in descriptive theory,
arousing interest by their unusual properties, which in many respects differ
from the properties of the simpler "definable" sets, such as Borel sets. If
theorems, say, on Borel sets as a rule are valid equally at all levels of the
Borel hierarchy, as regards projective sets (except some simple propositions
such as the relations Σ ι

η £ ΙΓη, Wn <£ Σι

η, Σ}, U Π|, 5 AUi, which are
already noted by Luzin in [7], §72), substantial results within the framework
of the classical descriptive theory can be obtained only for sets of the first,
and rarely the second projective level. (The zero level, the classes Σο, Πρ, Δο1,
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is in its properties more akin to the Borel hierarchy and we do not specially
speak of them.)

Sets of the first projective level, that is, the sets ΣΙ, H\, Δ}. have been
studied most thoroughly. Investigation of sets of these classes began, strictly
speaking, even before Luzin discovered the general notion of a projective set.
At that time the sets of class SJ were known as y4-sets, or analytic sets, or
Suslin sets. For the sets of class Π} the following names were also used:
C4-sets, analytic complements, co-analytic sets, co-Suslin sets. For some
supplementary information on the names and the history of their discovery,
see §1 of the article by Uspenskii [122]. Finally, we mention that by a
theorem of Suslin [21] Δί coincides with the class of Borel sets.

In surveying the classical theory of the first projective level we single out
three groups of results. Two of these, which are particularly rich in
interesting theorems, are presented in the separate sections §3 (direct
applications of the sieve operation) and §4 (sets with special sections). The
third group contains results concerning regularity properties: the perfect
kernel property, the Baire property, and the measurability property (see the
article by Uspenskii [132], §3, or [125], 252). Here are the main theorems
concerning these properties:

1) Every SJ-set (in Baire or Euclidean spaces) has the perfect kernel
property. We refer to this assertion as the Aleksandrov-Hausdorff-Suslin
theorem. (For historical information, see the article by Uspenskii [132]).

2) Every ZJ-set has the Baire property—Luzin [2].
3) Every SJ-set in a Euclidean space is Lebesgue-measurable—Luzin [2].
The last theorem can be carried over to sets in Baire spaces by means of

the concept of absolute measurability, that is, measurability with respect to
the entire class of measures. A Borel σ-finite measure on a given space SC is
any countably additive measure that is defined on all Borel sets of that space
(and no others) and satisfies the condition that SF is a union of countably
many sets having finite values of the measure (generally, +°° is allowed as a
value of the measure). A set X s 3? is said to be measurable in the sense
of such a measure m if there exists a pair of Borel sets Υ and Ζ such that
F C J C Z and m(Y) = m(Z). Finally, a set X is absolutely measurable
when it is measurable in the sense of any Borel σ-finite measure on the given
space.

An example of a Borel σ-finite measure on the real line R is the usual
Lebesgue measure, restricted to Borel sets of R. Thus, an absolutely
measurable set of real numbers is Lebesgue-measurable.

The concept of absolute measurability allows us to restate Luzin's
theorem on the measurability of SJ-sets in the following form: every Σ^-set
(in any Euclidean or Baire space) is absolutely measurable. This result, like
that on the Baire property, obviously remains in force for IlJ-sets.
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§3. The sieve operation and its applications
to projective sets of the first level

The operation of passing through a sieve (briefly: the sieve operation),
introduced by Luzin, became the basic technical tool in the construction of
the classical theory of the first, and later of the second, level of the
projective hierarchy. Moreover, the value of this operation goes beyond the
framework of a technical apparatus: it itself became the object of a
profound study in works of Luzin and other mathematicians and the source
of important problems posed by Luzin (on this, see §7).

In the interests of economy of space we do not repeat the definition of a
sieve, nor of the exterior and interior sets and constituents, presented in
§5 of Uspenskii's article [132]. The exterior and interior sets defined by
a sieve C are denoted in what follows by [C] and [C],, respectively, and the
exterior and interior constituents corresponding to a given index ν < ω, by
[C)v and |C]*V . In addition, we often consider the following sets, which we
call approximations:

[C]< v = U [£] μ , [C]*<v= U (CW-
μ<ν

A few words about the important concept of an index. The exterior
index \ηάχ C of a sieve C at any point χ of the exterior set [C] is defined to
be the unique number ν < coj for which χ G [C]v. At points χ of the
interior set [C] t the exterior index Ind^ C is taken to be cot. Moreover, at
points of the interior set [C], the interior index Ind** C is defined to be the
unique number ν < ωχ for which χ £ [C)*v. At points χ of the exterior set
[C] the interior index is not defined.

Concluding these remarks and definitions we now present the basic
theorems on sieves, constituents, and indices, stopping on the way for the
most important applications of sieves to the theory of the first projective level.

The sieving theorem [7]. The class Σ{ coincides with that of all sets passed
through an open sieve, that is, the class of all interior sets [C],, where C is
an open sieve. Correspondingly, the class IIJ coincides with the totality of
all exterior sets [C] given by open sieves.

A sieve C = (Cq : q £. Q) is open when all the elements Cq of the sieve are
open sets. The sieving theorem remains valid when instead of open sets we
consider Borel sieves (that is, with Borel elements).

We recall that by Q we denote the set of all rational numbers.

Theorem on the Borel property of constituents ([7 ] , [ 11 ] , Ch. III). // C is
a Borel sieve, then \C]V, [C]*v,fC)<v, and ICJ,<V are Borel sets for any ν < cjj.

In the 30's Luzin and his student Keldysh made a detailed study of the
position of the constituents of open sieves in the Borel hierarchy. Luzin
considered a special class of so-called universal open sieves and proved [13]
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that the "complexity" of a constituent [C]v of such sieves C increases
monotonically as ν tends to ωχ\ strictly speaking, for each £ < ω χ there are
only countably many indices ν such that the constituents [C]v belong to the
Borel class Δ|, and all the rest appear only in higher Borel classes.

Keldysh obtained in [67] the following upper estimate for the classes of a
constituent [C]v of an open sieve C. Let ν < ωχ. One can uniquely choose
an ordinal number λ < ωχ and a natural number η > 1 such that
ω λ · η < ν < ωλ(η+ 1). Now, if η = 1, then [C]v belongs to the class Ϊ1£ λ + 1

and for η > 1 this constituent is the difference of two u^+i-sets.
Recently Miller was able to prove that this estimate is exact, that is, it is

attained as a special sieve, the binary (or canonical) Lebesgue sieve,
constructed by Luzin in [7] §2. Regarding this sieve Miller discovered that
for any ν < ω] if λ and η are defined as above, then for η = 1 the
constituent [C]v is strictly a Π^+^set (this means that [C]v does not belong
to the class 2 2 i + i of complementary sets), and for η > 1 this constituent is
strictly the difference of two ujx+j-sets in the sense that it does not belong
to the class of sets that are complementary to such sets (see [126]).

In [68] Keldysh studied the question: which is the smallest value for the
index ν < ω1 a given Borel set X can have so that there is an open sieve for
which X = [C] = [C]<v.

We move on to some other theorems on sieves.

Criterion for an exterior set to be Borel [7]. Let C be a Borel sieve. Then
for the exterior set [C] to be Borel it is necessary and sufficient that
[C] = [C]<vfor some ν < ωχ.

The sufficiency follows immediately from the theorem on the Borel
property of constituents. For interior sets and approximations there is no
analogous criterion: one can construct (this was, in fact, done in [25]) an
open sieve C such that [C]<c= jT and each constituent [C]*v is non-empty
(which prevents [C]m = [ C ] # < v no matter what ν < ω{).

Boundedness principle ([11], Ch. III). Again, let C be a Borel sieve. Then
for every ~L\-set Υ C [C] there exists an ordinal number ν < ωχ such that
Y£[C]V.

The criterion for an exterior set to have the Borel property follows
immediately from this principle, as does Suslin's theorem [31] on the
coincidence of the class AJ with the class of Borel sets, though originally
both of these propositions were proved by alternative means. But the main
application of the boundedness principle consists in Luzin's analysis ([11],
Ch. Ill) of the cardinality-kernel problem for IlJ-sets. We recall that in Σ,1

this problem was conclusively solved by the theorem of Aleksandrov-
Hausdorff-Suslin referred to in §2.

Let X = [C] be any IlJ-set given by an open sieve C. From the point of
view of the number of non-empty constituents [C]v and the presence of
uncountable constituents, three cases are possible.



148 V.G. Kanovei

1) There are only countably many non-empty constituents [C]v, and each
of them contains at most countably many points. In this case X = [) [C]v

is at most countable. ν < ω ι

2) The number of non-empty constituents [C]v is uncountable (by the
criterion for being Borel this is equivalent to X not being Borel) and as
before each constituent [C]v is at most countable. In this case X has the
cardinality Xj as the union of Xj countable sets. Moreover, X cannot contain
a perfect subset, because such a set would have to be contained in the union
of a certain countable number of constituents, which leads to a contradiction
to the assumption that each constituent is at most countable. (Perfect sets
in Baire and Euclidean spaces have the cardinality of the continuum.)

3) At least one of the constituents [C]v is uncountable. By the theorem
that constituents are Borel, [C\v is Borel, hence, a 2}-set. Consequently, the
constituent [C]v contains a perfect subset, by the Aleksandrov-Hausdorff-
Suslin theorem. But then the set X = [C] contains this perfect subset,
hence, it has the cardinality of the continuum.

Of special interest is the second of these three possibilities—when a ΠJ-set
X has the cardinality Xj and does not contain a perfect subset, but has
uncountably many non-empty constituents [C]v, each being at most
countable. Can such a possibility be realized by a suitable nj-set (or, what
is equivalent in view of the sieving theorem, by an open sieve C) or are there
no such sets (and sieves)? This problem, which was posed by Luzin in the
early note [2] , was perhaps regarded as central in the classical descriptive
theory. We turn to this problem in §6, where we report on the much later
investigations of Novikov and Solovay, which established that it is undecidable.

For the interior constituents a proposition analogous to the boundedness
principle does not hold, and the case similar to 2) is simply excluded by the
following theorem of Selivanovskii [38] : if a Borel sieve C has uncountably
many non-empty interior constituents lC]tv, then at least one of these is
uncountable.

Yet another application of the boundedness principle was noticed by
Luzin in [11], Ch. Ill, namely, the regularity of the decomposition of the
exterior set into constituents. This goes as follows. Let C be a Borel sieve,
as before. Then there exists a transfinite ordinal number θ < ωχ for which
the difference set

[C]-[C]< e = U [C\v

is of the first category. In other words, the exterior set [C] agrees to
within a set of the first category with the union of a certain countable
family of constituents [C]v. This means that the decomposition into
exterior constituents is regular with respect to category. A similar regularity
holds for measures: if a Borel σ-finite measure (which is σ-additive, see §2)
is given on the space in question, then the set [C] coincides to within a set
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of measure zero with the union of a certain countable family (dependent on
the measure) of constituents [C]v.

It is remarkable that the decomposition of the interior set into interior
constituents is also regular relative to category and measure; this was
established by Selivanovskii in [38].

Comparison principle for indices (Novikov, see [51 ]). Let Cx and C2 be a
pair of Borel sieves for passing sets in a single space. Then the set of all
points χ in this space for which Indx Cx < Ind* C2 belongs to the class Σ}.

This important result allows us to investigate exhaustively the laws of
separation and reduction on the first projective level. The content of these
laws is as follows:

a) in the class Σ\ both separation theorems hold (with Borel sets as
separating sets in the first theorem)—this was proved by Luzin in [7] and
[11], Ch. Ill;

b) in the class oflli-sets the inseparability theorem (Novikov [40]) and
the reduction theorem hold (Kuratowski [62]).

The separation and reduction theorems have received various extensions to
the case of arbitrarily finitely and countably many separating or reducing
sets (multiple separation and reduction theorems). On this, see [18], [41],
[53], [61], and [63], 358.

§4. The first projective level: sets with special sections

This branch of the descriptive theory is especially rich in interesting
results. The main problem here concerns the clarification of the relationships
between linear and plane sets. Sets are regarded as linear if they are subsets
of the real line R, realized in the form of the OX-axh, or subsets of the
Baire space jV understood as a "horizontal axis". Plane sets are those
situated in the Euclidean plane OX Υ or in the Baire plane J^.

Below we talk only of linear or plane Baire sets but indicate the
modifications that arise in the passage to the Euclidean case.

Linear and plane sets are related by the operation of projection understood
by analogy with the general case of §2 (that is, every point of the (x, y)-
plane projects to x), but with an element of geometric intuitivity: projection
onto the horizontal axis.

Turning now to sections, let Ρ be a plane set; thus, Ρ Ξ . ίΛ2. Every
point i f / determines a vertical section Px = {y: (x, y) 6 P}of P. Now
Px is contained in JV, consequently, is a linear set; however, we must
imagine it as situated on the vertical axis JT, that is, on the second axis in
the decomposition jT2 = .Τ Χ JT.

Depending on the character of the sections Px we distinguish various types
of plane sets. For example, if every section Px of a given set Ρ consists of
at most one point, then the set Ρ is called single-valued (or uniform). Such
sets are connected with one of the most important problems in the descriptive
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theory, namely, uniformization (on this, see §4 in the article of Uspenskii
[132]).

4.1. Uniformization on the first projective level.
We recall that a plane set Ρ uniformizes a plane set Q when Ρ ζ Q, Ρ is
single-valued, and its projection (in the sense just explained, that is, projection
onto the horizontal axis) coincides with the projection of Q. The
uniformization theorem for a given class Κ (for example, the projective class)
can be stated as follows: every plane set of the class Κ can be uniformized
by a (single-valued) set of the same class. Investigations on uniformization
can be grouped, in general, around the central problem: to prove or
disprove the uniformization theorem for the projective class in question.

The term "uniformization" was introduced in the descriptive theory by
Luzin in [12], however, some interesting theorems had already been
obtained in the second half of the 20's (in a somewhat different context:
the selection of a single-valued branch in a given multi-valued function). We
begin our account of the classical results with the "negative" theorem of
Novikov [40]: there exists a closed plane set (in the Euclidean case it is G&)
that does not allow a uniformization by sets of the class Σ\. Thus, the
uniformization theorem does not hold for the classes IIJ (of closed sets), Δ)
(of Borel sets), and Σ} (analytic or A -sets).

Conversely, as was shown by the Japanese mathematician Kondo, the class
H[ satisfies the uniformization theorem. Kondo's contributions [72] were
based on a method devised by Novikov (see [27]) for the effective selection
of a point from a non-empty IIJ-set. Even before Kondo's result became
known, Novikov [43], [44] and Lyapunov [54], [56] obtained some
important theorems on the uniformization of IlJ-sets and on the nature of
the projection of single-valued IlJ-sets.

The question of uniformization of 2J-sets was studied by Luzin and
Yankov. Luzin established that every Sj-set can be uniformized by a set
that is effectively constructible, that is, without recourse to the axiom of
choice ([5], Ch. V, [11], Ch. IV). Analysing Luzin's proposition, Yankov
showed in [75] that every Sj-set can be uniformized by a set that is a
countable intersection of countable unions of differences of 2}-sets.

4.2. Single-valued and countable-valued sets.
Special properties became apparent already in the first papers on
uniformization in the case of plane sets Ρ satisfying the condition that every
vertical section Px is at most countable; such sets are called countable-
valued. Novikov discovered [40] that every countable-valued set of class Δ*
(that is, Borel set) can be uniformized by a AJ-set, although, as we have said,
the uniformization theorem does not hold for the class A[ in general.

The peculiarity of countable-valued and also single-valued sets manifested
itself in connection with the problem of the class of a projection. It was
discovered that the projection of every single-valued (Luzin [7]) and even
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countable-valued (Novikov [40]) set of class AJ is necessarily a AJ-set,
whereas the projections of AJ-sets (and even of closed sets) of general form
fill out the class Σ*, which is wider than A{. Luzin established that,
conversely, every linear AJ-set is the projection of an appropriate single-
valued closed set [7]. In the Euclidean case in place of closed sets one has
to take sets of class IIJ, that is, G6-sets.

Another two groups of interesting results consist of covering and
decomposition theorems. Glivenko showed [39] that any single-valued
2J-set can be covered by a single-valued set of class A\, whereas there is a
single-valued IlJ-set that does not allow such a covering. Luzin found ([11],
Ch. IV) that every countable-valued 2J-set can be covered by a countable-
valued Aj-set. Later several more subtle covering theorems were obtained
(see the article [74]).

Finally, Luzin proved in [11], Ch. IV, the decomposition theorem for the
class Δ}: every countable-valued AJ-set is the union of countably many
single-valued sets of the same class, and a similar theorem for the class Σ\.

A treatment and systematic account of all this material were given by
Luzin in the fourth chapter of his "Leqons" [11]. We remark that in the
proofs of the majority of the theorems quoted in this section the principal
role is played by Luzin's first and second separation theorems for the class Σ*.

4.3. Other types of section.
At the end of the 30's the attention of experts was drawn to plane sets with
compact and σ-compact sections. (In the Euclidean case closed sections and
sections of class Fc are considered.) Novikov established in [46] that the
projections of AJ-sets with compact sections are themselves of class Aj.
Arsenin extended this result to sets with σ-compact sections [73] (see also
[61 ]). The proof uses certain multiple separation theorems.

Subsequent studies showed that plane AJ-sets with σ-compact sections
permit uniformization by means of a (single-valued) set of class A} (Shchegolkov
[76]) and decomposition into countably many sets of class A{ with compact
sections (Saint Raymond [101]).

Recently Louveau [118] obtained a beautiful theorem: if £ < ω, and a
plane Aj-set Ρ is such that each of its sections Px belongs to the class Σ | + ι ,
then Ρ can be expressed as the union of countably many AJ-sets each section
of which is a set of class Eg.

In the 70's a study was begun of sets with "large" sections, that is, of
positive measure or not of the first category. The strongest results in this
direction were obtained in [120]. It is shown there, in particular, that a
AJ-set whose non-empty sections are all not of the first category (or of
positive measure, when a certain Borel σ-finite measure is fixed) necessarily
has a projection of class AJand permits uniformization by a means of AJ-set.

A few more theorems on uniformization by AJ-sets are quoted in [106]
(where uniformizing sets are called selectors).
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§ 5. The theory of operations on sets. C-sets and /?-sets.
The second projective level

In the fifth chapter of his book [11], having defined projective sets,
Luzin introduced the following general problem: to clarify whether
theorems proved at that time for the first level, such as separation theorems
or theorems on single-valued or countable-valued sets, remain valid on the
second and higher levels of the projective hierarchy. At the beginning of the
30's very little was known even about the second projective level, essentially
only the fact that every 2J-set is the union of xx Borel sets, however, in contrast
to the analogous decompositions of ZJ-sets and Π'-sets, regularity with
respect to measure and category (see §3) for the decompositions of ZJ-sets
had not been established. And the question of measurability, the Baire
property, the perfect kernel property, as well as problems concerning
separation, special sections, etc, remained open, and the situation as Luzin
writes in [19], §23 appeared altogether hopeless.

Problems of regularity properties for sets of the second projective level
also remained unsolved while later through the efforts of Novikov and
Solovay (see the next section) it was established that a solution is here quite
impossible within the framework of the usual mathematical tools. True,
even in the 20's two important forms of Δ^-sets were known for which the
problems of measurability and the Baire property turned out to be soluble
in the affirmative: these were the C-sets and the Λ-sets.

C-sets, which were introduced by Selivanovskii (see [37], where
Selivanovskii attributes the idea of these sets to Luzin), form the smallest
class of sets in the space in question that is closed under the operation of
passing through a sieve of that class (or, what is equivalent, under the
A -operation) and the operation of complementation and contains all open
sets.

Selivanovskii showed that all C-sets are absolutely measurable and possess
the Baire property. Just like Borel sets, the C-sets form a hierarchy of
increasing classes, indexed by the natural numbers and the countable
ordinals. The classes of this hierarchy are denoted by C f, CC^, and BC^,
where 1 < £ < cjj. The first class Cx includes all interior sets of sieves
formed from the open sets of the space. For any £ the class CC^ consists of
the complements of sets of Cj, while 2?Q is the common part of C^ and
CC%. Finally, for £ > 2 the class Q contains all interior sets of sieves whose
elements are sets in (J CC-n. Selivanovskii established in [37] that the

classes of this hierarchy, like the Borel and the projective classes, grow with
increasing index £ and comprise all C-sets.

The separation laws for the hierarchy of C-sets were discovered by
Novikov in [45]. It turned out that every class C t satisfies both separation
theorems and every class CQ the inseparability theorem. As was shown by
Kantorovich and Livenson in [52], all C-sets belong to the projective class
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S\ but do not exhaust it. A wider part of S\ is formed by the Λ-sets, which
were discovered by Kolmogorov in the course of working out a theory of
operations on sets. We give an account of some propositions of the latter.

Let / be a fixed indexing set (countable, as a rule; in principle we may
assume that I = ω, but usually we employ more complicated indexing sets,
which reveal better the essence of the relevant operations). The elements of
the set / are called indices, sets of indices are called chains and sets of chains
bases. Every base Β specifies an operation ΦΙΒ that assigns to every
/-indexed family (X( : / £ / ) the set Φ / Β (Xt : ί£/> = (J Π Χι- Operations
of this kind are called 8s-operations.

To this category there belong the operations of taking the union [j and
ι

intersection Π for /-indexed families. As a base for the first of these one can
ι

take the set of all singleton chains {i}, where i Ε /, and a base of the
second contains the single chain u = /. Aleksandrov's A -operation [29] also
belongs here, and an indexing set of it is the set of all sequences <a, am)
of arbitrary finite length m > 1, formed from natural numbers ak, while a
base consists of chains of the form

u = {(aj), (au a2), (au a2, a3), (au a2, a s, «4>, . . .},

where av a2, a3, a4, ... are arbitrary natural numbers.
Kolmogorov indicated the following general methods of constructing

δ.ν-operations from operations already obtained:
1) The complementation operation. For a given 5s-operation Φ = Φ / Β

one introduces the complementary 6s-operation Φ':

Φ° (X,: i ζ / > = CO (CXr. i 6 / >.

(By CX we denote the complement of a set X. We assume that all sets Xt

lie in some fixed space relative to which the complements are taken.) A
base for the operation Φ° is provided by the set Bc of all chains i ) C /
having a non-empty intersection with every chain u Ε Β. The operations U
and Π are mutually complementary.

ι
2) Composition. Suppose that Φ = Φ / Β is a given Os-operation and that

to each / Ε / the 6s-operation Φ ( = Φ / ; Β ; is assigned. In this case we can
define a new 6s-operation Φ with indexing set J — {{i, j): i ^ I and / 6 /;
acting as follows:

Ψ (Xi}: (i, j > e / > = Φ (Φ; (Xtl: 1 6 /, >: i 6 / >.

A base for the operation Ψ consists of all chains ρ C / o f the form

ν = {(t, />: i £ u and j 6 w,·},

where u( Ε /?,- for all / Ε u and u Ε Β.

When the exterior operation Φ is fU the resulting operation Ψ is
appropriately denoted by ΠΦ,·. *

ΐ
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3) R-transformation. From a given 5s-operation Φ = Φ Γ Β we can
construct a new os-operation RΦ with indexing set RI, formed by all
sequences (iv ..., im) of indices ik Ε /. A base RB of it consists of all chains
that are obtained in the course of a construction, rather like performing a
composition ω times. Namely, we take a certain chain u Ε Β and assign to
each sequence </1; ..., im) Ε RI a chain uti.,.im 6 B· In the new chain υ we
include all sequences (il, ..., /„> Ε Λ/ that satisfy the following conditions:
z'j Ε w and im+i€ u^... ifn for any m with 1 < m <n. The base RB includes
all chains ν obtained by this construction.

It can be shown that the action of the operation RΦ thus defined does
not depend at all on the choice of a concrete base Β for the initial operation
Φ, therefore, the notation RΦ without indicating the base Β is well-defined.
The same goes for the notation Φ° and Π Φ/·

The operation RΦ is considerably stronger than Φ: any set that can be
obtained by countably many applications of Φ alternating with
complementation from, say, open-and-closed sets of a Baire space (or sets of
any other sufficiently "good" family) can be obtained by only a single
application of RΦ; and by the second method one can obtain sets that
cannot be obtained by the first. The idea of a normal series of Λ-operations
is based on this. The series is formed by operations /?E and their
complementary operations R%, 1 < £ < ω χ . The initial operation Rt is taken
to be the A -operation, and for £ > 2 one defines R-- = i?( f~] Λη). We

remark that the A -operation itself is identical with the R -transformation of
the operation Uo>· The Rt are called R-operations.

By R% we also denote the class of all sets that can be obtained from the
open sets of a given space by a single application of the operation R^. Next,
CRj: is the class of all complements (which is equal to the class of those sets
that can be obtained by the operation R\ on closed sets), while BR$ is the
common part of the classes R^ and CR^. The sets Rit CR^, and BR^ thus
defined comprise the hierarchy of Λ-sets; an i?-set is one that belongs to
one of these classes.

The whole theory of 6s-operations stems from two papers of Kolmogorov
which he completed at the beginning of the 20's. In one of these papers
[36] Kolmogorov introduced the concepts expounded here, except those
connected with ^-transformations, and showed that by means of any
6s-operation one can construct a hierarchy of point sets, similar to the Borel
or the C-hierarchies, and when certain requirements hold, then the classes of
this hierarchy grow at each stage of the construction. In the other paper,
which contains unpublished research of 1922 (on this, see [57], Introduction,
or [60], 208) Kolmogorov introduced ./?-transformations and the Λ-operations
and R-sets derived from it.

Kolmogorov's ideas in the domain of operations on sets were further
developed in much detail by other experts. Hausdorff established that for
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every Borel class Γ = Σ£ or Π | there exists a S^-operation Φ that gives after
a single application to open-and-closed sets of a given Baire space all sets of
the class Γ and only these ([66], §19). As was indicated in the Preface to
the fundamental memoir of Kantorovich and Livenson [52], Part I, such
operations exist also for the projective classes Γ = Σί, and ITJ, (and also for
those classes to which the projective hierarchy extends naturally through
transfinite subscripts). In Ch. Ill of that memoir the definition of the
Λ-transformation was published for the first time (attributed to Kolmogorov)
and a result was obtained (Theorem XXX) from which it follows that all
R-sets belong to the class Δ*. Quite recently it has been shown that i?-sets
form a proper part of the class A\ (see [107]).

A deep investigation of R-sets was undertaken by Lyapunov. Having
presented in [57] the construction of the Λ-operations and Λ-sets, Lyapunov
showed that .R-sets can be obtained in another way, by means of the
Γ-operations, which he discovered. In this paper he proved theorems on the
absolute measurability and the Baire property of Λ-sets. (Lyapunov remarks
in the Introduction that even earlier these results were obtained by
Kolmogorov and mentions the unpublished paper.) He also proved that
every R-set allows a decomposition that is regular with respect to measure
and category into ni Borel sets. In [57] Lyapunov constructed a theory of
indices for .R-operations, which enabled him to prove the separation theorems
for the class R^ and an inseparability theorem for the class CR^ and to
consider the action of the Λ-operations on .R-sets of a certain level; in
particular, he showed that for any £ > 2 the class BR^ includes all sets of
the class R<i- that is, the smallest class containing all open-and-closed sets
that is closed under the operation of complementation and all operations Rv

and Rc

v, 1 < η < ξ, but is not exhausted by them. For details on the study
of Λ-sets, see [57], [59], [60].

C-sets and R-sets occupying a peculiar "intermediate" position between
the first and second projective levels gravitate, perhaps, towards the first
level from the point of view of the results and techniques applied. A serious
study of the sets of the second projective hierarchy in full generality was
opened up by the work of Novikov [42] on the problem of separation. The
result obtained, as Luzin points out in [19], was entirely unexpected: both
separation theorems hold in the class W2 and the inseparability theorem in
the class Σ\, that is, the other way round compared with the first level. To
prove this Novkkov developed an apparatus of the minimal index and then
found numerous applications in the study of projective sets.

The Novikov-Kondo uniformization theorem (see §4.1) greatly simplified
and even trivialized some properties of sets with special sections on the
second projective level. Namely, the projections of single-valued plane
nj-sets entirely fill out the class Σί, so that here there is nothing similar to
the interesting group of results on projections presented in §4.
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The problems of covering and decomposition are solved quite differently.
There exists a countable-valued Sj-set that does not permit a covering by any
countable-valued set of class Π* and there exists a countable-valued Π^-set
that is not a countable union of single-valued sets of class Σ\ (see [ 128], §2).
The uniformization theorem itself holds for the class SJ, but not for H\
([125], 258).

§6. Difficulties of the classical theory of projective sets.
Search for new paths. The main trends of

the contemporary development of the descriptive theory

Thus, the classical investigations of projective sets were limited essentially
to sets of the first and second level of the projective hierarchy. More
complicated projective sets (and in relation to many problems also sets of
the second level and even ELJ-sets) did not yield to the efforts of researchers.
Commenting in the conclusion of his book [11] and summing up the
situation of the descriptive set theory at the time, Luzin wrote:

"Only two cases are possible. Either further research will lead one day to
precise relations between the projective sets and also to a complete solution
of questions concerning the measures, categories, and cardinalities of these
sets ... Or the indicated problems ... will always remain unsolved and to
them we must add a collection of new problems that are equally natural and
equally approachable. In this case it is clear that the day will have come to
reform our ideas on the arithmetic continuum."

It is now perfectly clear that the second of Luzin's alternatives has come
about. It has been established that many problems of the descriptive theory
(in particular, the problems of measurability, the Baire property, and the
perfect kernel property for projective sets) cannot, in fact, be solved in the
traditional sense of the words "to solve a problem", that is, by means of
standard mathematical tools and methods of reasoning it is not possible to
give a definitive answer "yes" or " n o " .

This "reform" of the descriptive theory towards the inevitable and
necessary, which Luzin pointed out in 1930, is successfully developed in
contemporary research in two closely interconnected main directions: the
use of additional axioms and proofs of consistency.

Experts in mathematical logic and set theory have developed several set-
theoretic axiom systems. The widest recognition among them is given to the
ZFC-theory of Zermelo-Fraenkel, including the axiom of choice AC, which is
adequate as is generally accepted, in formalizing all methods of mathematical
reasoning in use. After this axiomatic theory had been worked out, it
became possible in a mathematically rigorous sense to raise and solve
questions on the deducibility, consistency, and undecidability of some
proposition on sets or another. And if we know (or conjecture with
sufficient grounds) that by means of ZFC it is impossible to solve a large
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number of problems in this or another area (say, the problem of projective
sets), then it is quite natural to attempt to rectify matters by some new
axiom beyond the framework of the Zermelo-Fraenkel system. For such a
new axiom three main conditions must be fulfilled: 1) it must be consistent
(that is, it must not be inconsistent with the axioms of ZFC); 2) it must be
sufficiently acceptable from the point of view of mathematical esthetics and
intuition about sets; and 3) it must solve a significant number of problems.

In essence, not that many additional axioms have gained acceptance in the
descriptive theory. First of all, this is the case for the axiom of constructibility
together with its variants, the axiom of determinacy and its weaker forms, and
also to a lesser extent for the axiom of the measurable cardinal and Martin's
axiom.

6.1. Constructibility.
Godel introduced in [78] the concept of a constructible set, using this
name for any set that allows a transfinite construction of a special form.
He stated the axiom of constructibility, which postulates the constructibility
of every set and is denoted by the equality V = L (where V is the usual
symbol for the class of all sets and L denotes the class of all constructible
sets).

In [78] he showed that the axiom of constructibility implies the
generalized continuum hypothesis. In the proof of this proposition the
axiom of choice is not used, moreover, the axiom itself follows from the
axiom V = L.

Novikov obtained in [47] applications of constructibility to problems of
the descriptive theory. It turned out that the axiom V = L implies:

1) the existence of an uncountable nj-set without perfect subsets;
2) the existence of a AJ-set of real numbers that does not have the Baire

property and is not Lebesgue measurable;
3) the separation theorem for the classes ITi, and the inseparability

theorem for the class Σ), for any η > 3.
Later Addison showed that V = L implies the reduction theorem [80]

and also the uniformization theorem for each class Σ},, η > 3. The author
of the present survey also obtained some consequences of the axiom of
constructibility: in particular, the assertion that for any η ~> 3 there exists a
plane countable-valued Πϊ,-,-set that is not a countable union of single-
valued Σϊ,-sets [128].

On the whole, the axiom of constructibility makes all the projective levels
from the third on very similar to the second level—this is very clear from a
comparison of the results quoted here with those given in §5.

6.2. The axiom of the measurable cardinal.
This is the name given to the assertion, abbreviated to MC, on the existence
of an uncountable set such that on the algebra of all its subsets one can give
a non-trivial countably additive two-valued measure ([125], 261).
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The axiom MC has several consequences in the descriptive theory that are
contrary to consequences of the axiom of constructibility. Thus, Solovay
has shown in [86] that the axiom of the measurable cardinal implies
absolute measurability, the Baire property, and the perfect kernel property
for all sets of the class Σ\. Mansfield [92] deduced from MC the assertion that
every plane IlJ-set can be uniformized by a set of class IIJ.

A set that is referred to in the statement of MC (if it exists—the fact that
it exists cannot be proved in ZFC, however, it is regarded as quite likely)
must have extremely large cardinality, but this clearly does not stop the
axiom of the measurable cardinal from having interesting consequences for
such comparatively "small" objects as the set of real numbers. Essentially,
all known applications of MC in the descriptive theory can be deduced not
from the axiom itself, but from one of the following two propositions,
which are consequences of MC:

(*) For every set u C. ω (where ω is the set of natural numbers) there are
only countably many sets υ ΙΞ ω that are constructible relative to u.

(**) ("The sharps hypothesis"). For every « C. ω there exists a set of
natural numbers denoted by u* that codes in a natural manner the truth in
the class L[u] of all sets constructible relative to u.

The result of Solovay [86] quoted above was proved precisely by means of
(*) via the scheme: MC -*• (*) -»· absolute measurability, the Baire property,
and the perfect set property for all Sj-sets. It is interesting that (*) is not
only sufficient but also necessary for the presence of the perfect kernel
property in all Σ^εΐβ (and even in II}-sets); this was established by
Lyubetskii (see [93]).

6.3. Martin's axiom.
This axiom, which is denoted by MA, is very popular in certain branches of
topology (see, for example, the survey [134]), but does very little for
projective sets. We mention only that MA plus c > xx (which expresses the
negation of the continuum hypothesis) implies absolute measurability and
the Baire property for all SJ-sets [8] .

However, Martin's axiom yields a mass of interesting consequences in the
specific branch of the descriptive theory where transfinite constructions are
used with the help of the axiom of choice (see below §7.4 and §9). In this
area there are also applications of the continuum hypothesis c = x,, which
can also be regarded as a specific additional axiom. Incidentally, the axiom
MA (we omit here its rather cumbersome statement and refer the reader to
[125] Ch. 6) follows from the continuum hypothesis, therefore, it is usually
considered in conjunction with c > Xj.

6.4. Determinacy.
Axioms connected with this concept have attracted much attention of
experts in the descriptive theory during the last 15-20 years.
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Let A be some fixed set of points in the Baire space J\T. Such a set
determines a game G(A) between two persons I and II, as follows:

Player I writes down a natural number al;
Player II knowing the "move" ax writes down his own natural number a2;
again Player I, knowing a2, writes down a natural number a3;
Player II, knowing a3, writes down a4;

and so on. As a result of this play a point α = (alt a2, a3, aA, ...) £JV* is
obtained. If α lies in A the result is regarded as a win for Player I, and
otherwise as a win for Player II.

A set A is called determinate if one of the two players has a winning
strategy in the game just described, that is, a rule for selecting at his turn a
move dependent on the preceding moves of the opponent such that the
player in question, guided by it, wins irrespective of the moves of the
opponent.

Martin [89] established that all Borel sets ΛΞ^/fare determinate. And
this, perhaps, is a best possible result because the hypothesis SJ-Det that all
2J-sets are determinate (as well as the equivalent Ilj-Det) cannot be proved
in ZFC. However, the hypothesis 2j-Det follows from the axiom MC of the
measurable cardinal and is equivalent to the "sharps hypothesis" mentioned
in §6.2 and also to the assertion that any two non-Borel 2J-sets are Borel
isomorphic. For details on this, see [90], [103], [121].

Of the various "determinacy hypotheses" the greatest interest among
experts in the descriptive theory attaches to the axiom of determinacy AD,
which postulates the determinacy of all sets ^ i s X , and the axiom of
projective determinacy PD, which postulates the determinacy of all projective
sets As=jr.

The axiom AD implies absolute measurability, the Baire property, and the
perfect kernel property for all sets, therefore, it contradicts the axiom of
choice AC [83], [85] —in fact, the axiom was proposed as an alternative to
the axiom of choice by Mycielski and Steinhaus [82]. The more limited
axiom of projective determinacy PD gives the relevant properties for only
projective sets and seems not to contradict the axioms of ZFC (see §6.5).
However, the axiom PD has remarkable consequences in the domain of the
structure theory of projective classes, for example, the separation theorems
for the classes Σ ^ + j and Π|η+2 and the inseparability theorems for the
classes Ιϊίη+ι and Σ£η+2 for any η [81 ], [96].

Generally speaking, the axiom PD makes all odd levels of the hierarchy
similar in their properties to the first level and all the even levels to the
second level. This phenomenon of extending by steps of length 2 the
classical properties of the first and second level to higher projective levels
can also be observed in relation to theorems on sets with special sections
[97], [131].

However, a number of beautiful results (among them the generalization to
odd levels of the theorem of Suslin [31] on the coincidence of the class
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with the class of all Borel sets, see [97], Ch. 7) could be proved only with
the help of the full determinacy axiom AD. In arguments including AD, the
role of the "basic" set theory is played not by ZFC, but by ZF+ DC, which
is obtained by replacing in ZFC the axiom of choice by the axiom of
dependent choice DC, a kind of version of the axiom of countable choice,
which is sufficient to derive such "positive" consequences of AC as the
countability of a countable union of countable sets or the countable
additivity of the Lebesgue measure.

All these discoveries were concluded in the second half of the 70's by the
construction within the framework of the systems ZF+ DC +AD and
ZFC+PD of a fairly complete theory of projective sets solving practically all
the main problems on projective sets, in front of which the classical
descriptive theory had come to a halt. The much later research into
determinacy diverged strongly from the classical topics, and in relation to
them we limit ourselves to referring the reader to the article [123], the
series of papers published in the collections [114], [115], [116], and the
survey [136].

6.5. Consistency proofs.
In the theory of sets two principal methods have been worked out for
proving the consistency of propositions on sets. The first method consists in
deducing the relevant proposition from an additional axiom, whose
consistency is an established fact. This is how Godel proved in [78] the
consistency of the generalized continuum-hypothesis GCH: firstly, he
showed that the axiom of constructibility V = L does not contradict the
axioms ZFC, and then he produced a derivation of GCH from the axiom
V = L.

By exactly the same means—a derivation from V = L—Novikov proved in
[47] the consistency of the propositions §6.1.1), 2), and 3).

Consistency can sometimes be proved by a derivation from the conjunction:
Martin's axiom MA + c >• «j (the negation of the continuum hypothesis).
The fact that MA -f- c > xx does not contradict the axioms ZFC was
established by Solovay and Tennenbaum (see [125], Ch. 4, §6).

The axiom of the measurable cardinal refers to the group of the so-called
large cardinal axioms, which postulate the existence of extremely large
cardinalities. The consistency of this kind of axioms cannot be proved
rigorously—but it can be regarded as a fact, to some extent experimental, since
intensive activity around the consequences of the axioms ZF+MC have so
far not led to a contradiction. On the basis of this argument the systems
ZFC+ PD and ZF+ DC+ AD which contain axioms of determinacy are
assumed to be consistent.

Some eminent experts in the descriptive theory are inclined to regard the
axiom MC and the axioms of determinacy as propositions that are true in
the "real" world of sets or in some parts of it, giving a number of reasonable
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arguments in favour of such an approach (see [97], Conclusion, [98], [125],
Ch. 1 and Ch. 8, §6, [129], and [131]). Consequences of these axioms are
treated after the same fashion.

However, the axioms of large cardinals and the axioms AD and PD are
regarded as too transcendental means for a "simple" proof of consistency.

Another method for proving consistency was discovered by Cohen [84],
the method of forcing, which consists in a direct construction of models of
set theory. Of the greatest significance for the theory of projective sets are
two models constructed by Levy and Solovay by the method of forcing (see
[87]). In the first of these models all the axioms of ZFC are satisfied, and
it is true that every projective set is absolutely measurable, has the Baire
property, and the perfect kernel property.

The existence of this model shows that the assertion of absolute
measurability, the Baire property, and the perfect kernel property for
projective sets is consistent with the axioms ZFC. But on the strength of
the results mentioned above and the results of Novikov in §6.1 the
propositions that there exist projective sets that do not have the requisite
regularity properties (even in the classes AJ and Π|) are also consistent.
Thus, the problems of measurability, the Baire property, and the perfect
kernel property for projective sets are undecidable within the framework of
ZFC.

We remark that this undecidability result was predicted by Luzin as early
as 1925 (in [4]), almost half a century before it could finally be proved.

In the second Levy-Solovay model all the axioms of ZF+ DC are satisfied
(but not the full axiom of choice), however, in it every (not necessarily
projective) set is absolutely measurable, etc. Hence it is clear that the axiom
of choice in its uncountable form is certainly necessary for the construction
of such "singular" sets as, for example, sets that are not Lebesgue measurable.

A number of interesting results on consistency and undecidability in the
descriptive theory were obtained by means of other models. But some
important questions are still open (see [128], §7).

Concluding our survey of the main trends and approaches in the
contemporary descriptive theory of sets, let us stress that it was the classical
research of Luzin and his pupils and successors that became the point of
departure for the subsequent development. The real value of one new
concept or another or method in the descriptive theory can be checked first
of all by how many classical problems it is able to solve. In the next three
sections we consider in more detail some parts of current investigations that
are characterized on the one hand by their connection with results obtained
by Luzin, and on the other by the great attention they command among
experts.
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§7. Luzin's problems on the sequence of constituents

One of the main directions of Luzin's creative activity in the 30's
consisted in the analysis of the difficulties in the path to a solution of such
highly important problems of set theory as the continuum problem, the
problem of the cardinality of Πι-sets, the problem of an effective construction
of sets that contain exactly xx points. As an instrument of his analysis
Luzin chose the sequence of constituents. He obtained several interesting
results on the position of constituents in the Borel hierarchy. But the main
success of this cycle of Luzin's investigations was the statement of the problem
on the existence of a sieve whose constituents have certain properties and,
on a more general level, the problem on the existence of "effective"
uncountable sequences of Borel sets satisfying certain conditions. The
present section is devoted to these problems.

7.1. Problems on the exterior constituents.
We begin with a series of four problems stated by Luzin in [19], § 1 and
[20], §1. These problems are given here in the order and numbering that
Luzin put them in his papers.

Problem I. Does there exist an open sieve C such that every constituent
[C]v contains exactly one point?

Problem II. Does there exist an unbounded open sieve C such that every
constituent [C]v is at most countable?

A sieve C is called unbounded if it has uncountably many non-empty
exterior constituents [C]v. For open (and also for Borel) sieves the
requirement of unboundedness is equivalent to the exterior set being non-
Borel (see §3).

The condition imposed on the sieve in Problem II is weaker than that in
Problem I in two respects: firstly, the condition that each exterior constituent
is non-empty, which is implied by the requirement of the single element, is
replaced by the condition that uncountably many (but not necessarily all)
constituents are non-empty, and secondly, the condition "contains not more
than one point", which is also implied by the same requirement, is replaced
by the condition "contains not more than countably many points". The
principal role in defining the status of these problems is played by the first
moment whereas the second is of lesser significance. One can state the
following "intermediate" problem.

Problem la. Does there exist an unbounded open sieve C such that every
constituent [C]v contains not more than a single point?

Novikov established in [44] that Problem la is equivalent to Problem II in
the sense that the existence of a sieve satisfying the requirements of one of
these problems logically implies the existence of a sieve satisfying the
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requirements of the other. (The non-trivial part lies in the step from
Problem II to Problem la, and this is what Novikov settled.)

Now we turn to the problems raised by Luzin in [19] and [20]. Proposing
to weaken further the requirements placed on the sieve, Luzin posed the
following two problems.

Problem III. Does there exist an unbounded open sieve C such that the
exterior constituents [C]v form a sequence that is bounded in rank?

Problem IV. Does there exist an unbounded open sieve C such that the
constituents [C]v can be included in pairwise disjoint Borel sets forming a
sequence that is bounded in rank?

The rank (or in Luzin's terminology, the class) of a Borel set X is defined
to be the least number £ < ω{ such that X belongs to the class Δ | ο ί the
Borel hierarchy. Thus, the rank in a certain sense characterizes the position
of a given Borel set in the Borel hierarchy. A family consisting of Borel sets
is bounded in rank when there exists a transfinite ordinal ξ < ωχ such that
every set in the given family has rank less than ξ. In particular, any family
is bounded in rank if it consists of at most countable point sets, because
every such set belongs to the class Fa (that is, 2J) and as a result its rank is
not greater than 3.

Problem III which is connected with the "restricted Lebesgue problem"
(on this, see §5 of Uspenskii's article [132]), attracted Luzin's special
attention. In Ms papers he stated several versions of Problem III of which
we quote here two, numbered III-A and III-B.

Problem III-A ([13], §1). Does there exist an unbounded open sieve C such
that from among its non-empty exterior constituents one can select an
uncountable family of bounded rank?

Here it is not required that the family of all exterior constituents [C]v is
of bounded rank.

Problem III-B ([14], §6). Does there exist an open sieve C such that every
exterior constituent [C]v is non-empty and from among the [C]v one can
select an uncountable family of bounded rank?

It is quite appropriate to quote yet another version of Problem III.

Problem III-C. Does there exist an open sieve C such that all the constituents
[C]v are non-empty and form a sequence that is bounded in rank?

Naturally, similar modifications can be considered also for Problems II
and IV. Problem I itself is a "version B" that is weaker than Problem la.

7.2. "The basic problem of the theory of analytic sets".
A problem under this heading was stated by Luzin in [ 1 7 ] , §5 . It consists

in the following:
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Does there exist an open sieve C such that from among the constituents
\C]V and [CUv (taken together) there are uncountably many non-empty ones
and all the sets |C] V and [C] # v together form a family that is bounded in rank?

Unlike the problems considered in the preceding subsection, this problem
is connected with Luzin's "restricted continuum problem", which, we recall,
consists in requiring to partition effectively the continuum (understood as
the real line or the Baire space) into x1 non-empty Borel sets bounded in
rank (see §2 in the article by Uspenskii [132]). A sieve C satisfying the
conditions of the "basic problem of the theory of analytic sets" would
immediately provide the required partition, since the exterior and interior
constituents [C] v and [C]0V taken together are pairwise disjoint and their
union gives all points of the space in question.

7.3. Solution of the problems.
To begin with we quote some classical results. Problem II is equivalent to
the problem whether there exists an uncountable II[-set without a perfect
kernel—we discussed in §3 this fact, which was discovered by Luzin ([11],
Ch. HI).

Novikov showed in [44] that Problem la is also equivalent to the
existence of an uncountable n\-set without a perfect kernel and so is
equivalent to Problem II.

Lyapunov [56] established that a positive solution to Problem II would
follow from the assertion that there exists an unbounded open sieve whose
exterior constituents are all closed.

Selivanovskii [38] obtained this result: if every interior constituent of an
open sieve is at most countable, then there are only countably many non-
empty interior constituents. In other words, the analogue to Problem II for
interior constituents has a negative solution.

In connection with Problems III and IV Luzin himself undertook a study
of a special class of universal open sieves and discovered that the sieves of
this class cannot give a positive solution to these problems (see [11], Ch. Ill,
[13], [19], [20]). It turned out that the ranks of the constituents [C)v of
such sieves C monotonically tend to the transfinite ordinal ωχ as ν increases
to ωι. Similar results emerged from Luzin's investigation of the effective
construction in [14] of a transfinite sequence of KJ Borel sets containing
sets of arbitrary high rank (in fact, all countable ranks). Earlier such
sequences were constructed only with the help of the axiom of choice.

Even after Luzin had abandoned this topic, the problems on constituents
continued to attract the attention of his students Novikov, Keldysh, and
Lyapunov. They discussed them, in particular, in the papers [49], [50],
[51], [56], and [71]. However, nothing of substance could be achieved by
the tools of the classical descriptive theory, and more recent findings
confirmed to a large extent the view Luzin expressed in [19], §6, that
"problems of this kind necessitate a departure from the traditional view of
the meaning of the words: solution of a problem".
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Further progress in research on problems concerning constituents was
connected with undecidability proofs. Novikov [47] and Solovay [87]
established the undecidability of the problem of an uncountable IlJ-set
without a perfect kernel (see §6). However, Problems II and la, which are
equivalent to this, turned out to be undecidable. A study of Luzin's
remaining problems and their versions was undertaken by the present author
in [130]. The following results were obtained.

Problems III and IV and also the versions A and Β of Problems la, II, III,
and IV (including Luzin's problems III-A and III-B) are equivalent to the
problem of an uncountable Π,'-set without a perfect kernel (consequently they
are equivalent to each other and to II and la) and are undecidable in the
axiomatic set theory ZFC.

By contrast, the modifications of type Β of Problems la, II, III, IV, and
among them Luzin's Problem I (=Ia-B) turn out to be soluble in the
negative: one can prove (in the usual sense of the word) that a sieve of the
required type does not exist. The "basic problem in the theory of analytic
sets" considered in §7.2 is also soluble in the negative.

If we speak of interior sets, here the picture is somewhat different. The
analogues for interior constituents of Problems la, II, III, IV, and their
modifications of type Β (including the analogue of Problem I) are soluble in
the negative. But the analogues to the modifications of type A and Β of
Problems la, II, III, IV are insoluble and are equivalent to the problem of an
uncountable IlJ-set without a perfect kernel.

7.4. Luzin's continuum hypothesis and related problems.
Side-by-side with Cantor's continuum hypothesis, which can be expressed by
the equation c == x1; another continuum hypothesis is considered in the
literature of set theory, which was introduced by Luzin in [19], §9 and
[20], §9, and is associated with his name. This hypothesis consists in the
equality c = 2Ni. Indicating that both continuum hypotheses are probably
to an extent equally free from contradiction, Luzin states in these papers
three hypothetical propositions that are quite compatible with the continuum
hypothesise = 2Ni, but incompatible with Cantor's continuum hypothesis
c = Xj. Here are these propositions.

Proposition I. Every point set of cardinality Xj belongs to the class U\.

Proposition II. Let C be an open sieve. Then for every set U consisting of
ordinal numbers ν < ω, the union of constituents [C]v with indices ν Ε U is
a U\-set.

Proposition HI. The union of Xj arbitrarily chosen Borel sets is of class Σ],

Luzin associated all three propositions with what he called the "higher
continuity" of the continuum, without, however, explaining the meaning of
this in more detail.
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Each of the propositions I, II, and III implies Luzin's continuum
hypothesis. (This is not difficult to deduce from the fact that there are
exactly continuously many sets in the classes IIJ and Σ\.) Itself it follows
from the axiom of determinacy AD. The latter fact for Proposition I is to a
certain extent trivial, since from AD it follows that altogether there are no
point sets of cardinality exactly Xj (see [85]). The more complicated
deduction of Propositions II and III from the axiom AD is given in [97],
Ch. 7.

Thus, if AD is regarded, as we said in the preceding section as in a certain
sense a true axiom about "real" sets, then to the same extent the propositions
under discussion here become true (and also Luzin's continuum hypothesis).
We remark that Luzin himself commenting on these propositions characterized
the first two as undoubtedly true, and the third as likely.

Now we consider the relationships of the Propositions I, II, and III and
the hypothesis c = 2^1 with the axioms ZFC. Cantor's continuum hypothesis
implies a negative answer to each of the three propositions and the negation
of Luzin's continuum hypothesis, so that neither the propositions nor the
hypothesis can be proved by means of the axioms ZFC.

On the other hand, Martin and Solovay established in [88] that the
equality c = 2 s i follows (in ZFC) from Martin's axiom MA plus c > xv and
the Propositions I and III follow from the following complex hypothesis:

MA + (c > Xj)+ (the negation of the Proposition (*) in §6.2).

But this hypothesis does not contradict the axioms ZFC (see [88]).
Consequently, Propositions I and III and Luzin's continuum hypothesis also
do not lead to a contradiction with ZFC, therefore, in view of what we have
said above, both propositions and the hypothesis are undecidable.

Matters are different with regard to Proposition II. In [88] it was shown
that this proposition implies the measurability of the cardinal x, in the sense of
two-valued countably additive measure. But this measurability is impossible in
ZFC, because every uncountable measurable cardinal is strongly inaccessible.
Hence, Proposition II is false if we accept the axiom of choice (but, we recall,
is true when we accept the axiom of determinacy).

§8. Equivalence relations: Luzin's remarks and contemporary research

The point of departure for the discussion in this section is the continuum
hypothesis in the form of the assertion on the absence of intermediate
cardinalities between the countable cardinality x0 and that of the continuum
c = 2No. The natural "carrier" for such an intermediate cardinality would be
an uncountable point set whose cardinality is not equal to that of the
continuum, and suitable candidates from the point of view of the descriptive
theory would be uncountable sets not containing perfect subsets, that is, sets
not having the perfect kernel property (in the sense of §2). Research on
these sets formed one of the most interesting directions in the descriptive
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theory of sets. (Here we should mention the theorem of Aleksandrov and
Suslin in §2, Luzin's analysis in §3 of the cardinality of IlJ-sets, and more
recent results in §6.)

Nevertheless, perhaps even richer material for the study of the continuum
problem is provided by equivalence relations.

Let Ε be an equivalence relation on one of the Euclidean or Baire spaces
&. (All these spaces are equally appropriate as regards the questions we are
about to consider.) An Ε-equivalence class is any set Χ Ε Ά~ satisfying two
requirements: firstly, xEy for any pair of points x, y G Χ and, secondly, if
χ G X and y G #"and xEy, then y also belongs to X.

Luzin was probably the first in the descriptive theory to turn his attention
to the difficulties associated with equivalence relations. The analysis of this
topic by Luzin in [7], § §64-65, was concentrated on the following two
main problems:

a) How many equivalence classes does a given equivalence relation have?
b) For a given equivalence relation, can one construct effectively a point

set containing precisely one point from each equivalence class?
After his memoir [7] Luzin did not return to equivalence relations: the

development of the descriptive theory of sets brought other tasks to the
forefront. A serious study of this theme did not start until the early 70's.
8.1. Investigation of the number of equivalence classes.
In work in this direction equivalence classes are divided into three categories:

1) countable relations—those which have only countably (or finitely)
many equivalence classes;

2) continual relations—those for which there is a perfect set consisting of
pairwise inequivalent elements (such relations necessarily have a continuum
of equivalence classes);

3) relations not belonging to the first two categories—these we shall call
singular.

It is clear that countable equivalence relations are analogues to countable
(and finite) point sets, continual relations are analogues to sets that contain
a perfect subset, and finally, singular relations are analogues to point sets
that, being uncountable, do not contain perfect subsets. And this analogy is
by no means purely superficial. To any point set X one can assign an
equivalence relation ex defined as follows: xexy when χ = y or both points
χ and y belong to the complement of X. The equivalence classes of ex are,
firstly, all singletons {x}, where χ G X, and secondly, an additional class
formed by the complement of X. Thus, to countable sets X there correspond
countable equivalence relations ex, to sets containing a perfect set continual
relations ex, and finally, to uncountable sets that do not contain perfect
subsets the singular relations ex.

As is clear, the theory of point sets (in connection with questions of
cardinality and perfect kernels) forms a special case of the more general
theory of equivalence classes. Moreover, the inversion so defined holds:
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if a point set X belongs to a class K, then the corresponding relation ex as a
set of pairs lies in the class of complements to sets in K. This means that,
for instance, the analogues among equivalence relations of the SJ-point sets
are the OJ-relations, that is, relations Ε such that the corresponding set of
pairs {Or, y): xEy) is of class Π,1. Conversely, OJ-sets are analogues of Σ\
equivalence relations.

After these necessary remarks we turn to a survey of results. Of the
greatest interest are the singular equivalence relations. Silver [95] obtained
a very important result: a Tl^-relation cannot be singular. In view of what
we have just said, this theorem is an analogue and generalization of the
Aleksandrov-Hausdorff-Suslin theorem of §3 that no Zj-set fails to have the
perfect kernel property.

In the same way the following result of Burgess [105] is an analogue and
generalization of Luzin's theorem on the cardinality of IlJ-sets, which was
explained in §3. Burgess found that any singular E}-equivalence relations
necessarily has precisely Ht equivalence classes. However, the analogy here is
not quite complete: if the assertion that there is an uncountable nj-set
without perfect subsets is undecidable (see §6), then singular ΣΙ-relations can
be constructed directly. To construct one we take an open sieve C whose
exterior set [C] is non-Borel. We define xE*y when either the points χ and
y belong to the interior set [C] „ or there is an index ν < cot such that χ and
y belong to the constituent [C]v. It is not difficult to verify that E* is a
Z{-relation whose equivalence classes are all non-empty constituents [C]v

(and there are uncountably many of them, since [C] is non-Borel) plus [C]».
Thus, the relation E* is not countable, but in accordance with the boundedness
principle of §3 it cannot be a continual relation. Hence, C is a singular
SJ-relation.

A more exact analogy is obtained if we consider relations bounded in
rank, that is, equivalence relations Ε such that all ^-equivalence classes are
Borel sets and in total are bounded in rank. A study of such relations was
made by Stern in [111] and more fully in [112]. Stern established that the
assertion on the existence of singular EJ-relations bounded in rank is
undecidable in ZFC. In the later of the two papers there are many other
interesting properties of S}-relations. In particular, for any SJ-relation Ε that
is bounded in rank it is shown in [112] how to construct by certain regular
means a II}-set AE<= ,f having the properties that: 1) if player I has a
winning strategy in the game G(AE), then the relation Ε is countable, 2) if
player II has a winning strategy in this game, then Ε is continual, and 3) if
the game G(AE) is not determinate, then £ is a singular relation.

In [ 111 ] it was shown that the axiom of projective determinacy PD implies
the absence of singular projective relations (of any class) that are bounded in
rank, while the full axiom of determinacy AD implies the absence of any
singular relations that are bounded in rank. Incidentally, from AD it also
follows that there are no collections of «j Borel sets of bounded rank [ 103].
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8.2. The invariant descriptive theory of sets.
At the basis of this direction lies the same approach as in research on
counting the number of equivalence classes, namely, to regard equivalence
classes as new "points". Let Ε be an equivalence relation on one of the
Euclidean or Baire spaces £C. A set X £ £C is called invariant (in the sense
of E) if any two points x, y such that xEy both do or do not belong to X.
In other words, invariant sets are unions of equivalence classes.

It has been possible to clarify that certain theorems of the descriptive
theory remain valid in the domain of invariant sets. For instance, the
following invariant analogue to the first separation theorem forSj-sets holds:
any pair of disjoint invariant S}-sets can be separated by invariant Borel sets
(see [108]). Similar results were obtained in [108] for the theorems on the
reduction, uniformization, and decomposition into Borel sets. The invariant
separability for the classes of the Borel hierarchy was considered in [113].
Closely related investigations are in [105].

The fundamental and frequently quoted paper on invariant sets was
published by Vaught [99], however, we refrain from surveying its contents,
since this would require an account of special model-theoretic logical
symbolism.

8.3. Selector problems.
A selector for an equivalence relation Ε is a point set intersecting every
^-equivalence class in exactly one point. Of course, a selector can be
obtained by a simple application of the axiom of choice, however, if we
wish to construct a "definable", say, a projective, selector (as Luzin suggests
in [7], §65), then the task becomes very complicated even for certain very
simple equivalence relations. For example, the selector for the equivalence
relation of Vitali (which as a set of pairs is Borel) is, as is known, a non-
measurable set (and does not have the Baire property), so that this
equivalence relation necessarily fails to have a selector of class Σ}ΟΓ IIJ, and
a search for selectors in higher projective classes can only be done in the
sense of consistency.

Thus, if we wish to study selectors of ZJ-equivalence relations, then it is
appropriate to begin with selectors of class Σ£ (or, what is the same in this
case, of class Δ£: it is easy to see that a SJ-selector of a relation of class Σ}
belongs to the class Δ^)- Burgess stated in [104] the following selector
principle, including in essence a problem:

(SP) every ZJ-relation has a selector of class Σ\.
To illustrate the relationship between this principle and the axioms ZFC,

we make use of two more propositions:
1) there exists a total ordering of a Baire space which as a set of pairs is a

2^-set;
2) there exists a non-measurable set of class A£.
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Being applicable to the Vitali relation, the principle (SP) implies (2), but
it itself follows, as is not difficult to prove, from (1). However, the
proposition (1) does not contradict the axioms ZFC, because it follows from
the axiom of constructibility, and proposition (2) cannot be proved in ZFC
[86], [87]. Hence, the selector principle is undecidable: it cannot be
proved nor disproved.

Budinas [135] showed that the principle (SP) lies "strictly between" (1)
and (2); more accurately, (SP) does not follow from (2) and does not imply
(1) [135].

§9. Problems and results connected with the axiom of choice
and transfinite constructions

The axiom of choice, which was introduced in mathematics by Zermelo in
1904, immediately gave rise to serious criticism from many leading
mathematicians of the time (Borel, Baire, Lebesgue, and others) in the first
instance because of its ultimately non-effective character, because it does not
contain any rule or law by which one can actually carry out the selection of
a concrete element χ in any given non-empty set X from a given family of
sets. Some other eminent mathematicians were of a different opinion and
saw no harm in applying the axiom of choice (Hadamard, Hausdorff, later
Sierpinski). For certain aspects of the debate that unfolded at the beginning
of our century in connection with this axiom, see the book [11], Ch. I, and
also [15], Part III.

On the whole Luzin adopted a critical stance towards using the axiom of
choice in mathematical reasoning, however, he did not shirk from considering
what the axiom could give in cases where it would be impossible to proceed
by purely effective means. To this cycle of Luzin's research there belongs
the construction and study of certain singular point sets, the analysis of
questions connected with the restricted continuum problem in a non-
effective sense, and also the statement and analysis of problems about subsets
of the natural numbers. In each of these three directions Luzin obtained
important results and posed deep problems, which became points of
departure for interesting research at a later time.

9.1. Luzin sets and sets everywhere of the first category.
A Luzin set (or a i>-set in the terminology of the book [63], §40) is the name
for any point set having the property that its intersection with any nowhere
dense set of a given space is at most countable (see [125], 70). Luzin in
[ 16] defined asef everywhere of the first category as a point set X such that
the intersection Χ ΓΊ Ρ is of the first category in Ρ for any perfect (non-empty)
set P.

Of course, every at most countable set is a Luzin set and is also a set
everywhere of the first category. Therefore, only uncountable sets of both
types are of interest. A construction of an uncountable Luzin set and an
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uncountable set everywhere of the first category under the assumption of the
continuum hypothesis c = Xj was given by Luzin in his note [1]. Later
Luzin constructed an uncountable set, more accurately, a set of cardinality
precisely x,, that is everywhere of the first category, without recourse to the
continuum hypothesis (however, using the axiom of choice, which is
assumed throughout this section); see [6], [16].

However, the problem stated in [16] whether there exists a set everywhere
of the first category and of the cardinality of the continuum without
assuming the continuum hypothesis remained open. It was also not known
whether there exist uncountable Luzin sets when c > «j.

The name "Luzin set" should perhaps be given to sets that are everywhere of
the first category, because Luzin dedicated several of his works (including
[1], [6], [16]) to precisely these sets. By contrast, the sets that nowadays
are called Luzin sets figure only once in Luzin's work, in the note [1].

In spite of a certain similarity in their definition and their identity on
countable sets, Luzin sets and sets everywhere of the first category have quite
different properties. Thus, an uncountable Luzin set necessarily fails to have
the Baire property, and no uncountable subset of such a set can be covered
by a set of the first category. At the same time, sets everywhere of the first
category are "exceedingly small" in the sense of category. For example,
uncountable Luzin sets and uncountable sets everywhere of the first category
form disjoint classes. However, the existence of a Luzin set of a certain
cardinality follows from the existence of a set everywhere of the first category
of the same cardinality (this assertion is, in fact, contained in [ 1] ).

We now turn to current research on these two types of set. As soon as
the method of forcing was discovered, it was established that the assertion
that Luzin sets of the cardinality of the continuum exist, and then, by what
we have just said, the sets everywhere of the first category of the same
cardinality exist, is consistent with the axioms ZFC plus c > nv (As was
indicated in [ 134], 89, this result is due to Vopenka and Hrbacek.) On the
other hand, the assertion that there are no uncountable Luzin sets follows, as
Kunen showed, from Martin's Axiom MA plus c > x1 ; that is, this assertion is
also consistent with ZFC+ c > x1. Finally, recently Miller [ 1 27] established
the consistency relative to the axioms ZFC + c > xa of the assertion that
there are no sets everywhere of the first category whose cardinality is strictly
greater than χχ. Thus, the problem in [16] mentioned above and the
problem of the existence of uncountable Luzin sets under the assumption
that the continuum hypothesis is false, turned out to be undecidable.

We have spoken here only of sets in Baire and Euclidean spaces (both, of
course, are of equal standing as regards the questions discussed), however,
many results remain valid for spaces of a more general form (see [ 134],
§§4.5 and 5.5, [127]).
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9.2. Again the restricted continuum problem.
This problem, as we recall, consists in requiring a partition of the continuum
(realized as one of the Baire or the Euclidean spaces—they are here completely
equivalent to one another) into xx non-empty Borel sets of bounded rank. Here
we consider results connected with this problem in its non-effective
interpretation under which we allow not only an effective construction of a
specific partition of the required type, but also a direct proof of the existence
of such a partition with the help of the axiom of choice.

A positive solution was obtained by Hausdorff in [65]. Hausdorff's result
consists in the following: there exists a sequence of sets X± C R of class Π<>
(that is, Gs), indexed by the ordinals % < ω 1 ; strictly increasing (Χ η ^ X^for
η < ξ) and such that the union of all sets Χξ completely covers the real line
R. Deleting from each set X$ all points that belong to the union of the
preceding sets, we obtain the required partition of the continuum into x t

non-empty sets of class Π31, that is, of rank no greater than 4.

Hausdorffs theorem leaves open the question whether the continuum can
be partitioned into Xj non-empty sets of type simpler than Π3. In particular,
does there exist a partition of the continuum into Xj non-empty sets of class
Π2? This problem was stated by Sierpinski in [33] (see also [63], 495).
The analogous problem for closed sets (the class Tl\) is also of interest, as is
the problem of partitioning into x2 nowhere dense sets.

All these variations on Luzin's restricted continuum problem were
subjected to intensive study in papers in the 70's. First came an exhaustive
study of the problem of a partition into nowhere dense sets. Hechler
showed in [91 ] that the assertion on the possibility of partitioning the
continuum into x, nowhere dense sets and also the negation of this assertion
is consistent with the axioms ZFC + c > x,. A little later Stern [109]
obtained the same result for partitionings into x, non-empty closed sets.
Thus, the problems of partitioning the continuum into n1 nowhere dense sets
and into Xj non-empty closed sets are undecidable in the theory ZFC -)- c >• x,.
Finally, Fremlin and Shelah [117] established that the problem of partitioning
the continuum into Xj non-empty sets of class 11° is equivalent to the first of
the two problems just mentioned (in the sense that from the existence of a
partition of one type follows the existence of a partition of the other, and
vice versa), consequently, this is also undecidable in the theory.

It should be mentioned that the continuum hypothesis c = Xj gives
trivially a positive solution for all three problems (by means of a partition
into Xj singleton sets).

After this excursion into contemporary research we turn again to
Hausdorffs results. Luzin's attention was caught by a very interesting
mechanism of proof in the course of which the principal difficulty to
overcome consisted in the necessity of examining all points of the continuum
in Xj stages of a construction, without introducing any restrictions on the
cardinality of the continuum, and also some technical difficulties. The
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serious nature of the latter was emphasized by the following restricted
theorem of Luzin [17]: a strictly increasing sequence of length ω1 consisting
of sets of class IIJ cannot increase continuously, that is, it is impossible that
the equation X% = [) Λη holds for all limit ordinals £.

1
The two papers [21] and [22] contain the result of Luzin's analysis of

Hausdorff's construction, both with the same title: "On subsets of the
natural numbers", to which our next subsection is devoted.

9.3. Problems and research on subsets of the natural numbers.
We recall that the set of natural numbers { 1 , 2 , . . . } is denoted by ω. Two
sets u, ν C. ω (that is, two parts of the series of natural numbers in the
terminology of [21] and [22]) were called by Luzin orthogonal when the
intersection « Π ρ is finite. Two families U and V consisting of parts of the
series of natural numbers are called orthogonal when each u £ U is orthogonal
to any υ €Ξ V. Finally, two such families were called by Luzin separated
when there exists a set tv £ ω (the separating set) such that all differences
u — w for u £ U and all intersections υ Π w for υ £ V are finite. It is easy
to see that two separated families are necessarily orthogonal.

Is the converse true? This problem was studied in detail by Luzin in [21 ]
and [22], and not only for families of parts of the series of natural numbers,
but also for their increasing sequences. A sequence (u^: ξ < λ> (of any
finite or transfinite length λ) of sets u { £ ω is called increasing if for any
pair of indices η < £ the relation un •< u^ holds, which means that the
difference uv~u^ is finite whereas the difference M { - un is infinite.

Two countable sequences, and generally any two countable families of
parts of the series of natural numbers, if orthogonal, are separated: this was
established by Luzin. However, there exist orthogonal, unseparated, strictly
increasing sequences each of length ojj. The construction of such a pair of
sequences was first carried out by Hausdorff in [65] and, in a simplified
form, by Luzin in [22]. (Incidentally, the key feature in this construction
is Hausdorffs theorem considered above.)

Having the existence of orthogonal unseparated sequences of length coj
(and hence of families of cardinality x j , on the one hand, and the separation
of any pair of countable (or finite) orthogonal families of parts of the series
of natural numbers on the other, Luzin posed in [22] the following two
problems "on the important mixed case".

Problem I. Does there exist a pair of orthogonal unseparated families of
parts of the series of natural numbers of which one is countable and the
other has the cardinality x,?

Problem II. Does there exist a pair of increasing orthogonal unseparated
sequences of which one has countable length and the other the length cjj?

Two more problems, posed in [22], have as their source a certain analogy
between the fact that there exist orthogonal unseparated sequences of length
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coj and "Pythagoras' phenomenon, which consists in the impossibility of
inserting a rational point between two specially selected sequences of
rational points that approach each other", as Luzin wrote in [22].

Problem III. Do there exist two increasing orthogonal sequences each of
length ω ΐ 5 that are separated and allow only one separating set (to within
addition or subtraction of a finite collection of natural numbers)?

Problem IV. Does there exist an increasing sequence <MS: ξ < ω ^ that does
not allow any set Μ £ ω with infinite complement such that u% -< u for all

There is a certain interdependence between these four problems. Problem I
is equivalent to Problem II, that is, from the existence of a pair of sets
satisfying the conditions of Problem I one can deduce the existence of a pair
of sequences satisfying Problem II, and vice versa (the converse is obvious).
Problem III is equivalent in the same sense with Problem IV. A more subtle
result was obtained by Rothberger [79]: from a positive solution of
Problem I (or, equivalently, of Problem II) there follows a positive solution
of Problem IV (and hence of Problem III). Incidentally, in his article
Rothberger considers the interrelationship of the problems discussed here
with certain other interesting questions on the structure of the continuum.

A positive solution to all four problems is assured by the assumption of
the continuum hypothesis c = xx (this was undoubtedly known to Luzin:
the problems with which we are concerned are called in [22] the derivative
continuum hypotheses). Consequently, as previously, of interest is only the
analysis of the relationship of Problem I-IV with the axioms of the theory
ZFC + c > xx.

From Martin's axiom MA plus c > «i there follows a negative solution of
all four problems (for Problem I this is mentioned in [91]). A very simple
argument leads to this. For let us consider any increasing sequence
(«ξ: £ < ω]> of sets u% C ω. The collection of complementary sets
D^ = ω ~ Uj evidently has the property that the intersection of any finite
number of v% is infinite. In this situation we can apply one of the
consequences of MA + c > x1; the so-called Booth lemma [134], 77, (or
[125], Ch. 6, Corollary 8), which provides an infinite set D C ω such that
the difference v-v% is finite for every £. Defining u — ω~ν, we obtain
u% •< u for all £. Thus, Problem IV, and then, by what we have said above,
the three remaining problems have a negative solution under the assumption
of MA + c > Xj, that is, a negative solution of all four problems does not
contradict the axiom system ZFC + c > x,.

Hechler has shown that a positive solution of these problems also does
not contradict ZFC + e > Xj (see [91] , [134], 87).

The author of the current survey has proved that a positive solution of
Problems II-IV does not imply a positive solution of the Problems I—II.
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