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Foreword

The theory of operations on sets is one area of mathematics in which the
role of Kolmogorov is generally recognized, as the originator of the subject
and contributor of the principal concepts and the first fundamental results.
It is quite true, as asserted by Novikov and Lyapunov in the survey article
"Descriptive set theory" [26], that the whole theory of operations on sets
originates from work carried out in the 20's by Kolmogorov. The first part
of his study, dated January 1922, appeared in the paper "Operations on
sets" [ 1 ] , where the foundations of a general theory of operations are laid
down:

— the definition of a 5s-operation;
— the definition of the complement of a given operation;
— the theorem on complements, according to which every 5s-operation

can be used to produce from closed sets a set whose complement cannot be
so obtained;

— a general method for constructing a hierarchy of classes of point sets,
indexed by the finite and countable ordinals: this is based on the joint
application of a given Os-operation and its complement;
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— the theorem on non-vacuousness of the classes: under wide conditions
on the initial operation this guarantees that the resulting hierarchy does not
degenerate at a countable level.

The second part was published under the same title [2] in the third
volume of Kolmogorov's selected works [6]. In it he introduced the
i?-transform into set theory—an exceptionally important concept, associated
with the most productive line of investigation in the classical theory of
operations and of very significant interest to current experts. This second
part, which remained unpublished for more than half a century (it is dated
February 1922) was, however, as stated in the introductory words 'From the
author' in [2], made available to a number of experts in descriptive set
theory.

The memoir "Operations on sets" (both parts) was a rich source of ideas
for later research by those following Kolmogorov in this domain. Kantorovich
and Livenson in the extensive two-part "Memoir on the analytical operations
and projective sets" [10], [11] developed a general theory of analytic
operations, which also covers the 6s-operations, characterized within this
wider class by the property of 'positivity'. The second part of their memoir
includes, with an acknowledgement to Kolmogorov's "kind permission",
certain material from the manuscript [2], including the definition of the
i?-transform.

Using the idea, included in [2], of the interchange of the i?-transform
with passage to the complementary operation, Lyapunov constructed ([19],
[20]) what is known as the normal series of R-operations, and introduced
the class of i?-sets, obtained from closed sets by applying the normal series.
To a large extent, Lyapunov based the proofs of the basic theorems about
i?-sets on an analysis and reworking of what had been done by Kolmogorov.
Such results, in Lyapunov's most significant contribution "i?-sets" [20], as
the construction of the classes and subclasses of the hierarchy of i?-sets and
the proof that these are non-empty, the proof of measurability for the
/?-sets, the partitioning of Λ-sets into Kj Borel sets, the development of an
apparatus of indices for the R-transform—all these were direct extensions of
the ideas and constructions in [2].

And this important piece of research on "Operations on sets", which
opened up a new area of set theory, was carried out by an 18-year-old
student who had only just recently been invited by N.N. Luzin to join his
group. Reminiscing about the years of his youth in the commentary "Papers
in the theory of functions and set theory" [5], pp. 363-364, Kolmogorov
rather delicately indicates that his plan for research in set theory turned "in
a direction not envisaged by Luzin". We shall probably never know the
exact form in which disapproval from the then leader of the Moscow
mathematicians actually manifested itself in this situation, nor the extent to
which this may have influenced a very young man taking his first steps in
research. However, it is undoubtedly true that in his published work on set
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theory Luzin never referred to Kolmogorov's contributions, while Kolmogorov
himself essentially never returned subsequently to this area in his published
papers (if we except the article [3] written in honour of P.S. Aleksandrov)
even though, as is stated in the commentary referred to above, he had an
extensive plan for further research at the time. One can but regret the loss
to set theory as a whole that was brought about by Kolmogorov's departure
from the field.

With Lyapunov's work on i?-sets the classical theory of operations on sets
took on a definitive form, on the whole. The concepts and methods
introduced by Kolmogorov had proved to be conclusive in the sphere of the
traditional problems of descriptive set theory and the classical descriptive
problem area(1). Later research (beginning in the 50's) had as its principal
purpose the extension of classical results to the case of uncountable indices
and arbitrary topological spaces, with a study of the resulting effects. Thus,
the theory of operations on sets gradually diverged from the clear descriptive
direction initially inherent in it and emphasized by Kolmogorov in his
commentary referred to above. It is possible that this fact, and also the
exceptionally difficult notation and techniques in the theory of operations
in the version arising from Lyapunov's work (in sharp contrast with the
brilliant style of the papers [1] , [2] , and [3]), was responsible for the
subsequent absence of real progress in this field and its separation from the
mainstream of the development of set theory.

However, the last 20-25 years have been a period of exceptionally rapid
development in set-theoretical investigations, based on fundamental discoveries
such as the apparatus of constructive sets, the method of forcing, the general
notion of recursion, infinite games, and determinacy. The new methods have
led to the complete solution (in most cases, in the form of a proof of
undecidability) of many fundamental problems of set theory, such as, for
example, the continuum problem, the problem of measurability of projective
sets, problems of separation and uniformization for the projective classes,
and problems on the constituents. Neither has this development left the
theory of operations on sets to one side. Thus, at the beginning of the 80's
a "game-theoretical" representation of R-sets was found, together with a
simpler construction of C-sets, from which it became clear that the Borel
sets, the C-sets, and the R-sets constitute the three initial levels of a certain
natural hierarchy. It became possible definitively to clarify the relationship
between the i?-sets and the sets of the second projective level. In their turn,
the concepts of the theory of operations lie at the heart of certain fundamental
definitions of the general theory of recursion, and Kolmogorov's construction
of the R-transform is now regarded as the first example of an infinite game
with perfect information.

the development of descriptive set theory and the main ideas and results, see the
surveys [26], [13], [33], and [9].
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The present author has for some time had in mind the preparation of a
survey article describing the evolution of the ideas which were introduced by
Kolmogorov as a basis for the theory of operations on sets, and the form
that these ideas have taken or are taking in modern set-theoretical research,
and also clarifying some points of terminology and priority that have not
always been completely or accurately covered in the literature. It is a sad
circumstance, tragic for world mathematics, that has given a reason and an
opportunity for the accomplishment of this purpose.

Introduction

The present paper is not, strictly speaking, a survey article on the theory
of operations on sets, and does not claim to present a complete analysis of
all lines of research in this area. Rather, as can be inferred from the title, it
is concerned only with research carried out under the influence of
Kolmogorov's ideas, or exhibiting them from a new and more modern point
of view*1). Naturally, a certain amount of space (§ § 1 and 2) is given up
to an exposition of the foundations of the theory of operations as created
by Kolmogorov.

Most attention is paid to Kolmogorov's R-transform—one of the most
significant discoveries in the whole of classical descriptive set theory. In §3
the initial definition of the /?-transform is given, together with the modern
reformulation in the language of infinite games and generalized quantifiers,
and certain methods of proof in connection with these transforms. Then §4
is devoted to the method of indices (inductive analysis)—the principal
technique of both the classical and, along with 'game-theoretical' analysis,
also the modern theory of operations on sets. Kolmogorov introduced this
method in [2] in a general form, aware of the earlier construction of indices
in a special case (the A -operation) carried out by Luzin and Sierpinski.
Within the framework of a 'game-theoretical' approach, the method of
indices takes the form of the definition of winning positions.

In §5 we give Lyapunov's definition of R-sets by means of his construction
of the operations of the normal series. In §6, modern ideas of the nature of
i?-sets are considered, obtained by a deep re-working and far-reaching
generalizations of Kolmogorov's ideas and constructions from [2]. Then §7
gives a short survey of research on Λ-sets.

The concluding §8 is concerned with the Kolmogorov problem (published
[4] in 1935) on the length of the Borel hierarchy, which has attracted a
great deal of interest and recently received a complete solution.

(1)For other directions of research in the theory see [13], [23] - [26], [29], [30],
and [36].
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§1. Introduction to the theory of operations on sets

Keeping to chronological order, we first consider the definition of a
os-operation given by Kolmogorov in [ 1 ], and examples of such operations,
and we then pass to the more general concept of an analytical operation due
to Kantorovich and Livenson.

The concept of a 6s-operation.
Let us fix some non-empty set /—the index set. Subsets of this, that is, sets
U Q I, are called chains, and sets of chains bases; thus a basis is an arbitrary
set Q s #"(/), where $>(I) denotes the set of all U Q I.

To avoid trivialities, it is usually assumed that a basis is non-empty and
does not contain the empty chain: Q Φ φ and Φ fc Q. The two operations
excluded by this stipulation will be referred to later.

Every basis Q Ξ f(l) gives rise to an operation Φς>, acting on an/-indexed
family {Χ{: i 6 /} = {X,} of sets Xt, according to the following definition
[1]:

Φ(}{χ ί}=φρ{^·. «€*}= υ η Xt·

The name of bs-operations has become attached to operations of the form
Φζ>; the terminology is due to Hausdorff, who arrived independently at the
same definition in [34]; Kolmogorov does not give them any particular
name in [ 1 ].

One and the same 5,s-operation can be determined, in general, by various
different bases; a necessary and sufficient condition for Φ^ = ΦΡ is that

(1) VUeQ3VeP(Vc= U) Λ VV£PWtQ(U<= V).

Nevertheless, among all the bases yielding a given 5s-operation Φ, we can
single out the unique basis

(2) Q (Φ) = Φ{Ε,: i e /}, where £ . = {U <= /: i ζ U],

that satisfies the condition of completeness, that is, together with any chain
U & Q it also contains every chain V C / such that U C V. This unique
complete basis for Φ may also be obtained from any other basis Q for Φ by
means of the formula

(3) Q(<t>) = {V ε= ί: 3U ζ Q(U ς= V)}.

Examples (Kolmogorov [ 1 ]). The class of os-operations includes, in
particular, union and intersection:

u{x i}=u^ i; n{x,}=nxt
ι it ι ι tex
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for an /-indexed family of sets. Complete bases for the operations U and Π
are as follows: * 1

The basis is the only one possible for intersection, but U can be given in

the form Φ β for any basis Q containing all one-element chains U = {i},i £ /
(but not containing the empty chain).

Another example is Aleksandrov's Λ-operation, which he used in [7] to
solve the problem of the cardinality of Borel sets. The index set of the
A -operation is the collection

S = {(a0, a l t . . ., am) : a0, %, a2) . . ., am £ ω} ( 1 )

of all strings of natural numbers ak of arbitrary finite length m + 1. The
result of the ^-operation on an ^-indexed family {Xs: s ζ S) is defined as
follows:

A{Xa,...α }= U Π
m e

where the union is taken over all infinite sequences a = (a0, alt a2, ...> of
natural numbers ak. Thus the ^-operation is the 6s-operation with basis
consisting of all possible chains of the form

u = {{aoh K» «i}> W, aj, n2}. · · · }

(of course this basis is not complete).
The above operations may be described as the simplest ones. The most

useful way of constructing more complicated operations is by using various
transformations through which new 6s-operations may be constructed from
existing ones. Three classical transformations of 5s-operations are well
known: passage to the complementary operation, superposition, and the
i?-transform; they were all introduced by Kolmogorov, in [1] and [2].
Leaving aside the R-transform until §3, we now consider the simpler first two.

The complementary operation.
Assuming that all the sets in question are situated within some fixed set SC,

for X s 3" we denote by X the complement of X, that is, X = &~ — X.

The operation Φ complementary to a given δχ-operation Φ is defined by

Φ{Χ {} = Χ«Μ.Φ{Χί} = Χ.

The operation φ is a 5s-operation along with Φ, and a complete basis Q for
it may be derived from any basis Q of Φ:

(4) <?= {V = /: VUeQ(U{) V Φ0)},

(ι) ίο -- {0, 1, 2, . . .} iS the set of all natural numbers.
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where if Q is complete the formula can be simplified to

(4*) Q= {V<=I:I

It is easy to see that the operations U and Π are mutually complementary.

The Γ-operation, complementary to the ̂ -operation, was constructed by
Aleksandrov in [8].

Superposition.
The sets obtained as the result of applying some 6s-operation may themselves
serve as arguments for other operations. However, such a double application
can be replaced by a single one by means of Kolmogorov's superposition
scheme.

Let a δί-operation Φ be given with index set /, and let a δί-operation Φ,·,
with index set /,·, be associated with each / Ε /. Then we can define a new
δί-operation θ = Φ | {Φ,·: i 6 -0 with index set

J =1 \ {I,} = {(i, / ) : i e / Λ / € / , } ,

which acts on a /-indexed family:

β{χ,}: a, / > € / } = < W { * u : / e it}·· i e / } .

In other words, we first construct the sets

and then apply the operation Φ to these in order to obtain the final result.
In order to define a basis for Θ, we fix a basis β of Φ and for each / Ε /

a basis Qt of Φ,·. The required basis for Θ can consist of all chians of the
form

V = {{i,j):i£U AitU,},

where U Ε Q and t/,· Ε Qt for all i.
In the important special case when each operation Φ,- is identical with

some fixed 5s-operation Φ', we agree to denote the superposition Φ | (Φ;)
by<I*I>'. For example, the operation U Π acts on an / χ /-indexed family:

/ J

u n{Xu}= υ η χ α-
ϊ J ίζΐ }EJ

Comparison of operations.
Intuitively, an operation Ψ is stronger than an operation Φ if the action of
the second can be replaced by the action of the first. This intuitive idea can
be made precise in two ways, as indicated by Kolmogorov in [1].

First, Ψ is stronger than Φ (in the non-strict sense)—in symbols Φ < Ψ—
when there exists a mapping / of the index set / of Ψ into the index set / of
Φ such that for every /-indexed family of sets {Xt: i ζ 1} we have

(5) Φ{Χ,: i 6 Ι}=Ψ{Χιω : / € / } .
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Second, denote by @(K) the collection of all sets which may be obtained
by a single application of the 6s-operation Θ to a family of sets from the
class K: for example, (J (K) is the collection of all countable unions of sets

ω

from K. Now the second definition is that Φ < Ψ if Φ(Κ) C Ψ(ΛΓ) for every
class K.

Fortunately, the two definitions are equivalent (this is referred to as a fact
in [1] and proved rigorously in [10]). Indeed, let two 8s-operations Φ, ψ
satisfy Φ < Ψ in the second sense. For a family of sets Et of the form (2)
we obtain

Φ{Εί: i 6 / } = Ψ

where / is a suitable mapping of / into /. It is easy to see that this mapping
/ also satisfies (5) for any other family {Xt}, which proves that Φ < Ψ in the
first sense.

The implication in the opposite direction is trivial.
As usual, we define Φ « Ψ to mean that both Φ < Ψ and Ψ < Φ; such

operations are called equivalent. Finally, Φ < Φ if Φ < Ψ holds but not
Ψ <Φ.

Example: (J ^ A, where the corresponding function f:S->oj satisfying
ω

(5) may be defined as follows:

/((σ0, . . ., a m » = am.

Moreover \j < A in the strict sense, since it is known that the class A(lnt)
ω

of all sets obtained by the ^-operation from open intervals on the real line
(that is, the class of Suslin or ^4-sets, constructed by Suslin in [32]) is much
wider than the class U (Inl) of all open sets on the line.

ω

One equally easily sees that f] <. A.
ω

Analytic operations.
Thus certain important operations on sets are included among the
5s-operations. On the other hand, for example, the symmetric difference
ΧΔΥ = (X — Y) U (Y — X), the taking of the complement of a set, and
projection are not os-operations. What is the property characterizing the
5s-operations among all set-theoretical constructions? This question was
considered by Kantorovich and Livenson in [10]. They call an operation Ψ
acting on an /-indexed family of sets analytic if the question of whether a
point χ belongs to the set X = T{Xj}is completely determined by the set
of indices ζ for which χ Ε Xt. More precisely, it is required that for any
pair of points x, y and any two families {Xt}, {Yt} we have

Vi(x 6 Xi ++ y € Yt) -* (χ € Ψ{Χ,-} ~ y 6 Ψ{^ι}).

An analytic operation is called positive in [10] if from Xt Q Yt for all i it
follows that Ψ{Χ,} £= Ψ {Γ,}.
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Each δί-operation is analytic and positive, clearly. But the converse is
also true, and is proved in [10]: every positive analytic operation Φ is a
os-operation, with a complete basis obtainable from (2).

Kantorovich and Livenson also showed that an analytic operation (not
necessarily positive) admits a representation

(6) ψ { χ ! . } = ψ ( } { χ ί } = υ κ η χ , ) η ( η x t ) h
VtQ iEU itU

where Q = &(I), and in terms of this representation the positive (that is,
8s-) operations are characterized among all the analytic operations by the
condition of completeness (or extensiveness) of the basis Q:

ueQ A uczVg=i-+veQ,

under which Φρ = Ψς> is a 5s-operation.
Analytic operations represented in the form (6) are called set-theoretical

operations by Lyapunov in [20].
One example of a non-positive analytic operation is the operation C of

taking the complement of a set: CX = X. This is a unary operation, whose
index set contains just one element—for example, / = {1}. Taking the basis

0 — {0} with the single empty chain Φ, we obtain ψ^ {Χι} = Χχ, that is,

C = Ψ ( Φ ) .

The degenerate 5s-operations.
These are the "null" operation 0 with the empty basis Qo = 0 , and the
"unit" operation II with the basis Q1 — ^(/) consisting of all chains, including
the empty chain φ. The actions of these operations

is very simple: 0{Χ(} = 0 and H{X(} = .T, where £V is the underlying
space in which all sets under consideration are situated (we take the
intersection Π Xt over the empty chain to be equal to .1" independently of

ϊζφ

the choice of sets Xt s &)•
There exists, however, a property that distinguishes Ο and ϊ from the

5s-operations: for any operation Φ = Φρ apart from these two, if we put
X, = X for all / in the index set of Φ then we obtain Φ {Λ',} = X. Of
course this is not true for Ο and 1.

§2. The Kolmogorov hierarchy

Having given the definition of a δί-operation, Kolmogorov considers in
[ 1 ] the structure of the smallest class ν(Φ)οί sets in a given space, containing
all closed sets and closed under the application of a fixed operation Φ and
the operation of complementation. There is a large set of combinations of
Φ and complementation, but Kolmogorov finds it possible to assign the sets



120 V.G. Kanovei

of ν(Φ) to classes of increasing complexity, indexed by finite and infinite
ordinals.

Taking account of the modern system of definitions and notation in
descriptive set theory, it is most convenient to use the notations Σ*, Π^, Δα
for the classes in the Kolmogorov hierarchy, where Φ is a given 5.s-operation
and α is an ordinal number, with respect to which the construction of the
classes proceeds by transfinite induction.

The initial level is formed of the classes

for all open sets, all closed sets, and all open-and-closed sets respectively.
For a > 1 we put

Κ),
and, finally, Δα = Σ« fl Π*. Thus the class 2^" is formed by the action of
Φ on all families of sets of the classes Π *̂, y <C a, and the class ![„ in a

similar way using the complementary operation φ on the sets of the classes
Σ®, y < a. It is clear that Σα consists, for every a, of the complements of
the Πα sets (and only these).

The construction of the classes stabilizes at the first ordinal of power
strictly greater than that of the index set / of Φ (or at the first infinite
ordinal ω, if / is finite). In particular, if / is at most countable, then
stabilization occurs no later than at the first uncountable ordinal ω χ

(classically Ω), and we have

Σ * = < = Δ*=Σ? = Π? = Δ? for β > oh.

Examples. 1. If Φ = [) is countable union, then ν(Φ) coincides with the
ώ

class Β of all Borel sets in the given space, and S£\ Π?, Δ« are the classes of
the Borel hierarchy. More precisely, if we use the definitions Σ α , Π^, Δα of
the latter from [41], §2, then

ΣΦ yO ττΦ π η Α Φ Α 0

1+α-
2. Let Φ be the A -operation. Then ν(Λ) = C is "Luzin's C-domain" as

it is phrased in [ 1 ] , or the class of all C-sets, first constructed in Selivanovskii's
paper [31] ; the classes £„, Πα, Δ« are identical with those in the hierarchy
of C-sets.
Remark. In [ 1 ] , Kolmogorov carried out the construction of the above
hierarchy (of course with a different notation for the classes) with sets of
the real line R in view. In modern research on descriptive set theory the
underlying space is usually taken to be the more convenient Baire space
jfi' = ωω, consisting of all infinite sequences a = (a0, ax, a2, •••) of natural
numbers ak, endowed with the Tikhonov product topology (with the discrete
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topology on ω). Both the spaces R and ,JlT are examples of what are (now)
called Polish spaces, that is, separable, metrizable with a complete metric,
and (to avoid trivialities) without isolated points. All these spaces are very
much alike, if not identical, with respect to the operations considered in the
theory of operations on sets, and below we shall assume that the underlying
space is (perfect and) Polish.

Monotonicity.
The first requirement that might be imposed on a hierarchy of any kind is
that each of the classes should contain all sets of the preceding classes, that
is, for the Kolmogorov hierarchy that

^a U " α Ξ Δβ tor a < p.

This condition is of course satisfied if β > 2, whereas for β = 1 we obtain

the inclusion G Ξ <&(F) (and the equivalent F Ξ Φ(Θ)), which is not
satisfied for Φ = f\, for example. The simplest way of guaranteeing the

ω

inclusion is to require that the operation Φ should be stronger (in the non-
strict sense, that is, >) than U, and then we obtain G C Φ(Ρ), since G Q Fa

in Polish (and in general in all metrizable) spaces. We mention that the
inequality Φ ^ U is valid for all the operations Φ, except Π, which are

considered in practice in the theory of Borel sets, C-sets, and i?-sets.

Theorem on the non-vacuousness of the classes.
The second basic question is as follows: does each level of the hierarchy
contain sets which are not in the preceding level? This is in general a typical
question for hierarchies of any kind, and in the present case the answer is
given by the following theorem of Kolmogorov [ 1 ].

Theorem. Suppose that the bs-operation Φ with countable index set is such
that the class ν(Φ) is closed relative to countable union U- Then for all
ex, 1 < a < ajj, we have ω

U Σ^[^*Σα and (J Π^ $, Π^.

Proof. By induction on a, Kolmogorov constructs a sequence of
6.s-operations Φ α , α: < ωι, with countable index sets, having the properties:
D l j g φα(Ρ U G) and 2) the class ν(Φ) is closed relative to Φ α . The start
of the construction is obvious: we take, for example, Φ ο = Φ. Now for the
induction step.

Suppose that a > 1 and that all the operations Φ 7 , γ < a, have already
been constructed and satisfy the conditions. Define the auxiliary operation

θ = U |{Φν: γ < α } , where α = { γ : γ < α ]
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and the operation Φ α — ΦΘ. From the induction hypothesis it follows that

Ιΐγ = <t\.(F U G) for γ < a, and so the class 0(F U G) consists of all
countable unions of sets belonging to the classes Illj', 7 < a, one set from
each of these classes. By taking the empty set in all except one of these
classes, and any selected set in the other, we obtain this selected set as the
union. Consequently all sets of the classes HiJ', γ < α, are included in the
class ©(F U G), and it is now clear that ϊΐ£ Ξ Φα(¥ U G). And from the
fact that the class ν(Φ) is closed relative to Φ, to U, and to all the Φ-ν,τ < α ,

ω

it follows that it is also closed relative to the new operation Φα .
Now, having the desired system of operations Φ α , we suppose the contrary

of the non-vacuousness theorem; that is, let, for example

Ax = U ^ V
V<a

From this it is easy to deduce that

ΣΪ = ΠΪ = Σ? = Π? forall β, α < β < ω , ,

that is, Σ? = Π« = ν(Φ). But by the construction of Φα and the fact that
F U G Ξ Fo and U (ν(Φ)) s ν(Φ) we obtain

0)

(7) ν(Φ) = Σ£ = π£ = Ψ(Ρ), where Ψ = Φα U .

This relation is the starting point for the derivation of a contradiction, and
the concrete mechanism consists in the use of a further theorem, also proved
by Kolmogorov in [ 1 ] .

Theorem on complements. For any hs-operation Ψ with countable index
set, in the class 'Vl'(F) there is a set whose complement does not belong to
this class.

Proof. We shall suppose that 1) the index set of Ψ is the set ω of natural
numbers, and 2) the underlying space is the Cantor discontinuum 'β (this
assumption leads to no loss of generality, since every perfect Polish space
contains a closed set homeomorphic to %~).

The space g, realized as the product of ω copies of a discrete 2-point
space, consists of all infinite sequences c = <c0, ct, c2, •••) of numbers
cn = c(n) = 0 or 1. Fixing a countable basis for the topology of
consisting of sets Ck, k G ω, we define the set

Y = {(c, x}£%2: x<£ U Ck}

which is closed in i?2 and universal in the sense that for every closed Χ Ξ Ϊ?
there is a point c ζ $ for which

χ = ymt where Y<c> = {x: <c, x> 6 Y).
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Further, put Ym — {{c, x): <(c)m, z) £Y} for all m, where the points
(c)m £ ί? are given by the formulae (c)m(k) = c(2m3k). Now, for each
countable family of closed sets Xm s i? there is a point c £ ί? such that
X m = Y($ for every m. Consequently the set Η = Ψ{Ym: m £ ω} of the
class ^(F) is universal for this class, since

For the required example we can take the set

which is in the class Ψ(Γ), since each yj, = {c: (c, c) £ Υ,η} is closed. If

the complement Ζ of Ζ also belonged to the class Ψ(Ρ), then for a suitable
point c 6 Ιέ we should have

by the universality of H. This gives a contradiction to the definition of

Z: ceZ++(c, c) 6 #+-*c £Z.
This completes the proof of the theorem on complements.
The proof of the non-vacuousness theorem is also now complete: we

consider the relation (7) and recall that ITjf consists of the complements of
tii,-- sets in Σ*.

This: theorem is, of course, applicable to the Borel hierarchy (Φ = |J) and
ω

the hierarchy of C-sets (Φ is the A -operation), and in these particular cases it
had already been established by ad hoc methods (Lebesgue [16] for the first
and Seiivanovskii [31] for the second). Thus it was Kolmogorov who
brought to light the general principle underlying such types of reasoning.
The theorem on complements for the A -operation had been proved by Suslin
in the form: there exists an ^4-set whose complement is not an ^4-set [32].

We mention that for the operations Φ = U and Φ = A, the operations

Φ α , constructed in the course of the proof of the non-vacuousness theorem,
satisfy the equation Σ® = Φα(Ρ U G) (in general, a sufficient condition for
this is for example that (j ^ Φ and ΦΦ « Φ). The construction of such a

ω

system of operations for the Borel classes was given by Hausdorff [34],
[35], and for the classes of the C-hierarchy by Kantorovich and Livenson
[10], [12]. Assuming the above sufficient condition the non-vacuousness
can be proved in the stronger form

Σ££Π£ and Π£ £Σ% for α<ω 4 ,

in which it is usually stated for the Borel hierarchy (see [41], §2).
The name of non-vacuousness thoerem may cause some surprise, since in

the form in which it is stated the classes are not non-empty, but strictly
increasing. The fact of the matter is that the name is inherited from classical
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descriptive set theory, where the hierarchy normally consisted of pairwise
disjoint classes—for example, in the present case, the classes

Σ * - U Σ* Π ? - U Π?
Y<oc

whose non-vacuousness is indeed proved in [ 1 ] (of course in a different
notation).

Historical commentary.
We have already mentioned that the concept of a os-operation was discovered
by Hausdorff independently of Kolmogorov, and was published in the
second edition of his Mengenlehre [34] (the relevant chapter of the Russian
translation [35] was prepared by Kolmogorov). Naturally a monograph by
one of the leading mathematicians of the day had a wider readership than
the short paper [ 1 ] in the Russian language. For this reason, in certain
publications (of some authority, for example in [14], p.345) concerning this
topic the os-operations are called the Hausdorff operations. However,
Kolmogorov's contribution to the theory of operations on sets was greater
than Hausdorff s. In fact, the German mathematician did not arrive at the
notion of the complementary operation, and his book contains neither the
theorem on complementation nor the non-vacuousness theorem in their
general forms, which constitute the basis of the theory. Neither does
Hausdorff have the i?-transform, with which our next section is concerned.

§3. The ^-transform

Today, when more than half a century has passed since the appearance of
"Memoir on the analytical operations and projective sets (II)", in which
Kantorovich and Livenson first published material on the /?-transform, it can
be firmly asserted that this concept was Kolmogorov's most important
discovery in the field of operations on sets, and one of the most important
achievements in classical descriptive set theory overall. To a significant
extent it was in advance of the level of set-theoretical thinking of the day,
although it then became the basis and starting-point for very fruitful research
by Kantorovich and Livenson, and a little later Lyapunov and others.
However its full significance has become clear only more recently, after the
development of such branches of the foundations of mathematics as infinite
games, the general theory of inductive definitions, and recursions of higher
type, which were unheard-of in the 20's and 30's.

Following the unexpected recovery of the second part of Kolmogorov's
manuscript "Operations on sets" and its publication in [2] we are able to
turn directly to the very origins of all research into the R-transform.
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The classical definition.
A 5s-operation Φ = Φ β is fixed, with index set / and basis Q. Its square
φ2 = φ φ (that is, the superposition of Φ with itself) acts on an /^-indexed
family (where I2 = I x / is the Cartesian square) according to the formula

Φ2{Χ,·,·: <i, />6/ 2 } = Φ{Φ{Χι}: / € / } : « € / } ,

and as a basis for Φ 2 we may take the set of all chains W Q I2 of the form

where U and all the t/,· belong to β. Similarly, the 6s-operation Φ 3 has
index set / 3 and basis consisting of all chains of the form

W = { i i , j , k): i t U A i t U i / \ k £ U l } ) ,

where U, Uh U/j belong to Q, acting as follows:

Φ 3 {Χ ; ; Λ} = Φ{Φ{Φ{Χ, υ , : A € / } : / € / } : * € / } .

The construction can be continued, to give Φ 4, Φ 5, and so on.
But what operation ought to be taken as the limit, so to speak, of the

sequence of operations Φ"? One solution is immediately clear: the union of
all the operations Φ", η £ ω, via superposition with some simple outer
operation—for example, with (J, so that one puts Φ ω = U Ι {Φ"· η € ω}

ω ω

(construction as in the proof of non-vacuousness in the preceding section).
However Kolmogorov found a different idea, with essentially richer

potential. He constructs the 5s-operation ΚΦ, with index set

RI = {(i0, . . . . im) = i Ϊ m: m 6 ω and i0, . . ., im 6 7}

of all finite (of non-zero length) strings of elements of/ and with basis RQ
comprising all chains W C RI of the form

(8) w - {</0. · · ·. ύ> e Μ· h e u Λ »i e ̂ . Λ

Λ i. € ̂ i».-, and so on up to /,„ ζ U{,(m_t)}r.

where all the chains Uiim, i\in ξ RI, belong to Q.
The key difference between the /?-transform and superposition consists in

the fact that R<i> cannot be expressed directly in terms of Φ, and it is
necessary to effect a transformation of the basis. Here a question of
principle arises: does not the operation /?Φ depend also on the choice of a
specific basis Q for Φ? However all is well, because the necessary and
sufficient condition (1) οΐ §1 for the validity of Φ Ο ι = Φ Ο ι is preserved in
the passage to the bases RQl and RQ2- Thus R<$ does not depend on the
choice of basis Q for Φ, and the use of the notation RΦ is justified.

Example. The ^.-operation is the Λ-transform of countable union:
A = R [). In its turn, countable intersection Π is identical with the
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R-transform of the unary operation ( 1 = 1 ) with the one-element index set
(0) (0}

{0} (more precisely, R \J becomes Π under a one-to-one correspondence
{0} ω

between the index sets). Moreover, one can show that RA χ A and
R Π ~ Γ), that is in these two examples a double .R-transform is equivalent

ω ω

to a single one. Indeed, in general ΛΦ « RR<& for every Os-operation Φ
(see the theorem at the end of this section).
Generalized quantifiers.
This concept is needed in order to pass to the modern "game-theoretical"
definition of the R-transform. In general, a characteristic feature of modern
set-theoretical research has been the replacement of "operational" terms by
a more convenient logical symbology in which sets are represented by
relations and complementation by the sign of negation, union and intersection
by the quantifiers 3 and V, and so on. In this system, to os-operations
corresponds the concept of a generalized quantifier.

A (generalized) quantifier over the set / is any Q s &(!) (any basis in the
sense of § 1), where to avoid triviality it is usually assumed that φ £ Q and
Q φ #>(/). The logical function of Q is given thus:

<?icp (i) ++ Qi 6 /φ (i) ~ {i: φ(ϊ)} 6 <?•

The standard quantifiers can be brought within the scope of this definition:
3 = {Q £= /: Q Φ 0} and V - {/}.

A quantifier Q is called monotonic if for U C y, from U Ε Q it follows
that V Ε Q; therefore monotonicity of a quantifier corresponds to
completeness of a basis. Only such quantifiers are normally considered.

The dual quantifier Q = {V Ξ /: I — V£Q} has logical function
connected with that of Q by the equivalence

^icp (i) *+ η Qi ~] φ(ί).

For a monotonic Q the dual quantifier Q is simultaneously also a basis for
the complementary operation: see (4*) of § 1. The quantifiers 3 and V are
mutually dual.

The definition of a generalized quantifier agrees perfectly with the
concept of an analytic operation:

x 6 ^Q{Xi·. i e I) ++ Qi € / (x 6 Χι),

and, if Q is monotonic, with that of a 6s-operation:

(9) χ 6 Φ0{Χ,·} •+ Qi(x 6 Χι) *+ SU £ <?Vi 6 U(x 6 Xt).

The notion of R-transform.
We turn to the analysis of the operations Φ". Assuming that the basis Q of
Φ = Φρ is complete (this can always be achieved, for any 6s-operation, by
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taking the completion of an arbitrary basis using formula (3) of §1)—that
is, Q is a monotonic quantifier, and taking (9) into account, we have

χ 6 Φ{Λ\-: ί 6 /} — Qi(x 6 X,) ++ 3U 6 Q Vi £ U(x 6 X«);

* e χ») ++ 3 f e <? Vi 6 i/ ay e <? v/ e ν (χ e *,·,·);

j- 6 Φ8 {*//*} *+

and so on. From this representation Kolmogorov's idea seems to be both
obvious and impossible: to pass to an infinite chain of quantifiers Q and
define a 55-operation RQ with index set RI by means of the relations

(10) χ 6 RQ{XT: reRI}<+ Qi0QhQh • • · VTO(Z 6 Xlfm)

**3£/0 6 <? Vi0 6 Ĉo 3£/i € Q Vi\ € t/, - · · f

where t (· m. = (i0, . . ., t"m).
Thus everything is clear and simple, except for one thing: how is one to

interpret the infinite sequence of quantifiers in (10)? And this difficulty
threatens to take the given definition into the realm of the impossible.

The Kolmogorov game.
The correct interpretation of (10) can be derived on the basis of the
following game VQx{Xr} which is played by two players, whom we shall call
Q and / . These players in turn each make a "move", namely:

player Q (who begins) selects U0G Q;
player / , knowing the "move" Uo, selects i0 Ε Uo;
player Q, knowing i0 (the game has perfect information) selects Ul €Ξ Q;
player /, knowing C/l5 selects fj Ε Ux;

and so on. The requirements that Um Ε Q and im Ε Um constitute the rules
of the game, and the first player unable to comply with them on his turn
immediately loses. In particular, Q loses if Q = φ, and wins with the first
move Uo = φ if φ Ε Q. If Q φ φ and φ £ Q, as will henceforth be
assumed, then at each stage the players do have the possibility of making a
legal move and thus producing an infinite play

(11) Uc, i0, t ' \ , i\, U2, in, . . . (im 6 Um£Q for all m).

In this main case the outcome of the play is defined as follows: if a: £ Xifm
for all m, then the winner is taken to be Q, and in the contrary case (that
is, if χψ: Xitm for at least one m) the winner is /.

Now we can interpret the second line in (10) as possession by the player
Q of a system of moves in the game VQx{Xr} which ensures for him a win
regardless of the way the opponent plays. This interpretation can be
formulated more precisely in terms of the concept of a winning strategy.

In general, a strategy for the player Q in a game of the type VQx{Xr} is
any rule for choosing the moves, depending on the preceding moves of the
opponent—that is, any function σ: RI (J {Λ} -̂ - Q, where Λ is the empty
string (which needs to be considered here in order to determine the opening
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move Uo). A play (11) corresponds to the strategy σ if Um = a(i\m) for all
m, that is, when

Uo = σ(Λ), i/j --= σ(ί0), £/2 = σ(ί0, tj), ?7S = σ(ί0, iu i2),

and so on. Finally, σ is called a winning strategy (WS for short) for the
player Q in the game VQ-{Xr} if each player of this game corresponding to
the strategy σ ends with a win for Q. Thus a rigorous form of
definition (10) is

(12) χζ!ΙΦ{Χτ} *+Q has a WS in the game VQx{Xr}.

Let us see that this definition is equivalent to the classical one considered
at the beginning of the section. Let χ £ ΛΦ{ΧΓ} in the sense of the classical
definition, that is, there exists a chain W of the form (8) giving χ G Xr for
all r £ W. Then the strategy defined by σ(Λ) = U and a(i\m) — t T , t m for
all strings i\m = <i0, . . ., im) € /?/ will be winning for Q, that is,
χ ζ ΛΦ{ΧΓ}ΐη the sense of the definitions (10)-(12). The converse
implication is equally simple. (As can be seen from this argument, the
chains of the canonical basis RQ for ΛΦ are in one-to-one correspondence
with the winning strategies for Q in the game VQX{X,.}.)

Determinacy.
Player / may also posses a winning strategy: in the game VQ^JXT} this will
be any function r given on the set of all strings (Uo, ..., Um) of chains
Un e Q such that

1) T(U0, ..., Um) G Um for all m and
2) for any play (11), if im = T{U0, ..., Um) for all m (corresponding to the

strategy τ) then there exists an m such that χ £ Xi\m-
Of course it is impossible for both players to have a winning strategy for
one and the same game, because otherwise a play in which both play
according to these strategies would give a contradiction.

Therefore there remain two possibilities: either one of the players has a
WS (and the other does not)—and then the game is called determined; or
neither of them has a WS. In the next section we shall prove that all
Kolmogorov games are determined.

The complementary transform.
By analogy with the definition of a complementary operation, the transform

R complementary to R should be so defined that the operation i?O is
complementary to RΦ, that is,

(13) 1Φ{ΧΓ: reRI] =!^i?O{X r} = X.

The explicit "game-theoretical" definition of R is given by

(10*) χ 6 ΛΦ{ΧΓ} *• Qi0QiyQH . . . 3m(x ζ X i t m),
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and a precise interpretation of this definition is obtained on the basis of the
game 3Qx{Xr}, which is like the game VQx{Xr}in all respects except for the
definition of the winner: Q wins if χ 6 ^ifmfor a t l e a s t o n e m- The
derivation of (13) from this definition may be carried out by the following
argument:

3U0 6 Q Vi0 £U0 3U, e Q V»! € UY • · • Vm(x £ X i t m )

6 (? 3 i0 e Uo V£/\ £ ρ 3i! € ^ · • · 3m(x £ X i t

£ ρ V/o € Vo 3V, £ ρ Vix € Fx . . . 3m(x i Xifm)

The passage from the second line to the third is a formulation of the
assertion of determinacy of the game VQx{XT}. The passage from the third
line to the fourth is valid because the choice in each chain U Ε Q of an
element with the specified property is equivalent to the choice of one chain

V in the complementary basis Q which is completely composed of such
elements.

Generalizations.
If a sequence of 5s-operations Φ Μ , m € ω, is given, then their R-convolution
./?(<i>m : m € ω) can be defined by writing in the right hand side of definition
(10) an infinite sequence of distinct quantifiers: QoioQihQih ••• (where
Qm is a complete basis for <i>m); the interpretation by means of the
corresponding game does not give any difficulty even in the case when the
operations 4>m have different index sets. In [20], Lyapunov defined the
R-transform in a still more complicated case: when the next operation
depends on the string of indices fixed at the preceding steps, that is, in the
game-theoretical form, with a quantifier prefix of the form

QhQuhQi.uii •• • Qi 1 mim+i

There are also similar generalized variants of the complementary transform

R, while below in §6 we shall consider a further (and perhaps more
interesting) method of generalization.

Transformation of quantifiers.
The construction of the operation RΦ using formula (10) can be carried
over to the definition of the logical function of a monotonic quantifier
[RQ\ over a set RI:

[RQ]rq>(r)++Qi0Qi1Qi2 . . . Vm<p(i[m).
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Thus [RQ] is the complete basis of the operation RΦ obtained from the
canonical basis RQ by formula (3) of §1 , that is,

IRQ] = {S <= RI: 3W £ BQ(W Ξ S)}.

The quantifier [RQ] can also be defined in exactly the same way.
In the unpublished paper [55] (there is a summary in [61]), Harrington

studies the complexity of the transformation Q -»- Q* = [R(QQ)] from the
point of view of recursion in the higher types. It follows from his results
that the transformation Q -*· Q+ occupies a quite specific position among the
objects of type 3.

The R-transform and the power of operations.
We recall that the relations ^ and « , by means of which the power of
δί-operations can be compared, have been defined in § 1.

Theorem, (a) Φ < RΦ, Φ 2 < RΦ, and in general Φ" < Rφ•,
(b) if Φ < Ψ, then RΦ < RV;
(c) ^Φ)^Φ) * RΦ~normality of RΦ in the sense of [1];
(d) RRΦ « RΦ.

Assertions (a) and (c) were proved by Kolmogorov in [2] , and (b) and
(d) by Kanotrovich and Livenson in [11]. Here we shall give a proof of (c)
which is in essence very close to Kolmogorov's argument, but in a form
using infinite sequences of quantifiers that makes the idea of the classical
proof completely transparent.

We need to prove that the doubly infinite sequence of quantifiers in the
expression

(14) QhQiiQh • · · VrnQUQhQh · • • VZ(* € Xi\mJti)

can be replaced by a singly infinite sequence after a re-indexing of the sets

•^itm,;t/·

Let us denote by ψ{τη, χ) the expression after Vn; in (14). The formula
Qi0Qi1Qi2 • · · Vmq:(/ii, x) obtained by this abbreviation can be written as
follows:

<?;0[φ(0, χ) Λ QhW(U x) A QiM2> χ) Λ · · -ill-

Then (14) takes the form

( 1 5 ) Qio[QhoQhi ••• V

where jm\l = ( j m 0 , . . ., ;,,,i>. In this expression the block of quantifiers
QJ0QJ1QJ2 ••• has been repeated, as it were, countably many times, and the
copy occurring in the row beginning with Qim has been the additional index m,
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taking j t to ; m / . This has been done so that all the quantifiers Qim and
Qimi can be arranged in a sequence Qk0QklQk2 ••., preserving 1) the natural
order among the quantifiers Qim and 2) the natural order within each of the
sequences QimQjm0Qjmi · · · · After this rearrangement, (15) takes the new
form

(16) QhQhQh · · · ( ),

where the string of dots in parentheses stands for the conjunction of all
possible expressions χ ξ_ X^mj \ι in which m, Ι Ε ω, and each kn is either

im or j m ; . We now define

Yh tn — Xi \m,jmtl for kn — j m l ,

and

Yk \ η = Xi t m,jm t 0 f ° r *„ = !„,.

It is easy to see that

(16) 4+QkoQk! . . . YB(i6r*fn)

as required.

This proof can be expressed completely rigorously in terms of strategies.

Historical remarks.
1. The classical theory of the R-transform, based on Kolmogorov's definition
and his method of indices (see the preceding section), was worked out
mainly through the efforts of Lyapunov [20]-[26] ; in particular, the idea

of the complementary transform R is contained in [24]. Lyapunov's most
important results in this field concern i?-sets, and will be discussed in § §5
and 6 below.

2. Recent research on the R-transform was initiated in Hinman's papers
[57], [58] , where the construction is described from the point of view of
recursion theory. Then at the end of the 60's the intensive development of
a general theory of inductive definitions began, including a line of research
concerned with the investigation of generalized quantifiers (see [37] , [40] ,
[43], [56], [61], [66]). In [44], Aczel gave the definition of the

quantifier Q* = [R(QQ)], in our notation, with the logical function

(?+rcp(r) ++ QioQhQhQh · · · 3wp(ifro)

and indicated how to treat it using the associated game. From this was
extracted the 'game-theoretical' definition of the ^-transform, which was
also published independently by Hinman [59]. The most complete exposition
of the technical theory of the .R-transform in its modern form is to be
found in [45] .
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3. The general concept of infinite games, which includes the Kolmogorov
games, was introduced by Gale and Stewart [54] in 1954. In the 70's,
methods associated with these games took over a central role in descriptive
set theory, and new results obtained with their help were added to the
elegant theory of projective sets, in which all the odd levels of the projective
hierarchy are very close in their properties to the first projective level
(already rather thoroughly investigated by classical methods in the 20's and
30's), and all the even levels to the second level. The axioms AD and PD,
asserting the determinacy of games of specific types, are quite seriously
considered as genuine candidates for addition to the traditional Zermelo-
Fraenkel axiomatic systems ZF and ZFC. (All this is discussed in more
detail in [9] , [36], [37], [41], and [66].) Thus the question of priority

in the invention of infinite games is of some importance.

4. Usually this question is settled with a reference to the work of the Polish
mathematicians Banach and Mazur at the beginning of the 30's, written
down in what is known as the 'Scottish Book' and published only considerably
later [64] (see also [42], [53], and [66]). Banach and Mazur considered
certain rather elementary games, without formulating the general concept.

Now, however, after a 'game-theoretical' definition of the R-transform is
known, it is possible, and indeed obligatory, to put the discovery of infinite
games ten years earlier and to associate it with the research of Kolmogorov,
who to all intents and purposes proposed the historically first example of an
infinite game.

§4. Inductive analysis. Indices

Two principal investigative techniques are known in connection with the
R-transform: the 'direct method' involving the consideration of bases,
games, strategies, and the passage from one game to another under various
transformations of sequences of quantifiers and so on, and the method of
indices or, in modern terminology, inductive analysis.

As applied to the A -operation (which, we recall, is the R -transform of
countable union), the apparatus of indices was introduced in the very first
papers on A -sets by Suslin [32] and Luzin and Sierpinski [18]. However in
[2] Kolmogorov gave an elaboration of the method for a perfectly general
situation, where subtleties not arising in the special case acquire an essential
significance.

Let us fix a 5s-operation Φ = Φ β , given by a complete basis Q, that is, a
monotonic quantifier over some set /. Let us fix also a family {Ar

r: r 6 i?/}
of sets Xr situated in some specified underlying space. The aim of inductive

analysis is to investigate the sets X — ϋΦ{Χτ) and X = ΛΦ{Χ,} (which, as
will be shown, is the complement of X in the underlying space; as usual,

the sets Xr are taken to be the complements of the Xr) by replacing the
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operations ΗΦ and i?O by the special mechanism of multiple application of

the simpler initial operations Φ and Φ.

The inductive construction.
We first introduce the set Ξ = RI (J {Λ}, completing the collection of all
strings RI by adding the empty string Λ, and for this additional string we

denote by XA the underlying space; thus Α"Λ — 0. Following Kolmogorov
[2], by induction on the ordinal a we define the sets Xsa.(s ζ Ξ) and their

complements Xsa:

Α"ΛΟ = Α"Λ« XjiO= 0i A"ttm,0 = Π Χ\\η, A"ijmio = U Xi\n-

(17) xta=( η x.y) η φ{ π x$t.y·· f
7<ot V<«

for a > 0; here s/ denotes the string s extended by the element /: for
example < 1, 2>3 = <1, 2, 3>.

For a fixed s the sets Xsa are increasing and consequently the Xsa

decreasing, with increasing a, and therefore the whole process of inductive
construction via (17) must stabilize at some stage. The limiting forms of the

sets Xsa and XS0L obtained at this stage are denoted by A's«, and Xsoc. (It is
easy to see that when / is at most countable we have Xseo — λ%ωι and

Interpretation: winning positions.
The game-theoretical approach to the R-transform makes it possible to give
an elegant interpretation of the above construction in terms of winning
positions. We recall that membership of some point χ in the set X = ΒΦ{ΧΓ}
is defined by player Q's possession of a winning strategy in the game
V«.f{A*r}; and one way of searching for this, by analogy with real-life games
such as chess, is to look for winning positions, that is, those choices of some
number of initial steps following which a guaranteed win for one of the
players becomes obvious.

After player / has made move im in the game VQK{A"r}, the subsequent
course of the game and its outcome cannot depend on the moves Uo, ..., Um

of player Q, that is, what must be considered as a position in this game is
any string <i0, . . ., im> = i\m ζ RI, and also the empty string Λ, the initial
position.

Lemma 1. Every position s in the set SxOO = {s: χ 6 Xtoo} is a winning one
for player Q in the game VQx{A"r}.
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Proof. The auxiliary sets Sxa = {s: χ £ X s a } satisfy certain relations that
follow from definition (17). It is convenient to write these in the form of
equivalences:

s£Sxa++s£ Π SxyAQi(si£ Π Sxy),

and in addition Sx0 = {Λ} [} {i\m: Vn ^ m (x £ X;fn)}. Therefore for the
limit set SxO* = Π S I O we have

α
s i 5 x « « Qi{si £ 5 Ι β β) *• 3£/ £ ρ Vi 6 t/ (si £ 5,-) .

This means that in any position s £ Sxco the player £> has a move t/ G Q
such that for every answering move i G £/ by the opponent the extended
string si again belongs to SxOc. Thus in the game with position s £ Sxaa,
player Q has a strategy guaranteeing that no subsequent positions depart
from the set Sxco, thus guaranteeing a win for Q, since Sxoa Ξ Sx0.

Lemma 2. AH positions in the set SxX, — {s: χ £ XsK} are winning
positions for player I.

Proof. The sets Sxa = {s: χ 6 Xta}, t h e complements in Ε of the sets Sxa

defined above, satisfy the relations

S £ { ) ~SXV\/Qi(si£ U 5 x v )**«e U 5 x r V V l 7 e 9 3 » e f («€ U 5α ν),
V<a

where ^ is the dual quantifier to Q, with logical function 3 V £ Q Vi € V,
or the equivalent Vt/ £ Q 3i £ C/. In addition, for a = 0

5 I O = {ifm £ Λ7: 3n < m (* ί Xtfn)}.

From these two relations we immediately conclude, by induction on a,

that every position s £ Sxa is a win for player I. But 5 I O C = U £ ΐ α . The
proof is complete. α

Corollary 1. The Kolmogorov game VQ x{X r} is determined.

Indeed, the initial position Λ belongs to one of the mutually complementary

sets Sxaa and Sxai, and is therefore, by the lemmas, a winning position for
one of the players.

We recall that the determinacy of the game VQK{Xr} implies the

consequential complementation property (13) of the transform if defined by
formula (10*) of the preceding section.

Corollary 2. The sets X = /?Φ{ΧΓ} and X — J?<5{Xr} are mutually
complementary.
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Indices.
Parallel with the inductive construction (17), in [2] Kolmogorov gives a
definition of the indices. For the system of notation adopted here,

IndjX = °° for χ ζ XsX, while if χ £ Xso°, then Ind^x is the least ordinal a

such that χ ζ )ίβα.

Kolmogorov's theorem [ 2 ] . We have

= Χ Λ ο = Π Xsa = {x·- A£Sxoo} = {x: IndA* =
α

= Ζ Λ 0 = U XAa = {x:A$Sxeo)=--{x: IndA

α

The proof is contained in Lemmas 1 and 2: for example,

χ 6 X •«-»• Q has a WS in the game VQx{XT] «->- Λ (Ε £ α ο ο .

Remark 1. Kolmogorov-style inductive analysis was the principal technique
used by Lyapunov [20]-[25] in developing the classical theory of R-sets,
in [20] he introduced the special term T-operations' for those given by the
•i ductive construction of formula (17).

R--j>:-iark 2. With the development of a general theory of inductive definitions
iSfie [37] and [66]) it has become clear that the correspondence, expressed
in Rcimogorov's theorem, between a single application of the operations Ζ?Φ

and ΗΦ and the one-step inductive process (17) with operations Φ and Φ
represents a very deep principle of a general nature, amounting to the
folicwiiig. Suppose that each step of some inductive construction is carried
out using a fixed system of operations. Then for a construction of
"contracting" type (if the sets being constructed decrease, as for example in
the case of the Xsa), the finaljesult can be obtained from a single application
of an operation which is the R-transform of the superposition of the original
operations, while for "expanding" constructions the R-transform must be
taken. Moschovakis's theorem to this effect can be found in [66] or in [37] ,
p.255, where possible generalizations are referred to on p.256.

Remark 3. The reader acquainted with the proof of the Gale-Stewart
theorem [54] on the determinacy of open games (for a Russian version see
[39]) will notice that the proofs of Lemmas 1 and 2 and Corollary 1 (which
are direct translations of Kolmogorov's reasoning in [2] via the correspondence
between chains and strategies explained in §3) are completely identical in
essence with the arguments in [54]. The truth of the matter is that in the
game VQx{Xr} the set of all "plays" / = <z0, ix, i2, ...) which conclude with
a victory for player I is open in the space Ιω.

It can be shown that many known proofs of the determinacy of games of
one or another class fall rather naturally into the scheme of inductive
analysis of the corresponding operations.
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§5. ft-sets: construction of the hierarchy

In his concluding remarks following the text of [2], Kolmogorov mentions
that any set on the real line can be constructed from open intervals by
means of an associated 5s-operation, having as basis chains of open intervals
contracting on the points of this set—so that there is no particular point in
studying completely general operations; on the other hand, it would be
more interesting to pass to "special classes of sets, generated by sufficiently
simple operations". But which operations are to be regarded as sufficiently
simple?

The correct approach here can be deduced from an analogy with
Kolmogorov's hierarchy of sets: once we are considering classes of sets
closed under a given operation Φ and under complementation (see §2), it is
also natural to consider a collection of δχ-operations closed under R-transforms
and taking the complement of an operation, and also, for convenience, under
superposition and containing, together with any operation, all equivalent
operations, that is which give exactly the same sets when applied to any
families of sets of a fixed class.

Such systems of operations, limited to 5s-operations with index sets that
are at most countable, were called i?-closed by Lyapunov in [20], and
among these he picked out the smallest R -closed system i? 0 containing the
operation Ε = U = Π as a basis. From the examples considered in §3 it is

{0) {0}

clear that J?o includes the operations U and Π the A -operation, and

Aleksandrov's Γ-operation [8] complementary to it, together with the other
5.s-operations obtained from Ε using various combinations of the
transformations referred to in the definition of being R-closed. However in
all this variety it is possible to distinguish a definite order, using the same
idea of alternating a 'positive' transformation with a passage to the
complementary object that leads to Kolmogorov's hierarchy of sets.

The normal series of operations. ^
This consists of 5s-operations Ra, Ra, indexed by the finite and denumerable
ordinals a. The construction is by induction on a:

Z?o= y is the initial operation;
ω

Λα is the complementary operation to Ra;

Ra = R[n\{Ry: V<a}) for a > l

(that is, Ra is the R -transform of the superposition of all the operations
Ry, γ < α, with Π as the outer operation).
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The source of this construction is [2], where Kolmogorov constructs the
initial operations of the normal series using the scheme

(Π = Λ 0 ) — ( υ = Π =\)-+(A = R U »/?,) —
λ ω ' x ω ω ' ω

-> (Γ = Α = RJ -*· {Η = ΒΤ «; /?„).

Exactly this definition is given by Lyapunov in [ 1 9 ] . We have used the

same definition except for adding Π and U as the zero level; Lyapunov
ω ω

begins the normal series with A and Γ.
The following simple properties of the operations of the normal series are

given in [20]; they are easily verified with the help of the theorems on
properties of the Λ-transform in §3 and the complementation theorem of § 1.

1. All operations of the normal series are included in ,i?(1.
2. If Φ ζ ,/;„, then Φ < Ra for some a < ω1.

3. RJia « Ra and 7?α/?α « ~Ra for all a.

4. Λν < /?«, Λν < Ra, Ry < Λβ, Λτ < Λβ for y < a.
We remark on two finer points in the construction. It is easy to see that

/?,, w lUiy for a. = γ + 1, which means that /? v + 1 = RR,; can be taken as
the definition of Ra at non-limit stages, as is done for example in [47],
leaving the third part of the above definition in force for limit a. And it is
also easy to see that

so that this can also be taken as a basis for the construction, as is done in
tact by Lyapunov in [20].

i?-sets.
According to the definition in [19], [20], these comprise the smallest class
of sets, in the space under consideration, containing all open sets (equivalently,
in Polish spaces, all closed sets or all Borel sets) and closed under all the

operations Ra and Ra. The hierarchy of Λ,-sets consists of the sequence of
mutually complementary classes

SR a = Ra(F),

from which the class ARa = SR a f] ΠΚα is obtained. (Traditionally these
are denoted by Ra, CRa, BRa respectively.)

Thus SR0 = F and IIR0 == G are the classes of closed and open sets
respectively, and SRj = A is the class of Suslin or ^4-sets, and so on.

The classes SR a , n R a possess properties which are exactly analogous to
those of the corresponding operations described above and are consequences
of these (and of the fact that G Ξ FO in Polish spaces). Thus:

1. Every R-set is in one of the classes SR a , IlRa—and then in all later
classes.
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2. If 7 < α < ωι, then SRV U IIRV <= ARO.

3. The classes SR a , IIRa are closed under the operations Ra and Ra

respectively. From this and the above it follows that

S R a = RJB) and IIRa = Ra(h) for a > 1.

A finer hierarchy of subclasses, defined by E R O | = Σξ α (in the sense
of §1), can also be considered. Lyapunov [20], [21] established that the
class V(fia) = U 2 R a 5 formed from these subclasses is identical with

A R a + 1 only for a = 0 (essentially, this is Suslin's theorem [32]), while for
α > 1 it is a proper subclass.

We should note that V(R0) = ARj = Β is the class of Borel sets, while
V(Rj) = ν (A) = C is the class of all C-sets in the given space.

The broad field of research "on i?-sets will be discussed in §7 of this
survey, and here we confine ourselves to what is perhaps the most fundamental
problem: the relations between /?-sets and projective sets.

The position of the jR-sets in the projective hierarchy.
This is both a very important question, because Luzin's projective hierarchy
is regarded within descriptive set theory as the scale of complexity for point
sets, and also a very difficult one, because even for the essentially simpler
C-sets the problem of projective classification was solved by Kantorovich and
Livenson [10], [12] only a number of years later than their introduction
and the appearance of Selivanovskii's paper [31] in which the problem was
posed.

The solution for i?-sets was found by Lyapunov:

Theorem 1 [20]. All R-sets belong to the class Δ],.

(We are using the modern notation SJ,, Wn, AJ, for the projective classes,
corresponding to the more traditional An, CAn> Bn: see [9], [33], [41].)

The proof depends on the following lemma.

Lemma 1 [20]. // the bs-operation Φ over a denumerable index set has
complete basis Q of class Al

n where η > 1, then Φ(Δί,) ^ Δ'η.

The proof of this may be written as the double equivalence

χ € Φ{Χ,} ** 3U <= I(U 6 Q Λ Vi € U(x 6 X*)) «-*
•+V£/ <= /(V;(.r 6 Χι -π- ί 6 V) -+ V 6 Q),

from which the result follows, since when applied to a A^-relation the
quantifier 3U ^ 1 gives a Σ{,-relation and the quantifier V67 ^ / gives a
ΙΓη -relation. The completeness of the basis Q is needed only in deriving the
second equivalence.

Now, for the proof of the theorem we need only verify that all the
complete bases Qa of the operations Ra are AJ-sets in the space
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where Ia is the index set of Ra. This was shown by Lyapunov in [20],
Ch. Ill, and he presented the proof of the theorem, in a somewhat different
form, in [23].

Lyapunov's theorem does not, however, shed full light on the question
under consideration, since it is unclear whether the class of all R-sets is a
proper subclass of AJ or the whole of it. This additional question greatly
interested Lyapunov (see [25]), but it was found impossible to answer it
using only the techniques of the classical theory of the R-transform.
A definitive solution was obtained by John Burgess [47] -[50] on the basis
of a generalization of the construction of the /?-transform that can easily be
derived from the "game-theoretical" definition (a classical analogue is not
known).

§6. The nature of R-sets

During research at the beginning of the 80's, new approaches to R-sets
were discovered. On the whole, these originate from the ideas and
constructions in Kolmogorov's paper [2] and by the generalization of one or
another feature make it possible to consider the R-sets from a completely
new standpoint. We shall discuss three such ideas: programming, game-
theoretical Borel operations, and game-theoretical projection or the game-
operator.

Programming Borel sets.
Th : definition of this operation was given by David Blackwell in [46]. Let
".•: f'A a denumerable set Ξ. Then a program is any function ρ: ^(Ξ) ->- ^(E)
win· the property that S Q p(S) for every i s E , The sequence of derived
programs from a given program ρ is constructed by transfinite induction on a:

Po = p a n d pa(S) = p([) py(S)) for a > 0 .
«

The limit program px = ρωι in this sequence obviously does not then
change, that is, ppx = px.

Further, let Η be any collection of point sets (for example, the class of
Borel sets Β = AJ). A function F is called Η-measurable if the F-inverse
images of open sets all belong to//, and Η-programmed if it is a superposition
F = fiP«,f2 for some //-measurable program ρ and B-measurable functions f1

and f2. (The set .'ί'(Ξ) is assumed to have the natural topology of the Cantor
discontinuum, relative to which the //-measurability of programs is considered.)
Finally, a point set is called //-programmable if its characteristic function is
//-programmable; the collection of all such sets is denoted by HP.

For example, in the situation of §4 we take Ξ — HI \J {Λ} and for
S s Ξ define

p(S) - S U ( s 6 H : ^i(si
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If the quantifier Q is Borel as a subset of ^(S)(say Q = 3 or V) then this

program will be B-measurable, and the sets X and X B-programmable: for

example, for X we may take f^x) — {r ς HI: x£Xr} and f2(S) = 1 or 0
depending on whether or not the empty string Λ belongs to the set

S Ξ Ξ. Thus, taking ^Q — V (then Φ — U and ΛΦ = A) we conclude
01

that all A-sets and all G4-sets are B-programmable. In fact, the class BP also
includes all C-sets but not only these, and is itself a proper subclass of AR 2:
see [47], [50]. As we see, programming develops from a Kolmogorov-style
inductive analysis.

The operation of programming can be carried out repeatedly, leading
to the construction of classes P a by induction on a < ω ^ P o -— Β and
Pa = ( U py)p for a > 0. Sets of the class Ρ -= (J P a are called

Υ<α α<ω,

programmable [50]; it is easy to see that PP = Ρ and Ρ is the
smallest class with this property (among those containing the Borel sets).
In [50] the following is proved.

Theorem 1. Ρ coincides with the class of all R-sets.

However the example given above shows that levels in the two hierarchies
do not coincide exactly.

Game-theoretical Borel operations.
The starting-point of these is a generalization of the transforms R and R
involving not the course of the game serving to interpret a row of
quantifiers, but the definition of a winner as the outcome. Let λ be a
quantifier, not necessarily monotonic, over the set ω of natural numbers.
Consider the operation /?Φ/λ defined as follows:

χ € ΛΦ/λ{ΧΓ} «-> QioQhQii . . . ^m(x 6 X,-.m),

where the right hand side of the equivalence is interpreted in terms of a
game completely analogous to the games VQx{Xr} and 3QX{XT] of §3
except for the fact that the player Q is declared the winner if the
condition {m: χ 6 X i t m ) ζ λ is satisfied, that is, if λπι(χ ζ X,-fm).

The rich potential of this generalization is already apparent in the rather
simple (but most frequently investigated) case Q = V3. Vaught and Shilling
[71], [69] constructed and studied operations G\ (G£ in their notation),
defining their action in the following way.

(18) χ 6 Gl{XT: r ζ Ra) •*-* \/io3iyi23i3 . . . ληίχ ζ Χ,·;71),

where each in runs over ω. Thus χ ζ Gk{XT) if the player 3 has a winning
strategy in the game λχ{Χτ), where the players V and 3 make alternate
moves in the form of the natural numbers i0, ilt i2, i3, ... (beginning, of
course, with V), and 3 wins if the set {η: χ £ X,-tn} belongs to λ.
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The greatest opportunity for interesting research is given by operations GX
which are Borel, that is, when the quantifier λ is Borel (as a subset of the
space ^(ω) with the topology of the Cantor discontinuum); these are the
operations considered in [71 ], [69]. In general, for a given class L each
operation GX with λ G L can be called a game-theoretical Z-operation. If in
addition a specific class Κ is also fixed, then GL(K) denotes the collection
of all sets of the form GA{.Yr}, where λ G L and each Xr belongs to K.
Below we shall show that the nature of the sets in GL(K) is determined by
the class L, and does not depend effectively on K, at least in the Borel
situation.

Game-theoretical projection.
This is an operation of a different type from those considered so far in this
survey. It is closely connected with projection in the ordinary sense, and is
related to the Borel game-theoretical operations in exactly the same way as
projection is to the yl-operation; that is, it is stronger in principle, but in
the Borel case leads to the same result.

Let Ρ ^ :l' ' .J", where .-Γ is the underlying space under consideration
and ,J>'* •---- ωω is Baire space, consisting of all infinite sequences
i = </0, i1, i2- .·.) of natural numbers /„. We put

Thus ,r 6 QP when the player 3 has a WS in the game QXP, which proceeds
similarly to the game Gkx{Xr) described above, but 3 is regarded as the
winner when the condition (x, i) G Ρ is satisfied, where i = ii0, iu i2, ·•·)•

If Κ is some class of point sets, then <QK denotes the collection of all sets
of the form QP for Ρ G K.

Proposition (given in [69]). <ξ)Β = GB(B).

The implication from left to right is very simple: the set

Ρ = {(χ, i ) : λη(χξ. Xttn)}

is Borel, being the inverse image of the Borel λ under the mapping
(x, i) ->• {»: χ f λ',-fn}, which is B-measurable for Borel Xr's. The reverse
implication is proved by induction on the Borel structure of P.

Remark. It can be shown that in general

= GL(B) = GL(F) = GL(G)

for every class L in the Borel hierarchy, that is, the action of the operations
of a fixed class L = Z\, Dri, or Δ^ on 1) the Borel sets (the class B), 2) the
closed sets (the class F), and 3) the open sets (the class G) in each case gives
exactly the same sets as game-theoretical projection of the sets in L.
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Game-theoretical projection and the /?-sets.
The following theorem of Burgess [47], [49] is probably the deepest one in
the whole of the modern theory of operations on sets.

Theorem 2. ζ) Κ = Β, 0Δ° = C, θΔ3° = R.

Above all, these three formulae demonstrate the remarkably natural
character of the concepts of C-s&ts and i?-sets themselves: we see that a
very general kind of process transforms the initial Δ-classes of the Borel
hierarchy

into the classes Β (Borel sets), C, and R.

Proviso. We have formulated the first equation of Burgess's theorem in
standard form, valid for sets in the Baire space ..Γ, in which the open-and-
closed sets form a basis for the topology. When it is applied to sets in an
arbitrary (complete) Polish space 3', the class AJ must be replaced by the
family of all closed sets (or all open, or all Borel sets, which lead to the
same result) Ρ Ξ .7" x Jf with the property that every section
Px - {a: (x, a ) £ P] is a AJ-set in JT. The second and third formulae are
true in the general case, but in addition remain valid if Δ° and A?, are
replaced by the families of all Borel sets with sections belonging to A" and
A" respectively.

Burgess's theorem can be reformulated in terms of operations. For

example, for the third formula, 1) all the operations Ra and Ra can be
represented in an equivalent form GX with a monotonic quantifier λ s ^(co)
of class A", and conversely 2) R is closed under the action of any game-
theoretical A°-operation.

Moreover, the formula R = Ο Δ° in the theorem leads to a complete
solution of the problem of the precise relation of the class of i?-sets to the
projective class \\. The solution is based on three simple facts.

Assertion 1. If Ρ is a Borel set, then for every point χ the game QXP is
determined.

Indeed, the set Px — {i: (x, i) ξ. Ρ} of all plays that are wins for player
3 is a Borel set, and all the games satisfying this condition (called Borel
games) are determined, by Martin's theorem [62] (see also [63], [67]).

Assertion 2.

Consider an arbitrary Borel P. By definition

x £ ζ)Ρ «->• 3σ(σ is a s. for 3)VT(T is a s. for V) σ * τ 6 Px «-»•

•«-* ~j 3τ(τ is a s. for V) Vo(o is a s. for 3)σ * τ $ Px,
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where "s." stands for "strategy", α*τ denotes the play i = </0, /1; ...) of the
game QXP uniquely determined by the strategies σ and r of the two players
3 and V, and the second equivalence is a consequence of the determinacy of
the game. But strategies are here functions on the set ROJ of all finite
strings of natural numbers, with values in ω, and so any bijection from Rw
to ω induces a coding of the strategies by the points of Λ", by means of
which the double equivalence reduces to

χ £ ΌΡ ** 3σ 6 J ' V T € J'Pdx, σ, τ) *+ "] 3τ 6 JTVo 6 J*P,(x, ο, τ).

where Pi and P2 are Borel relations. Hence it follows that ξ)Ρ £ Σί and
QP ζΏΙ, and thus Q P £ A[.

Assertion 3. In each class QH^ there exists a set whose complement does
not belong to this class.

This is proved by exactly the same argument as the complementation
theorem of §2.

Corollary. The class of all R-sets is a proper subclass of the projective class
A'2.

Indeed, if we suppose that R = ζ)Α°3 = Al, we automatically obtain
QTll = Δ', since Δ° s Π° and θΠ° ^ £)B, which however leads to a
contradiction with Assertion 3, since Δ.1 is closed under complementation.

Thus we have a strictly increasing sequence of classes QA^ , a < ω ΐ 5

generated by the game-theoretical projections of the Δα-sets. The union of
these is QB S Al Here, again, one may ask whether there is equality or
strict inclusion, and again the answer is that the inclusion is strict. The
truth of the matter is that all the sets of QB are among the "absolute
Assets" of Solovay (this follows from the proof of Assertion 2), and these
form a proper subclass of AJ(see [50], [52], [68]).

The proof of Burgess's theorem.
The formula £)Δ° = Β should probably be described as "folk-lore": it was
known before Burgess's work and has a rather simple proof (see, for
example, [67]). The proof of the other two formulae has not so far been
published in full. In [47], [49] only an outline is given, from which the
general idea can be seen, however: to set up a correspondence between the
classes in the hierarchy of R-sets (or of C-sets) and subclasses of the difference
hierarchy of the class Δ" (respectively Δ£). We shall consider this argument
for the R-sets.

It is proved in the theory of Borel sets that for every AJ-set X we can
pick an ordinal ξ, 1 < ξ < ω 1 ; and a decreasing (with respect to C) sequence
of sets Xv, ν < ξ, of the class Π° = G6such that X = (j (.Yv — A r

v + 1), where
V

the union is taken over all even ordinals ν < ζ, where if ξ itself is odd, then
we must also define X$ = 0. All the sets X that can be defined in this way
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for a fixed ξ constitute a subclass Π^ξ of Δ°. In particular ΠΙ,ι = Π!!, and
Ή^ 2 is the class of all differences of two II°-sets, and so on, with
Δ° = U Π2 ξ. (Of course the construction of the subclasses can be carried

out in any Borel Δ-class. The subclasses were first introduced by Lavrent'ev;
then they were considered by Luzin [17], Lyapunov, Kuratowski [15], and
others.)

Thus Burgess asserts in [49] that QU^i = I I R 1 + i or = Σ Κ 1 + Ϊ according
as ξ is even or odd. We shall present the proof in the simplest case % = 1
(in [49], ξ = 2 is taken) and then add a few words about the general case.

From ΣΚ2 to £)Π°. By definition, the operation R2 is equivalent to

RR fl, that is, all the sets X of SR 2 are such that

(19) χ 6 X «-»• V/ooV/oiV/oa · · · 3;;i0V710V7n · · · 3»h · · ·

• · · V/mV/u . . . 3m t , . . VA- (x £ -Ymjl),

where j\\k == {jo\mo, . . ., fa\mh), /,fm, = </i0, . . ., jlmi) and all the sets

Xs, s Ξ /?/?ω, are closed. We have to deduce that X = £)P for a suitable
Il°-set P.

The right-hand side of the equivalence (19) is interpreted in terms of the
game V;{XS} of length ( ω + 1)ω, where player V makes the moves j l q and

player 3 the moves πΐχ (after completion of the sequence of all moves
j l q , q ζ ω, by the opponent), and at the end of the game, a win for 3 is

defined to occur when χ £ Xj\\h for all k. The key feature of this game is
that each play ji^.j^.. . • .. mt can be organized so as to be infinite in only
a potential sense, since if player 3 has one or another justification for
making some particular move ml after the completion of all the moves
iiq. ? 6 ω, by player V in the round /, then this justification is already

operative after the move jimi. And if at this point (thus before a decision)

3 makes the move mb then all the subsequent moves jiq, q ^ mh by player
V in round / will have no effect on the outcome, and one can therefore pass
immediately to the next round.

This argument leads to the following auxiliary game G'x of length only ω.
The players V and 3 (beginning with V) make the alternative moves
b0, ε0, 6 l7 Ej, . . . ζ ω. If the numbers ερ, ρ Ε ω, include only finitely
many zeros, then V wins. If there are infinitely many ep's equal to zero, let
their indices be ργ, ρ2, Ρ3, ••• in increasing order, and put p0 = — 1. Let
mt = pl+i — ρ, ~ 1, and also

(20) b\\k = <r0, . . ., rh), where r, = <feJ)(i)+i, bp(l)+2, . . ., &,,u+1) )

and specify a win for 3 in the case when χ 6 Χ&ΜΛ for all k. This completes
the definition of the game G'x.
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The game G'x is equivalent to the game V.i {Xs} in the sense that the
existence of a WS for player 3 in one of these games is equivalent to the
same thing in the other. On the other hand, G'x is none other than the
game ζ)χΡ where Ρ is the set of all pairs {χ. ί) such that χ £ 37,
i == (fr0. ε0, /),, ε,. . . .)ζ.,/Ι'\ and

VA3p > A- (Bj, = 0) Λ V/.· (χ ζ Xbtlh).

where the string of strings b \\ k is defined by (20). Therefore X = Q/\
However, because the set Xt,\^k is closed the set Ρ belongs to the class

n; = G6.

From 011J to 2R 2 . Now we assume that X = QP with Ρ in the class 11̂ ,
and we must prove that X 6 SR 2. First, it is easy to see that Ρ is of the
form Ρ = {(χ, i): V&3/(a: 6 )'*,,)}, where all the Yh

m <= . r a r e closed, and
without loss of generality we may assume that y * f p s Yh

iu for ρ < / for

every string i \ Ι ζ 7?ω (otherwise, we put F, r, = |J Yi j.,).

Further, if after the construction of an infinite sequence of moves
i = <i"0. ij. ;2, . . .) in the game <QXP we obtain χ £ X*f; for some / = l(k)
(and hence, by hypothesis, also for all /' > I), then this has in fact become
clear after the moves i0, ..., i,. Consequently

χ e X *+ V;1103/01Vy023;03 . . . 3m0V/103yn . . . 3m1 . . .

. . . ν; ' ! 0 3/ ; ι . . . 3m, . . . Vk(x £ Xjnk),

where each of the closed sets Xjtfk is defined as follows. The string ;' \\ k is
converted to the simple string

of length η = mo+ ... +mk, after which we put Xjt^k = Y^m-
This proves that X is obtained by applying the operation Ψ = RR (Γ) U)

to the family of closed sets we have constructed. However, by the theorem
on the properties of the transform R at the end of §3, which of course is

also valid for the "complementary" transform ΪΓ, and because Π U < Γ — ̂ Rf],
we have ω ω

from which it follows that 7?(Π U) « R Π. Thus Φ is equivalent to the
. ^ ω ω ω

operation i?2 « 7?7? f\, and therefore Χ ζ ER2.
ω

The general case. In the more interesting direction R ^ QA° (as regards
the projective characterization of the 7?-sets), the idea of the proof of
Burgess's theorem can be clearly seen from the derivation of the inclusion
IIR.t £ E)Il2,2given in [49]. The canonical definition of a IIRj-set can be
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written as follows:

χ € X «-»• DoDiD: · · · 3"(* € Xmin),

where all the λ'^ :. ί η are open, and each D ;. is a complete quantifier prefix
of the form (19), in which all the variables receive an additional (first) index
p, that is, Op is V/,,u0 . · · 3wipo . . . V/r,,.

The "modelling game" of length ω is so arranged that 1) the player V
makes moves corresponding to the j p l m , 2) the player 3 makes moves
corresponding to the mvl and signifying the end of a round, and 3) player V
may also make moves corresponding to kp and signifying the termination of
super-plays (one super-play comprises several rounds— mpl of them). A win
for 3 in this game occurs when player 3 has made infinitely many moves,
corresponding to the nipi, and either V has made finitely many moves of the
type kp, or a natural win for 3 occurs, in the sense of the system of sets
Xj f f ι η. A straightforward analysis shows that we now arrive at the action of
the operator Ο on a set which is the difference of two II"-sets (each of
which expresses that there are infinitely many of the specified moves).

At higher leveb of the hierarchy of /?-sets the structure of the rounds of
various ranks becomes correspondingly more complicated, but in fact
everything reduces to difference combinations of US-relations requiring that
the number of moves of a specific type is infinite (plus a simple relation for
a natural win), upon which Ο is then superposed.

§7. Properties of R-sets

Here we shall consider three lines of research into i?-sets: measure and
category; partitioning into Borel sets; and the principle of comparison of
indices. These may be said to have been inherited from classical descriptive
set theory, in which Luzin and his students made a detailed study of the
^-operation and its geometric equivalent—the operation of sifting by means
of a sieve. However, direct generalization of the results connected with
Λ-sets became possible only after Kolmogorov had isolated the general
mechanism lying behind the principal properties of the ^4-operation, namely
the R-transform. Essentially, all three of the lines we have selected are
related to a greater or lesser degree to Kolmogorov's paper [2] and in a
certain sense spring from it.

Measure and category.
Every Borel set on the real line is Lebesgue measurable and has the Baire
property, which means that it coincides with an open set to within sets of
first category. This assertion can be derived from the fact that the operations
Uand Π, used in the construction of the Borel sets, preserve measurability
ω ω

(that is, when applied to measurable sets they yield measurable sets) and (in
the same sense) the Baire property. Immediately after the introduction of
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the ^-operation by Aleksandrov [7] and the construction by Suslin [32] of
the class of ,4-sets (that is, the Suslin or, in another terminology, ZJ-sets),
Luzin and Sierpinski [18] (see also [17]) proved that the A -operation also
preserves measurability and the Baire property, and therefore all Α-sets on
the real line, and their complements the C4-sets, are Lebesgue measurable
and possess the Baire property.

Thus the property "preserves measurability and the Baire property" was
extended from the operations (J and Π (for which it is obvious) to the

ω ω

A -operation. In Theorem VI of [2], Kolmogorov shows that the fact that
this extension is possible can be based on the single fact that the A -operation
is the J?-transform of the operation (J- Here is the formulation of his

(•I

theorem: if the δί-operation Φ (with countable index set; only such
operations are discussed below) preserves measurability, then the operation
R<& also preserves measurability. This theorem was stated without proof in
[2]—a proof was first published by Lyapunov [20] (with acknowledgement
to Kolmogorov), together with one for the corresponding theorem concerning
the Baire property. Lyapunov deduced that:

1) all R-sets on the real line are measurable (with an appropriate
generalization of Lebesgue measurability, this result remains valid for all
Polish spaces, as Lyapunov shows); and

2) all Λ-sets have the Baire property. (This is valid for every Polish space,)
In recent work the results for the Baire property have undergone far-

reaching generalizations within the framework of the "game-theoretical"
approach to operations. In particular, Kechris [60] established that the
Baire property is possessed by all sets of the class £)B, which is, as we have
seen, significantly broader than the class of i?-sets. Shilling and Vaught [69]
have shown that all game-theoretical Borel operations preserve the Baire
property (which implies the Kechris result). The proof of the Shilling-
Vaught theorem involves the use of a special game which is described by the
quantifier prefix of the following Burgess formula:

V # o Ξ ll^io3ll1 <= H03i^H2 Ξ HJ/iz . . . hi3m(Hm < Xitn).

Here each Hm must belong to a fixed countable basis for the topology of the
given space, A < Β denotes that A - Β is a set of first category, {XT} is the
family of open sets to which the operation GX is applied, and Η is a fixed
open set. This game is determined (for a Borel λ) and 1) if the player 3 has
a winning strategy, then Η < X, where λ' = GK{Xr}, but 2) if the player V
has a WS beginning with some move Ho, then Ho < (Ho- X). This implies
that X has the Baire property. See [45], [48]-[50], [69], [71] for further
work on the Baire property.

A game-theoretical analysis of measurability demands recourse to essentially
more complex games than those associated with the Baire property. This is
probably the reason why in recent papers on Borel game-theoretical operations
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measure is rarely considered separately—usually there is merely a remark to
the effect that results can be obtained for measure similar to those valid for
category. In particular, it is stated in [69] that Borel game-theoretical
operations preserve measurability (with respect to a rather broad class of
measures), and consequently all sets of QB are measurable (in the same
sense).

Partitions into Borel sets.
Research in this direction was started by Luzin and Sierpinski in [18],
where it is shown that every C/4-set can be decomposed, in a certain
canonical way, into pairwise disjoint Borel sets called constituents, of which
there are N^ Later (see [17]) a similar result was established for the v4-sets
themselves; the resulting constituents are described as 'inner'. In an
elementary way this implies that such a partition is possible also for the sets
of the wider class Σ* = A,, since Σ'-sets are projections of C/4-sets, and
Borel sets project into ^4-sets. Consequently every i?-set can also be
partitioned into κχ Borel sets, since R £ A! g SJ.

However, it turns out that the canonical partitions of the ,4-sets and
C/4-sets into constituents have the key property of regularity with respect to
measure, meaning that the measure of a given set is concentrated on
countably many terms of the partition, and the same property holds with
respect to category, which is not in general true for the simplest construction,
which we gave earlier, of the partitions for Σ\ sets. The problem of
constructing partitions of i?-sets into Borel sets that are regular with respect
to measure and category was solved by Lyapunov in [20] with the help of
the following theorem of Kolmogorov.

Theorem V of [2]. Suppose that the 8s~operation Φ with countable index
set I is such that Φ ^ fl and ΦΦ ~ Φ. Then the complement of any set of

is the union of an increasing sequence {of type ωλ) of sx sets of

the class Φ(Τ).

Proof. In the situation considered in §4 we have X — (J XAa, and because
α _

/ is countable this union is restricted to ordinals α < ω χ , while the sets Xsa

satisfy the equations (17). If we take the initial sets Xr to be closed, then

under the hypotheses on Φ (in the form Φ ^ (J and ΦΦ τα Φ ) it is easy

to show by induction on a that each set Xsa belongs to Φ(¥). that is, it can

be obtained from closed sets by a single application of Φ.

Removing from each Χ Λ α the union of all the Χ Λ ϊ with indices y < a., we

obtain a partition of X into the sets

Χα = ΧΛ*- U ^ Λ ν ^ ί * : I n d A a : = a } , α < ω , .
«
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Under the assumptions of the last theorem each X is the intersection of a

set of class cp(F) with one of class <I>(F).
Combining this result with the partition of X itself (which can be obtained

with the help of the inner indices: the inner index Ind* χ of a point χ €= X
may be defined as the least a < cjj such that Sxa — Sx>a+1), and performing
an induction on the construction of the operations of the normal series,
Lyapunov proved in [20] that each R-set admits a partition into Kj Borel
sets, regular with respect to measure and category. Here, the start of the
induction is the case Φ = U (consequently RΦ = A), to which Kolmogorov's

ω

theorem is inapplicable (since it is not true that U ̂  D)> but the same
ω ω

argument gives the Borel property of sets Xo identical with the classical
constituents of the C4-sets in the descriptive theory.

The principle of comparison of indices and its applications.
We again return to the situation considered in §4, and we suppose that RΦ
is one of the operations Ra, a > 1, of the normal series, and corresponding

to the construction,-Φ = IJ | {/?..: y < a}. We also consider the pair of sets
ω

A" = Ra{Xr}, X' = Ra{X'r} of the class SR a (where Xn X'r are assumed
closed). With the systems of sets Xr and X'r two Kolmogorov index functions
are associated: <x(X) = IndA χ and oc'(x) = lnd'A x, where a(x) < ω , for

χ 6 A' and a(x) = ω χ = °° for χ Ε Χ and similarly for a'. What is the
nature of the set of points χ at which α(χ) < α'(χ)? The answer is as
follows.

Principle of comparison of indices (Lyapunov [21 ]). The set {x: a{x) ^ a'(x)}
belongs to the class ΣΚα.

In actual fact, Lyapunov considered this question in a significantly more
general case (see [20]-[24] and [45]). In descriptive set theory, the
principle was first established by Novikov for the case corresponding to
a — 1 (that is, when Ra is the ^4-operation; in fact Novikov considered a
sieve), and he used it in [27], [28] in order to solve certain problems
concerning B-measurable implicit functions and C-sets. But the most natural
application is to the proof of separation theorems.

The first separation principle is said to hold for some class Κ (written
Sepj(A^)) if any two disjoint sets of this class can be covered by two
mutually complementary sets Υ, Υ' of the same class.

The second separation principle Sep2(AT) is said to hold for Κ if for any
pair of TT-sets X, X' the sets X — X' and X' — X can be covered by disjoint
sets Υ, Υ' whose complements belong to K.

Theorem (Lyapunov [22]). Both separation principles hold for the classes
SR a but not for the classes IIRa.
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The 'positive' part for the second principle is proved using the sets

Υ = {x: a(x) > a'l*)}, V =-- {x; a'(x) > a(x)},

and for the first principle Lyapunov takes the same sets after having arranged
that α(χ) Φ a'(x) for all χ by a special auxiliary construction. The 'negative'
part of the theorem is deduced from the 'positive' part using a doubly universal
pair of ERo-sets.

In the descriptive theory, both of the separation principles for the class
2Rj(=A), and non-separation for I1R1(=CA), had been proved by Luzin [17].

In modern research on the i?-transform and i?-sets the principle of
comparison of indices has been used in the derivation of the important
property of normability [45] (also called the principle of complete pre-
ordering) for the classes ΠΚα and for the solution of certain delicate
problems about the construction of functions that effect a choice of winning
strategy, and concerning sections of plane sets. In particular, in [45], [51],
and [70] there is a study of the sets

{x: Ex = {y: (.τ, y) f E) is of first category )

for plane sets Ε of specific classes.

§8. Kolmogorov's problem on the lengths of Borel hierarchies

Early issues of the journal Fundamenta Mathematicae contained a
consecutively numbered series of problems in areas related to the foundations
of mathematics. Number 65 is a problem of Kolmogorov [4] which,
although it did not become so well known as Suslin's problem (number 3,
Fund. Math. 1 (1920), 223), nevertheless aroused considerable interest among
experts in set theory (see the book [14], p.140).

Suppose that some initial collection of sets Fo is given. By induction on α
we define

F e = U ( U Fy) or F o = n ( U FT>

according as the ordinal a is even or odd. Then /' -- /'„,, is the smallest

family containing all the sets of Fo and closed under (J and Π. In fact this

is one of the possible constructions of the hierarchy of Borel sets, considered
in papers in the 20's and 30's: the collection F of all closed sets is then
chosen for Fo.

In [65] the least a such that Fa = F is called the Kolmogorov number
K(F0) for F o . (For α > 1 this is equivalent to Fa+1 = Fa, which is what [4]
actually refers to.) Of course K(F0) < coi, and Kolmogorov's problem is to
determine for which values of a < ω ι there exists a family Fo such that
K(F0) = a.



Kolmogorov 's ideas in the theory of operations on sets 151

Miller's paper [65] contains a survey of both classical and modern results
on this problem. The main result given by Miller, and ascribed to Kunen,
provides a complete solution: for every a < ω ι there is an initial family Fo

for which K(F0) = a. It is interesting that the proof of this given in [65]
makes use of the method of forcing, which is usually applied in the derivation
of consistency and undecidability results, and so on; here it is used in the
solution of a problem in the traditional sense.

Conclusion

In this survey we have tried to exhibit the original form of the ideas
introduced by Kolmogorov as a basis for the theory of operations on sets,
the development of the theory under the influence of these ideas, and also
their enrichment and the new forms they have taken on during the course of
this development.

At present this theory is far from having a completely definitive form, and
one can easily discern perspectives for further research. Thus it would be
very interesting to obtain non-trivial results on the structure of the class of
£'i! δί-operations from the point of view of the "stronger" order of § 1. For
ex-'rnple, consider the smallest family $ of operations closed under
superposition and containing U and Π. Then Φ <* A for every Φ ξ ^ . Is it

ω ω

ivue that A < Ψ for every operation Ψ that satisfies Φ < Ψ for all Φ £ <S1
A second important objective is the search for an "operational" way of

locking at the class Q A J : we know that QAJ is the class of Borel sets,
ζ)Δ° -= C, and Q&l = R, but it is not clear what the next step ought to be,
•Ληά more generally what the general principle should be for all Q Δ^ giving
B, C, and R at the first three stages.

Another side of this question is the problem of construction of an
inductive analysis for game-theoretical Borel operations similar to that given
by Kolmogorov in the case that he considered. In view of the connection
between inductive analysis and the proof of determinacy for the corresponding
games, discussed in §4, a clue to the solution of this second problem might
be looked for in the proof of Martin's theorem [62] on the determinacy of
Borel games. Certainly, it is possible to carry out an inductive analysis of
game-theoretical Σ'-operations parallel to the proof of determinacy of
E°-games given by Wolfe [72].

Further, in the theory of operations on sets the operations themselves and
their transforms are considered. Is there any sense in considering the next
higher level, that is, transforms of transforms? Thus it would be interesting

to assign some specific meaning to the expression RRRRRR . . . Φ.
The above list of unsolved problems could easily have been extended, and

there is no doubt that the future development of the theory of operations
on sets will reveal new facets of this part of the mathematical legacy of the
great mathematician Andrei Nikolaevich Kolmogorov.
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