Undecidable hypotheses in Edward Nelson’s internal set theory

V.G. Kanovei

CONTENTS

Preface 1
§1. Introduction. Hypotheses and results 3
§2. Basic internal set theory 18
§3. External quantifiers limitation theorem 23
§4. Consistency 27
§5. Bounded set theory 29
§6. The hierarchy theorem 33
§7. Truth definability 36
§8. Full collection 39
§9. Independence 44
§10. Final comments. Externalization as a general way to new problems 51
References 52

Preface

The modern theory of nonstandard (= infinitesimal) methods had its origins in Abraham Robinson’s investigations in the early 1960s. Robinson established the possibility of completely rigorous arguments with infinitesimal and infinitely large numbers. The first approach to nonstandard analysis was model-theoretic or “constructive”, see Robinson [31], [32]. Lindstrøm’s large article [21], part I of Albeverio et al [1], and many other sources, among them Davies [4], Kanovei [14], Lutz and Gose [23], Lyubetskii [24], Uspenskii [35], present this approach in all the necessary detail. Universal constructions of ultrapowers and ultralimits (iterated ultrapowers) gave many fruitful nonstandard extensions of various mathematical structures. Meanwhile many properties of different extensions were found to be similar. This was the reason for searching for an appropriate axiomatization.

Several axiomatic systems were proposed: Nelson [28], [29], Kawai [17], [18], Hrbáček [10], [11], Henson and Keisler [9], Vopenka [36] and some others (see [20] for a survey). Edward Nelson’s internal set theory (briefly, IST) appears to be the most fruitful among them. IST extends the usual set theory
V.G. Kanovei

ZFC by adding a new unary predicate of standardness and three intuitively acceptable and easy to use new axioms governing its action.

Today IST is certainly accepted as a base for the nonstandard mathematics. The following investigations are in any event connected with IST: Diener and Stroyan [5], Diener and Diener [6], Shubin and Zvonkin [34], the monographs of Robert [30] and van den Berg [2], and some other textbooks and applied works, including Gordon [7] and [15], [16] of the author, where some previous variants of the theorems of this paper were presented. Lutz and Gose [23], Kusraev and Kutateladze [20] considered IST among some other nonstandard systems.

It is the applied side of IST that has been the usual topic of nonstandard investigations concerning the IST. Purely logical questions, as a rule, were avoided. Meanwhile problems concerning the boundaries of the area of the provable and the area of the undecidable are among the most important in logic, especially for theories of set theoretic type, see Jech [13]. Being a conservative extension of ZFC, IST takes over a lot of famous undecidabilities from ZFC (the continuum hypothesis, the Souslin hypothesis, and so on). Hence only those undecidable sentences may be of real interest which are much more connected with the spirit of the nonstandard mathematics, and those which discover this spirit.

The aim of this article is to prove the undecidability of some sentences, or hypotheses, in IST. All of them are in fact the extensions of some ZFC axiom or theorem to the case of an external (that is, containing the predicate st) core formula. (All ZFC axioms and theorems hold in IST only in the case when the core formula is internal—that is, without the st.) Among those hypotheses are the following four:

(a) \(\forall^* x \in X \exists y \Phi(x, y) \rightarrow \exists^* y \forall^* x \in X \Phi(x, \tilde{y}(x)) \);

(b) \(\forall^* x \in X \exists^* y \Phi(x, y) \rightarrow \exists^* y \forall^* x \in X \Phi(x, \tilde{y}(x)) \);

(c) \(\forall^* x \in X \exists y \in Y \Phi(x, y) \rightarrow \exists^* \tilde{y} : X \rightarrow Y \forall^* x \in X \Phi(x, \tilde{y}(x)) \);

(d) \(\forall^* x \exists^* y \Phi(x, y) \rightarrow \exists^* \tilde{y} \forall^* x \Phi(x, \tilde{y}(x)) \)

(\(X, Y\) are arbitrary standard sets). We show that (a), (b), (c), (d) are undecidable in IST. Moreover each of them holds for all standard \(X, Y\) and all \(\Phi\) in Nelson’s ultralimit model and fails for \(X = Y = \mathbb{N}\) and some special \(\Phi\) in another model of IST. (We allow \(\Phi\) to be an external formula.) We recall that (c) is the well-known extension principle. We study the question about how complicated \(\Phi\) may be in non-provable examples.

Three more results. Theory \(\text{IST} + (b)\) is strong enough to prove the consistency of ZFC and IST. It is possible to express in IST the truth of all internal formulae with standard parameters by some external formula (this fails if nonstandard parameters are allowed). The following collection axiom

\(\forall X \exists Y \forall x \in X [\exists y \Phi(x, y) \rightarrow \exists y \in Y \Phi(x, y)] \)

holds in IST for all formulae \(\Phi\) (internal as well as external).
Also we study the \textit{bounded set theory BST}. This is the modification of IST which guarantees that all sets are members of standard sets. BST is equiconsistent with IST and ZFC and is sufficiently strong to make (a)–(d) decidable.

It is a pleasure to thank V.A. Uspenskii, A.G. Dragalin, A.K. Zvonkin, V.A. Lyubetskii, V.A. Molchanov, E.I. Gordon, An.A. Muchnik, V.V. Krupskii, V.E. Shestopal and many other people, especially participants of the Nonstandard Analysis Meetings held in Nizhnii Novgorod (1988) and Saratov (1989, 1990, see [8] and [27]), and members of the Moscow Nonstandard Analysis Seminar for very helpful discussions and suggestions made while this paper was in preparation. Special thanks to Michiel van Lambalgen for his friendly help in preparation of the text, and to A. Enayat, A. Miller and other participants of Tehran 1991 Summer Logic School for attention to this investigation, and to the Institute of New Technologies (Moscow) for their support.

§1. Introduction. Hypotheses and results

1.1. Internal set theory.

The IST language contains the equation $=$ and two predicates: the membership relation ε and the standardness st; $st x$ means "x is a standard set".

A formula of the IST language (shortly, st-ε-formula) that does not contain the symbol st is called \textit{internal}, a formula containing st is called \textit{external}. Internal formulae are just ε-formulae or those of the ZFC language.

Two simple abbreviations are often used:

- $\exists^{st} z \varphi(z)$ means $\exists z (st z \& \varphi(z))$;
- $\forall^{st} z \varphi(z)$ means $\forall z (st z \rightarrow \varphi(z))$.

Note that $st x$ is equivalent to $\exists^{st} z (z = x)$. Thus the only necessary use of the standardness predicate is its use in quantifiers \exists^{st}, \forall^{st}. The quantifiers \exists^{st}, \forall^{st} are called \textit{external}, while the usual \exists and \forall are called \textit{internal}.

Internal set theory contains all the axioms of Zermelo–Fraenkel set theory ZFC (with choice) formulated in the ε-language and three additional principles or axioms. These are the \textit{idealization} I, the \textit{standardization} S, the \textit{transfer} T:

\begin{align*}
I: & \forall^{st\in} A \exists x \forall a \in A \Phi(x, a) \iff \exists x \forall^{st} a \Phi(x, a) \\
S: & \exists^{st} Y \forall^{st} x [x \in Y \iff x \subseteq X \& \Phi(x)] \\
T: & \exists x \Phi(x) \iff \exists^{st} x \Phi(x)
\end{align*}

for any internal formula Φ;
Of course none of I, S, T is a single axiom. Principles of such a kind are called \textit{axiom schemes}. Their strength depends on our choice of a \textit{core formula} Φ.

$\forall \text{fin} A$ is an abbreviation for "for all standard finite $A". The slightly vague phrase "with standard parameters" means that every free variable occurring in Φ except x may be replaced only by a \textit{standard} set when T acts within the universe of internal sets (see below). From a logical point of view we imply that the list of external quantifiers $\forall^* v_1 \ldots \forall^* v_n$ (for all the free variables v_1, ..., v_n of Φ except x) is written down outside T.

We note that core formulae $\Phi(x, a)$ in I and $\Phi(x)$ in S can also contain other free variables which may be replaced by arbitrary sets, standard or nonstandard. Briefly, Φ is a formula with \textit{arbitrary} parameters in I and S. In general a \textit{parameter} is a set that replaces a free variable in a formula.

Thus the main special feature of IST (among other nonstandard systems) is that it takes into consideration only the following two types of sets: standard and internal. Unlike IST, many other theories, especially those introduced by Kawai, Hrbáček, Henson and Keisler, Vopenka, admit the third kind: \textit{external} sets. One can say that IST is an \textit{internal} axiomatization of the nonstandard mathematics while some other theories gave an axiomatization of an \textit{external} world containing a nonstandard model. The last approach makes the logical structure significantly more complicated, so it prevents one obtaining a large amount of natural applications. Maybe this is the reason why, unlike IST, the known external systems are not of common use.

\subsection*{1.2. The universe of internal set theory.}

A set-theoretic universe (that is, a collection of sets governed by the axioms of a theory that we consider) is usually denoted by some form of the letter V.

We choose the double-lined form V to denote the universe of all sets governed by the axioms of IST (or of ZFC if arguing in ZFC). Historically, sets contained in V are called \textit{internal}. So

$$V = \text{all sets} = \text{all internal sets}.$$

The standardness predicate st works in V. Thus we may define the universe of standard sets

$$S = \{x : \text{st } x\} = \{x \in V : x \text{ is standard}\}.$$

One can easily prove that S is not a member of V, though $S \subseteq V$.

Collections of such a kind are called \textit{external}. They are considered in IST in the same manner as proper classes in ZFC.

Every "individual" set of classical mathematics is standard; this is guaranteed by transfer. Thus \mathbb{N} (integers), \mathbb{R} (reals), and so on, are standard members of V. The reader familiar with "superstructural" investigations must keep in mind that the sets \mathbb{N}, \mathbb{R} and in general all infinite standard sets contain both standard and nonstandard elements. For example,
Undecidable hypothesis in Edward Nelson's internal set theory

IN corresponds to \(\ast \mathbb{N} \) in a superstructure, while the collection

\[\sigma \mathbb{N} = \{ n \in \mathbb{N} : \text{st } n \} = \{ \text{standard integers} \} \]

is analogous to superstructural \(\mathbb{N} \). By the way, \(\sigma \mathbb{N} \) and generally \(\sigma X \) for all standard infinite sets \(X \) are external collections.

Finiteness is realized in IST in the usual sense, that is, the number of elements of a set which we say is finite must be equal to some integer \(n \), not necessarily standard. So it corresponds to hyperfiniteness in a superstructure.

A rigorous "superstructuralist" may realize the universe \(\mathcal{V} \) as a model in the usual set-theoretic Zermelo—Fraenkel world. In fact one can construct \(\mathcal{V} \) by Nelson's [28] adequate ultralimits rather than by direct construction of a superstructure due to Lindstrøm [21]. From this point of view one must distinguish between two meanings of the notion "external". Firstly, "external" can be taken to mean "defined in \(\mathcal{V} \) by an external formula" (or, equivalently, by some st-e-formula). Secondly, "external" is any \(X \subseteq \mathcal{V} \) that is not a member of \(\mathcal{V} \). According to what has been said above, externality has the first meaning here. The word "outer" is a good substitute for the second meaning. Thus its opposite "inner" means internal + external, that is, definable in \(\mathcal{V} \) by a st-e-formula. Finally, "outer" means undefinable in \(\mathcal{V} \).

1.3. General approach to problems.
Certainly all the axioms and theorems of ZFC remain provable in IST because IST is an extension of ZFC. However let us look at this proposition more carefully. We note that ZFC contains, among others, two axiom schemes, namely, separation

Sep: \(\exists Y \forall x \subseteq X \ [x \subseteq Y \iff x \subseteq X \& \exists \Phi(x)] \),

and replacement

Repl: \(\forall x \subseteq X \exists ! y \Phi(x, y) \rightarrow \exists \tilde{y} \forall x \subseteq X \exists \Phi(x, \tilde{y}(x)) \),

where \(\Phi \) is an arbitrary \(e \)-formula and \(X \) is an arbitrary set. Every variable with \(\sim \) over it designates a function, and an occurrence of a term of type \(\tilde{y}(x) \) means that \(\tilde{y} \) is defined at \(x \). Thus \(\text{Repl } \tilde{y} \) is a function with domain (including) \(X \).

Let us emphasize that Sep and Repl are included in IST only in the case of internal core formulae \(\Phi \).

What can one say about external formulae \(\Phi \)?

The main aim of our investigation is to make clear the status of "external" forms of separation, replacement, choice and collection in IST. Exact formulations will be given below after some preliminaries that we need in order to select the forms of real interest and to discard trivialities. We shall investigate, together with Sep and Repl, two more axiom schemes, choice \(\text{Che} \) and collection \(\text{Coll} \), and a principle of another kind, uniqueness Uniq. We consider all of these schemes as hypotheses in IST because it is not quite clear whether one should accept or reject them.
1.4. Separation.
We wish to select "reasonable" forms of the separation axiom with external formula \(\Phi \). First of all let us get rid of trivial variations, trivially true or trivially false in IST.

We note that the true (= provable) form is \(\text{Sep} \) with

\[(1) \quad X = \{1, 2, \ldots, n\}, \quad n \in \mathbb{N} \text{ finitely large (= standard)}\]

and with arbitrary \(\Theta \), internal or external. One can easily derive \(\text{Sep} \) in this case with the help of the external induction theorem, see Nelson [28] or 2.6 below.

The false (= disprovable) form is \(\text{Sep} \) with

\[(2) \quad X = \{1, 2, \ldots, n\}, \quad n \in \mathbb{N} \text{ infinitely large (=nonstandard)}\]

and the formula \(\text{st} x \) as \(\Phi \). (The collection \(\sigma \mathbb{N} \) of all standard integers is not an internal set in IST.)

To recognize the crucial difference between these two cases, let us look at elements of a set of the kind (1) and of the kind (2). Any set of the first kind contains only standard elements but not all standard integers \((n + 1 \notin X)\). Any set of the second kind contains all standard integers together with some part of nonstandard integers (those less than or equal to \(n \)).

The really interesting and non-trivial case may be the "intermediate" collection \(X \), that is, the collection of all standard integers. (This collection is not an internal set in IST, of course.) The required property of a set \(Y \) in \(\text{Sep} \) takes the form

\[\forall \text{st} x \left[x \in Y \leftrightarrow x \in \mathbb{N} \land \Phi(x) \right].\]

Natural generalization to an arbitrary standard set \(X \) or to the whole universe \(V \) leads to the following three forms of \(\text{Sep} \):

\[\text{Sep}_1: \quad (\text{st} X) \exists Y \forall \text{st} x \left[x \in Y \leftrightarrow x \in X \land \Phi(x) \right];\]

\[\text{Sep}_2: \quad (\text{st} X) \exists Y \forall \text{st} x \left[x \in Y \leftrightarrow x \in X \land \Phi(x) \right];\]

\[\text{Sep}_3: \quad \exists Y \forall \text{st} x \left[x \in Y \leftrightarrow \Phi(x) \right].\]

We write \(\text{st} X \) in brackets instead of the quantifier \(\forall \text{st} Y \).

Some comments. \(\text{Sep}_1 \) is just the standardization axiom. Hence \(\text{Sep}_1 \) and of course \(\text{Sep}_2 \) are true in IST. Thus only \(\text{Sep}_3 \) is really new. Note that there is (in IST) a set \(Y \) such that \(S \subseteq Y \), see 2.9, hence \(\text{Sep}_3 \) does not produce an immediate contradiction. Further we cannot require the standardness of \(Y \) in \(\text{Sep}_3 \) (let \(\Phi \) be \(x = x \)). Also we cannot extend \(\text{Sep}_1 \) to nonstandard sets \(X \). It is easy to check that \(\text{Sep}_2 \) for nonstandard sets \(X \) is equivalent to \(\text{Sep}_3 \).

1.5. Replacement.
The approach to the selection of external forms which is taken above is applicable to replacement as well. Of course, \(\text{Sep} \) is \(\text{Repl} \) restricted by the assumption that values of the variable \(y \) may be 0 or 1 only. Generalizing to
all standard values, we obtain three variants of Repl similar to the corresponding forms of Sep. They are as follows:

Repl_1: (st X) $\forall^{st}x \in X \exists^{st} y \Phi(x, y) \rightarrow \exists^{st} \tilde{y} \forall^{st}x \in X \Phi(x, \tilde{y}(x));$

Repl_2: (st X) $\forall^{st}x \in X \exists^{st} y \Phi(x, y) \rightarrow$

$\rightarrow \exists \tilde{y} \forall^{st}x \in X [\Phi(x, \tilde{y}(x)) \& \text{st } \tilde{y}(x)];$

Repl_3: $\forall^{st}x \exists^{st}y \Phi(x, y) \rightarrow \exists \tilde{y} \forall^{st}x [\Phi(x, \tilde{y}(x)) \& \text{st } \tilde{y}(x)].$

Generalization to all nonstandard values leads to two more forms:

Repl_4: (st X) $\forall^{st}x \in X \exists y \Phi(x, y) \rightarrow \exists \tilde{y} \forall^{st}x \in X \Phi(x, \tilde{y}(x));$

Repl_5: $\forall^{st}x$ $\exists y \Phi(x, y) \rightarrow \exists \tilde{y} \forall^{st}x \Phi(x, \tilde{y}(x)).$

Here Φ is an arbitrary st-e-formula, internal or external, X is an arbitrary standard set, $\exists^{st} y$ means: "there is a unique standard y such that ... (and maybe many nonstandard such sets y exist too)."

Of course, "\tilde{y} is a function and $x \in \text{domain of } \tilde{y}$" is assumed on the right-hand sides, thus \tilde{y} is defined at all standard x in $\text{Repl}_{3,5}$ and at all standard $x \in X$ in $\text{Repl}_{1,2,4}$ (at least). In fact the additional requirement that \tilde{y} is defined at all $x \in X$ should not really strengthen $\text{Repl}_{1,2,4}$. Finally, the additional term $\text{st } \tilde{y}(x)$ is not necessary in Repl_1 because the value $\tilde{y}(x)$ is standard provided \tilde{y} and $x \in \text{dom } \tilde{y}$ are standard.

The following relations are easily provable in IST:

\[
\text{Repl}_1 \quad \downarrow
\]

\[
\text{Repl}_3 \quad \rightarrow \quad \text{Repl}_4 \quad \rightarrow \quad \text{Repl}_2
\]

\[
\text{Repl}_5 \quad \leftarrow \quad \text{Sep}_3
\]

1.6. Choice.
Within ZFC the choice scheme

$\text{Che}: \forall x \in X \exists y \Phi(x, y) \rightarrow \exists \tilde{y} \forall x \in X \Phi(x, \tilde{y}(x))$

follows from the usual axiom of choice AC by replacement and separation schemes. However, such a reasoning is impossible in IST if Φ is external. Hence it would be interesting to consider the following analogues of the five forms of Repl given above, obtained by deleting the uniqueness on the left-hand sides.

Che_1: (st X) $\forall^{st}x \in X \exists^{st} y \Phi(x, y) \rightarrow \exists^{st} \tilde{y} \forall^{st}x \in X \Phi(x, \tilde{y}(x));$

Che_2: (st X) $\forall^{st}x \in X \exists^{st} y \Phi(x, y) \rightarrow$

$\rightarrow \exists \tilde{y} \forall^{st}x \in X [\Phi(x, \tilde{y}(x)) \& \text{st } \tilde{y}(x)];$

Che_3: $\forall^{st}x \exists^{st} y \Phi(x, y) \rightarrow \exists \tilde{y} \forall^{st}x [\Phi(x, \tilde{y}(x)) \& \text{st } \tilde{y}(x)];$

Che_4: (st X) $\forall^{st}x \in X \exists y \Phi(x, y) \rightarrow \exists \tilde{y} \forall^{st}x \in X \Phi(x, \tilde{y}(x));$

Che_5: $\forall^{st}x \exists y \Phi(x, y) \rightarrow \exists \tilde{y} \forall^{st}x \Phi(x, \tilde{y}(x)).$
Evidently $\text{Che}_i \rightarrow \text{Repl}_i$, $i = 1, 2, 3, 4, 5$, and the chart as in 1.5 is valid for these five variants of choice:

```
<table>
<thead>
<tr>
<th>$\text{Che}_1$</th>
<th>$\text{Che}_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Che}_3$</td>
<td>$\text{Che}_4$</td>
</tr>
</tbody>
</table>
```

In fact $\text{Che}_1 \leftrightarrow \text{Repl}_1$ in IST, see 2.7 below.

1.7. Replacement and choice with bounded range.

It should be natural to modify Che_i and Repl_i by restricting the variable y to some standard set Y. Modified forms of such a kind will have the letter B (bounded) in front of the usual notation. For example,

\[B\text{Che}_i : (st \, X, Y) \, \forall^{st}x \in X \, \exists^{st}y \in Y \, \Phi(x, y) \rightarrow \exists^{st}\bar{y} \, \forall^{st}x \in X \, [\bar{y}(x) \in Y \cup \Phi(x, \bar{y}(x))], \]

where the variable y is bounded by a previously fixed standard set Y. The same reformulation of \textit{"{y}}-bounded" forms can be applied to all the hypotheses Repl_i, Che_i. \textit{"{G}lobal"} hypotheses are rather senseless in the \textit{"{y}}-bounded" form. So let us look at \textit{"{l}ocal"} forms. Nelson [28] proved $B\text{Che}_1$ in IST, see 2.3 below; thus $B\text{Che}_2$, $B\text{Repl}_1$, $B\text{Repl}_2$ also hold in IST. Only the case $i = 4$ remains, that is, the \textit{extension principle} of Lutz and Gose [23], Diener and Stroyan [5] and others:

\[B\text{Che}_4 : (st \, X, Y) \, \forall^{st}x \in X \, \exists y \in Y \, \Phi(x, y) \rightarrow \exists y \, \forall^{st}x \in X \, [y(x) \in Y \cup \Phi(x, y)], \]

and $B\text{Repl}_4$ with $\exists ! y \in Y$ on the left-hand side.

It is easy to see that $\text{Repl}_4 \rightarrow B\text{Repl}_4$ and $\text{Che}_4 \rightarrow B\text{Che}_4$.

1.8. Collection.

The scheme of collection

\[\text{Coll} : \forall X \, \exists Y \, \forall x \in X \, [\exists y \, \Phi(x, y) \rightarrow \exists y \in Y \, \Phi(x, y)] \]

(two are several equivalent forms, see Chang and Keisler [3], Makkai [25]; we choose the most convenient for our use) is an easy consequence of replacement in ZFC. Hence Coll remains true in IST for internal core formulae Φ. Conversely, Repl is an easy consequence of Coll + Sep in ZFC without Repl. Collection is often used implicitly in set-theoretic arguments. It becomes important and explicitly involved in some modified theories (as the Kelley—Morse theory of classes or the Kripke—Platek theory of admissible sets).

Now we want to “standardize” some (or all) variables X, Y, x, y as we have done above in 1.3—1.5. As matter of fact, Coll is provable in IST for any st-\in-formula Φ (see §2 below). We do not take into consideration some
weaker forms. In fact every variant of Coll with $\exists Y$ and at least one of the quantifiers $\forall^*X, \forall^*x, \exists^*y$ is weaker than the ground form and may be omitted.

Certainly every variant of type $\forall X \exists^*Y$ is false (disprovable) in IST (we choose Φ to be $x = y$). Hence the unique reasonable combination for X and Y (except the basic form, of course) is $\forall^*X \exists^*Y$. Let us consider its subvariants. The first of them is $\forall^*x \exists^*y$, that is,

$$\text{Coll}_1: \forall^*X \exists^*Y \forall^*x \in X \ [\exists^*y \ \Phi(x, y) \rightarrow \exists^*y \in Y \ \Phi(x, y)].$$

It appears that Coll_1 is equivalent to Repl_1 and Chc_1 in IST (see 2.7). Subvariants $\forall x \exists y$ and $\forall^*x \exists y$ are false in IST (with the formula $\forall^*z (y \not\in z)$. The last subvariant $\forall x \exists^*y$, that is,

$$\text{Coll}_2: \forall^*X \exists^*Y \forall x \in X \ [\exists^*y \ \Phi(x, y) \rightarrow \exists^*y \in Y \ \Phi(x, y)],$$

is also disprovable. Indeed, let H be a finite (nonstandard) set containing all standard sets (see Nelson [28] or 2.9 below for the existence of such a set in IST). Now we take a surjection $h: \mathbb{N}$ onto H and consider the formula

$$x \in \mathbb{N} \land \{ (\exists^* h(x) \land y = h(x)) \lor (\forall^* h(x) \land y = 0) \}$$

as $\Phi(x, y)$. We clearly violate Coll_2 by taking $X = \mathbb{N}$.

The evident necessity of some nonstandard set as the parameter in Φ in our argument forces us to a special form of Coll_2, namely $\text{Coll}_2(\text{st} \ \Phi)$. By $\text{Coll}_2(\text{st} \ \Phi)$ we denote Coll_2 restricted by the assumption that only standard parameters are allowed in the core formula Φ.

1.9. The uniqueness property.
The hypothesis we consider next is of a slightly different nature from those discussed above. In general the property of uniqueness for some class \mathcal{K} is as follows: any set definable by a formula with parameters from \mathcal{K} belongs to \mathcal{K}. Let \mathcal{K} be the class \mathcal{S} of all standard sets. Following Nelson [28], we write

$$\text{Uniq:} \ (\exists^* \Phi) \ \exists! x \ \Phi(x) \rightarrow \forall x \ [\Phi(x) \rightarrow \text{st} \ x].$$

The uniqueness hypothesis says that for any st-e-formula $\Phi(x)$ with standard parameters, if only one x exists such that $\Phi(x)$ holds, then this unique x must be standard.

Clearly Uniq restricted by the assumption that Φ is internal is an easy consequence of the transfer principle T. The real problem appears for external formulae. Note that T itself does not generalize to external formulae.

1.10. Comments.
After the selection made above the following list of hypotheses is formed for further study:

$$\{ \text{Sep}_i, \text{Repl}_i, \text{Chc}_i, \ i = 1, 2, 3, 4, 5, \text{BRepl}_4, \text{BChe}_4, \text{Coll}, \text{Coll}_1, \text{Coll}_2(\text{st} \ \Phi), \text{Uniq}. \}$$
The main question is: whether they are true or false in IST. Only three answers are possible for any hypothesis of the list:

a) The hypothesis we consider is true, that is, provable in IST for an arbitrary internal or external core formula Φ. Only Coll is involved in this case.

b) The hypothesis is false, that is, disprovable in IST for some core formula. In fact this case has already been eliminated.

c) The undecidability case. Firstly, the hypothesis (for all Φ) is consistent with IST (in other words, one cannot disprove it for any Φ). Secondly, the negation of some example (that is, for some formula Φ) is consistent with IST too (in other words one cannot prove this example).

Some “fine structure” investigations are natural for the third case. We may look for a type of “simple” core formulae for which one can prove some hypothesis of the list in IST, and for a slightly more “complicated” core formula which generates an undecidable example of the hypothesis. Of course, a certain notion of complexity of st-e-formulae must be given.

The second part of the introduction contains formulations of our main results. We begin with the consistency (1.11) and the independence (1.12), then turn to the collection hypothesis and truth definitions (1.13). We next present some “fine structure” results (1.14), “hierarchical” investigations, and some comments on the special role of bounded formulae (1.15). Finally we introduce (1.16) bounded set theory BST as a modification of IST which allows only those internal sets that are members of standard sets. BST makes decidable all the hypotheses we consider. Many related problems remain open; some of them are included in the exposition.

1.11. Consistency.

Let Cons T be the statement saying that the theory T is consistent. By ZFCI we denote the theory ZFC plus the existence of a strongly inaccessible cardinal.

Theorem 1A [Cons ZFCI]. The union of all the hypotheses of the list (3) from 1.10 is consistent with IST.

Theorem 1B [Cons ZFC]. The union of Uniq, Sep3, REPL, and Chei, i = 2, 3, 4, 5 (but not 1!), BChc4, BRepl4 is consistent with IST.

Theorem 1A is proved by the inner model method. In fact we show (in IST) that \(V_\kappa \) is a model for Theorem 1A provided \(\kappa \) is a standard strongly inaccessible cardinal. (\(V_\kappa \) is the \(\kappa \)th level of von Neumann set hierarchy.) The proof of Theorem 1B is almost similar, but an additional logical trick is involved.

Is it possible to prove Theorem 1A with only Cons ZFC assumed? The answer is “no” because the following hypotheses are “transcendently” strong over IST:

\[
(4) \quad \text{REPL}_1, \text{CHE}_1, \text{COLL}_1, \text{COLL}_2 (\text{st } \Phi)
\]
Undecidable hypothesis in Edward Nelson’s internal set theory

The following theorem shows the effect we have in mind.

Theorem 2. Let \(H \) be a hypothesis from the list (4). Then \(H \rightarrow \text{Cons ZFC} \) in IST.

Thus “IST + any hypothesis of the list (4)” is not equiconsistent with IST by the second incompleteness theorem. However Theorem 2 is not really surprising. It is easy to recognize that the hypotheses (4) are just axioms of infinity (in some sense) for the class \(S \) of standard sets in IST. No other hypothesis (3) possesses this property.

The inaccessibility assumption is perhaps too strong for proving Theorem 1A.

Problem 1. Does Theorem 1A remain true when only Cons KMC is assumed? KMC is the Kelley–Morse impredicative theory of classes, see Kelley [19], Jansana [12], Chang and Keisler [3]. Is \(\text{IST} + (4) \) equiconsistent with KMC?

As a matter of fact, KMC is interpretable in \(\text{IST} + \text{Repl}_1 + \text{Sep}_3 \). In the interpretation we have constructed \(\text{Sep}_3 \) ensures comprehension (or class formation) while \(\text{Repl}_1 \) guarantees the replacement axiom.

We note that \(\text{Chc}_1, \text{Chc}_5, \text{Coll}_2(\text{st } \Phi), \text{Uniq} \) are maximally strong in the list (3).

Problem 2. Prove that the four hypotheses just mentioned are mutually independent over IST.

Problem 3. Show that \(\text{Chc}_i \) is not provable in \(\text{IST} + \text{Repl}_i \) for \(i = 2, 3, 4, 5 \). (It fails for \(i = 1 \).)

1.12. Independence.

This word means the consistency of the negation.

Theorem 3 [Cons ZFC]. All the hypotheses of the list (3) except maybe Uniq are independent of IST.

Problem 4. Prove that Uniq is independent of IST.

The independence of \(\text{BChc}_4 \) is especially important. Theorem 3 shows that in general one cannot freely use the extension principle for arbitrary core formulae. Nevertheless, Nelson [28] has shown that \(\text{BChc}_4 \) holds in IST for all ext-bounded (see below) core formulae. In fact this result justifies all the known applications of \(\text{BChc}_4 \).

To prove Theorem 3 we use the adequate-like ultralimit construction of Nelson [28]. However, our ultralimit differs in an essential way from Nelson’s. Namely we use only definable functions to create the ultralimit, as well as a special choice of the ground \(\text{ZFC} \) model.
1.13. Collection and truth definitions.
The main difference between the collection hypothesis Coll on the one hand and Sep, Repl and Che on the other is the provability of the first:

Theorem 4 [IST]. Coll holds for every internal or external core formula.

One can easily infer the following:

Corollary. There is no st-e-formula $\tau(x)$ with only one free variable x such that for any internal formula $\Phi(x_1, \ldots, x_n)$ the following is provable in IST:

$$\forall x_1 \ldots \forall x_n [\Phi(x_1, \ldots, x_n) \iff \tau(\langle \Phi(x_1, \ldots, x_n) \rangle)].$$

In other words, the truth of internal formulae (with parameters allowed) cannot be expressed in IST by a st-e-formula.

By $\langle \Phi \rangle$ we denote the finite sequence of (coded) logical symbols and sets (used as parameters) by which Φ is written down.

In fact the nonstandardness of parameters plays a key role in the corollary. Otherwise we obtain the opposite result:

Theorem 5. There is an external formula $\tau(x)$ such that for each internal formula $\Phi(x_1, \ldots, x_n)$ the following holds in IST:

$$\forall^{st} x_1 \ldots \forall^{st} x_n [\Phi(x_1, \ldots, x_n) \iff \tau(\langle \Phi(x_1, \ldots, x_n) \rangle)].$$

Thus the truth of internal formulae with standard parameters can be expressed in IST. The result remains true for the wider class of *bounded* parameters.

Theorem 5 is involved in the proof of Theorem 3. In addition, it throws some light on the question about which models of ZFC can be extended to a model of IST. Indeed, if M is a model of ZFC and the standard part of a model *M of IST, then the set

$$T_M = \{ \langle \Phi \rangle: \Phi \text{ is an e-sentence (without parameters) true in } M \}$$

belongs to M according to Theorem 5 (and the standardization). So $"T_M \in M"$ is a necessary condition for M to be extendable to a model of IST. We recall that being of the form \forall^x with strongly inaccessible κ is a sufficient condition.

Problem 5. Find reasonable necessary and sufficient conditions for an e-model of ZFC to be extendable to a model of IST. We suppose that being the "set part" of a model of KMC (or maybe some piece of KMC) can serve as the condition we look for.

A rather interesting problem concerning Theorem 3 is to find an extremely simple core formula giving the unprovable example. But what should be the
measure of simplicity? Several different approaches to this problem, by taking into a consideration the number and the positions of quantifiers in a formula, are generally possible. A criterion of choosing the best must be coordinated with the IST axioms. We choose the definition grounded mainly on the external quantifiers \(\exists^*, \forall^* \).

Firstly we define the class or ext-prenex formulae, that is, formulae of type

\[Q_1^{st} x_1 Q_2^{st} x_2 \ldots Q_n^{st} x_n \Psi (x_1, x_2, \ldots, x_n), \]

where \(\Psi \) is an internal formula and each \(Q \) is \(\exists \) or \(\forall \). This class of formulae splits into the hierarchy of classes \(\Sigma^*_n \) and \(\Pi^*_n \), defined as usual:

\[
\begin{align*}
\text{(} \Sigma^*_n \text{)} & \exists^{st} x_1 \forall^{st} x_2 \exists^{st} x_3 \ldots \forall (\exists)^{st} x_n \Psi (x_1, x_2, x_3, \ldots, x_n), \\
\text{(} \Pi^*_n \text{)} & \forall^{st} x_1 \forall^{st} x_2 \exists^{st} x_3 \ldots \exists (\forall)^{st} x_n \Psi (x_1, x_2, x_3, \ldots, x_n),
\end{align*}
\]

\(\Psi \) is an internal formula. (We learned the notation \(\Sigma^*_n, \Pi^*_n \) from van den Berg [2].) The simplest cases of non-ext-prenex formulae are \(\exists \Pi^* \) and \(\forall \Sigma^*_2 \), that is, of the form

\[\exists x \forall^{st} y \exists^{st} z \Psi \quad \text{and} \quad \forall x \exists^{st} y \forall^{st} z \Psi \]

respectively with an internal \(\Psi \).

This piece of hierarchy is rich enough for the following two "fine structure" theorems to be formulated. These theorems almost cover the case of core formulae with standard parameters.

Theorem 6 [IST]. (a) The hypotheses Uniq and Sep, \(\text{Repl}_{1,2,3,4,5} \), Chc, Coll, Coll\(_{2(st \Phi)}\), BChc4, BRepl4 are true for ext-prenex core formulae \(\Phi \) with standard parameters.

(b) Chc\(_4\) holds for \(\Sigma^*_1 \) core formulae with standard parameters.

(c) Chc\(_5\) holds for \(\Pi^*_1 \) formulae (with arbitrary parameters).

(There is nothing reasonable for Chc\(_3\) in this series.)

Theorem 7 [Cons ZFC]. (a) Any hypothesis from the list Sep, \(\text{Repl}_{1,2,3,4,5} \), Chc, Coll, Coll\(_{2(st \Phi)}\), BChc4, BRepl4 is non-provable in IST for some "parameter-free" \(\exists \Pi^*_2 \) core formula and for some "parameter-free" \(\forall \Sigma^*_2 \) core formula.

(b) Chc\(_4\) and Chc\(_5\) are non-provable in IST for some "parameter-free" \(\Pi^*_2 \) core formula.

"Parameter-free" formulae are those that do not contain any parameter (see 1.1).

An essential gap remains between the results of Theorems 6 and 7 as regards the hypotheses Chc\(_3\) and Chc\(_5\). Namely, assuming that Theorem 6 is the best possible, the required counterexamples might be given by some internal formula \(\Phi \) (for Chc\(_3\)) and some \(\Sigma^*_1 \) formula \(\Phi \) (for Chc\(_5\)), both having no parameters, but this is somewhat stronger than Theorem 7 guarantees.
Problem 6. Show that Chc$_3$ is non-provable in IST for some internal core formula without parameters.

It is not hard to realize that the model of ZFC chosen to be the ground model for an IST-model where Chc$_3$ fails in the manner just mentioned must possess some special properties—for example, the non-existence of a definable well-order.

Certainly Theorem 7 is a more precise form of Theorem 3 with the exception of the hypotheses BRepl$_4$ and BChc$_4$ of replacement and choice with bounded range. The case of those two hypotheses is covered by the following theorem:

Theorem 8 [Cons ZFC]. BChc$_4$ is non-provable in IST for some Π^1_2 core formula. BRepl$_4$ is non-provable in IST for some core formulae of types $\exists \Pi^2_1$ and $\forall \Sigma^2_1$.

Unfortunately all the non-provable examples of BRepl$_4$ and BChc$_4$ we know need a nonstandard parameter in the core formula.

Problem 7. Show that BRepl$_4$ and BChc$_4$ are non-provable for a “parameter-free” core formula. (All non-provable instances of BRepl$_4$ and BChc$_4$ that we know need a nonstandard parameter.)

Problem 8. Does there exist a “parameter-free” st-\in-formula $\Phi(k, n)$ such that following is consistent with IST: Φ defines a 1–1 map of $\sigma_\mathbb{N}$ (= all standard integers) onto a cofinal part of \mathbb{N}?

One more open question is connected with the uniqueness property (Problem 3). The following theorem gives a partial answer.

Theorem 9 [IST]. For any st-\in-formula $\Phi(x)$ with standard parameters, if there is a unique x such that $\Phi(x)$ holds, then this unique x belongs to some standard set.

Elements of standard sets will be called bounded sets below.

We note that Nelson [28], [29] has shown that Uniq is provable for Σ^3_2-formulae Φ and Chc$_4$ is provable for Σ^3_2-formulae of special kind (the external quantifier \exists^{st} must be bounded by some standard set).

Problem 9. Study the case of core formulae with nonstandard parameters.

At least one part of Theorem 7 does not remain true when nonstandard parameters are allowed: Repl$_1$ is not provable in IST for some internal formula Φ with nonstandard parameters.

1.15. Hierarchy.
The hierarchy theorem for a given Σ/Π hierarchy of formulae claims that every class of the hierarchy contains a formula that is not equivalent (in some sense) to any formula of the dual class at the same level. For the hierarchy
\(\Sigma^*_n/\Pi^*_n\) the question is whether there is a \(\Sigma^*_n\) formula that is not equivalent (in IST) to any \(\Pi^*_n\) formula, and conversely.

The natural answer "yes" is easy for \(n = 1\). Indeed the formula \(st \times\) of class \(\Sigma^*_1\) (for \(st \times \leftrightarrow \exists^u z\ (x = z)\)) is not equivalent to any \(\Pi^*_1\) formula. The following theorem ensures the answer "yes" for \(n = 2\) too; its proof is essentially more complicated.

Theorem 10. The \(\Sigma^*_2\) formula

\[
\Phi(X) = \mathtt{def} \ \exists^u a \ \forall^u b \ ((a, b) \in X)
\]

is not equivalent in IST to any \(\Pi^*_2\) formula \(\Psi(X)\).

The author has no results for \(n > 3\).

Problem 10. Prove the hierarchy theorem for \(n > 3\).

Problem 11. Define a reasonable hierarchy involving all external formulae (not necessarily ext-prenex).

One can significantly simplify some questions concerning the hierarchy by considering those \(st\)-e-formulae that contain the standardness predicate \(st\) only through the bounded external quantifiers \(\exists^u z \in Z\) and \(\forall^u z \in Z\), where \(Z\) is a standard set. Formulae of such a kind are called ext-bounded below.

Nelson [28], [29] has shown that his class of formulae is, logically speaking, rather simple. Indeed, every ext-bounded formula is equivalent to some ext-bounded \(\Sigma^*_1\) formula as well as to some ext-bounded \(\Pi^*_1\) formula.

Hence the hierarchy of ext-bounded formulae contains only four classes: internal, \(\Sigma^*_1, \Pi^*_1\), and those that are \(\Sigma^*_2\) as well as \(\Pi^*_2\) up to the equivalence in IST. According to Theorem 10 at least one more level is adjoined by non-ext-bounded formulae.

Thus a large part of Theorem 6 is automatically applicable to ext-bounded formulae paying no regard to the number of quantifiers. Let us recall a result that does not follow directly from Theorem 6: \(\text{Chc}_4\) is true in IST for any ext-bounded core formula. This is the saturation theorem of Nelson [29].

Nevertheless one can arrange matters so that every formula will be ext-bounded. The way is to construct something like a type-theoretic superstructure over the ZFC/IST pair. This theory, the super-IST, is organized so that every set is placed into some level \(n, n \in \mathbb{N}\). The level 0 is the usual IST universe of (standard and nonstandard) sets, while every (internal) collection of sets of level \(n\) is a set of level \(n + 1\). For any \(n\) the set \(V_n\) of all sets of level \(n\) is a set of level \(n + 1\). Moreover, \(V_n\) is standard according to transfer. Finally, every variable has its own level; therefore every quantifier is bounded by an appropriate standard set \(V_n\). See Nelson [28] for the details. (Our exposition is somewhat different from Nelson's.) Super-IST is much stronger than IST itself, of course.
1.16. Bounded set theory.

Theorems 1 and 3 show that internal set theory IST is strongly incomplete as regards the hypotheses we discuss. We claim that a reason for the incompleteness is connected with the vague behaviour of some very large sets that do not belong to any standard set, or more exactly with insufficient regulation of their behaviour by the IST axioms.

To justify this claim we modify IST in order to exclude "bad" sets. The modified theory is the bounded set theory BST, see [16]. We define BST as the extension of ZFC by transfer T, standardization S, the weakened form of idealization (bounded idealization)

\[BI: (st A_0, \text{int } \Phi) \forall_{st \text{fin}}^A \subseteq A_0 \exists x \forall a \subseteq A \Phi(x, a) \leftrightarrow \exists x \forall_{st}^a \subseteq A_0 \Phi(x, a) \]

and the bounded sets axiom

\[B: \forall x \exists^s X (x \in X). \]

Certainly B contradicts the full idealization I, therefore I really must be weakened.

The BST has an inner model in IST. We say that a set \(x \) is bounded if and only if \(x \in X \) for some standard set \(X \). Thus \(B \) claims that every set is bounded. (We chose the name "bounded" in [16] bearing in mind the notion of bounded quantifier, which is deeply rooted in logic.) Let us define

\[B = \{ x \in V : x \text{ is bounded} \} = \{ x \in V : \exists^s X (x \in X) \} \]

(the class of all bounded sets in IST). Thus \(S \subseteq B \subseteq V \); in fact both inclusions are strict in IST.

Theorem 11 [IST]. \(B \) is a model of BST.

Thus the theories ZFC, BST, IST are equiconsistent.

Certainly the global forms of the hypotheses we consider, that is, Sep, Repl_{3,5}, and Chc_{3,5}, are senseless in BST since BST does not allow a set containing all the standard sets. Local forms have the affirmative solution:

Theorem 12 [BST]. The hypotheses

\[\text{Repl}_{1,2,4}, \text{Chc}_{1,2,4}, \text{Coll}, \text{Coll}_1, \text{Coll}_2 (st \Phi) \] and \(\text{Uniq} \)

hold for any internal or external core formula \(\Phi \).

One can add the "\(y \)-bounded" forms BRepl_{1,2,4} and BChc_{1,2,4} to the last theorem because each of them is a consequence of the corresponding Repl; or Chc; in BST as well as in IST.

The following theorem serves as a key technical tool in proofs of the two preceding theorems, as well as discovering one more difference between IST and BST (compare with Theorem 10!).
Theorem 13. Given a "parameter-free" st-ε-formula $\Phi(x_1, \ldots, x_n)$ with only x_1, \ldots, x_n as free variables, there is a Σ^*_2 formula $\sigma(x_1, \ldots, x_n)$ of the same kind such that

$$\forall x_1 \ldots \forall x_n \cdot [\Phi(x_1, \ldots, x_n) \leftrightarrow \sigma(x_1, \ldots, x_n)]$$

is provable in BST.

Theorem 13 together with Theorems 11 and partially 12 is included in Kanovei [16].

Bounded sets resemble standard sets in some respects. For example, Theorem 5 remains true for bounded parameters as well.

Problem 12. Prove Theorems 6 and 10 for core formulae with bounded parameters.

Problem 13. Find a reasonable hypothesis similar to those we consider that is undecidable in BST.

1.17. The guide for exposition of the proofs.

The main aim of our paper is to prove Theorems 1A, B to 13. Section 2 contains some preliminary results, that is, several more or less well-known facts which are extensively used throughout the text. Among them we present two theorems of Nelson [28] concerning uniqueness and Che_4 for Σ^*_2 core formulae.

Section 3 is devoted to the key technical result, namely Theorem 3.1, which allows us to bound external quantifiers of ext-prenex formulae, hence serves as a cornerstone in our proofs of Theorems 1A, 1B, 6, 9, 12. As the first application of that theorem, we present the proof of Theorem 6 in §3.

A second application will be the proof of Theorems 1A and 1B in §4, arranged by a careful investigation of inner models of type \mathbb{V}_κ. A third application, that is, Theorem 12, is included in §5, where we also present proofs of Theorems 11 and 13; all of them are connected with our theory BST.

Section 6 presents the proof of the hierarchy theorem for second level (Theorem 10).

Investigations on the truth definability of internal formulae (Theorem 5 and Theorem 2 as an application) are placed in §7.

The main result of §8 is Theorem 4 about the full collection Coll in IST. Section 8 also contains proofs of Theorem 9 and the corollary mentioned in 1.13.

Theorem 3 (the independence theorem) will be proved in §9, together with Theorems 7 and 8.

Finally the last §10 explains how the idea of "externalization" might lead to some new and (so the author hopes) interesting problems.
§2. Basic internal set theory

A special feature as well as the power of IST is that the postulates upon which Nelson constructed IST were not connected with ZFC or any other standard theory. Rather their action may be applied to any theory of set-theoretic nature. Nevertheless the ground theory has to be strong enough to discover all the possibilities of nonstandard methods.

The theory BIST (that is, basic IST) is just sufficiently strong to prove the most useful (for our aims) classical theorems of nonstandard mathematics and is sufficiently weak to be the common part of the mutually contradicting IST and BST. It contains:

1) all the axioms of ZFC;
2) transfer \(\mathcal{T} \) and standardization \(\mathcal{S} \) (usual forms, see 1.1);
3) bounded idealization \(\mathcal{BI} \) as in 1.16.

Note that all the results of this section (except maybe 2.7) are more or less known from the works of Nelson [28], [29], and some others. However, we present them with proofs instead of making references, since the original forms do not cover all the cases we need. The additional reason is that the author has tried to obtain a self-contained exposition.

All the following theorems are proved in BIST except additional assertions in 2.9—2.12, where the full idealization is assumed. Theorems are grouped according to what additional principle (that is, \(\mathcal{BI} \), \(\mathcal{S} \) or \(\mathcal{T} \)) plays the key role in the proof. We begin with transfer.

2.1. Theorem [BIST]. Let \(\Phi(x) \) be an internal formula with standard parameters. If there is a unique \(x \) such that \(\Phi(x) \) holds, then this unique \(x \) is standard.

The proof is evident: use transfer. □

Let us recall a model-theoretic definition. A model \(M \) is called an elementary extension of a submodel \(M' \subseteq M \) (and \(M' \) is called an elementary submodel of \(M \)) if every statement (of some fixed language) true in \(M' \) remains true in \(M \). Thus the following theorem claims that the universe \(V \) of all (internal) sets is an elementary extension of the class \(S \) of all standard sets with respect to internal formulae with standard parameters.

2.2. Theorem [BIST]. Let \(\Phi \) be an internal statement with standard parameters. Let \(\Phi^{st} \) be the result of replacing every quantifier \(\exists, \forall \) in \(\Phi \) by \(\exists^{st}, \forall^{st} \) respectively. Then \(\Phi \leftrightarrow \Phi^{st} \).

The proof is carried out by induction on the complexity of \(\Phi \). Transfer is used through the induction step \(\exists \). □

Of course, what \(\Phi^{st} \) says is the truth of \(\Phi \) within \(S \).
Now let us turn to standardization.
2.3. Theorem [BIST]. Let $\Phi(x, y)$ be a st-ϵ-formula (internal or external).
For any pair of standard X, Y the following holds:
\[\forall^{st}x \in X \exists^{st}y \in Y \; \Phi(x, y) \leftrightarrow \exists^{st} y: X \rightarrow Y \; \forall^{st} x \in X \; \Phi(x, y(x)). \]

Proof. The direction \leftarrow. If a function \tilde{y} and a set $x \in \text{dom} \; \tilde{y}$ are standard, then the value $\tilde{y}(x)$ is standard too by 2.1.

The direction \rightarrow. Using S, we obtain a standard W such that
\[
\forall^{st} x \in X \; \forall^{st} y \in Y \; [\langle x, y \rangle \in W \leftrightarrow \Phi(x, y)].
\]
Then $\forall^{st} x \in X \; \exists^{st} y \in Y \; (\langle x, y \rangle \in W)$ by the left-hand side, hence $\forall x \in X \; \exists y \in Y \; (\langle x, y \rangle \in W)$ by transfer. The usual axiom of choice gives a function $\tilde{y}: X \rightarrow Y$ such that $\langle x, \tilde{y}(x) \rangle \in W$ for each $x \in X$. We may assume that \tilde{y} is standard (apply transfer again). This ends the proof. □

Let us recall that ext-bounded formulae are those in which the standardness predicate st occurs only through the bounded external quantifiers $\exists^{st}z \in Z$, $\forall^{st}z \in Z$, Z is a standard set. Theorem 2.3 is involved in Nelson's reduction algorithm. This powerful syntactic tool is fairly strong to convert any ext-bounded formula to an ext-bounded formula of type Σ_2^s or Π_2^s, that is, of the form
\[
\exists^{st} a \in A \; \forall^{st} b \in B \Phi \quad \text{or} \quad \forall^{st} a \in A \; \exists^{st} b \in B \Phi
\]
respectively, where Φ is internal and A, B are standard.

2.4. Theorem [BIST]. Let $\Phi(x_1, \ldots, x_n)$ be an ext-bounded formula with standard parameters and only x_1, \ldots, x_n free. There is an ext-bounded Σ_2^s formula $\Psi(x_1, \ldots, x_n)$ (also having only standard parameters) such that the following holds:
\[
\forall x_1 \ldots \forall x_n \; [\Phi(x_1, \ldots, x_n) \leftrightarrow \Psi(x_1, \ldots, x_n)].
\]

To be more precise, we claim the following. Let $\Phi(x)$ be a "parameter-free" st-ϵ-formula with the list $x = x_1, \ldots, x_n$ of free variables. Let $Q_i^{st} z_1, \ldots, Q_k^{st} z_k$ be the list of all external quantifiers contained in Φ. Let $\Phi'(x, Z_1, \ldots, Z_k)$ denote the formula obtained by replacing each $Q_i^{st} z_i$ by $Q_i^{st} z_i \in Z_i$. There is an internal "parameter-free" formula $\varphi(x, a, b)$ such that
\[
\forall^{st} Z_1 \ldots \forall^{st} Z_k \; \exists^{st} A \; \exists^{st} B \; \forall x \; [\Phi'(x, Z_1, \ldots, Z_k) \leftrightarrow \exists^{st} a \in A \; \forall^{st} b \in B \; \varphi(x, a, b)].
\]

Proof. The proof is carried out by induction on the complexity (the number of logical signs) of formulae. Assume that Φ is composed by $\overline{\top}$, $\&$, \exists and \forall^{st} only. (It is evident that other logical functors can be expressed using the four mentioned.)

The step $\&$ is evident.
The step \(\Pi \). We need an ext-bounded \(\Sigma^2_2 \) formula \(\Phi(x) \) that is equivalent to a \(\Pi^2_2 \) formula \(\forall^a x \exists^b y \in B \varphi(x, a, b) \) taken as \(\Phi(x) \) (where \(\varphi \) is internal, \(A \) and \(B \) are standard). We denote by \(\Psi(x) \) the formula

\[
\exists^{st} f \subseteq F \forall^{st} a \subseteq A \varphi(x, a, f(a)), \quad \text{where} \quad F = A^B = \{ f : A \to B \}.
\]

Clearly \(F \) is standard by 2.1. The required equivalence \(\Phi(x) \leftrightarrow \Psi(x) \) is guaranteed by Theorem 2.3.

The step \(\exists \) is evident since one can collapse two quantifiers of the form \(\exists^{st} \) into one \(\exists^{st} \) using the pair function.

Finally the step \(\exists \). We search for an ext-bounded \(\Sigma^2_2 \) formula \(\Psi(x) \) that is equivalent to the following formula \(\Phi(x) \):

\[
\exists y \exists^{st} a \subseteq A \forall^{st} b \subseteq B \varphi(x, y, a, b),
\]

\(\varphi \) is internal, \(A \) and \(B \) are standard. The following formula is as required:

\[
\Psi(x) = \text{def } \exists^{st} a \subseteq A \forall^{st} b \subseteq B \forall y \exists^{st} b' \subseteq P \exists y \forall b \subseteq B' \varphi(x, y, a, b),
\]

where \(P = \{ B' \subseteq B : B' \text{ is finite} \} \) is standard together with \(B \). To see the equivalence \(\Phi \leftrightarrow \Psi \), apply BI. \(\Box \)

2.5. \textbf{Theorem (external transfinite induction)} [BIST]. \textit{Let } \(\Phi(a) \) \textit{be a st-\(\in \)-formula and suppose that } \(\Phi(a) \) \textit{holds for some standard ordinal } \(a \). \textit{Then there is a least standard } \(a \) \textit{such that } \(\Phi(a) \).

\textbf{Proof.} Let a standard \(\alpha_0 \in \text{Ord} \) be such that \(\Phi(\alpha_0) \) holds. (Ord is the class of all ordinals, standard together with nonstandard.) By standardization there is a standard set \(A \subseteq \text{Ord} \) such that

\[
\forall^{st} \alpha \leq \alpha_0 [\alpha \subseteq A \leftrightarrow \Phi(\alpha)].
\]

Then \(A \) is non-empty, since \(\alpha_0 \in A \). We take the least member \(\alpha \) of \(A \); \(\alpha \) is standard by 2.1—therefore \(\Phi(\alpha) \) holds. \(\Box \)

2.6. \textbf{Corollary [BIST].} \textit{Let } \(\varphi(n) \) \textit{be a st-\(\in \)-formula such that}

\[
\varphi(0) \& \forall^{st} n \subseteq \mathbb{N} [\varphi(n) \to \varphi(n + 1)].
\]

Then \(\varphi(n) \) holds for all standard integers \(n \).

\textbf{Proof.} Apply 2.5 to the formula \(\exists k \leq n \forall \varphi(k) \). \(\Box \)

2.7. \textbf{Theorem [BIST].} \(\text{Repl}_1 \leftrightarrow \text{Chc}_1 \leftrightarrow \text{Coll}_1 \).

\textbf{Proof.} Firstly we recall the definitions.

\(\text{Repl}_1 \): (st \(X \)) \(\forall^{st} x \subseteq X \exists^{st} y \Phi(x, y) \to \exists^{st} y \forall^{st} x \subseteq X \Phi(x, y(x)); \)

\(\text{Chc}_1 \): (st \(X \)) \(\forall^{st} x \subseteq X \exists^{st} y \Phi(x, y) \to \exists^{st} y \forall^{st} x \subseteq X \Phi(x, y(x)); \)

\(\text{Coll}_1 \): \(\forall^{st} x \exists^{st} y \forall^{st} x \subseteq X [\exists^{st} y \Phi(x, y) \to \exists^{st} y \subseteq Y \Phi(x, y)]; \)

Evidently \(\text{Chc}_1 \rightarrow \text{Repl}_1 \). Further, \(\text{Chc}_1 \) easily follows from \(\text{Coll}_1 \), using Theorem 2.3.
The claim \(\text{Repl}_1 \rightarrow \text{Coll}_1 \) is slightly more complicated. By ZFC replacement we can build up the von Neumann hierarchy of classes \(V_\alpha, \alpha \in \text{Ord} \). We recall that
\[
V_0 = \emptyset, V_{\alpha+1} = \mathcal{P}(V_\alpha) = \{X : X \subseteq V\}, V_\lambda = \bigcup_{\alpha < \lambda} V_\alpha
\]
for all limit ordinals \(\lambda \), see Jech [13]. Each set \(x \) is a member of some \(V_\alpha \) by the replacement. We denote by \(\alpha(x) \) the least \(\alpha \in \text{Ord} \) such that \(x \in V_\alpha \). It follows from Theorem 2.1 that \(s t x \rightarrow \alpha(x) \).

Now we consider a standard \(X \) and a st-e-formula \(\Phi(x, y) \) and try to derive \(\text{Coll}_1 \) from \(\text{Repl}_1 \). For any \(x \), we denote by \(\gamma_x \) the least ordinal among the ordinals \(\alpha(y) \), where \(y \) is standard and \(\Phi(x, y) \) holds, if such standard sets \(y \) exist; otherwise let \(\gamma_x = 0 \). (The definition is correct by Theorem 2.5.) The equality \(\gamma = \gamma_x \) can be expressed by a certain st-e-formula. Using \(\text{Repl}_1 \), we obtain a standard function \(f \) such that \(\gamma_x = f(x) \) for all standard \(x \in X \). The set
\[
Y = \bigcup_{x \in X, f(x) \in \text{Ord}} V_{f(x)}
\]
is standard (Theorem 2.1 is applied again), hence \(\text{Coll}_1 \) really holds. □

2.8. **Theorem [BIST].** If \(X \) is standard finite, then all \(x \in X \) and all \(Y \subseteq X \) are standard.

Proof. The number \(n \) of elements of \(X \) is a standard integer by Theorem 2.1. Now apply Corollary 2.6 to the formula
\[
\forall^{st} X [X \text{ has } \leq n \text{ members } \rightarrow \forall x \subseteq X \text{ (st } x) \& \forall Y \subseteq X \text{ (st } Y)].
\]
This ends the proof. □

Now we turn to several consequences of idealization. All of them will be presented in two forms: the first form is based on BIST only, while the second form needs the full idealization I (this is displayed by the “full I” in brackets), hence it is proved in IST.

2.9. **Theorem [BIST].** Let \(X \) be a standard set. Then there is a finite set \(H \) such that \(\sigma X \subseteq H \).

(full I) there is a finite set \(H \) such that \(S \subseteq H \).

We recall that \(S \) is the class of all standard sets, while \(\sigma X \) is the (external) collection of all standard \(x \in X \); thus \(\sigma X = X \cap S \).

Proof. We apply the equivalence
\[
\forall^{stfin} X' \subseteq X \exists^{fin} H \forall x \subseteq X' (x \in H) \leftrightarrow \exists^{fin} H \forall^{st} x \subseteq X (x \in H)
\]
(BI for the formula “\(x \in H \& H \text{ is finite} \)”). The left-hand side evidently holds (let \(H = X' \)). So the right-hand side holds as well.

The full I case goes similarly. □
The following theorem extends idealization to a wider class of formulae; sometimes this is useful as a technical tool.

2.10. **Theorem [BIST]**. BI holds for all ext-bounded Π^I_1 formulae Φ.

(full I) I holds for all Π^I_1 formulae Φ.

Proof (the full I variant). All we need to prove is

$$\forall_{\text{stfin}} A \exists x \forall a \in A \forall_{\text{st}} z \varphi(x, a, z) \iff \exists x \forall_{\text{st}} a \forall_{\text{st}} z \varphi(x, a, z)$$

for an internal φ. The implication \iff follows from Theorem 2.8. Let us prove the opposite direction. Changing the positions of a and z and applying I to the block $\exists x \forall_{\text{st}} z$, we convert the left-hand side to the form

$$\forall_{\text{stfin}} A \forall_{\text{stfin}} z \exists x \forall a \in A \forall z \in Z \varphi(x, a, z),$$

and then to $\forall_{\text{stfin}} W \exists x \forall w \in W \psi(x, w)$, where $\psi(x, w)$ is the internal formula $\exists a \exists z [w = (a, z) \& \varphi(x, a, z)]$.

Hence $\exists x \forall_{\text{st}} w \psi(x, w)$ holds by I. We turn back again to φ and obtain the right-hand side. \Box

We finish this section with two theorems related more closely to the hypotheses we are studying.

2.11. **Theorem** (the uniqueness theorem) [BIST]. Let $\Phi(x)$ be an ext-bounded Σ^I_2 formula with standard parameters. If there is unique x such that $\Phi(x)$ holds, then this unique x is standard.

(full I) The same is true for all Σ^I_2 formulae, not necessarily ext-bounded.

Proof. Let $\Phi(x)$ be the formula $\exists a \in A \forall_{\text{st}} b \in B \varphi(x, a, b)$, where φ is internal, A and B are standard. For some standard $a \in A$ the only set x satisfying $\forall_{\text{st}} b \in B \varphi(x, a, b)$ is the x fixed above. Hence

$$\forall_{\xi} [\forall_{\text{st}} b \subseteq B \varphi(\xi, a, b) \rightarrow \xi = x],$$

that is, $\forall_{\xi} \exists_{\text{st}} b \in B [\varphi(\xi, a, b) \rightarrow \xi = x]$. Using BI, we obtain a standard finite set $B' \subseteq B$ such that

$$\forall_{\xi} [\forall b \subseteq B' \varphi(\xi, a, b) \rightarrow \xi = x].$$

We note that all elements of the set B' are standard by Theorem 2.8. Thus x is the unique set satisfying the internal formula $\forall b \in B' \varphi(x, a, b)$ which has only standard parameters. So x is standard (Theorem 2.1 is applied).

The full I case proceeds similarly. \Box

2.12. **Theorem [BIST]**. Chc_4 holds for all ext-bounded Σ^I_2 core formulae. Chc_5 holds for all ext-bounded Π^I_1 core formulae.

(full I) Chc_4 holds for all Σ^I_2 core formulae with bounded external quantifier \exists_{st}. Chc_5 holds for all Π^I_1 core formulae.
Proof. We begin with

\[\forall x \exists y \Phi(x, y) \rightarrow \exists \tilde{y} \forall x \Phi(x, \tilde{y}(x)), \]

where \(\Phi(x, y) \) is a \(\Pi^1_1 \) formula \(\forall^s b \in B \varphi(x, y, b) \), \(B \) is standard, \(\varphi \) is internal. The left-hand side converts to \(\forall^s x \exists y \forall^s b \in B \varphi(x, y, b) \), hence

\[\forall^s \text{fin} X' \forall x \in X' \exists y \forall^s b \in B \varphi(x, y, b) \]

by Theorem 2.8. Now the key point. If \(X' \) is a standard finite set, then it follows from 2.6 by induction on the number of elements of \(X' \) that

\[\forall x \in X' \exists y \psi(x, y) \rightarrow \exists \tilde{y} \forall x \in X' \psi(x, \tilde{y}(x)) \]

for all st-e-formulae \(\psi \). Thus

\[\forall^s \text{fin} X' \exists \tilde{y} \forall x \in X' [\forall^s b \in B \varphi(x, \tilde{y}(x), b)]. \]

Finally we apply Theorem 2.10 to the ext-bounded formula \([...]\) and obtain the right-hand side of \(\text{Che}_5 \).

Now we consider

\[\forall^s x \exists y \Phi(x, y) \rightarrow \exists \tilde{y} \forall^s x \subseteq X \Phi(x, \tilde{y}(x)), \]

where \(\Phi \) is \(\exists^a a \in A \varphi(x, y, a) \), \(A \) is a standard set, \(\varphi \) is an ext-bounded \(\Pi^1_1 \) formula. Changing the places of \(y \) and \(a \) on the left-hand side and using 2.3, we obtain a standard function \(a : X \rightarrow A \) such that \(\forall^s x \in X \exists y \Phi(x, y, a(x)) \) holds.

Finally we apply the \(\text{Che}_5 \) just derived to the formula \(\varphi \) and find a function \(\tilde{y} \) such that \(\forall^s x \in X \varphi(x, \tilde{y}(x), a(x)) \). The right-hand side of \(\text{Che}_4 \) holds, since \(a(x) \) is standard provided \(x \) and \(a \) are standard.

The "full I" case does not differ essentially. □

§3. External quantifiers limitation theorem

This section is devoted to a theorem which says that one can bound external quantifiers of an ext-prenex formula by standard sets. So ext-prenex formulae are transformable into ext-bounded and then into \(\Sigma^1_1 \) by Theorem 2.4. This extends the results of Theorems 2.11, 2.12 to more general cases than those theorems directly provide. As the first application we prove Theorems 6 and 10 at the end of this section. Two additional applications will appear in §§4 and 5.

To begin with we define

\[\mathcal{P}^n(X) = \mathcal{P}(\mathcal{P}(\mathcal{P}(\ldots \mathcal{P}(X) \ldots))) \] (\(n \) times \(\mathcal{P} \)); \(\mathcal{P}(X) = \{Y : Y \subseteq X\} \).

If \(\theta = \text{card} X \) (the cardinality of \(X \)), then let \(\exp^\theta(\theta) = \text{card} \mathcal{P}^\theta(X) \); so \(\exp^0(\theta) = \theta \) and \(\exp^1(\theta) = 2^\theta \).

We recall that bounded sets are those that are members of standard sets. We define the order of a bounded set \(x \) to be the least (standard) cardinal \(x \)
such that \(x \) is a member of some standard set \(X \) of cardinality \(\kappa \). For example, all integers (standard and nonstandard) are bounded of order \(\aleph_0 \).

3.1. **Theorem [BIST].** Let \(\varphi(x_1, ..., x_m, z_1, ..., z_n) \) be an internal formula with only \(x_1, ..., x_m, z_1, ..., z_n \) free and with bounded parameters, and let \(Q_1, ..., Q_n \) be a string of quantifiers \(\forall, \exists \). Let \(\theta' \) be max of orders of nonstandard parameters of \(\varphi \), \(\theta = \max \{ \theta', \text{card } X \} \), and \(\lambda = \exp^n \theta \).

Then for every standard \(X \) there are standard sets \(Z_1, ..., Z_n \), each of cardinality \(\leq \lambda \), such that for all \(k, 0 \leq k < n \), and all standard \(z_i \in Z_i \), \(1 \leq i \leq k \), and all (not necessarily standard) \(x_1, ..., x_m \in X \) the following holds:

\[
Q_k^{\text{st}} z_{k+1} \cdots Q_n^{\text{st}} z_n \varphi(z_1, \ldots, z_k, z_{k+1}, \ldots, z_n, x_1, \ldots, x_m) \iff
Q_k^{\text{st}} z_{k+1} \subseteq Z_{k+1} \cdots Q_n^{\text{st}} z_n \subseteq Z_n \varphi(z_1, \ldots, z_k, z_{k+1}, \ldots, z_n, x_1, \ldots, x_m).
\]

Proof. Let us write \(\chi \) instead of \(x_1, ..., x_m \); \(\chi \in X^m \). We may suppose that \(\varphi \) contains no nonstandard parameters, for if not, we replace each nonstandard parameter (hence bounded of order \(\Theta \)) by a free variable ranging over a set of cardinality \(\leq \Theta \), add these new variables to the list \(x \), and add corresponding sets of cardinality \(\leq \Theta \) to \(X \). Thus assume that \(\varphi \) contains only standard parameters.

Now we define for arbitrary \(z_1, ..., z_n \)

\[
Y[z_1, \ldots, z_n] = \{ x \in X^m : \varphi(z_1, \ldots, z_n, x) \},
\]

and then for all \(k, 1 \leq k < n \), and for all \(z_1, ..., z_n \) define

\[
Y[z_1, \ldots, z_k] = \{ Y[z_1, \ldots, z_k, z_{k+1}] : z_{k+1} \in \forall \}.
\]

The definition is correct: each \(Y[z_1, ..., z_k] \) is a "legal" set (in the universe \(\forall \)), since \(Y[z_1, ..., z_k] \subseteq P^{n-k}(X^m) \).

Finally we put \(Y[\] = \{ Y[z_1] : z_1 \in \forall \} \) for \(k = 0 \); \(Y[\] \subseteq P^n(X^m) \).

Assertion 1. There are standard sets \(Z_1, ..., Z_n \), each of cardinality \(\leq \lambda \), such that the following holds:

\[
(5) \text{ for all } k, 0 \leq k < n, \text{ all } z_i \in Z_i, 1 \leq i \leq k,
\]

\[
\forall z_{k+1} \exists z_{k+1} \subseteq Z_{k+1} (Y[z_1, \ldots, z_k, z_{k+1}] = Y[z_1, \ldots, z_k, z_{k+1}]).
\]

The construction of \(Z_k \) proceeds by induction on \(k \). To define \(Z_1 \) we notice that card \(Y[\] \leq \lambda \), since \(Y[\] \subseteq P^n(X^m) \). For a set \(Y \in Y[\] \) we denote by \(\alpha_Y \) the least ordinal \(\alpha \) such that \(Y = Y[z_1] \) for some \(z_1 \in \forall_\alpha \). By ZFC replacement there is a function \(\beta : Y[\] \rightarrow \text{Ord} \) such that \(\alpha_Y = \beta(Y) \) for all \(Y \in Y[\] \). Hence by ZFC axiom of choice there is a function \(\xi : Y[\] \rightarrow \forall \) such that \(\xi(Y) \in \forall_{\beta(Y)} \) and \(Y = Y[\xi(Y)] \) for all \(Y \in Y[\] \). Now let \(Z_1 = \{ \xi(Y) : Y \in Y[\] \} \).
To construct Z_{k+1} (provided that the sets $Z_1, ..., Z_k$ each of cardinality $\leq \lambda$ are already defined) we consider the set

$$W = \{ \langle z_1, \ldots, z_k, Y [z_1, \ldots, z_k, z_{k+1}] \rangle : z_1 \in Z_1 \& \ldots \& z_k \in Z_k \& z_{k+1} \in Y \}. $$

Clearly $W \subseteq Z_1 \times \ldots \times Z_k \times \mathcal{P}^{n-k}(X^m)$, therefore W has cardinality $\leq \lambda$. As above there is a function $\zeta : W \rightarrow V$ such that

$$Y [z_1, \ldots, z_k, \zeta (z_1, \ldots, z_k, Y)] = Y$$

whenever $z_i \in Z_i$, $1 \leq i \leq k$, and $Y \in Y [z_1, \ldots, z_k]$. We define

$$Z_{k+1} = \{ \zeta (z_1, \ldots, z_k, Y) : \langle z_1, \ldots, z_k, Y \rangle \in W \}. $$

Finally we note that the condition (5) is expressible by an internal formula with standard parameters because φ is a formula of such a kind. So, by transfer, the sets Z_k may be chosen to be standard. This completes the proof of the claim. □

What is more, transfer again allows us to rewrite the condition (5) as follows:

\[(5^*) \text{ for all } k, 0 \leq k < n, \text{ and all standard } z_i \in Z_i, 1 \leq i \leq k, \]

$$\forall^{st} z_{k+1} \exists^{st} z_{k+1} \in Z_{k+1} (Y [z_1, \ldots, z_k, z_{k+1}] = Y [z_1, \ldots, z_k, z_{k+1}]).$$

Now we turn directly to the proof of Theorem 3.1. The sets Z_k are already constructed, so only the equivalence of Theorem 3.1 remains to be proved. Let us denote its left-hand side and right-hand side by $\mathcal{L}_k(z_1, ..., z_k, x)$ and $\mathcal{R}_k(z_1, ..., z_k, x)$ respectively, and consider an auxiliary formula

$$Q^*_k Y_{k+1} \in Y_k Q^*_k Y_{k+2} \in Y_{k+1} \ldots Q^*_n Y_n \in Y_{n-1} (x \in Y_n).$$

We denote this formula by $\Psi_k(Y_k, x)$.

Assertion 2. $\mathcal{R}_k(z_1, ..., z_k, x) \Leftrightarrow \mathcal{L}_k(z_1, ..., z_k, x) \Leftrightarrow \Psi_k(Y [z_1, ..., z_k], x)$ for all $x \in X^m$ and all standard $z_i \in Z_i$, $1 \leq i \leq k$.

Proof. We proceed by reverse induction on k.

The case $k = n$ (the base of induction). In the absence of quantifiers all is clear:

$$\mathcal{R}_n (z_1, \ldots, z_n, x) \Leftrightarrow \mathcal{L}_n (z_1, \ldots, z_n, x) \Leftrightarrow \varphi (z_1, \ldots, z_n, x) \Leftrightarrow$$

$$\Leftrightarrow x \in Y [z_1, \ldots, z_n] \Leftrightarrow \Psi_n (Y [z_1, \ldots, z_n], x).$$

The step from $k+1$ to k; $1 \leq k < n$. Suppose that $Q^*_k Y_{k+1} \in \exists^* Y_k$, and put $Y_k = Y [z_1, ..., z_k]$.

We prove that $\mathcal{L}_k \Rightarrow \Psi_k$. Let standard z_{k+1} be such that $\mathcal{L}_k (z_1, ..., z_k, z_{k+1}, x)$ holds. Then $\Psi_{k+1} Y_{k+1}, x)$ holds too for $Y_{k+1} = Y [z_1, ..., z_k, z_{k+1}]$ (by the induction hypothesis). We note that $Y_{k+1} \in Y_k$ and Y_{k+1} is standard because $z_1, ..., z_k, z_{k+1}$ are standard. Therefore $\Psi_k (Y_k, x)$ is true.
We prove that $\Psi_k \rightarrow R_k$. Let standard $Y_{k+1} \in Y_k$ be such that $\Psi_{k+1}(Y_{k+1}, x)$ holds. It follows from the definition of Y_k by transfer that there is a standard set z_{k+1} such that $Y_{k+1} = Y[z_1, \ldots, z_k, z_{k+1}]$. What is more, one may choose such a standard z_{k+1} as a member of Z_{k+1}; this is guaranteed by (5^{st}). Thus $R_{k+1}(z_1, \ldots, z_k, z_{k+1}, x)$ by the induction hypothesis. Therefore $R_k(z_1, \ldots, z_k, x)$ holds too because $z_{k+1} \in Z_{k+1}$.

The assertion $\Delta_k \rightarrow L_k$ is evident.

The case Q^{st}_k is V^{st} does not differ from the one we have just considered.

This ends the proof of Theorem 3.1. \(\square\)

3.2. Corollary [BIST]. Let X be a standard set. Suppose that $\Phi(x, y)$ is an ext-prenex formula with bounded parameters and fewer than n external quantifiers. Let θ be max of orders of all the nonstandard parameters of Φ, $\theta = \max \{\theta', \text{card } X\}$, and $\lambda = \exp^n\theta$. Then there is a standard set Y of cardinality $\leq \lambda$ such that

$$\forall x \in X \ [\exists^{st} y \ \Phi(x, y) \rightarrow \exists^{st} y \ \subset Y \ \Phi(x, y)].$$

Proof. Assume that Φ takes the form

$$Q_1^{st}z_2 \ Q_2^{st}z_3 \ldots \ Q_n^{st}z_n \ \varphi(y, z_2, z_3, \ldots, z_n, x),$$

φ is internal, and every quantifier Q^{st}_k is \exists^{st} or \forall^{st}. It will be convenient to rename the variable y by z_1. We define Q^{st}_k as \exists^{st}. Applying Theorem 3.12 for $k = 0$ (to bound all quantifiers) and then for $k = 1$ (to re-bound all quantifiers except Q_1) we obtain the required set $Y = Z_1$. \(\square\)

3.3. Proof of Theorem 6. Part (a) asserts that Uniq, $\text{Repl}_1, 2, 3, 4, 5$, $\text{Chc}_1, 2$, $\text{BRepl}_4, \text{BChc}_4$, Coll_1 and $\text{Coll}_2(st \ \Phi)$ are true in IST for ext-prenex core formulae with standard parameters.

$\text{Coll}_2(st \ \Phi)$ follows immediately from Corollary 3.2. Further Coll_1 follows from $\text{Coll}_2(st \ \Phi)$ provided only standard parameters are allowed. Hence Chc_1 and Repl_1 hold as well by Theorem 2.7. Of course, Chc_2 follows from Chc_1 and the same is true for Repl_1. Finally $\text{Repl}_3, 4$ follow from Repl_1 and BRepl_4 from BChc_4. So the only things to prove are Uniq, Repl_5 and BChc_4.

To prove Uniq, let $\Phi(x)$ be an ext-prenex formula with standard parameters and suppose that there is a unique x such that $\Phi(x)$ holds. Applying Theorem 9 (which will be proved later in \S 6), we conclude that x is bounded. Hence x is a member of a standard set X. We may assume that Φ is a Σ^1_3 formula (otherwise use 3.1 and 2.4). The result follows from Theorem 2.11.

We verify Repl_5 for ext-prenex Φ with standard parameters:

$$\text{Repl}_5: \ \forall^{st}x \ \exists^{st} y \ \Phi(x, y) \rightarrow \exists^{st} y \ \forall^{st} x \ \Phi(x, y(x)).$$

It follows from the Uniq just proved that the unique y such that $\Phi(x, y)$ holds is standard whenever x is standard. Hence $\forall^{st} x \ \exists^{st} y \ \Phi(x, y)$ follows from the left-hand side of Repl_5. We denote by Ψ the (internal) formula obtained from Φ by deleting the “st” superscript from all quantifiers. Then $\Phi(x, y) \leftrightarrow \Psi(x, y)$
for all standard \(x, y \) by transfer and ext-prenexity of \(\Phi \). One can derive successively from the left-hand side of \(\text{Repl}_5 \) the next three assertions:

\[
\forall^{st} x \exists^{st} y \Psi(x, y); \forall^{st} x \exists y \Psi(x, y); \forall x \exists y \Psi(x, y).
\]

There is a set \(H \) such that \(S \subseteq H \) (see 2.9). Then a function \(\bar{y}(x) \) exists such that \(\Psi(x, \bar{y}(x)) \) holds for all \(x \in H \). Comparing the first and the second assertions, we see that \(\bar{y}(x) \) is standard for all standard \(x \). Hence we may go back again to \(\Phi \) and obtain the right-hand side of \(\text{Repl}_5 \).

Finally we consider

\(\text{BChc}_4: (st X, Y) \forall^{st} x \in X \exists y \in Y \Phi(x, y) \rightarrow \exists \bar{y} \forall^{st} x \in X \left[\Phi(x, \bar{y}(x)) \land \bar{y}(x) \in Y \right] \),

where \(\Phi \) is an ext-prenex formula with standard parameters. Note that the variables \(x \) and \(y \) have standard domains \(X \) and \(Y \). Thus one can convert \(\Phi \) to \(\Sigma^1_2 \) form by applying 3.1 and 2.4. Then we use 2.12.

(b) We are going to prove

\(\text{Chc}_4: (st X) \forall^{st} x \in X \exists y \in X \Phi(x, y) \rightarrow \exists \bar{y} \forall^{st} x \in X \Phi(x, \bar{y}(x)) \),

where \(\Phi(x, y) \) is \(\exists a \forall^{st} b \varphi(x, y, a, b) \), \(\varphi \) is an internal formula with standard parameters. Changing the places of the variables \(y \) and \(a \) on the left-hand side and using idealization, we convert the left-hand side of \(\text{Chc}_4 \) to the form

\[
\forall^{st} x \in X \exists a \left[\forall^{st \in B} \exists y \forall b \in B \varphi(x, y, a, b) \right].
\]

Note that the expression in square brackets is ext-prenex. Thus by Corollary 3.2 there is a standard set \(A \) such that \(\forall^{st} x \in X \exists a \in A \left[\forall^{st \in B} \exists y \forall b \in B \varphi(x, y, a, b) \right] \) holds. Thus \(\forall^{st} x \in X \exists a \in A \forall^{st} b \varphi(x, y, a, b) \). Here the variable \(a \) ranges over a standard set. An appeal to Theorem 2.12 (I) completes the proof.

Part (c) of Theorem 6 has already been proved in §2. \(\square \)

§4. Consistency

This section contains proofs of Theorems 1A, 1B. All we need is the following "inner model" theorem:

4.1. Theorem [IST]. Let \(\kappa \) be a standard infinite cardinal such that \(V_\kappa \) is a model of \(\text{ZFC} \). Then \(V_\kappa \) is a model of IST plus \(\text{Sep}_3 + \text{Repl}_{2,3,4,5} + \text{Chc}_{2,3,4,5} + B\text{Repl}_4 + B\text{Chc}_4 + \text{Uniq} \).

If moreover \(\kappa \) is strongly inaccessible, then \(\text{Repl}_4, \text{Chc}_1, \text{Coll}_1 \) and \(\text{Coll}_2(st \varphi) \) also hold in \(V_\kappa \).

Proof. We define \(V = V_\kappa \). A \(V \)-bounded formula means any \(st \)-\(e \)-formula that contains external quantifiers only of type \(\exists^* a \in V, V^* b \in V \). Certainly
any V-bounded formula is ext-bounded. Note that any claim about the truth within V can be expressed by a V-bounded formula.

We first prove transfer in V, that is,

$$\exists x \subseteq V \Phi(x) \rightarrow \exists^{st} x \subseteq V \Phi(x),$$

where Φ is an internal formula with standard parameters (only parameters from V are essential here, however the result remains true for arbitrary standard parameters). Applying the IST transfer to the formula $\Phi(x) \land x \in V$, we obtain the required implication. Similar reasonings provide the verification of I and S.

So far as the additional hypotheses are concerned, it suffices to prove only Uniq, Chc$_5$, Chc$_1$ and Coll$_2$($st \Phi$) within V. (The rest of the hypotheses follow from them, partially by Theorem 2.7.) The key point is that each formula relativized to V is in fact ext-bounded (with the set V), hence Σ^2. Thus one may apply the results of §2.

1. **Uniq.** Let $\Phi(x)$ be a V-bounded st-e-formula with standard parameters. Assume that $\exists x \in V \Phi(x)$. The unique x given by the formula $\Phi(x)$ is standard by Theorems 2.4 (applied to the formula $\Phi(x) \land x \in V$) and 2.11.

2. **We prove the following:**

\begin{align*}
\text{Chc}_5: \forall^{st} x \subseteq V \exists y \subseteq V \Phi(x, y) \rightarrow \exists^{st} y \subseteq V \forall^{st} x \subseteq V \Phi(x, \bar{y}(x)),
\end{align*}

where Φ is a V-bounded st-e-formula. Again by Theorems 2.4 and 2.12 there is a function \bar{y} such that

$$(7) \forall^{st} x \subseteq V [\bar{y}(x) \subseteq V \land \Phi(x, \bar{y}(x))].$$

However it is not still clear that $\bar{y} \in V$. To overcome this difficulty, let H be a finite set containing all standard members of V (see 2.9 for the existence of such a set H). We define

$$D = H \cap V \cap \text{dom} \bar{y}; \ E = \{x \subseteq D: \bar{y}(x) \subseteq V\}; \ \bar{f} = \bar{y} \upharpoonright E.$$

Evidently \bar{f} is a function with finite domain $E \subseteq V$ and range also $\subseteq V$. Hence $\bar{f} \in V$ by the finiteness. Finally the property (7) holds for \bar{f} provided it is true for \bar{y}.

3. **Now, assuming the strong inaccessibility of κ, we prove that**

\begin{align*}
\text{Chc}_1: \forall^{st} x \subseteq X \exists^{st} y \subseteq V \Phi(x, y) \rightarrow \exists^{st} \bar{y} \subseteq V \forall^{st} x \subseteq X \Phi(x, \bar{y}(x)),
\end{align*}

where $X \in V$ is standard and Φ is a st-e-formula. Using Theorem 2.3, we get a function $\bar{y}: X \rightarrow V$ such that $\forall^{st} x \in X \Phi(x, \bar{y}(x))$ holds. The assumed inaccessibility of κ confirms that $\bar{y} \in V$.

4. **Again assume the inaccessibility of κ and prove Coll$_2$($st \Phi$) for a V-bounded st-e-formula $\Phi(x, y)$ with standard parameters. Let $X \in V$ be standard. By Theorem 2.4 there is a Σ^2 formula $\Psi(x, y)$ which is equivalent
to the formula \(\Phi(x, y) \) \& \(y \in V \). Then, using Corollary 3.2, we obtain a standard set \(Y \subseteq V \) such that \(\text{card } Y \leq \exp^3(\theta) \), where \(\theta = \text{card } X \) (clearly \(\theta < \kappa \)), and

\[
\forall x \in X \ [\exists^{st} y \subseteq V \: \Phi(x, y) \rightarrow \exists^{st} y \subseteq Y \cap V \: \Phi(x, y)].
\]

Note that \(\exp^3(\theta) < \kappa \) by the inaccessibility, hence \(Y \in V \).

This completes the proof of Theorem 4.1. \(\square \)

4.2. The proof of Theorem 1B. Theorem 1A follows immediately from 4.1 because ZFC and IST remain equiconsistent when we add the existence of a strongly inaccessible cardinal to both of them.

We consider Theorem 1B. Of course, the existence of a cardinal \(\kappa \) such that \(V_\kappa \) is a ZFC model is outside IST. However, one may enlarge IST by a special constant \(\kappa \) and by the additional axiom "\(\kappa \) is a standard cardinal" and the list of axioms of type "\(A \) holds in \(V_\kappa \)" for all the ZFC axioms \(A \).

We denote the enlargement by IST\(_\kappa \). Of course, IST\(_\kappa \) is not the same as adding to IST the single axiom which says that \(V_\kappa \) is a model of ZFC.

In fact one can easily show that IST\(_\kappa \) is a conservative (hence equiconsistent) extension of IST.

Moreover, IST\(_\kappa \) is strong enough to prove that all the IST axioms as well as all the hypotheses of the list Sep\(_3 \), REPL\(_2,3,4,5 \), CHC\(_2,3,4,5 \), BRepl\(_4 \), BCHC\(_4 \), Uniq of Theorem 4.1 hold in \(V_\kappa \). This reasoning is completely analogous to the one presented below and we leave it to the reader.

§5. Bounded set theory

This section is devoted to Theorems 11, 12, 13, which concern bounded set theory BST. We recall that BST contains all the ZFC axioms together with transfer T, standardization S, bounded idealization

\[\text{BI: } (st A_\theta, \text{int } \Phi) \forall^{\text{strin } A} A \subseteq A_\theta \exists x \forall a \in A \: \Phi(x, a) \leftrightarrow \exists x \forall^{\text{st } a} a \subseteq A_\theta \: \Phi(x, a) \]

(\(A_\theta \) is standard, \(\Phi \) is an internal formula), and the bounded sets axiom

\[\text{B : } \forall x \exists^{\text{st }} X (x \in X). \]

We recall that bounded sets are those that belong to a standard set.

Let \(B \) denote the class of all bounded sets and \(\text{bd} \) denote the formula of boundedness, that is,

\[x \in B \leftrightarrow \text{bd } x \leftrightarrow \exists^{\text{st }} X (x \in X). \]

Clearly, \(S \subseteq B \), so a standard set is bounded (for if \(x \) is standard, then \(X = \{x\} \) is standard too by 2.1). Hence \(S \subseteq B \subseteq V \). Both inclusions are strict in IST. Indeed, firstly, any nonstandard integer belongs to \(B \) but not to \(S \); secondly, a set \(H \) such that \(S \subseteq H \) (see 2.9) is not bounded.
Sometimes it is useful to know that a bounded set is the same as a subset of a standard set. Indeed,
\[x \in X \leftrightarrow x \subseteq \bigcup X \quad \text{and} \quad x \subseteq Y \leftrightarrow x \subseteq \mathcal{P}(Y), \]
where the sets \(\bigcup X, \mathcal{P}(Y) \) are standard provided \(X, Y \) are standard.

To compare the possibilities of IST and BST as a basis for treating nonstandard mathematics in different fields, we note that the fact that BST contains a smaller piece of idealization does not have any influence on most of the applications. Indeed, any research branch of mathematics has its own "universe", that is, a certain standard set large enough to contain all the sets that might be considered within the branch. All the applications of idealization within the chosen branch are just of the kind BI rather than full I; the set \(A_0 \) serves as the "universe" mentioned above. Therefore BST is not really weaker than IST as a tool for nonstandard arguments. Nevertheless BST is much more complete than IST as regards the hypotheses we study, as Theorem 12 shows.

To close this short metamathematical digression, we notice that the bounded sets axiom is sometimes involved as a definition of internality in a study of nonstandard superstructures, see Lindstrøm [21].

5.1. **Proof of Theorem 11.** Let \(\varphi \) be any st-e-formula. By \(\varphi^{\text{bd}} \) we denote the formula obtained by replacing every internal (see 1.1) quantifier \(\exists \) or \(\forall \) in \(\varphi \) by \(\exists^{\text{bd}} \) or \(\forall^{\text{bd}} \) ("there is a bounded ...", "for all bounded ..."). Clearly the truth in \(\mathcal{B} \) of a st-e-formula \(\varphi \) with bounded parameters is equivalent to the truth of \(\varphi^{\text{bd}} \) in \(\mathcal{V} \). It suffices to show the following: if \(A \) is an axiom of BST, then \(A^{\text{bd}} \) is provable in IST. The first of the BST axioms we consider is transfer. We prove that

\[\exists^{\text{bd}} x \: \varphi^{\text{bd}}(x) \rightarrow \exists^{\text{st}} x \: \varphi^{\text{bd}}(x) \]

for an internal formula \(\Phi \) with standard parameters. Here one cannot immediately refer to the IST transfer because \(\Phi^{\text{bd}} \) is not an internal formula. Nevertheless the following lemma allows us to delete the superscript \(\text{bd} \) from \(\Phi \) and therefore completes the proof of transfer.

5.2. **Lemma [IST].** \(\Psi \leftrightarrow \Psi^{\text{bd}} \) for all internal formulae \(\Psi \) having bounded parameters.

Proof. The proof is by induction on the number of logical signs in \(\Psi \). As usual, only the step \(\exists \) needs special consideration. We prove that

\[\exists z \: \psi(z) \rightarrow \exists^{\text{bd}} z \: \psi(z) \]

for all internal \(\psi \) with bounded parameters. The "ordered \(n \)-tuple" ZFC function reduces the case of many parameters to the case of a single parameter. Thus let \(\psi \) contain the single parameter \(p_0 \). We fix a standard set \(P \) such that \(p_0 \in P \). The preceding formula takes the form

\[\exists z \: \psi(z, p_0) \rightarrow \exists^{\text{bd}} z \: \psi(z, p_0), \]
Undecidable hypothesis in Edward Nelson's internal set theory

where \(\psi(z, p) \) is an internal “parameter-free” formula with only \(z \) and \(p \) as free variables. By ZFC collection there is a set \(Z \) such that

\[
\forall p \in P \ [\exists z \ \psi(z, p) \rightarrow \exists z \in Z \ \psi(z, p)].
\]

We note that one may choose a standard \(Z \) with this property by transfer (in IST). Setting \(p = p_0 \) we obtain the required result. \(\Box \)

Hence transfer in \(B \) has been checked. It follows that all the ZFC axioms hold in \(B \) (being true in \(S \)). Standardization in \(B \) follows immediately from standardization in \(V \). Clearly the bounded sets axiom \(B \) is valid in \(B \). Only BI remains to be proved:

\[
\text{BI: } \forall \text{stfin} A \subseteq A_0 \ \exists^\text{bd} x \ \forall a \in A \ \Phi(x, a) \leftrightarrow \exists^\text{bd} x \ \forall \text{st} a \in A_0 \ \Phi(x, a),
\]

where \(A_0 \) is standard, and \(\Phi \) is an internal formula with bounded parameters. The superscript \(\text{bd} \) can be deleted from \(\Phi \) by Lemma 5.2.

Changing parameters to free variables as above, one can prove the existence of a standard set \(X \) such that

\[
\forall A \subseteq A_0 \ [\exists x \ \forall a \in A \ \Phi(x, a) \rightarrow \exists x \in X \ \forall a \in A \ \Phi(x, a)].
\]

Moreover, one may demand that if the right-hand side of BI holds, then \(X \) contains an element \(x \) such that \(\forall^\text{st} a \in A_0 \ \Phi(x, a) \).

We use the following example of I for the formula \(a \in A_0 \rightarrow \Phi(x, a) \& x \in X \):

\[
\forall \text{stfin} A \subseteq A_0 \ \exists x \in X \ \forall a \in A \ \Phi(x, a) \leftrightarrow \exists x \in X \ \forall \text{st} a \in A_0 \ \Phi(x, a).
\]

Clearly its left-hand side is equivalent to the left-hand side of BI above, just as the right-hand side is equivalent to the right-hand side of BI by the choice of \(X \). \(\Box \)

5.3. Proof of Theorem 13. We turn to the theorem which shows that BST reduces all external formulae to a \(\Sigma_2^1 \) form. Note that IST provides the reduction only for those formulae that are either ext-prenex (see §3) or ext-bounded (see §2).

Thus let \(\Phi(x_1, x_2, ..., x_n) \) be a “parameter-free” st-e-formula with only \(x_1, x_2, ..., x_n \) as free variables. We claim that there is a “parameter-free” \(\Sigma_2^1 \) formula \(\Psi(x_1, x_2, ..., x_n) \) such that

\[
\forall x_1 \ \forall x_2 \ldots \forall x_n \ [\Phi(x_1, x_2, \ldots, x_n) \leftrightarrow \Psi(x_1, x_2, \ldots, x_n)]
\]

(provable in BST).

The proof is carried out by induction on the number of logical signs in \(\Phi \). As above (see the proof of Theorem 2.4), it suffices to go through steps \(\neg \) and \(\exists \). Let \(x \) denote \(x_1, x_2, ..., x_n \).

The step \(\neg \). We search for a \(\Sigma_2^1 \) formula \(\Psi(x) \) that is equivalent to the formula

\[
\forall \text{st} a \ \exists^\text{st} b \ \varphi(x, a, b), \text{ where } \varphi \text{ is internal},
\]
taken as $\Phi(x)$. Whenever X is standard, there is (by Theorem 3.1) a pair of
standard sets A, B such that

$$(8) \quad \forall x \in X^n [\Phi(x) \leftrightarrow \forall^{st}a \in A \exists^{st}b \in B \varphi(x, a, b)].$$

What is more, the proof of Theorem 3.1 gives an internal formula $\chi(X, A, B)$
such that the following two assertions hold:

a) $\forall^{st}X \exists^{st}A \exists^{st}B \chi(X, A, B)$, and

b) $\forall^{st}X \forall^{st}A \forall^{st}B [\chi(X, A, B) \rightarrow (8) \text{ is true}].$

(To be more exact, χ expresses the sentence (5th) from §3.)

Applying the axiom B we have

$$\Phi(x) \leftrightarrow \exists^{st}X \exists^{st}A \exists^{st}B [x \in X^n & \chi(X, A, B) & \& \forall^{st}a \in A \exists^{st}b \in B \varphi(x, a, b)].$$

Changing the second line to $\exists^{st}b \in A \forall^{st}a \in A \varphi(x, a, b(a))$ (Theorem 2.3 is
used) and making some evident transformations, one can obtain the required
formula Ψ.

The step \exists. We need a Σ^2_1 formula that is equivalent to

$$\Phi(x) =_{\text{def}} \exists u \exists^{st}a \forall^{st}b \varphi(x, u, a, b),$$

φ is internal. The following equivalence is true by the bounded sets axiom B:

$$\Phi(x) \leftrightarrow \exists^{st}X [x \in X^n & \exists u \in X \exists^{st}a \in X \forall^{st}b \varphi(x, u, a, b)].$$

Hence we conclude as above that for some internal formula $\chi(X, B)$

$$\Phi(x) \leftrightarrow \exists^{st}X \exists^{st}A \exists^{st}B [x \in X^n & \chi(X, B) & \& \exists^{st}a \in X \exists u \in X \forall^{st}b \in B \varphi(x, u, a, b)].$$

Finally we use idealization BI to the block of quantifiers $\exists u \forall^{st}b$ and obtain
the required formula Ψ by some simple transformations.

This completes the proof of Theorem 13. \square

5.4. Proof of Theorem 12. It suffices to prove (in BST) only the following
hypotheses: Uniq, Coll, Chc$_1$ and Chc$_4$.

Uniq. We consider a $\text{st-}\varepsilon$-formula $\Phi(x)$ with standard parameters with only x
free and suppose that $\exists!x \Phi(x)$. One may assume that Φ is a Σ^2_1
formula by Theorem 13. We now use Theorem 2.11.

Coll. Let $\Phi(x, y)$ be a $\text{st-}\varepsilon$-formula with arbitrary (bounded) parameters and
only x, y free. Prove that for every X there is a standard set Y such that

$$\forall x \in X [\exists y \Phi(x, y) \rightarrow \exists y \in Y \Phi(x, y)].$$

One may assume that X is standard by the bounded sets axiom B.

We note that the formula

$$\Psi(x, z) =_{\text{def}} \text{st } z \& \exists y \in z \Phi(x, y)$$
is equivalent to some Σ^2_1 formula by Theorem 13. Hence by 3.2 there is a standard Z such that

$$\forall x \in X \ [\exists z \ \Psi(x, z) \rightarrow \exists z \in Z \ \Psi(x, z)].$$

The set $Y = \bigcup Z = \{y : \exists z \in Z (y \in z)\}$ is as required. The standardness of Y follows from transfer.

To prove Che_1 for some standard X and a st-e-formula $\Phi(x, y)$, apply Coll to the formula $st y \& \Phi(x, y)$, obtaining a standard set Y such that

$$\forall x \in X \ [\exists^s y \ \Phi(x, y) \rightarrow \exists^s y \in Y \ \Phi(x, y)].$$

Finally we apply Theorem 2.3.

At last we prove the following:

$$\text{Che}_4: \ \forall^s x \in X \ \exists y \ \Phi(x, y) \rightarrow \exists \tilde{y} \ \forall^s x \in X \ \Phi(x, \tilde{y}(x)),$$

where X is standard. One may assume that Φ is Σ^2_1 as above, therefore $\Phi(x, y)$ is $\exists^a \forall^b \varphi(x, y, a, b)$, where φ is internal. By collection there is a standard set Y such that the left-hand side of Che_4 is equivalent to $\forall^s x \in X \ \exists y \in Y \ \Phi(x, y)$. Theorem 3.1 gives a pair of standard sets A, B satisfying

$$\Phi(x, y) \leftrightarrow \exists^s a \in A \ \forall^s b \in B \ \varphi(x, y, a, b)$$

whenever $x \in X, y \in Y$. Theorem 2.12 ends the proof. □

§6. The hierarchy theorem

This short section contains the proof of Theorem 10. We shall prove two forms of the theorem. The first form deals with standard parameters, while the second allows arbitrary parameters. Unfortunately the author has not succeeded in proving the common extension of these two variants.

We recall that $\Phi(X)$ is the formula $\exists^s a \ \forall^s b \ (\langle a, b \rangle \in X)$ in the formulation of our Theorem 10.

6.1. Theorem. Let $\Psi(X, p_1, \ldots, p_n)$ be a Π^1_2 formula without parameters and with only X, p_1, \ldots, p_n free. Then

(a) [IST] $\forall^s p_1 \ldots \forall^s p_n \rightarrow \forall X [\Phi(X) \leftrightarrow \Psi(X, p_1, \ldots, p_n)];$

(b) [IST + Repl_3] $\forall p_1 \ldots \forall p_n \rightarrow \forall X [\Phi(X) \leftrightarrow \Psi(X, p_1, \ldots, p_n)].$

It is worth presenting a consequence of (b) and Theorem 1A. Given a "parameter-freee" Π^1_2 formula $\Psi(X, p_1, \ldots, p_n)$, one cannot prove in IST that

$$\exists p_1 \ldots \exists p_n \ \forall X [\Phi(X) \leftrightarrow \Psi(X, p_1, \ldots, p_n)].$$

(Indeed the negation of this is consistent with IST being a consequence of the consistent hypothesis Repl_3 in IST.) Hence (b) claims that Φ is not provably equivalent in IST to any Π^1_2 formula with arbitrary parameters, while (a)
V.G. Kanovei claims that Φ is provably non-equivalent to any Π_3 formula with standard parameters. Of course, the second is stronger than the first. It would be better to prove (b) in IST without Repl_3.

One can replace Repl_3 in (b) by a slightly more natural hypothesis Sep_3, since Repl_3 is equivalent to Sep_3 in IST.

Proof. We may assume that the list p_1, \ldots, p_n contains in fact only one variable p; thus let $\Psi(X, p)$ be $\forall^* u \exists^* v \psi(X, u, v, p)$, where ψ is internal. We fix a set p and suppose that $\Phi(X) \rightarrow \Psi(X, p)$ holds for all X, that is,

$$\forall X [\exists^* a \forall^* b \langle a, b \rangle \in X \rightarrow \forall^* u \exists^* v \psi(X, u, v, p)].$$

This is transformable to

$$\forall^* a \forall^* u \forall X \exists^* b \exists^* v \langle a, b \rangle \in X \rightarrow \psi(X, u, v, p).$$

Further, applying idealization, we have

$$\forall^* a \forall^* u \forall X \exists^* \text{fin } B \exists^* \text{fin } V \forall X [\forall b \in B \langle a, b \rangle \in X \rightarrow \exists v \in V \psi(X, u, v, p)].$$

Taking $a = u$ and using the fact that for every standard B there is a standard ordinal α such that $B \subseteq V_\alpha$, we get a slightly weaker assertion

$$(9) \forall^* u \exists^* \alpha \subseteq \text{Ord } \exists^* \text{fin } V \forall X [\forall b \in V_\alpha \langle u, b \rangle \in X \rightarrow \exists v \in V \psi(X, u, v, p)].$$

Now it is necessary to separate the cases (a) and (b).

6.2. Standard case.

We assume that p is standard. Let $\varphi(u, \alpha, V)$ denote the formula

$$\forall X [\forall b \in V_\alpha \langle u, b \rangle \in X \rightarrow \exists v \in V \psi(X, u, v, p)].$$

The preceding formula takes the form

$$\forall^* u \exists^* \alpha \exists^* \text{fin } V \varphi(u, \alpha, V).$$

Let $\alpha(u)$ be the least ordinal α satisfying $\exists^* \text{fin } V \varphi(u, \alpha, V)$, if such an α exists, or else $\alpha(u) = 0$. When u is a standard set the ordinal $\alpha(u)$ and the set $B(u) = V_{\alpha(u)}$ are standard by Theorem 2.1. We prove the following claim:

$$(10) \forall^* u \forall X [\forall b \in B(u) \langle u, b \rangle \in X \rightarrow \exists^* v \psi(X, u, v, p)].$$

Indeed, let u be standard and let X_0 be such that $\langle u, b \rangle \in X_0$ for all $b \in B(u)$. We set $\alpha = \alpha(u)$. By transfer and the definition of $\alpha(u)$ there is a standard finite set V satisfying $\varphi(u, \alpha, V)$, that is,

$$\forall X [\forall b \in B(u) \langle u, b \rangle \in X \rightarrow \exists v \in V \psi(X, u, v, p)].$$

Taking $X = X_0$, we obtain $\exists v \in V \psi(X_0, u, v, p)$ and then $\exists^* v \psi(X_0, u, v, p)$ by 2.8 (all elements of a standard finite set are standard). This ends the proof of the claim (10). \Box
Let H be a set containing all standard sets (see 2.9). We define X by

$$X = \{\langle u, b \rangle : u \subseteq H \& b \subseteq B(u)\}.$$

Clearly $\langle u, B(u) \rangle \notin X$ for all u. Hence $\neg \Phi(X)$, because $B(u)$ is standard whenever u is standard.

However, if u is standard, then $\forall b \in B(u) (\langle u, b \rangle \in X)$ by the definition of X, hence $\exists v \psi(X, u, v, p)$ by the claim (10). Thus $\Psi(X, p)$ is true. Hence a set X satisfying $\Psi(X, p) \& \neg \Phi(X)$ has been constructed. This ends the standard case.

6.3. Nonstandard case.

The reasoning of 6.2 fails at the point where we assert that $\alpha(u)$ is standard provided u is standard (this is in general wrong for a nonstandard p). We overcome this obstacle with the help of the additional assumption Repl_3.

Firstly we consider again the statement (9). Applying idealization, we obtain

$$\forall^{\text{st}} u \exists^{\text{st}} \alpha \forall X [\forall b \subseteq \forall_{\alpha} (\langle u, b \rangle \subseteq X) \rightarrow \exists^{\text{st}} v \psi(X, u, v, p)].$$

Let $\varphi(u, \alpha)$ denote the formula on the right of $\exists^{\text{st}} \alpha$; thus the last assertion takes the form $\forall^{\text{st}} u \exists^{\text{st}} \alpha \varphi(u, \alpha)$.

We now consider the new formula $\varphi'(u, \alpha)$ which says that α is the least standard ordinal satisfying $\varphi(u, \alpha)$ (one may choose the least standard α correctly by Theorem 2.5). Hence

$$\varphi'(u, \alpha) = \text{def } \varphi(u, \alpha) \& \forall^{\text{st}} \gamma < \alpha \dashv \varphi(u, \gamma).$$

Clearly $\forall^{\text{st}} u \exists^{\text{st}} \alpha \varphi'(u, \alpha)$ and $\varphi(u, \alpha) \rightarrow \varphi(u, \alpha)$ for all standard u, α. Hence by Repl_3 there is a function F such that for all standard u the value $F(u)$ is defined, is an ordinal, and $\varphi(u, F(u))$ holds.

The set $B(u) = \forall_{\text{st}} u$ is also standard provided u is standard. We come to the claim 10 of 6.2 and complete the proof in the same way. □

Problem 14. Prove (b) in IST without any additional assumption.

Let us compare the theorem just proved with some classical hierarchy theorems. Certainly the given proof is very far from the usual “universal set” reasoning. Rather it slightly resembles a topological proof of the existence of the set F_α, but not G_δ. The author was not able to carry out the “universal set” construction. However, there is an evident candidate for the Σ^n_1 formula solving the hierarchy problem:

Problem 15. Prove that the Σ^n_1-formula

$$\exists^{\text{st}} a_1 \exists^{\text{st}} a_2 \exists^{\text{st}} a_3 \forall^{\text{st}} a_4 \ldots \exists (\forall)^{\text{st}} a_n [\langle a_1, a_2, a_3, a_4, \ldots, a_n \rangle \in X]$$

is not equivalent in IST to any Π^n_1-formula.
§7. Truth definability

It is the purpose of this section to prove Theorem 5 concerning the truth definition for internal formulae with standard parameters. As a consequence we shall prove Theorem 2, which highlights the special status of Repl₁, Chc₁, Coll₁, Coll₁(st Φ) among other hypotheses.

7.1. Coding the language.

To prove Theorem 5 we use the well known technical tool of coding the formulae of ε-language by finite sequences of a special kind and then constructing the satisfaction function.

Firstly we assume for simplicity that ε-formulae may contain only the following logical signs: ~, &, ∃, ε, =, and of course brackets (,), the variables ν and νᵢ, i ∈ ℕ, and finally parameters, that is, arbitrary sets replacing free variables. Note that the signs ∨, ∀, →, ↔ which we did not mention are easily expressible by ~, &, ∃.

We denote by \(Γ \) the sequence obtained by replacing in \(Φ \) each sign ~, &, ∃, ε, =, (,) by integers 0, 1, 2, 3, 4, 5, 6; each variable \(ν_k \) by \(8 + k \) and \(ν \) by 7; each parameter \(ρ \) (\(ρ \in \mathcal{V} \)) by \((0, p) \) (the ordered pair).

Thus \(Γ \) is a finite sequence of special type. \(Γ \) is sometimes called the translation of \(Φ \). We put

\[
\begin{align*}
\text{Form} &= \{ Γ : Φ \text{ is a (well-formed) ε-formula with arbitrary parameters} \}; \\
\text{Form}_X &= \{ Γ : Φ \text{ is a (well-formed) ε-formula with parameters all members of } X' \}. \\
\end{align*}
\]

We say that a formula \(Ψ \) is subordinate to \(Φ \) if \(Ψ \) is a subformula of \(Φ \) in which some (maybe none or all) free variables have been replaced by arbitrary parameters. For example, \(Φ \) itself is subordinate to \(Φ \); \(Φ(ρ) \) for all \(ρ \) and \(Φ(υ) \) (\(υ \) is free) are subordinate to \(∃υ Φ(υ) \). We define

\[
\begin{align*}
\text{Form}[Φ] &= \{ Γ : Ψ \text{ is subordinate to } Φ \}; \\
\text{Form}_X[Φ] &= \text{Form}_X \cap \text{Form}[Φ].
\end{align*}
\]

For example, \(Φ(ρ) \) \(∈ \) \(\text{Form}_X[∃υ Φ(υ)] \) whenever \(ρ \in X \).

Further we distinguish the translations of closed formulae:

\[\text{CForm} = \{ Γ : Φ \text{ is a closed formula} \}, \]

and \(\text{CForm}_X, \text{CForm}[Φ], \text{CForm}_X[Φ] \) in the same manner.

Note that a translation \(Γ \) is standard (as a finite sequence) if and only if \(Φ \) has only standard parameters and the number of logical signs of \(Φ \) is standard too.
Now the key definition. We denote by $\text{Sat}(T)$ the conjunction of the following five st-e-formulae:

1) $T \subseteq \text{CForm}$;
2) $\forall^{\text{st}}p \ \forall^{\text{st}}q \ \{p = q \equiv T \iff p = q\} \land \{p \equiv q' \equiv T \iff p \equiv q\}$;
3) $\forall^{\text{st}}p \ \forall^{\text{st}}q \ \{p \equiv q \equiv T \iff (p' \equiv T \land q' \equiv T)\}$;
4) $\forall^{\text{st}}p \ \forall^{\text{st}}q \ \{p \equiv q \equiv T \iff \exists^{\text{st}}p \ \{p \equiv q' \equiv T\}\}$;
5) $\forall^{\text{st}}p \ \forall^{\text{st}}q \ \{p \equiv q \equiv T \iff \exists^{\text{st}}p \ \{p \equiv q' \equiv T\}\}$.

Any set T satisfying $\text{Sat}(T)$ is adapted to the definition of truth within the universe S of all standard sets.

7.2. Lemma [IST]. Either of the two conditions

$$\exists T \ [\text{Sat}(T) \land \psi \equiv T]; \ \forall T \ [\text{Sat}(T) \rightarrow \neg \psi \not\equiv T]$$

is necessary and sufficient for any closed ε-formula φ with standard parameters to be true in S (or, what is the same, in \forall).

To be more precise, we claim that

$$\forall^{\text{st}}x_1 \ldots \forall^{\text{st}}x_n [\varphi(x_1, \ldots, x_n) \iff \exists T \ [\text{Sat}(T) \land \psi(x_1, \ldots, x_n) \equiv T] \iff \forall T \ [\text{Sat}(T) \rightarrow \neg \psi(x_1, \ldots, x_n) \not\equiv T]$$

is provable in IST whenever $\varphi(v_1, \ldots, v_n)$ is a "parameter-free" ε-formula with only v_1, \ldots, v_n as free variables. Thus either of the formulae

$$\exists T \ [\text{Sat}(T) \land \psi \equiv T]; \ \forall T \ [\text{Sat}(T) \rightarrow \neg \psi \not\equiv T]$$

can be taken as $\tau(\psi')$ for Theorem 5. Hence the only thing to prove is the lemma.

Proof. The proof is based on two auxiliary claims from which the lemma clearly follows.

Assertion 1. For every closed ε-formula φ with standard parameters there is a set T satisfying $\text{Sat}(T)$ and containing at least one (in fact exactly one) of the translations ψ', $\neg \psi'$.

Proof. We replace all the parameters occurring in φ by free variables. Let $\varphi(v_1, \ldots, v_n)$ be the formula we obtain, and let

$$\varphi(v_{i_1}, \ldots, v_{i_n(i)}), \ 1 \leq i \leq m, \ i_n \in \mathbb{N}$$

be the list of all its subformulae (including φ itself). We take a set H containing all standard sets and define

$$T_i = \{\varphi_i(x_1, \ldots, x_n(i)) : x_1, \ldots, x_n(i) \in H \land \varphi_i(x_1, \ldots, x_n(i))\} \cup \{\neg \varphi_i(x_1, \ldots, x_n(i)) : x_1, \ldots, x_n(i) \in H \land \neg \varphi_i(x_1, \ldots, x_n(i))\}.$$
The set $T = \bigcup_{1 \leq i \leq m} T_i$ is as required.

Assertion 2. Let φ be a closed ε-formula with standard parameters. If $\psi \in T$ and $\text{Sat}(T)$ holds, then φ is true in S (as well as in \forall).
Proof. We proceed by induction on the number of signs in φ. The base of
induction (that is, the case φ is either $x \vDash y$ or $x = y$) is justified by part 2)
of Sat, while induction steps are based on parts 3), 4), 5). The only non-
trivial case is the step $\neg \neg \neg 1$. So let us assume that $\neg \neg \neg 1 \vDash T$ and try to prove
that φ is false.

Firstly we note that $\neg \neg \neg 1 \not\vDash T$ by 4).

Case 1: φ is either $x \vDash y$ or $x = y$; x, y are standard. Then $x \not\vDash y$
(respectively $x \neq y$) by 2) and the induction hypothesis (we recall that
$\neg \neg \neg 1 \not\vDash T$). Hence φ is false.

Case 2: φ is $\psi \& \chi$. At least one of $\neg \psi$, $\neg \chi$ is not a member of T by 3).
Let $\neg \psi \not\vDash T$, say. Then $\neg \neg \psi \vDash T$ by 4). So $\neg \psi$ is true by the induction
hypothesis. Hence ψ is false.

Case 3: φ is φ. Then 4) implies that $\neg \psi \vDash T$ because $\neg \neg 1 \not\vDash T$.
So ψ is true, therefore φ is false.

Case 4: φ is $\exists x \psi(x)$. It suffices to prove that $\psi(x)$ is false whenever x is
standard. We note that $\neg \psi(x) \not\vDash T$ by 5) (because $\neg \neg \neg 1 \not\vDash T$). Hence
$\neg \neg \psi(x) \vDash T$ by 4). Thus $\neg \neg \psi(x)$ by the induction hypothesis. □

This completes the proof of the lemma and Theorem 5. □

7.3. Proof of Theorem 2. It suffices to prove that Cons ZFC is implied by
Colli(st Φ) (that is, Colli with only standard parameters allowed in the core
formula) in IST.

Given a "parameter-free" \vDash-formula $\varphi(v_1, \ldots, v_m)$, it is a theorem of ZFC
that there is an ordinal κ such that V_κ is an elementary submodel of the
universe V with respect to the formula φ, that is,

$$\forall p_1 \in V_\kappa \ldots \forall p_m \in V_\kappa[\varphi(p_1, \ldots, p_m) \leftrightarrow \varphi^*(p_1, \ldots, p_m)],$$

where φ^* is the relativization of φ to V_κ. One more fact to note here is that
we may choose a standard κ of such a kind by using transfer.

We fix a reasonable enumeration $(\varphi_k : k \in \mathbb{N})$ of all closed \vDash-formulae and
define a st-\vDash-formula $\Phi(k, \kappa)$ which says that k is a standard integer and κ
is the least (standard) ordinal such that V_κ is an elementary submodel of V
for all φ_i, $1 \leq i \leq k$. The precise definition of $\Phi(k, \kappa)$ is as follows:

$$k \in \mathbb{N} \& \kappa \in \text{Ord} \& \text{st } k \& \text{st } \kappa \& \exists T \[\text{Sat } (T) \& T \text{ contains the translation}
\text{of } \kappa \text{ the least ordinal such that } V_\kappa \text{ is an elementary submodel of } V \text{ for all } \varphi_i, 1 \leq i \leq k^3.]$$

Lemma 7.2 shows that the precise definition of Φ corresponds to the
informal one given above. Hence the following holds:

$$\forall^{\text{st}} \subset \mathbb{N} \exists^{\text{st} \kappa} \subset \text{Ord } \Phi(k, \kappa).$$

Applying Colli(st Φ), we get a standard $f : \mathbb{N} \to \text{Ord}$ such that $\Phi(k, f(k))$
holds for all standard $k \in \mathbb{N}$. We put $\lambda = \sup_{k \in \mathbb{N}} f(k)$ and show that V_λ is a
model of ZFC.
One may prove this in S by transfer. Thus, coming back to V, it is sufficient to prove that each standard (in the sense that A is standard) axiom A of ZFC holds in V_λ.

Let a standard k be such that A and all subformulae of A are contained in the list φ_i, $1 \leq i \leq k$. Then for all standard $n \geq k$ the set $V_{f(n)}$ is an elementary submodel of V with respect to A and each subformula of A. It follows that V_λ is also an elementary submodel of V as regards A. Hence A is true in V_λ. This completes the proof of Theorem 2. \square

$\S 8$. Full collection

Unlike the hypotheses of separation, replacement and choice, collection is valid in IST for all core formulae; this assertion is exactly the same as Theorem 4. This section contains the proof together with the proof of two corollaries. The first is our Theorem 9 and the second is the corollary mentioned in section 1.13 of the Introduction.

8.1. Beginning of the proof.

Thus we try to prove Coll for a st-e-formula

$$\Phi(x, y) = \text{def} \ Q_2x_2Q_3x_3 \ldots Q_nx_n \ \varphi(x, y, x_2, x_3, \ldots, x_n),$$

where φ is a quantifier-free formula and each Q_i is a quantifier of four possible kinds: \exists^s, \forall^s, \exists or \forall. Arbitrary parameters are allowed in Φ. Let us fix a set X. It suffices to find a set Y such that

$$\forall x \in X \ [\exists y \ \Phi(x, y) \rightarrow \exists y \in Y \ \Phi(x, y)].$$

It will be more convenient to rename the variables x, y by x_0, x_1 respectively. Also let Q_1 be \exists (this corresponds to the formula $\exists y \ \Phi(x, y)$).

The following way of reasoning partially resembles the proof of Theorem 3.1, though mixing of two kinds of quantifiers (internal \exists, \forall and external \exists^s, \forall^s) gives some additional difficulties.

Let us fix a cardinal θ. The role of θ will become clear later.

The key definition. For all $k \leq n$ we define the set C_k, and then for each sequence x_0, \ldots, x_k define $F(x_0, \ldots, x_k) \in C_k$. The definition is arranged so that F will be internal at all levels k. The construction depends on the chosen θ, though the notation does not reflect the dependence in a clear form.

The definition goes by reverse induction on $k = n, n-1, \ldots, 1, 0$.

The base of induction: $k = n$. We define $C_n = \{0, 1\}$ and

$$F(x_0, \ldots, x_n) = \begin{cases} 1 & \text{if } \varphi(x_0, \ldots, x_n) \text{ holds,} \\ 0 & \text{if } \varphi(x_0, \ldots, x_n) \text{ fails.} \end{cases}$$

The inductive step. We suppose that $k < n$ and the set C_{k+1} together with the values $F(x_0, \ldots, x_k, x_{k+1}) \in C_{k+1}$ for all $x_0, \ldots, x_k, x_{k+1}$ are already defined (and the map F is internal).
The external case: Q_{k+1} is either 3^st or \forall^st. We put

$$C_k = \mathcal{P}(\mathcal{V}_0 \times C_{k+1}) = \mathcal{P}(\{\langle x, c \rangle : x \in \mathcal{V}_0 \& c \subseteq C_{k+1}\}),$$

and

$$F(x_0, \ldots, x_k) = \{\langle x_{k+1}, c \rangle : x_{k+1} \subseteq \mathcal{V}_0 \& c = F(x_0, \ldots, x_k, x_{k+1})\}$$

for all x_0, \ldots, x_k. Hence

$$F(x_0, \ldots, x_k, x_{k+1}) = c \iff \langle x_{k+1}, c \rangle \subseteq F(x_0, \ldots, x_k)$$

whenever $x_{k+1} \in \mathcal{V}_0$. One may rewrite the last equivalence in the form

$$F(x_0, \ldots, x_k, x_{k+1}) = F(x_0, \ldots, x_k)(x_{k+1}),$$

again provided that $x_{k+1} \in \mathcal{V}_0$.

The internal case: Q_{k+1} is either 3 or \forall. For example, for $k = 0$, Q_1 is 3 by the definition of Q_1. We put $C_k = \mathcal{P}(C_{k+1})$ and

$$F(x_0, \ldots, x_k) = \{F(x_0, \ldots, x_k, x_{k+1}) : x_{k+1} \subseteq \mathcal{V}\}$$

for all x_0, \ldots, x_k. If F is an internal map at level $k+1$ and each $F(x_0, \ldots, x_k, x_{k+1})$ is a member of C_{k+1}, then each value $F(x_0, \ldots, x_k)$ is also an internal set (a member of C_k) by the ZFC separation, although the domain of the variable x_{k+1} is not restricted by any set. Also for the same reason F remains internal at level k.

8.2. Lemma. Let x_0, \ldots, x_k and x'_0, \ldots, x'_k be such that

$$F(x_0, \ldots, x_k) = F(x'_0, \ldots, x'_k).$$

If Q_{k+1} is an external quantifier, then

$$F(x_0, \ldots, x_k, x_{k+1}) = F(x'_0, \ldots, x'_k, x_{k+1})$$

for all $x_{k+1} \in \mathcal{V}_0$. If Q_{k+1} is internal, then for all x_{k+1} there exists x'_{k+1} such that

$$F(x_0, \ldots, x_k, x_{k+1}) = F(x'_0, \ldots, x'_k, x'_{k+1}).$$

Proof. The internal case is clear. Further, if Q_{k+1} is external, then by definition

$$F(x_0, \ldots, x_k, x_{k+1}) = F(x_0, \ldots, x_k)(x_{k+1}) = F(x'_0, \ldots, x'_k)(x'_{k+1}) = F(x'_0, \ldots, x'_k, x_{k+1}).$$

Before one more lemma is formulated, let us look at the notion of bounded and unbounded ordinals. We recall that a set x is bounded if and only if x is a member of a standard set X. When restricted to the class of ordinals, the
notion of boundedness can be reformulated in certain more convenient forms, for example:

\[\theta \in \text{Ord} \text{ is unbounded } \iff \forall \alpha < \theta \exists x (x \in V_\alpha) \] (the simple proof is left to the reader).

8.3 Lemma. Suppose that the ordinal \(\theta \) which we have fixed above is unbounded. Let \(k \leq n \) and let \(x_i, x'_i, i \leq k \), be such that

\[F(x_0, \ldots, x_k) = F(x'_0, \ldots, x'_k). \]

Then

\[Q_{k+1}x_{k+1} \cdots Q_n x_n \ \exists (x_0, \ldots, x_k, x_{k+1}, \ldots, x_n) \iff Q_{k+1}x_{k+1} \cdots Q_n x_n \ \exists (x'_0, \ldots, x'_k, x'_{k+1}, \ldots, x'_n). \]

Proof. We argue by induction on \(k = n, n-1, \ldots, 1, 0 \). The case \(k = n \) is evident by the definition of \(F \) (the string of quantifiers is empty). Now the induction step. We prove the lemma for some \(k < n \) provided it is true for \(k+1 \). One may consider only the case when \(Q_{k+1} \) is either \(3 \) or \(3^* \) (the case of universal quantifiers does not differ essentially).

Thus let \(x_{k+1} \) be such that the following holds:

\[Q_{k+2}x_{k+2} \cdots Q_n x_n \ \exists (x_0, \ldots, x_k, x_{k+1}, x_{k+2}, \ldots, x_n). \]

Also we assume that if \(Q_{k+1} \) is \(3^* \), then \(x_{k+1} \) is standard (hence \(x_{k+1} \) belongs to \(V_\theta \) by the fact that \(\theta \) is unbounded). The preceding lemma gives a set \(x'_{k+1} \) such that

\[F(x_0, \ldots, x_k, x_{k+1}) = F(x'_0, \ldots, x'_k, x'_{k+1}), \]

and in addition if \(Q_{k+1} \) is \(3^* \), then \(x'_{k+1} = x_{k+1} \) and \(x'_{k+1} \) is standard. Thus by the induction hypothesis the following is true:

\[Q_{k+2}x_{k+2} \cdots Q_n x_n \ \exists (x'_0, \ldots, x'_k, x'_{k+1}, x'_{k+2}, \ldots, x'_n). \]

This completes the proof of the right-hand side of the required equivalence. \(\Box \)

We now turn back to the proof of Theorem 4. We recall that \(x_1 = y \) and \(x_0 = x \). Therefore Lemma 8.3 for \(k = 1 \) takes the form:

8.4. Corollary. Let \(\theta \) be unbounded. If \(F(x, y) = F(x', y') \), then the following holds: \(\Phi(x, y) \iff \Phi(x', y') \). \(\Box \)

Assume that \(\theta \) is in fact unbounded (the existence of unbounded ordinals follows from 2.9). By ZFC collection we get a set \(Y \) such that

\[(11) \ \forall c \in C_1 \ \forall x \in X \ [\exists y \ (c = F(x, y)) \rightarrow \exists y \in Y \ (c = F(x, y))] \]

holds (the equality \(c = F(x, y) \) is internal). We recall that \(F(x, y) \in C_1 \) for all \(x, y \). Hence one may rewrite (11) as follows:

\[\forall x \in X \ \forall y \ [F(x, y) = F(x, y')]. \]
Then
\[\forall x \in X \ \forall y \ \exists y' \in Y \ [\Phi(x, y) \leftrightarrow \Phi(x, y')] \]
by 8.4. This ends the proof of the theorem. □

8.5. Comments.
In fact we have proved something stronger than the assertion of Theorem 8.1. Namely, given a st-e-formula \(\Phi(x, y) \), there is an internal formula \(\Phi^*(\theta, X, \lambda) \) such that

a) \(\forall \theta \in \text{Ord} \ \forall X \ \exists \lambda \in \text{Ord} \ \Phi^*(\theta, X, \lambda) \);

b) if \(\theta \) is unbounded, \(\lambda \in \text{Ord} \) and \(\Phi^*(\theta, X, \lambda) \) holds, then
\[\forall x \in X \ [\exists y \ \Phi(x, y) \rightarrow \exists y \in \forall \lambda \ \Phi(x, y)]. \]

In addition \(\Phi^* \) has the same list of parameters as \(\Phi \) has.

The formula we have in mind is as follows:

"\(\theta \in \text{Ord} \ \& \ \lambda \in \text{Ord} \ \& \ \lambda \) is the least ordinal such that the assertion (11) holds for \(Y = \forall \lambda \), that is,
\[\forall c \in C_1 \ \forall x \in X \ [\exists y \ (c = F(x, y)) \rightarrow \exists y \in \forall \lambda (c = F(x, y))], \]
where \(C_1 \) and \(F \) are constructed from the given \(\theta \)."

This more exact form of collection serves as a key tool in the proof of uniqueness for the class of bounded sets.

8.6. Theorem [IST] (= Theorem 9). Let \(\Phi(x) \) be a st-e-formula with bounded parameters. Suppose that there is a unique \(x \) satisfying \(\Phi(x) \). Then this unique \(x \) is bounded.

Proof. One may assume that \(\Phi \) contains a single parameter \(p_0 \in P \), where \(P \) is a standard set. Thus \(x \) is the unique set satisfying \(\Phi(x, p_0) \).

We denote by \(\lambda_0 \) the least ordinal \(\lambda \) such that \(x \in \forall \lambda \). All we need to prove is that \(\lambda_0 \) is bounded, that is, \(\lambda_0 < \gamma \) for a standard ordinal \(\gamma \). We are going to use the formula \(\Phi^* \) given by 8.5. Thus \(\Phi^* \) is such that

a) \(\forall \theta \in \text{Ord} \ \exists \lambda \in \text{Ord} \ \Phi^*(\theta, X, \lambda) \). We denote by \(\lambda(\theta) \) the unique \(\lambda \) satisfying \(\Phi^*(\theta, X, \lambda) \). Then \(\lambda(\theta) \) is standard whenever \(\theta \) is standard (by transfer; \(\Phi^* \) has no parameters by the choice of \(\Phi(x, p) \));

b) if \(\theta \) is unbounded and \(\Phi^*(\theta, X, \lambda) \), then \(x \in \forall \lambda \) (for \(p_0 \in P \)).

Then \(\lambda(\theta) \geq \lambda_0 \) by the choice of \(\lambda_0 \), provided that \(\theta \) is unbounded. Hence \(\forall \theta \in \text{Ord} \ [\forall^\theta \gamma (\gamma < \theta) \rightarrow \lambda(\theta) \geq \lambda_0] \). This is equivalent to \(\forall \theta \ \exists^\theta \gamma \ [\gamma \geq \theta \text{ or } \lambda(\theta) \geq \lambda_0] \). Now we apply idealization. There is a standard finite \(\Gamma \subseteq \text{Ord} \) such that
\[\forall \theta \in \exists \gamma \subseteq \Gamma \ [\gamma \geq \theta \text{ or } \lambda(\theta) \geq \lambda_0]. \]

Finally we denote by \(\gamma_0 \) the largest ordinal in \(\Gamma \); \(\gamma_0 \) is standard by Theorem 2.1 and \(\forall \theta \ [\gamma_0 \geq \theta \text{ or } \lambda(\theta) \geq \lambda_0] \) holds. Therefore \(\lambda(\gamma_0 + 1) \geq \lambda_0 \).
However, \(\gamma_0 + 1 \) is standard, hence \(\lambda(\gamma_0 + 1) \) is standard as well. □
8.7. The undefinability of truth.

Now we turn to the proof of the corollary mentioned in 1.13. Assume the contrary, that \(\tau(x) \) is a st-e-formula such that for each internal formula \(\Phi(x_1, \ldots, x_n) \) the following is provable in IST:

\[
\forall x_1 \ldots \forall x_n \ [\Phi(x_1, \ldots, x_n) \leftrightarrow \tau((\Phi(x_1, \ldots, x_n)))].
\]

The formula \(\tau \) expresses the truth of all internal formulae. To derive a contradiction, we denote by \(T(x, y) \) the formula

\[x \text{ is the translation } \tau(\phi(v)) \text{ of some internal } \phi(v) \text{ with only } v \text{ free (parameters are allowed)} \& \tau(\tau(\phi(v))). \]

Let \(T^*(\theta, X, \lambda) \) be the formula that corresponds to \(T \) by the comments 8.5. We consider the formula \(\Phi(\theta, y) \), which says (informally) that \(y \) is not contained in \(V_\lambda \) whenever \(\lambda \) satisfies \(T^*(\theta + \omega, V_\theta + \omega, \lambda) \). (We recall that \(\omega \) is the least infinite ordinal.) Then \(\forall \theta \in \text{Ord} \exists y \Phi(\theta, y) \) is true by the choice of \(T^* \). We shall show that the formula \(\Phi \) leads to a contradiction.

To see this we fix an unbounded ordinal \(\theta \), put \(X = V_{\theta + \omega} \), and let \(\lambda \) be the unique ordinal satisfying \(T^*(\theta + \omega, V_{\theta + \omega}, \lambda) \). We define \(Y \) by \(Y = V_\lambda \). Then

\[\forall x \subseteq X \ [\exists y \ T(x, y) \rightarrow \exists y \subseteq Y \ T(x, y)]. \]

Now we take \(x = \tau(\Phi(\theta, v)) \). Clearly \(x \in X = V_{\theta + \omega} \), hence

\[\exists y \ T(x, y) \rightarrow \exists y \subseteq Y \ T(x, y). \]

Claim 1. The left-hand side is true.

Indeed, let \(y \) be such that \(\Phi(\theta, y) \) holds. Then \(\tau(\tau(\Phi(\theta, y))) \) holds as well by the choice of the formula \(\tau \). □

Claim 2. The right-hand side is false.

Indeed, let \(y \in Y \) satisfy \(T(x, y) \). Then \(\tau(\tau(\Phi(\theta, y))) \) holds by the definition of \(T \). Hence \(\Phi(\theta, y) \) is true by the choice of \(\tau \). But \(\Phi(\theta, y) \) says that \(y \not\in Y = V_\lambda \) whenever \(T^*(\theta + \omega, V_{\theta + \omega}, \lambda) \) holds. □

The contradiction we have reached completes the proof of Corollary 1.13. Note that in fact the following is proved: for each st-e-formula \(\tau(x) \) there is an internal formula \(\Phi(\theta, y) \) such that

\[\exists \theta \exists y \ [\Phi(\theta, y) \leftrightarrow \tau(\tau(\Phi(\theta, y)))] \]

is a theorem of IST. □
§9. Independence

This section contains the proof of Theorems 3, 7, 8. We shall construct a model of IST in which the hypothesis Repl_2 fails at $X = \mathbb{N}$ and at some “parameter-free” formula Φ. All other hypotheses mentioned in Theorem 3 fail as well as Repl_2 in such a model. To build up the required model we use a special ground model of ZFC and a special way of arranging its nonstandard extensions, neither of which is the same as in Nelson [28].

9.1. The ground model.

We assume (in ZFC) the existence of a cardinal θ such that V_θ is a model of ZFC. Of course, this assumption is outside ZFC. But it is taken for the sake of convenience only. One might get rid of it in the same way as in §4, that is, by considering an appropriate extension of ZFC.

Thus, let θ be an infinite cardinal satisfying the claim that V_θ is a model of ZFC. Moreover we suppose that θ is the least cardinal of such a kind.

Finally we assume that the well-known set theoretic axiom of constructibility $V = L$ holds. The essential consequence of $V = L$ here is that a certain relation $<_L$ well orders the whole universe V in such a way that the following two properties hold:

1) given a cardinal θ, $<_L$ well orders V_θ with order type θ;
2) given a cardinal θ, $<_L$ restricted to V_θ is ϵ-definable in V_θ.

We fix a “natural” enumeration $\varphi_k(v_1, \ldots, v_{m(k)})$, $k \in \mathbb{N}$, of all “parameter-free” ϵ-formulae with a clear indication of the list of its free variables. It is not hard to prove in ZFC that for each integer n there is a cardinal $\kappa < \theta$ such that V_κ is an elementary submodel of V_θ with respect to all sentences of type

$$\varphi_k(p_1, \ldots, p_{m(k)}), \ k \leq n, \ p_i \subseteq V_\kappa.$$

Let κ_n denote the least cardinal κ of such a kind. Clearly, $\kappa_n \leq \kappa_{n+1}$ for all n, $\kappa = \sup\{\kappa_n : n \in \mathbb{N}\}$ is a cardinal, and V_κ is an elementary submodel of V_θ with respect to all ϵ-formulae with parameters from V_κ, that is, V_κ is a model of ZFC. Thus in fact $\kappa = \theta$, hence $\theta = \sup_{n \in \mathbb{N}} \kappa_n$.

The set $M = V_\kappa$ will be taken as a ground model of ZFC for the construction of the IST model we need. The way of extending M is connected with the use of definable functions as elements of an ultrapower. Let us recall some notions concerning definability.

Firstly let the letter V denote the set V_θ (as well as M). We use two different marks for a single set because of the two different roles that V_θ plays in our reasoning, that is, the ground model and the “universe of definability”.

Note that $\kappa_n \in V$ for all n. Indeed it suffices to prove that $\kappa_n < \theta$. We suppose to the contrary that $\kappa_n = \theta$ for all $n \geq n_0$, $n_0 \in \mathbb{N}$. Then considering that V is a model of ZFC and taking $n = n_0 + 1$, we find a cardinal $\kappa \in V$ (hence $\kappa < \theta$) such that V_κ is an elementary submodel of V with respect to all φ_k, $k \leq n$. Hence $\kappa_n \leq \kappa < \theta$, a contradiction.
We recall that $\text{Def}(V)$ usually denotes the set of all sets $X \subseteq V$ definable in V. More exactly, $X \in \text{Def}(V)$ if and only if

$$X = \{ z \in V : \varphi^V(z) \} = \{ z \in V : \varphi(z) \text{ is true in } V \}$$

for some ϵ-formula φ with parameters from V having a single free variable z. The superscript V in φ^V means the relativization of φ to V, that is, each quantifier $\exists z$ or $\forall z$ in φ takes the form $\exists z \in V$ or $\forall z \in V$.

Lemma. The sequence $\langle \kappa_n : n \in \mathbb{N} \rangle$ does not belong to $\text{Def}(V)$.

Proof. Assume to the contrary that there is an ϵ-formula $\varphi(n, \kappa)$ (parameters from V are allowed) satisfying

$$\forall n \in \mathbb{N} \forall \kappa \in V \ [\kappa = \kappa_n \iff \varphi^V(n, \kappa)].$$

Let n be such that 1) each parameter occurring in φ is a member of \mathbb{V}_{κ_n}, and 2) \mathbb{V}_{κ_n} is an elementary submodel of V with respect to the formulae $\exists \kappa \varphi(\nu, \kappa)$ (ν free) and $\varphi(\nu, \kappa)$ (ν, κ free). Then $\exists \kappa \varphi(n, \kappa)$ holds in V (to see this take $\kappa = \kappa_n$), therefore it holds in \mathbb{V}_{κ_n} too. Hence there is $\kappa \in \mathbb{V}_{\kappa_n}$ satisfying $\varphi(n, \kappa)$ in \mathbb{V}_{κ_n} as well as in V. This is possible only in the case $\kappa = \kappa_n$.

Thus $\kappa_n \in \mathbb{V}_{\kappa_n}$, a contradiction. \square

In fact the sequence of the cardinals κ_n will serve as a basis for destroying Repl_2 in the IST model we shall construct. The main idea is to build up a nonstandard extension of M using only those functions from the index set into M that are in $\text{Def}(V)$. One may hope that the sequence $\langle \kappa_n : n \in \mathbb{N} \rangle$ will not penetrate into an extension of such a kind. On the other hand, Theorem 5 ensures that the map $n \mapsto \kappa_n$ will be definable in the extension by some (external) formula.

Now we turn to details.

9.2. Index set and the ultrafilter.

We define

$$I = \mathcal{P}^\text{fin}(M) = \{ i \subseteq M : i \text{ is finite} \}.$$

I will be the *index* set. Clearly $I \in \text{Def}(V)$. The following theorem gives the ultrafilter we need.

Theorem. There is an ultrafilter U over I possessing the following two properties:

- (A) $\{ i \in I : a \in i \} \in U$ whenever $a \in M$;
- (B) $\{ p \in M : \{ i : \langle i, p \rangle \in P \} \in U \}$ is in $\text{Def}(V)$ whenever $P \subseteq I \times M$, $P \in \text{Def}(V)$.

Proof. Firstly we let U_0 be the collection of all sets of type $\{ i \in I : a \in i \}$, where $a \in M$. It is evident that U_0 has the finite intersection property (f.i.p.), which says that the intersection of any finite subcollection of sets from U_0 is not empty.
Secondly we fix an enumeration \(\chi_k(i, \rho) \), \(k \geq 1 \), of all \(\varepsilon \)-formulae with only two free variables having no parameters. We recall that \(V \) is well-ordered by the order relation \(<_L \) so that the order type of \(V \) is \(\Theta \). Let \(p_{\alpha} (\alpha < \Theta) \) be the \(\alpha \)-th element of \(V \) with respect to \(<_L \). The sequence \(\langle p_{\alpha} : \alpha < \Theta \rangle \) belongs to \(\text{Def}(V) \) because \(<_L \) restricted to \(V \) belongs to \(\text{Def}(V) \). We define

\[A_k(\alpha) = \{ i \in I : \chi_k(i, p_{\alpha}) \text{ is true in } V \} \text{ and } C_k(\alpha) = I \setminus A_k(\alpha). \]

Claim. There is a sequence \(\langle \rho(k, \alpha) : k \geq 1 \& \alpha < \Theta \rangle \) such that

1) each \(\rho(k, \alpha) \) is either 0 or 1;
2) given \(k \geq 1 \), the subsequence \(\langle \rho(k, \alpha) : \alpha < \Theta \rangle \) is in \(\text{Def}(V) \);
3) given \(m \geq 1 \) and \(\gamma < \Theta \), the set

\[U_{m\gamma} = \{ A_k(\alpha) : k \leq m \& [k = m \rightarrow \alpha < \gamma] \& \rho(k, \alpha) = 1 \} \cup \]

\[\cup \{ C_k(\alpha) : k \leq m \& [k = m \rightarrow \alpha < \gamma] \& \rho(k, \alpha) = 0 \} \]

satisfies the f.i.p.

Proof of the claim. The key idea is that whenever \(U' \) is a f.i.p. collection and \(X \subseteq I \), at least one of the sets \(X, I \setminus X \) can be added to \(U' \) without destroying the f.i.p.; moreover one can organize the way of choosing between \(A_k(\alpha) \) and \(C_k(\alpha) \) at each state \(\langle k, \alpha \rangle \) within \(\text{Def}(V) \). The routine construction of \(\rho(k, \alpha) \) by induction on \(k \) and on \(\alpha \) when \(k \) is fixed is left to the reader. \(\Box \)

Finally we define \(U_{\infty} = \bigcup_{m \in \mathbb{N}} U_{m0} \). Then \(U_{\infty} \) has the f.i.p., hence one can enlarge \(U_{\infty} \) to an ultrafilter \(U \) over \(I \). The set \(U \) is as required. \(\Box \)

9.3. The quantifier “there exist \(U \)-many”.

One can use this logical tool to simplify considerably the technical framework of applying the properties (A) and (B) of the ultrafilter \(U \) given by the preceding theorem. We define the new quantifier \(Q = Q_U \) by

\[Qi \phi(i) \text{ if and only if } \{ i \in I : \phi(i) \text{ is true in } M \} \in U. \]

One can easily check the following properties of \(Q \) by using the properties (A) and (B) of \(U \) and the usual properties of any ultrafilter:

\((Q1) \) if \(a \in M \), then \(Qi(a \in i) \);
\((Q2) \) if \(P \subseteq I \times M, P \in \text{Def}(V) \), then \(\{ p \in M : Qi(\langle i, p \rangle \in P) \} \in \text{Def}(V) \);
\((Q3) \) if \(\forall i [\phi(i) \rightarrow \psi(i)] \), then \(Qi \phi(i) \rightarrow Qi \psi(i) \);
\((Q4) \) \(Qi \phi(i) \& Qi \psi(i) \leftrightarrow Qi[\phi(i) \& \psi(i)] \);
\((Q5) \) \(Qi \neg \phi(i) \leftrightarrow \neg Qi \phi(i) \);
\((Q6) \) \(\phi \leftrightarrow Qi \phi \) whenever \(i \) is not free in \(\phi \);
\((Q7) \) \(\forall i \phi(i) \rightarrow Qi \phi(i) \rightarrow \exists i \phi(i) \).
9.4. The extension.

Let $r \geq 1$. We define

$$I' = I \times I \times \ldots \times I \text{ (r factors I);}$$

$$M' = \{ f \in \text{Def}(V) : f \text{ is a function, } f : I' \rightarrow M \};$$

in addition we put $I^0 = \{0\}$ and $M^0 = \{(0, z) : z \in M \}$. We also define $*M = \bigcup_{r \geq 0} M^r$. If $f \in *M$, then let $r(f)$ denote the unique r satisfying $f \in M^r$.

Further, if $f \in *M$, $q \geq r = r(f)$, $i = (i_1, \ldots, i_r, \ldots, i_q) \in I^q$, then we define $f[i] = f(i_1, \ldots, i_r)$. Note that $f[1] = f(1)$ whenever $r = q$. In addition we put $f[1] = z$ for $f = (0, z) \in M^0$.

Let $f, g \in *M$ and $r = \max\{r(f), r(g)\}$. We define

$$f \equiv^* g \text{ if and only if } Q_i Q_{i-1} \ldots Q_1 \ (f[i] \equiv g[i]);$$

$$f =^* g \text{ if and only if } Q_i Q_{i-1} \ldots Q_1 \ (f[i] = g[i]);$$

of course, i denotes the sequence i_1, \ldots, i_r.

Let $*s = (0, s)$ for all $s \in M$; clearly $*s \in M^0$.

Finally we give the definition of standardness in $*M$ by:

$$*st f \text{ if and only if there is } s \in M \text{ such that } f =^* s.$$

Thus up to the $* =$ the level M^0 is just the standard part of $*M$.

The truth of all st-e-formulae in $*M$ is defined in the sense of replacing the logical symbols $=, \in, st$ by the relations $* =, *\in, *st$ respectively.

Now the last definitions. Let Φ be a formula with parameters from $*M$.

We define $r(\Phi) = \max\{r(f) : f \text{ is occurring in } \Phi\}$. If in addition $r \geq r(\Phi)$ and $i \in I'$, then let $\Phi[i]$ denote the result of replacing each f occurring in Φ by $f[i]$. Clearly $\Phi[i]$ is a formula with parameters from M.

9.5. Theorem (the Łoś theorem). Let Φ be an e-sentence with parameters from $*M$ and suppose that $r \geq r(\Phi)$. Then

$$\Phi \text{ is true in } M^* \iff Q_i \ldots Q_1 \ (\Phi[i, \ldots, i_r] \text{ is true in } M).$$

Proof. The proof goes by induction on the logical complexity of Φ. The case of elementary formulae $f = g, f \in g$ immediately follows from the definition. Now the induction step.

As usual, it suffices to consider only the steps $\neg, \&$, \exists. The first two of them do not require any discussion (apply the properties (Q4, Q5, Q6) of the quantifier Q).

The step \exists. We prove the theorem for a formula $\exists x \Phi(x)$ assuming the result holds for $\Phi(f)$ whenever $f \in *M$. Let $r = r(\Phi)$.

The direction \to. Suppose that $\exists x \Phi(x)$ holds in $*M$. Then $\Phi(f)$ holds in $*M$ for some $f \in *M$. We define p by $p = \max\{r, r(f)\}$. To convert the
following reasoning into more convenient form, let i and j denote sequences of type

\[i_1, \ldots, i_r (\in I^r) \text{ and } i_1, \ldots, i_r, \ldots, i_p (\in I^p) \]

respectively. Let \(Q_i \) and \(Q_j \) denote the sequences of quantifiers of the forms

\[Q_i \ldots Q_i_1 \text{ and } Q_i \ldots Q_i_1. \]

Then \(Q_j \Phi(f)[j] \) holds by the induction hypothesis. Note that

\[\Phi(f)[j] \rightarrow \exists x \Phi(x)[j] \]

for all j. Hence \(Q_j \exists x \Phi(x)[j] \) by (Q3). But

\[\exists x \Phi(x)[j] \]

coincides (graphically) with \(\exists x \Phi(x)[i] \) because \(r(\exists x \Phi(x)) = r \leq p \).

Hence, deleting the superfluous quantifiers by (Q6), we obtain \(Q_i \exists x \Phi(x)[i] \).

The direction \(\leftarrow \). We suppose that \(Q_i \exists x \Phi(x)[i] \) holds. The following set

\[P = \{(i, z) \in I^r \times M : \Phi((0, z))[i] \text{ is true in } M\}. \]

(Note that \((0, z) = *z \in *M \) and \(*z[i] = z \) for all \(i \).) For each \(i \in I^r \) let \(f(i) \) be the \(<_L \)-least \(z \in M \) such that \((i, z) \in P \). (If such a set \(z \) exists: otherwise define \(f(i) = 0 \).) Then \(f \in \text{Def}(V) \) by the definability of \(<_L \), hence \(f \in *M \).

Further, we note that

\[\forall i \subseteq I^r (\exists x \Phi(x)[i] \rightarrow \Phi(f)[i]), \]

therefore \(Q_i \exists x \Phi(x)[i] \rightarrow Q_i \Phi(f)[i] \). We recall that the left-hand side of the last implication has been assumed to be true. Hence the right-hand side is also true. Then \(\Phi(f) \) holds in \(*M \) by the induction hypothesis. ♦

Corollary. Let \(\varphi \) be an \(\varepsilon \)-sentence with parameters from \(M \). Suppose that \(*\varphi \)

is obtained from \(\varphi \) by replacing each \(p \in M \) by \(*p \). Then \(\varphi \) holds in \(M \) if and only if \(*\varphi \) holds in \(*M \).

Proof. Clearly \(*\varphi[1] \) coincides with \(\varphi \). ♦

9.6. Theorem. \((*M, *\varepsilon, *\varepsilon, *\text{st}) \) is a model of IST.

Proof. The preceding corollary says that transfer holds in \(*M \). Hence all the

ZFC axioms also hold in \(*M \), being true in \(M \). Standardization is ensured by

\[y \leq x \in M \rightarrow y \in M. \]

Thus all that remains to be proved is idealization.

Let \(\varphi(x, a) \) be an \(\varepsilon \)-formula with parameters from \(*M \). We take \(r = r(\varphi) \)

and prove the following:

\[\forall^{\text{stfn}} A \exists x \forall a \subseteq A \ \varphi(x, a) \rightarrow \exists x \forall^{\text{st}} a \ \varphi(x, a) \]

in \(*M \). (The implication \(\leftarrow \) does not need special consideration because it follows from standardization, see 2.8.) One may rewrite the left-hand side of \(I \)

by the Loš theorem in the form

\[\forall^{\text{fn}} A \subseteq M Q_i_r \ldots Q_i_1 \exists x \forall a \subseteq A (\varphi(x, a) | i_1, \ldots, i_r)). \]
We recall that I consists of all finite subsets of M, and thus replace the variable A by i, implying that $i \in I$. We further define $\bar{A} : I^{r+1} \to M$ by $\bar{A}(i_1, \ldots, i_r, i) = i$. Then $\bar{A} \in *M$. Now the left-hand side of I takes the form

$$\forall i \ Q_l \ldots Q_{l_1} \ (\exists x \ \forall a \subseteq \bar{A} \ \varphi(x, a))[i_1, \ldots, i_r, i].$$

Changing $\forall i$ to Q_l we obtain $\exists x \ \forall a \subseteq \bar{A} \ \varphi(x, a)$ in $*M$, again by the Łoś theorem. Hence to derive the right-hand side of I it suffices to prove that $*a \in \bar{A}$ in $*M$ for all $a \in M$. This is equivalent to

$$Q_l \ Q_l \ldots Q_{l_1} \ (a \subseteq \bar{A} [i_1, \ldots, i_r, i]),$$

by the Łoś theorem, and further to $Q_l \ Q_l \ldots Q_{l_1} \ (a \in i)$ by the definition of \bar{A}. We apply (Ql) and complete the proof. \Box

9.7. The violation of the hypotheses in $*M$.

Coming back to the definition of κ_Λ in 9.1, we see that for each integer η there is a certain ε-formula $\Phi_\eta(\kappa)$ by which κ_η has been defined, that is,

$$\forall x \ [\kappa = \kappa_\eta \leftrightarrow \Phi_\eta(\kappa)] \text{ is true in } V.$$

Let $\tau(...)$ be the truth formula of Theorem 5. We denote by $\Phi(n, \kappa)$ the formula $\tau(\Phi_\eta(\kappa)) \& st \kappa \& n \in \mathbb{N} \& st n$.

Lemma. The following case of Repl_2 fails in the model $*M$:

$$\forall^{st}n \in \mathbb{N} \exists ! \kappa \ [\Phi(n, \kappa) \iff \exists f \ \forall^{st}n \in \mathbb{N} \ \Phi(n, f(n)).$$

Proof. We verify the truth of the left-hand side in $*M$. We fix an integer n and prove $\exists ! \kappa \ [\Phi(*)n, \kappa)$ in $*M$. To obtain the existence of κ, we take $\kappa = \kappa_\eta$. Then $\Phi_\eta(\kappa)$ holds in M, hence $\Phi_\eta(\kappa)$ holds in $*M$ by transfer. Therefore $\Phi(*)n, \kappa)$ holds in $*M$ by the definition of Φ. To justify the uniqueness we suppose that $\Phi(*)n, \kappa')$ is true in $*M$. Then κ' is standard in $*M$, hence one may assume that $\kappa' = *\kappa$ for some $\kappa \in M$. Turning the preceding argument into the reverse direction, we reach $\kappa = \kappa_\eta$.

We verify the falsity of the right-hand side. Suppose on the contrary that $f \in *M$ satisfies $\forall \kappa \ [\Phi(*)n, \kappa) \iff \kappa = f(*)n)$ in $*M$ for all integers n. Let $r = r(f)$. The Łoś theorem shows that

$$\kappa = \kappa_\eta \iff Q_l \ldots Q_{l_1} \ (*\kappa = f(*)n) \ [i_1, \ldots, i_r].$$

However $f \in \text{Def}(V)$, the map $s \mapsto *s$ also belongs to $\text{Def}(V)$, and the action of Q does not lead out of $\text{Def}(V)$. Hence the map $n \mapsto \kappa_n$ is in $\text{Def}(V)$ too. This contradicts Lemma 9.1. The proof is completed. \Box

Now we are assured that Sep_3, Repl_4, Che_i, $i = 1, 2, 3, 4, 5$, Coll_1, $\text{Coll}_2(st \Phi)$ fail in the model $*M$. We prove that BRepl_4 and BChc_4 also fail.

Let H be a finite set such that $S \subseteq H$ (see 2.9). Let ν denote the number of elements of H (thus ν is a nonstandard integer), and let $K = \{1, 2, \ldots, \nu\}$.

Undecidable hypothesis in Edward Nelson's internal set theory
Finally let h be a $1-1$ map K onto H. We claim that BRep_4 is false in $*M$ for $X = Y = \mathbb{N}$ and that the formula

$$\Psi(n, k) =_{\text{def}} k \in K \& \text{st } h(k) \& \Phi(n, h(k))$$

holds (Φ is as above). In other words, the following fails in $*M$:

$$\forall^* n \in \mathbb{N} \exists k \in \mathbb{N} \Psi(n, k) \rightarrow \exists \tilde{k} \forall^* n \in \mathbb{N} [\tilde{k}(n) \in \mathbb{N} \& \Psi(n, \tilde{k}(n))]$$

Indeed we suppose that the right-hand side is true in $*M$ for some \tilde{k}. We define $f(n) = h(\tilde{k}(n))$ for all n. Then $\Phi(n, f(n))$ is true in $*M$ for all standard n—a contradiction with the lemma.

This ends the proof of Theorem 3. \square

It is evident that nonstandard parameters play an essential role in our arguments with regard to BRep_4 (hence to BChc_4). In fact I do not know whether BRep_4 and BChc_4 are false in $*M$ or in any other model of IST for a core formula without nonstandard parameters.

9.8. The complexity of violating formulae.

Now we are able to prove Theorems 7 and 8. One can easily verify that the formula Sat from §7 can be transformed to Π^2_2 form (to be more precise, Sat is equivalent in IST to some Π^2_2 formula). Hence the truth formula τ is transformable to $\exists \Pi^2_2$ form as well as to $\forall \Sigma^2_2$ form (see the definition of τ before the beginning of the proof of Lemma 7.2). Hence Φ and Ψ from 9.7 are in fact (equivalent to some) formulae of type $\exists \Pi^2_2$ as well as of type $\forall \Sigma^2_1$.

This ends the proof of part (a) of Theorem 7 and the claim of Theorem 8 which is related to BRep_4.

To prove part (b) of Theorem 7, we consider another formula:

$$\varphi(n, T) =_{\text{def}} n \in \mathbb{N} \& \text{st } n \& \text{Sat}(T) \& \exists^* \forall^* ([\Phi_n(x)] \in T)$$

of type Π^3_2. Thus we claim that the next sentence fails in $*M$:

$$\forall^* n \in \mathbb{N} \exists T \varphi(n, T) \rightarrow \exists \tilde{T} \forall^* n \in \mathbb{N} \varphi(n, \tilde{T}(n)).$$

To verify the truth of the left-hand side, we fix some n. A set $T \in *M$ such that $\varphi(*n, T)$ is true in $*M$ can be obtained by applying (in $*M$) the claim 2 from the proof of Lemma 7.2 to the formula $\Phi_n(*x_n)$.

To verify the falsity of the right-hand side, we suppose on the contrary that $\tilde{T} \in *M$ satisfies $\Phi(*n, \tilde{T}(*n))$ for all n. Then

$$x = x_n \rightarrow Qi_r \ldots Qi_1 ([\Phi_n(*x)] \in \tilde{T}(*n)) [i_1, \ldots, i_r]$$

is true in M for all n, x. Hence the map $n \mapsto x_n$ belongs to $\text{Def}(V)$. This again contradicts Lemma 9.1.

Thus the proof of Theorem 7(b) is also complete. \square

Finally, to prove Theorem 8 (BChc_4), we set $X = \mathbb{N}$, $Y = \mathcal{P}^{\text{fin}}(\mathbb{N})$ and use the following core formula:

$$\psi(n, t) =_{\text{def}} t \subseteq K \& \varphi(n, h''t).$$

(For K and h look at 9.7; $h''t = \{h(k) : k \in t\}$.) \square
§10. Final comments. Externalization as a general way to new problems

The external forms of separation, replacement, choice, and collection, and the uniqueness property, which we consider above, do not cover the list of all interesting external analogues of classical ZFC theorems. In fact there are many set-theoretic sentences of interest in the investigations related to our work. As a topic of demonstration we choose the external cardinality.

We recall that sets X, Y are equipotent (or have the same cardinality)— symbolically $X \approx Y$—if there is a 1–1 map $f : X$ onto Y. Two meanings of the notion of a map are possible:

a) as a set of ordered pairs such that ...

b) as a relation defined by some formula and such that ...

In the usual set theory ZFC they are the same, but not the same in IST because external formulae do not always define sets. One may expect unusual effects when external maps are allowed in the definition of equipotence. Indeed the sets

$$X = \{1, 2, \ldots, \eta\}, \ Y = \{1, 2, \ldots, \eta, \eta + 1\}$$

have different cardinalities η and $\eta + 1$ but they are equipotent in the external sense in the case when η is infinitely large. To see this, let us define

$$f(k) = \begin{cases} k & \text{for standard } k \leq \eta \\ k + 1 & \text{for nonstandard } k \leq \eta. \end{cases}$$

The (external) map f is 1–1 X onto Y.

Thus finite cardinals η and $\eta + 1$ are externally equipotent. The same is true for pairs n^2 and $(n + 1)^2 = n^2 + 2n + 1$ and in general for n^r and $(n + k)^r$, n infinitely large, k and r standard ($n, k, r \in \mathbb{N}$). The author tried to prove that $n \approx 2n$ externally (it should be sufficient for each pair of infinitely large integers to be externally equipotent) but did not succeed.(1)

No such “cardinality-mixing“ external constructions are known for infinite cardinals. One can make the following hypothesis:

NEC: for each pair of infinite sets X, Y if card $X \neq$ card Y (in the usual sense), then there is no external 1–1 map of X onto Y. (The correct formulation is left for the reader.)

Problem 16. Prove that NEC is consistent with IST.

The approach discussed above is directed from internal to external maps. Now let us consider another approach, that is, from outer to external sets. Let M be a model of IST. Outer with respect to M means any set and any relation in the “real world” V, not necessarily a member of M or definable in M, while external means definable inside M with a st-e-formula. Thus the

(1) This question has been solved by Henson and Ross, see B. Živaljević, J. Symbolic Logic 55 (1990), 604–614. (Added to the translation.)
outer cardinality of a set $X \in M$ is the real cardinality of the set of all M-members of X. It is known how to build up nonstandard models in which all internal infinite sets have the same outer cardinality, see Ross [33], as well as models of another kind, where (hyper)finite sets have different outer cardinalities, see Miller [26]. (Though it is not quite clear whether one may combine the constructions of Ross and Miller with Nelson’s adequate ultralimits.)

The external variant of this outer property is contained in the following hypothesis:

EC: for each pair of infinite sets X, Y there is an external 1–1 map $f : X$ onto Y.

Here the exact formulation is necessary:

$$\forall^{\text{inf}} X \forall^{\text{inf}} Y \exists p \left\{ \langle x, y \rangle : \Phi(x, y, p) \right\}$$

is a 1–1 map of X onto Y)

for some st-e-formula Φ with only x, y, p free. (Of course, the straightforward expression of type $\forall X \forall Y \exists \Phi$ is incorrect.)

Problem 17. Prove that EC is consistent with IST for some Φ.

Many similar problems, deeper and more interesting, may be obtained in the same way.

References

Translation: *Nestandartnye metody v stokhasticheskom analize i matematicheskoi fizike*, Nauka, Moscow 1990.

Undecidable hypothesis in Edward Nelson's internal set theory

Translation: Obshchaya topologiya, Nauka, Moscow 1981.

[27] V.A. Molchanov (ed.), Proc. 3rd USSR seminar on nonstandard analysis (Saratov, October 1990), Saratov 1990.
MR 34 # 5680.
[32] ———, Introduction to model theory and to the metamathematics of algebra, North-
Holland, Amsterdam 1963. MR 27 # 3533.
Translation: Vvedenie v teoriyu modelei i metamatematiku algebry, Nauka,
Moscow 1967. MR 36 # 3642.
[33] D.A. Ross, The special model axiom in nonstandard analysis, J. Symbolic Logic 55
(1990), 1233–1242. MR 91h:03091.
[34] M.A. Shubin and A.K. Zvonkin, Nonstandard analysis and singular perturbation of
MR 85j:34119.
[35] V.A. Uspenskii, Chto takoe nestandartnyi analiz? (What is nonstandard analysis?),
[36] P. Vopenka, Mathematics in the alternative set theory, Teubner Verlagsgesellschaft,
Translation: Matematika v al’ternativnoi teorii mnoghestv, Mir, Moscow 1983.
MR 84h:03126.

Translated by the author

Moscow Railroad Transportation Institute

Received by the Editors 14 May 1991