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P r e f a c e  

This paper is second in the series of three articles devoted to set theoretic 
foundations of nonstandard mathematics.  The first article [11], recently 
published in this Journal,  was devoted to bounded set theory B S T ,  a mod- 
ification of internal set theory I S T  of Nelson [18]. It was shown in [11] 
that  B S T  is a conservative extension of Z F C .  Basically B S T  is a the- 
ory which describes those sets in the universe of I S T  which are members  
of s tandard sets. 

To make the exposition in this article self-contained, we give a short 
review of B S T  including the main theorems of [11] in Section 1. 

In this article the following question is considered: how "external sets" 
like ~N = {n E N : s t n}  can be consistently accomodated in B S T .  1 
For internal theories it is a natural  idea to use st-E-definable subclasses of 
internal sets as a subst i tute  for external sets. 

A definable subclass of a set is usually a set in s tandard  set theories; 
in Z F C  this is implied by the Separation axiom. Internal  theories include 
Separation for E-formulas only, so that ,  say, ~N is not a set in B S T .  

DEFINITION. A bounded definable class is a subclass of a set. 

To develop the idea fruitfully, we have to parametrize by sets all st-E- 
definable subclasses using one fixed st-E-formula. Fortunately  B S T  pro- 
"~ides such a parametrization, 2 see Theorem 2.2. (This is unknown for 
I S T  .) 

We show in Section 2 that  every bounded definable class has in B S T  
the form gp = [Jae~ANb~B Cab, where p = ( A , B , ~ ) ,  A and B are 
internal sets while U = (Cab : a E A ~: b E B) is an internal indexed family 
of internal sets. This allows to define the enlargement E of the internal 
universe ] of B S T  by all bounded definable classes (of internal sets). 

In the rigorous sense, E is simply n equipped by certain new relations 
~=, eE, est (in particular, x ~= y says that  Cx = C u ), and an embedding 
which attaches a set ~x to any x so that  x = gex. But  it is completely 

1 We refer the reader to Diener and Stroyan [3], Henson and Keisler [4], Hurd and 
Loeb [7], Keisler, Kunen, Miller, and Leth [14], LindstrCm [15], Luxemburg [17], Stroyan 
and Bayod [20] on matters of nonstandard analysis via nonstandard structures in the 
"standard" universe of Z F C .  

2 Reeken gave in [19] a detMled outline of this approach in the case when a parametriza- 
tion is assumed to be given. 
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consistent to consider things as if E in fact enlarges the BST universe I 
so that 0 is the class of all sets which are elements of standard sets in E .  

We prove in Section 2 that E models EEST,  a theory which describes 
exactly the universe of internal sets and external sets of internal elements. 
In particular this theory includes Comprehension for all st-E-formulas and 
implies suitable forms of Saturation and Choice. 

A defect of this approach is the absence of sets of external sets. Various 
codings may be used to fix this problem. The most advanced results can be 
obtained by the cumulative coding which utilizes the idea of construction of 
sets along a well-founded tree. 

Suppose that some internal sets are placed at maximal points of a well- 
founded tree, and at every nonmaximal point we simply collect the sets 
obtained from the immediate successor points. The result appears at the 
root. 

We run this construction in E E S T  using external well-founded trees. 
This leads to a much more advanced enlargement H of the internal universe 
U (Section 3) which includes E and many other external objects. 

We finally prove in Section 4 that H models HST,  an external theory 
containing all of ZFC minus Choice, Power Set, and Regularity (but with 
Separation and Replacement for all st-E-formulas). In fact H S T  is close 
to the theory NS1 of HrbaSek [5]. 

This article ends with a brief discussion of how this idea can be used to 
develop external sets in the framework of the internal approach. 

1. A r e v i e w  of  B S T  

Bounded set theory B S T  is a theory in the st-E-language 3 which contains 
all of Z F C  (in the E-language) together with the following axioms: 

Bounded idealization BI : 

VstfinA 3 x  E X Va  E A ¢(x ,a )  ( ) 3x E xVSta ~(x,a) 

Standardization S :  V s t x 3 s t Y V S t x [ x E Y  ~ ~ x E  X & ~(x)]  

Transfer T :  3 x (I)(x) ) 3Stx ¢(x)  

Boundedness B :  V x 3"tX (x E X ) .  

3 The language containing membership E, the unary predicate of standardness st, 
and the equality ~s the atomic predicates. 
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The formula ¢ must be an E-formula in BI  and T,  and ¢ can contain 
only standard sets as parameters in T,  but • can be any st-E-formula 
in S and contain arbitrary parameters in BI  and S. The quantifiers ~st 
and M st have the obvious meaning: there exists standard, for all standard. 
VStfinA means: for all standard finite A .  X is a standard set in B I  (In 
the presence of B the set X may be any internal set in B I .  

Thus B I  is weaker than the Idealization I of internal set theory I S T  
of Nelson [18] ( I corresponds to the case of X = {all sets) in B I  ), but 
the Boundedness axiom B is added. 

The following is a brief exposition of the basic theorems of B S T ,  proved 
in Kanovei and Reeken [11], which we refer to in this article. 

The first theorem shows that  BI  could be replaced by another axiom, 
Internal saturation IS : 

ystfinA C_ A0 3 x V a e A q(x,  a) ~ ~ 3 x VSta e A0 O(x, a ) ,  

where Ao is a standard set and • an e-formula, 

THEOREM 1.1. (Lemma 3.1 in [11].) 

BI  is equivalent to IS in Z F C  plus B plus T .  

THEOREM 1.2. (Reduction to E~ t form. Theorem 1.5 in [11].) 

Let O(xl, . . . ,Xm) be an arbitrary st-E-formula. There exists an e-formula 
~p(Xl, ...,xm, a, b) such that the following is a theorem of B S T  : 

V x l . . . V X m [ O ( x l , . . . , x m )  ~ ) qStaVStb~(xl , . . . ,x ,~ ,a ,b)] .  

(E~ t denotes the class of all formulas 3StaVStb (e-formula).) Thus every 
st-E-formulais equivalent in B S T  to a ~]~t formula. 

THEOREM 1.3. 
Let ~ (x , y )  be 
X there exists 

(Collection in BST .  Theorem 1.8 in [11].) 

a st-E-formula having arbitrary sets as parameters. For any 
a standard set Y such that 

V x  e x .... 3 y  e Y ¢ ( x , y ) ] .  

THEOREM 1.4. (Extension in B S T .  Theorem 1.9 in [11].) 
Let ¢(x,  y) be a st-E-formula containing arbitrary sets as parameters. Then 
for any standard X there exists a function f defined on X such that 

e x [ 3 y ¢(x, y) f i x ) ) ] .  
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TttEOREM 1.5. (Theorem 1.10 in [11].) 

The schema of dependent choice holds in B S T .  

Kanovei [10] proved Theorem 1.3. for IST.  Theorems 1.2. and 1.4. are 
t rue in I S T  only for formulas of special type. (See Kanovei [8] on the 
mat te r  of counterexamples.) It is not yet known whether Theorem 1.5. is 
true in I S T .  

2. E l e m e n t a r y  e x t e r n a l  e n l a r g e m e n t  

This section shows how external sets can be accomodated in the internal 
theory B S T  in their most elementary f o r m -  as st-E-definable subclasses 
of internal sets. 

2 .1 .  P a r a m e t r i z a t i o n  a n d  t h e  e n l a r g e m e n t  

We begin with the definition of the parametrization 

DEFINITION 2.1. [The parametrization] 

Let p = (A,B,~),  where A and B are standard sets, y an (internal) 
function defined on A x B. We set Cp = Uae~A Abe:B ~?(a, b). If p is not 
of the form (A, B, 7]) , we set Cp = ~.  

T~IEOttEM 2.2. [Parametrization Theorem] [ B S T  ] 
Every bounded definable class C is equal to some Cp . 

PkOOF. Let C = {x e X : O(x, q0)}, where q0 and X are arbitrary 
se~s and (I) is a st-E-formula. By the Boundedness axiom, one may assume 
that  X is standard.  By the Reduction Theorem 1.2. one may Mso assume 
that  (O(x,q) is a E~ t formula 3Sta VStb ~(x,a,b,q), where ~ is an e- 
formula.. By Boundedness there exists a standard set Q containing q0- 
Collection implies the existence of a pair of standard sets A, B such that  

V x E X [ 4p(x, q) ~, ; ~Sta C A VStb E B ~(x, a, b,q)] .  

for all q E Q. We put ~(a,b)= {x C X:~(x,a,b, qo)} for a E  A, b e B,  
and p = (A,B,~). Then C = {x  C X :  ~ ( x ,  q0)} = Cp.  • 

Thus the family of all definable bounded classes is parametrized as the 
collection of all classes Cp. The principM idea is to enlarge 0, the B S T  
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universe, by adding all definable bounded classes Cv, p E n, to obtain in 
this way a wider set universe in which every definable subclass of a set is 
set itself, as it is the case in Z F C  but  not in internal theories like B S T .  

Let F denote the enlargement. 

We have indeed to clarify how E can be legitimately defined within U, 
the basic internal universe. Let e(x, p) be the st- E-formula of Definition 2.1. 
which expresses the relation x E Cp. We 

p ~ =  q C v = C q ,  i. 

p~E q C p E C q ,  i. 
3y[ 

estp be the formula st Cp, i. 

This makes it possible to define E = (B; e= 

be the formula 

be the formula 

let, further,  

e. V x [ c ( x , p ) (  ) e ( x , q ) ] ;  

e. 

vz( (x,p) , x E y ) ] ;  

e. x E y ] .  

, eE, est }, the elementary external 
enlargement of l. To see that  this is actually an enlargement,  we put  rx = 
({0}, {0}, 'qx) for every x, where ~/~ is a function defined on {(0,0}} by 
r/x(0,0) = x. Then evidently Cox = x, therefore 

x = y  ( .... ~ e x ~__ ry; x E y  ( ) ex eE ey; s tx  ( ) rstCx (*) 

for all x, y. Thus F really extends | via identification of x with Cx. 

By definition, a closed st-E-formula is true in E iff it is true (in I ) 
provided =,  E, st are interpreted as e=~ eE, est respectively. In other  
words, let eO denote the relativization of O to F : all subformulas x E y, 
x = y ,  st x in ~ are changed to x rE y, x e= y, estx respectively. We 

have by induction on the complexity of • : 

PROPOSITION 2.3.  L e t  ~b(Xl, .. . ,Xm) 
X l , . . . , X n  E g , 

[O(xl,. . . ,xn) is true in E] ( 

be a st-E-formula. Then, for all 

[ eC~(xl,...,xn) is true in ~]. 

EXAMPLE Let • be the st-E-formula x E y. Then rO is x rE y, that  is, 
CxECy .  Let x, y E n .  Then x E y  in F iff x rE y in n. 

2 .2 .  E l e m e n t a r y  e x t e r n a l  t h e o r y  

The next step is to introduce a suitable theory in the st-E-language which 
adequately describes E. First of all we introduce a formula which formally 
distinguishes internM sets in E .  Let iut x be the formula 3 s t x  (x E X ) .  
Let, for every formula O, (I }int denote the relativization of • to i n t .  
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DEFINITION 2.4. 

The Elementary external set theory E E S T  contains the axioms: 

1. VStx (int x) : all s tandard sets are internal; 

yintx V y G x (int y) : transitivity of the internal subuniverse; 

Standardization: VX 3 s t y  VStx (x G Y ( ) x G X ) .  

2. B S T  int : all axioms of B S T  relativized to the formula int ; 

3. Extensionali ty and Separation for all st-G-formulas; 

4. The Parametr iza t ion  axiom: VX 3intp ( X  -- Cp) . 

The last axiom may  be seen as a very artificial s ta tement ,  but actually 
it postulates that  all sets are bounded definable classes from the point of 
view of the internal universe, or, what is the same, that  the universe of all 
(external) sets is the external enlargement of the internal universe n in the 
sense defined above. Usually one cannot express statements of this kind 
legitimately (unless, say, objects of a higher type enter in consideration); it 
is a very special property  of the bounded set theory B S T  that  an indirect 
formulat ion (via classes Cp ) becomes available. 

THEOREM 2.5. All axioms of E E S T  are true in E . 

PROOF. It is asserted that ,  given an axiom (I) of E E S T ,  eO is a theo- 
rem of B S T .  Verification of axioms 1 and 2 in item 1 is quite elementary. 
B S T  int holds in $= because the internM subuniverse of F= is a copy of the 
B S T  universe 0 via the embedding x ,  ) ex. Standardization can be re- 
duced to the B S T  Standardization in S by Proposition 2.3. Extensionality 
holds by the definition of the basic relations %,  eE, %t. Separation in the 
form 

V X 3 Y V x [ x e Y  ~ ) x e X  & ~(x)] 
(where ~ (x)  is an arbi trary st-E-formula which may contain parameters  
from F ) is reduced to Theorem 2.2. again by Proposition 2.3. Finally Pa- 
rametr izat ion holds in F= by the construction. • 

COROLLARY 2.6. E E S T  admits an interpretation in B S T  such that the 
class of all formally internal (satisfying int x ) sets in the sense of the inter- 
pretation coincides with (more precisely: is isomorphic to) the ground B S T  
universe. 

PROOF. The C-transformation of formulas gives the interpretation.  • 
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COROLLARY 2.7. E E S T  is a conservative extension of B S T  in the fol- 
lowing sense. Let  ~ be a st-E-sentence. Then • is a theorem of B S T  
i f  and only i f  0 int is a theorem of E E S T  . 

It is a visible a d w n t a g e  of the Parametr izat ion axiom, and a very es- 
sential property  of E E S T  in general, that  one can reduce the t ru th  in the 
E E S T  universe I = to the t ruth in the internM subuniverse 8. 

PROPOSITION 2.8.  [ E E S T  ] Let ~ ( x l , . . . , x n )  be a st-E-formula. 

for  all internal Pl,...,P,~ and Xl , . . . , xn  , 

(1) O(Cm, . . . , ep ,  ) ~ . [eO(p], . . . ,pn) is true in 0]; 

(2)  O ( X l , . . . , X n )  ~ ~ [ edp (eX l , . . . , eXn )  is t rue  i n  8 1 . 

Then, 

(Quite similar to Proposition 2.3, and actually reflects the same property.)  

PROOF. Induction by the complexity of (I) using the Parametr izat ion 
axiom in the principal step for 3 .  • 

2.3. Development of E E S T  

We argue in E E S T  in this subsection. Let E denote the ground E E S T  
universe. We define 0 = {x : in tx} ,  $ = {x : s tx}  (the subuniverses of 
internM and standard sets respectively); thus 5 C I C F: and the axioms of 
B S T  hold in I .  

The following proposition gives an example of reasoning in E E S T .  

PROPOSITION 2.9. [ E E S T  ] Every set C is a subset of a standard set. 

PROOF. Let, by Parametrization,  C = Cp, where p is internal.  Then 
by definition either C = ~ or p = (A, B, r/}, where A, B, r/ are internal,  
and in the lat ter  case C C_ Y = ran~?. By B S T  int and transi t ivi ty of 
the internM subuniverse, Y is internM, therefore Y E s for a s tandard s. 
The set S = U s  is internal; indeed, S is equal to [ i s  taken in 8 by 
transit ivity of g. Hence S is s tandard by Transfer, and Y C S .  • 

COROLLARY 2.10. [ E E S T ]  For any y, i f  x E y then x is internal. 

PROOF. By Proposition 2.9, y C_ S for a s tandard set S .  • 
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We present several theorems which are useful for the development of 
nons tandard  mathemat ics  in the theory E E S T  : Collection, Extension, 
Choice, Saturation.  They reflect to some extent the familiar properties of 
external  subsets of internal  sets in nonstandard models. 

THEOREM 2.11. [Collection] [ E E S T  ] 

Let ~(x ,  y) be a st-E-formula having arbitrary sets as parameters. For any 
(not necessarily internal) set X there exists a standard set Y such that 

V x e X [ ~ i n t y O ( x , y )  ~ ~ y E Y O ( x , y ) ] .  

PROOF. First of all we get rid of the "external side" of the problem. 
Using the Parametr iza t ion axiom, one may replace every externM parameter  
tha t  occurs in ~ by some Cp; thus we can assume from the beginning that  

does not contain noninternal  parameters.  Let ~2(x,y) be the formula 
e~(%, ey). By Proposition 2.8, vintx vinty [ ¢(x,y) ~ ~ 0 i = ~ ( x , y ) ] .  

Using Proposition 2.9~ we find u s tandard set X / such that  X C_ X t, and 
then apply Theorem 1.3. (the B S T  Collection) in 0 to the formula ffl . • 

To formulate  Collection for the case when the variable y does not not 
necessarily denote an internal set, we are in need of some coding, since E 
does not contain collections of external sets. For X E E we set IX1 = {Cp : 
p E X ) .  Thus,  informally, one sees tx l  as a "set-size" collection of external 
sets. FormMly, expressions like Y E txI  are shortcuts for legitimate st-E- 
formulas, e.g. 3 p E X V y ( y E Y  ( > y E C p )  for the given example. 

THEOREM 2.12. ["External" Collection] [ E E S T ]  

Let O(x,Y)  be a st-E-formula having arbitrary sets as parameters. 
any X there exists a standard set 32 such that 

V x e X [ 3 Y ¢ ( x , Y )  , 3 Y ~ l y l ~ ( x , Y ) ] .  

For 

PROOF. Apply the previous theorem to the formula ¢(x ,Cu)  . • 

Wha t  is unders tood as Extension in the model theoretic setting of non- 
s tandard  analysis (see e. g. LindstrCm [15]), can be formulated in the frame- 
work of the axiomatic approach as follows: if g is an external  function 
defined on ~X = {x E X : s tx}  (a legitimate set in E E S T  by Separa- 
tion), where X is s tandard,  and taking internal values (this is automatic  in 
E E S T  since all elements of sets are internal), then there exists an internM 
function f defined on X so that  g(x) = f ( x )  for all s tandard x C X .  
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But sometimes f itself is obtained in the model theoretic setting by the 
axiom of Choice in the ambient Z F C  universe. Since one has no direct 
analogy of this in the E E S T  setting, we formulate Extension so that  it 
includes Choice together with the internality of the resulting function. 

TrlEOR~.M 2.13. [Extension] [ E E S T  ] 

Let @(x, y) be a st-E-formula having arbitrary sets as parameters. For any 
X there exists an internal function f such that X C_ d o m f  and 

Wtx E X [qinty 0 (x ,y )  ~ (I i(x,f(x))] .  

PROOF. First of all, by Collection, there exists a standard set Y such 
that  

V S t x e X [ 3 i n t y ¢ ( x , y )  , 3 y e Y ¢ ( x , y ) ] .  

Then P = {(x ,y)  E X × Y  : ~ ( x , y ) }  is a s e t  by Separation. Let P = 
Cp, p E ], by the Parametrization axiom. It remains to apply Theorem 1.4. 
(the B S T  Extension) to (x,y) E Cp as the formula 0 ( x , y ) .  • 

The last theorem is Choice. To formulate this properly, we put  F(x)  = 
gF(x), whenever F is a function and x E d o m F .  To prove the result, 
simply apply Extension to the formula @(x,Cy). 

THEOREM 2.14. [Choice] [ EEST ] 
Let O(x,Y) be a st-E-formula with arbitrary sets as parameters. For any 
X there exists an internal function F such that X C d o m F  and 

VStx e X [ 3 Y O(X, Y) > (I)(x, J~(X)) ]. 

The theory E E S T  is strong enough also to prove Dependent Choice 
and standard size Saturation. It is more suitable, indeed, to delay t h e s e  
theorems to Section 4 where they will be considered in a wider framework. 

2.4.  D i s c u s s i o n  

In this subsection we shortly discuss how a mathematician willing to ac- 
cept B S T  as his basic axiomatic theory (related to Z F C  by the model 
enlargement and the reduction property as explained in part  one [11]) may 
smoothly incorporate external sets into his argumentation without illegiti- 
mately transcending the limits of the internal theory. 

Thes i s .  One can legitimately enlarge ! by bounded definable classes. 
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First of all we want to understand the meaning of the thesis. It is convenient 
to develop this idea in parallel to the case of the enlargement of the real line 
R to the field of complex numbers. There are five principal points: 

1. Every element of the enlargement has a label which identifies it with 
objects in the ground universe; thus a complex number a+bi is labeled 
by the pair (a, b) of real numbers. 

2. Every element of the ground universe has a label which determines it 
as an element of the enlarged universe. In particular, the pair (a t 0) 
corresponds in this sense to a real number a .  

3. The basic relations between objects in the enlarged universe are re- 
flected as relations between labels in the ground universe. Thus the 
laws of addition, multiplication etc. in the complex field can be pre- 
sented as certain operations over pairs of reals. 

4. On the other hand, the basic relations in the ground universe retain its 
meaning in the enlarged universe; thus the addition etc. in R remain 
addition etc. in the field of complex numbers. 

5. The enlargement satisfies certain principles or conditions which reflect, 
to some extent,  the idea of what the enlargement should be. Say the 
field of compex numbers is algebraically closed. 

R is thus enlarged to the complex field, but everything which happens in 
the enlargement can be completely traced back to R .  

It will not take a lot of efforts to see that  the enlargement F of i, the 
universe of B S T ,  by bounded definable classes is of the same type, with 
the minor detail that  in this case an element of the enlargement has many 
labels in the ground universe. 

First, every element of F= is gp for some (not unique) p C 0; theo- 
rem 2.2. tells that  we do not miss any of the definable subclasses of sets. 
Second, every x has a certain label, ex, which presents x as a member 
of E. Third, the principal relations 4, =, st between classes gp in F 
are expressed in 0 as relations between labels p, that  is, relations eE, ~- 
%t defined above. Fourth, as it is shown by ( , )  in Subsection 2.1., the 
basic relations in | keep their meaning in F. FinMly, F satisfies Separa- 
tion (among the other axioms of E E S T  ), which is one of the most desired 
properties of a nonstandard set universe of "external" type. 

The t rea tment  of the external enlargement E in ~, the internal universe 
of B S T ,  is thereforei in principle, analogous to the t reatment  of complex 
numbers as pairs of real numbers. In other words, assuming that  0 is 
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enlarged to F, the "universe" of all bounded definable classes, the B S T  
mathematician does not face a problem with uncertainty or even illegality. 
As with complex numbers there is no need to translate everything back into 
the ground universe all the time. This is what we had in mind from the 
beginning. 

It is not clear how this approach may be realized in IST  instead of 
BST.  So far we can neither prove a comparable parametrization theorem 
in IST nor demonstrate that IST does not admit a parametrization in 
general. 

3. C u m u l a t i v e  e x t e r n a l  e n l a r g e m e n t s  

The aim of this section is to extend the method of Section 2 to sets of external 
sets and more complicated objects of this type. One can use various codings, 
like IXI or F in Section 2, to code special types of external objects, more 
complicated than external sets of internal elements. The most powerful of 
the coding systems is based on the procedure of construction of sets along a 
well-founded tree. 

DEFINITION 3.1. [Informal] Let T be a well-founded tree and F be a 
function defined on MaxT, the collection of maximal points of T. The 
family of sets FT(t), t C T, is defined by 

1) if t e MaxT then FT(t) = F( t ) ;  

2) if t e T \  MaxT  then FT(t) = {FT(t^a) : t ^ a  e T}  . 

We define finally F[T] = FT(A). 

Let, for example, T = {A} and F(A) = x. Then F[T] = FT(A) = x .  

Of course, if we run this in BST then nothing except the already exist- 
ing (internal) sets can be obtained since BST includes ZFC.  The picture 
changes in E E S T  : collections of externM sets are not formally admitted, 
so we are creating new objects in this way. 

It is the Mm of this and the next section to demonstrate the possibilities 
of this method. Starting from a E E S T  universe, we obtain a standard size 
saturated external enlargement in which all of ZFC minus Choice, Power 
Set, and Regularity (but with Separation and Replacement for all st-C- 
formulas) is satisfied - -  this is essentially the theory NS1 of Hrba4ek [5]. 4 

4 This  way of introduct ion of external  sets into an internal  universe is an essential  
simplification of a sophisticated construction of [5] based on the infinitary language Loooo. 
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We shall argue in E E S T  and use the E E S T  universe E as the basic 
universe. Elements of E will be called external sets or simply sets. 

5 = { x E E : s t x }  and l = { x E E : i n t x } = { x E F : 3 s t X ( x E X ) }  

denote the subuniverses of resp. s tandard and internal sets in E. Actually 
we could begin from the B S T  universe i, but then we would have to 
proceed with trees which are definable classes, which would be inconvenient 
(al though possible technically). 

3 .1 .  W e l l f o u n d e d  t r e e s  

Let Seq denote the class of all internal sequences of a s tandard finite length. 
For t E Seq and every set a, t^a  denotes the sequence in Seq obtained 
by adjoining a as the rightmost additional term to t. The notat ion a^t  is 
to be unders tood correspondingly. A is the empty sequence. The formula 
t' C__ t means that  the sequence t ¢ Seq extends t' ¢ Seq (perhaps t I = t ). 

A tree is a nonempty  set T C Seq such that ,  for any pair of sequences 
t', t E Seq satisfying t I C t, t E T implies t' E T. Thus every tree contains 
h .  M a x T  denotes the set of all C-maximal r E T .  

A tree T is well-founded (wf tree, in brief) if and only if every nonempty  
external  T '  _C T contains a C-maximal element. 

LEMMA 3.2. [wf Induction] 

Let T be a wf tree and X C_ T be an external set satisfying M a x T C _ X  
and having the property that t E X whenever t E T is such that every 
t ^a  E T belongs to X.  Then X = T . 

PROOF. Consider an C-maximal element t E T \ X .  []  

Since the external  E E S T  universe E is not, generally speaking, closed 
under  the usual pairing, we define an artificial ordered pair by 

[XY] = ({0} × X)  U ({1)  × Y ) ,  for aH sets X, r .  

DEFINITION 3.3. 7-/ is the collection of all pairs [TF] such that  T is an 
(in general, external) wf tree and F is an (in general, external) function 5 
defined on MaxT.  Elements of 7/ are called wfpairs. 

Notice, however, that the problem we face here is much easier than the one in [5]. Indeed 
we already have the internal and elementary external universes while ttrbaeek had to define 
simultaneously both internal and external universes from a Z F C  universe. Actually most 
of the problems in our setting are solved by the Parametriz~tion theorem. 

Notice that in E E S T  external functions take only internal values. 
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Let [TF] E ~ .  One cannot expect, of course, that F:c(t) is well defined 
in E, the E E S T  universe, for all t E T by Definition 3.1. However, one 
can determine the domain of direct definability of FT. 

LEMMA 3.4. Let [TF 1 E ~l. There exists a (unique) set I = I (T ,F)  C__ T 
on which FT is defined in accordance to Definition 3.1, but cannot be defined 
anywhere in T \ I .  

PROOF. Let a good function be any external function f such that 

1) the domain D = d o m f  satisfies MaxT C D C_ T and is closed 
upwards in T, that is, if t E D  and t n a E T  then t ^ a E D ;  

2) f coincides with F on M a x T ;  and 

3) f ( t ) = { f ( t ^ a ) : t ^ a E T }  forall  t E D .  

Any two good functions f and g coincide on the common domain by 
Lemma 3.2. It follows from the E E S T  Comprehension and Theorem 2.11. 
(Collection) that the union ~ of all good functions is a set, therefore a good 
function. We put I = I ( T , F ) = d o m ~  and FT( t )=~( t )  for t E I .  • 

The set I = I (T ,F)  includes MaxT and is closed upwards in T. 
Furthermore if t E T satisfies t^a E I whenever t^a E T then the 
necessary and sufficient condition for t E I is the internality of the set 
X = {FT(t^a) : t^a E T}; if this holds, one can define FT(t) = X,  thus 
expanding FT on t .  Take notice that FIT] = FT(A), therefore F[T l is 
well defined iff A E I(T, F) (which is equivalent to T = I(T, F) ). 

We can expand FT e v e n a b i t  more. Let indeed t E T \ I ( T , F )  be 
such that all tAa E T belong to I(T, F). We put in this case eFT(t) = 
{FT(t^a): t^a E T},  so that eFT(t) is an external (not internal) set. 

EXAMPLE 3 . 5 .  Let  x be internal. Let T = { A }  and CX(A)= x .  Then 
[TCxl E TI, A E I(T,C~), and CZ[T] = CXT(h)= x . 

To conclude, an occurrence of FT(t) in a formula, say, FT(t) = x makes 
sense only in the case when t E I(T, F) - -  then FT(t) denotes the internal 
set "computed" via Definition 3.1. In particular, the equality FIT] = x 
preassumes that A E I(T, F) and is a shortcut for FT(A) = x. But if 
t ¢ I(T, F) then FT(t) is only a symbol for what it should be provided a~ 
the operations intended by Definition 3.1. could have been performed. 
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3°2. Bas i c  re lat ions  

However, one can figure out, using only the tools available in E, whether  it 
is implied by Definition 3.1. that ,  say, FT(t) should belong, or be equal, to 
GR(r) even in the case when the objects themselves are not well defined. 
This is realized by the binary relations ~ and hE and the unary  relation 
hst on ~ which denote the equality, membership and standardness as 
implied, first, by the relations in |, and second, by Definition 3.1. 

DEFINITION 3.6. Let [TF] and [RG] belong to ~ .  An (external, in 
general) set $ C_ T x R is a correspondence set (e-set in brief) for these wf 
pairs, if the following conditions are satisfied: 

1. Assume that  ( t , r )  E $ and either t E I ( T , F )  or r E I ( R , G ) .  Then 
both  t E I(T,F) and r E I(R,G), and FT(t) = GR(r). 

2. Let t ( I ( T , F ) ,  r ¢I(R,G),  and ( t , r )  E g. Then lst ,  for every 
r^b E R there exists t^a E T such that  (t^a, rAb) E g, and 2nd, 
for every tAa E T there exists r^b E R such that  (tAa, r^b) E g . 

We write [TF](t) t½ [RG](r) if there exists a c-set [ for FTF] and 
[RG] such that  ( t , r )  E g. If one or both of r , t  is equal to A, it may  be 
omitted: say [TF] h= [RG] means [TF](A)h.=_ [RG](A) .  

Take notice that  it is not assumed that  a c-set is something like a maximal 
c-set (al though the la t ter  actually exists); it is not excluded that  t E I(T, F) ,  
rEI(R ,G) ,  GR(r)=ET(t), but ( r , t ) ¢ g ,  where g i s a c - s e t .  

LEMMA 3.7. h= is an equivalence relation. 

PI~OOF. Let [RG](r)h= [TF] ( t )  and [TF](t)h=_ [UH](u); we 
prove tha t  [ R C l ( r ) a  FuHl(u) Let `4 and 13 be c-sets for [RGI, rTPl 
and [TF], [UH] respectively such that  {r,t} E A and (t,u} E 13. Thus 
we have to verify that  g = {(r',u'): 3t' ({r',t'} E A & {t',u'} E 13)} is a 
c-set for [RG], [UH]. (Obviously {r,u} E g .) 

To check condition 1 of Definition 3.6, we assume that  r '  E I(R, G) 
and ( r ' , u  1} E g, so that  (r t,t'} E A and (t',u'} E 13 for some t 1. Then 
t' E I(T,F) and CR(r') = rT(t') since A is a t - se t .  Further,  u' E I(U,H) 
and FT(t')= Hy(u') since B is a c-set. Thus Gn(r')= Hv(u'). 

Condition 2. Assume that  r' ~ I(I~,G) and u' ¢ I(U,H) but (r',u'} E 
g so that  (r ' , t '} E v4 and {t',u') E B  for some t 'ET.  Then t ' ¢ I (T ,F) .  
Assume that  rl^a E R. Then, since v4 is a c-set, there exists b such that  
t~^b E T and (rt^a, tl^b} E v4. Similarly, there exists c such that  we have 
(t'^b,u'^c} E 13. Then (r'^a, ul^c} E g, as required. • 
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LEMMA 3.8. Let rTF1 and rRal belong to It,  t ¢ T, r E R. 

1. [ T F I ( t  ) k=_ [RG](r) ~ > r e I (R ,G)  & F(t) = Gn( r ) ,  
whenever t E Max T .  

2. If  t ~ MaxT  and r q~ MaxR then 
[TF] ( t )  ~-  r R a l ( r )  .. ~- (a) & (b), where 

V t ^ a  E T 3rnb E R [ rTF](tna) h= rRG](r^b) ], 

Vr^b  E R 3tna E T [ [Tg](t^a) [RG](r^b)]. 

Then 

(a) 

(b) 

PROOF. Assertion 1 and the direction ..... ~ in 2 are easy. We prove the 
opposite direction in 2. Let A = { a : t ^ a E T } ,  B = { b : r ^ b E R } ,  

E =  {(a,b) E A x B :  rTrl(t^a) rRat(r^b)}. 

Then d o m e  = A and ran E = B by the assumption of (a) &: (b). In 
other words for any pair (a,b} E E there exists a c-set g '  containing 
( t^a,r^b) .  One may assume in this case that  8'  satisfies the condition 
(t',r'} E 8' ~ tna C_ t' & r^b C r' (otherwise 8'  can be properly 
restricted). Then the union gab of all of such c-sets g '  is a c-set as well. 
Finally g = {(t ,r}} U U(a,b)eE g~b is a c-set containing ( t ,r} .  [] 

3.3.  T h e  c u m u l a t i v e  e n l a r g e m e n t  

From now on, elements of I t  (wf pairs), when not presented as pairs, will 
be denoted sometimes by boldface letters: a~ A,  .... The next definition 
introduces the basic relations which transform t t  to an external  universe. 

DEFINITION 3.9. The relation rT4 k__ [RG] has been defined (Defini- 
tion 3.6). We write [RG] hE FTF] in either of the two cases: 

1. T ~ {A} and there exists a t - term sequence (a} E T such tha t  

[Rcq G rTrl((~}). 
2. T = {A}, A E  I (R ,G)  - - t h e ^ b o t h  x = F[T] = FT(A) and y = 

G[R] = GR(A) are internal sets, - -  and y E x .  

We finally write hst [TF]  iff A E I(T, F) and F[T] is s tandard.  

COROLLARY 3.10. k=__ is an equivalence on ~l. The relations hE and 
hst are k=---invariant. 
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PROOF. Apply Lemma 3.7. • 

DEFINITION 3.11. We put H = (7-/; h=__, hE, h s t ) .  

Let • be a st-•-formula,  ho denotes the st-E-formula obtained the fol- 
lowing way: 1) all quantifiers are relativized to 7-/ , and 

2) the relations =, • ,  st are changed to h=, hE, hst . 

Thus, for all x, y ,  ... • ~ ,  the formula O(x ,y , . . . )  is true in H if and 
only if h~I,(x, y ,  ...) is true in E . 

To conclude, we have defined in E E S T  the structure H based on the 
class 7-/ _ F and equipped with relations h=_ hE, hst ' the first of which 
satisfies the logical properties of equality. The next proposition shows that  
the relations satisfy the requirements naturally implied by Definition 3.1. 

DEFINITION 3.12. Assumetha t  [TF] • 7-l. Weset  M i n T =  { a :  { a ) •  T}. 
For any a E MinT,  we put T ~ = { t : a ^ t  E T } .  For all a •  M i n t  and 
t • T  ~, we set r a ( t ) = r ( a A t ) .  

Obviously [TaF ~] 
{(t ,a^t)  : t • T ~} 
pairs [T~F~I,  a • 

LEMMA 3. t3 .  Let 

rRGq 
If  T =  {A} then 
r ( A ) .  

LEMMA 3.14. Let 

• 7-/. Notice that  [T~F~ 1 It=_ [TFl((a>) (via the c-set 
), therefore [TaFa 1 hE [TF  l .  It is important  that  wf 
Min T, actually exhaust all the hE-members of [TF] . 

[TF] and [RG] belong to ~ .  If T # {A} then 

[TF] < , 3aE  MinT(rRG] k=_ [TaF ~]). 

FRO1 ~ FTFt < , 3 y  • x (G[R]  = y) ,  ~ ~ h e r e  x = 

[TF] and rRG] belong to ~ .  If neither T 
is equal to {A} then [TF] it=_ [RG] ~ ~ (a) ~: (b), where 

Va E M i n T 3 b e M i n R ( [ T a F  a] t~ [RbGb]), (a) 

Vb e M i n R  3 a  e M i n t  ([T~F a] h=_ [RbGb]). (b) 

I f  T = R = {A} then [Tr] ~- IRa] ~ ~ FT(A) = GR(A) .  

I f  T = { A } ,  8o that x = Fr(A) C ~ i8 defned, but R # { A } ,  

have [Tr l  ~-  [RG] ~ ; (e) ~ (d), where 

Vy e x 3b • M i n R  (Gb[R b] = y) ,  7 (c) 

V b • Min R 3 y • x (Gb[R b] = y) .  (d) 

6 We recall that G[R]=y means that A C I ( R , G )  and G R ( A ) - - y .  
7 The preceding footnote explains the meaning of Gb[R b] = y as well. 

nor R 

then we 
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PP~oor. Apply Lemma 3.8. and Definition 3.9. []  

Now the interrelations between H and the subuniverses R (internal 
sets), $ (s tandard sets) of the basic E E S T  universe F will be considered. 
If x = [TF 1 E 7-/ and t E T then we use x(t)  =~ x and x ~ x as 

shorthand for F T ( t ) =  x and F[T] = x respectively (this presupposes 
t E I ( T , F )  and A E I ( T , F )  respectively, and x E 0, see above). 

To see that  H is in fact an enlargement of !, the copies of the universes 
0 and $ in H are introduced: 

hB = {X E ~ : 3intx (X ~ X)} and h$ __ {x E ~ :3Stx (x ::~ x)}.  

Fortunately every x E 0 has a distinguished copy in h0 : hx = [ {A}Cx l ,  
where CX(A) = x (see Example 3.5). Obviously hx E 7t and hx ~ x .  

LEMMA 3.15. Let x,  y E ~ ,  x ~ x, y ~ y. Then 

x = y  ~ ~ xk=---y, x E y  ~ ~ x h E y ,  and s tx  ( ) h s t x .  

I f  in addition w E  T/, w hE x, then there is w E x such that w =~ w. 

PROOF. Routine verification, based on lemmas 3.13. and 3.14. • 

Thus actually H is an enlargement of 0 : h0 can be made isomorphic 

to 0 by factorization via h = .  

PROPOSITION 3.16. [E×tensionality] 

Let x = [TF] and y = [RG 1 belong to Tl, and -~ [ T F  1 h= 
There exists w =  [U H] E T-t such that -l [w hE x ( ) w h E y ] .  

[RG1. 

P R o o f .  Assume that  T = R = {A}. Then x = FT(A) and y = 
GR(A) are internal sets and x ~ y. By definition there exists w E ! such 
tha t  - ~ [ w E x  < > w E y ] .  Then w = h w  is as required by Lemma 3.15. 

Assume that  neither T nor R are equal to {A}. Then, by Lemma 3.14, 

there exists a E M i n T  such that  for all b E M i n R  [TUFa 1 h=_ [RbG b] 
does not hold. Then w =  [TaF ~1 is as required: w hE x but -TwhE y 

by Lemma 3.13. 

In the mixed case, say when T = {A}, so that  x = FT(A) E n is 
defined, but R ~ {A}, at least one of conditions (c), (d) of Lemma 3.14. 
fails. If (d) fails via some b E Min R then w = [RbGb 1 is as required by 
Lemma 3.13. If (c) fails via some y E x then w = hy is as required. • 
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4. H r b a 6 e k  s e t  t h e o r y  

This section is the continuation of the previous one. We prove that  the 
universe H models Hrba~ek's s tandard size saturated external theory (Re- 
placement,  but  not Power Set) plus some rather  useful additionM postulates. 

4 .1 .  T h e  t h e o r y  

DEFINITION 4.1. A set X is a set of standard size if there exists a s tandard  
set S and a (generally, external) function f : ~S onto X. 

DEFINITION 4.2. H S T  is the theory in the st-E-language containing: 

1. The same as I tem 1 in E E S T  (see Definition 2.4), that  is: 

VStx (int x) : all s tandard sets are internal; 

(We recall that  int x is the st-E-formula 3Sty (x E y) .) 

vintx Y y E x (int y) : transitivity of the internal subuniverse; 

Generalized Standardization: VX 3sty  VStx (x E Y ( ) x C X)  . 

2. B S T  int : all axioms of B S T  relativized to the formula int . 

3. The Z F C  Pair, Union, Extensionality, Infinity axioms, together with 
Separation, Collection, Replacement for all st-E-formulas. 

4. Extension: assume that  S is a s tandard set and F a function defined 
on the set ~S = {x E S : st x}, and F(x) contains internal elements 
for all x E ~S, then there exists an interr, al function f defined on S 
and satisfying Vx E ~S [f(x)  E F ( x ) ] .  

.5. Saturation: if X is a set of s tandard size such that  every x E X is in- 
ternal  and the intersection N Xt  is nonempty for any finite nonempty 
X I C X ,  then N X  i snonempty .  

6. Choice in the case when the domain X of the choice function is a set 
of  s tandard  size, and Dependent  Choice. 

7. Weak regularity: if a nonempty set X contains only noninternal ele- 
ments  then there exists x E X such that  x (1 X = 0 • 

Thus H S T  is a theory ra ther  similar to the theory NS1 ( Z F C )  of Hrba5ek 
[5] and, to some extent ,  to external theories of Kawai" [12]. To be precise, 
H S T  includes N S I ( Z F C ) ,  but it can be verified that  the extra  tools of 
H S T  (Weak regularity, s tandard size Choice and Dependent Choice) hold 
in HrbaSek's model  for NS1 in [5]. 
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We prove in this section that  H models H S T .  Before the proof begins, 
let us take some space to present some theorems of H S T ,  in particular,  
related to the notions of finite set and cardinal. 

4.2.  N a t u r a l  n u m b e r s  a n d  c a r d i n a l s  in  e x t e r n a l  u n i v e r s e  

Let H S T -  be the theory containing the axioms of items 1 through 3 of 
Definition 4.2. Let H, I, S denote the universe of all sets in H S T -  and 
its subuniverses of internal (satisfying the formula int in H ) and s tandard 
sets. The reasoning is mostly based on ideas of Hrba~ek [5], [6] and Kawai" 
[12]. 

LEMMA 4.3. [ H S T -  ] I f  X C U then there exists standard S such that 
X C S .  

PROOF. Indeed, by definition of an internal set, V x E X 3Sty (x E y). 
Therefore by Collection and Standardization there exists s tandard  Y such 
that  X C_ S = U Y. However S coincides with O Y in the sense of n 
because 0 is transitive. Therefore S is s tandard by Transfer. • 

LEMMA 4.4. [ H S T -  ] Every set X C S is a set of standard size. 

P R o o f .  By Lemma 4.3, X C_ S for some s tandard S. Then X C_ ~S. 

It is a fact in external theories that  some basic set theoretic notions 
defined in the external universe coincide with their s tandard ra ther  than 
internal counterparts.  This is true, in particular, with respect to finite sets 
and wellorderable cardinals. 

Let nat  x be the E-formula of being a natural  number ,  which says that  
x is an element of the least set containing 0 = ~ and closed with respect 
to the operation x ~ ~ x + = x  U {x}. We put 

{n E ! : n a t n  is true in the universe 0 of all internal sets}, 

{ n E H  : n a t n  is true in the universe H of all sets}. 

the collections of all internal and external natural  numbers.  As usual a set X 
is finite iffit  can be put  in a 1-1 correspondence with a set N~ = {1, 2, ..., n}, 
where n E w • 
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PROPOSITION 4.5. [ H S T -  ] (Hrba4ek [5], [6]) 
= a N = { n E N : s t n } .  A set X C ! is finite in H i f  and only i f  X E ! 

and X contains a standard finite number of  elements in U . 

This explains the notion of finite set in the formulation of the Saturat ion 
axiom of H S T .  It is worth to notice that  a N  n -= N n for n E w; hence 
finite sets are sets of s tandard size, but  not vice versa. 

LEMMA 4.6. [ H S T -  ] A set is wellorderable iff  it has standard size. 

PROOF. We prove that  if S is s tandard then °S is wellorderable. Let 
< be a s tandard relation which wellorders S in S. Then < may  not 
wellorder S in H but  < wellorders aS. Indeed consider a nonempty  set 
W C ~S. By Standardization,  there exists a s tandard set S t C_ S such that  
W = ~S t. Then, in $, S t contains the <-least element s. Then s is 
s tandard  by Transfer, therefore s E W, and s is the <-least element in 
W .  

For the converse let X be wellordered by < . Let I 0 r d  and SOrd 
denote the classes of all internal and s tandard ordinals respectively. That  
is, say, 7 E IOrd iff 7 is an internal set satisfying the property of being 
an ordinal s in n. By Standardization, for every W C SOrd there exists 
a s tandard  set S C IOrd such that W = ~S = S M SOrd. The least 
internal ordinal greater than all ordinals in S is s tandard by Transfer. This 
ordinal, denoted by  Ssup W, is equal to the least s tandard ordinal greater  
than all ordinals in W. Note that  the axioms of H S T -  are strong enough 

to carry out  definitions by transfinite recursion, in particular there exists a 
1-1 function f : X  ~ SOrd such that  f ( x )  = S s u p { f ( y )  : y < x} for 
all x E X .  Then W = { f ( x ) : x E X }  is a subset of SOrd, hence a set of 
s tandard  size by  Lemma 4.4. But  X is the image of W via f - 1  . m 

Thus the Saturat ion axiom of H S T  implies that  l, the universe of all 
internM sets, is sa tura ted  with respect to all wellorderable cardinals. The 
next lemma shows that  Saturat ion can be eliminated from the list of H S T  
axioms; actually we have put  it into the list for the sake of convenience only. 

LEMMA 4.7. Extension implies Saturation in H S T -  . 

PROOF. Let X be a set of s tandard size such that  every x E X is 
internal and the intersection ['1Xt is nonempty for every finite nonempty  

s W e  l e t  ordinal m e a n  a transitive set wellordered by the membership relation. 
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subset X'C_ X.  Prove that  N X is nonempty. Let S be a s tandard  set 
and F : ~S onto X. By Extension, there exists an internal function f 
such that  f ( x )  = F(x) for all s tandard x e S. Thus Saturat ion takes the 
form: 

' c v x e s '  (y e f (x ) )  ....... e s (y e f ( x ) ) .  (H) 

Both the lef t -hand and the r ight-hand sides of the implication say something 
about  internal and s tandard sets. Let us consider the auxiliary implication 

V'tfms ' C_ S 3 y V x E S' (y E f (x ) )  , 3 y VStx E S (y e f ( x ) ) .  (I) 

The lat ter  is t rue in I by Theorem 1.1. On the other hand,  by what  is said 
above, the lef t -hand side of (g )  in H is equivalent to the le f t -hand  side of 
(I) in !, and the same for the r ight -hand sides. I 

It is not true that  ordinals and cardinals in S are the same as in H, 
but  we shall see that  they coincide, to some extent,  with wellorderable coun- 
terparts  in H. Let HOrd denote the class of all ordinMs in H. 

We define the collapse function 4 : SOrd ~ H by 

¢(~) = {¢(/~) :/3 e SOrd & Z < a}  

for all a E SOrd. Since SOrd is wellordered in H by the membership (see 
the first part  of the proof of Lemma 4.6), this is wel] defined in H S T -  . 

PROPOSITION 4.8. [ H S T - ]  ~ maps SOrd onto HOrd in a I-1 order 
preserving way. 

PROOF. The nontrivial point is to prove that  ( cannot map SOrd on 
a proper initial part  ~/ of HOrd. Let, on the contrary, this be the case. 
Taking an arbitrary 7 E HOrd \ Ft and using Separation and Replacement,  
we see tha t  Ft is a set and ~-1 maps ~ onto SOrd, which immediately 
leads to contradiction with Standardization. [] 

Let SCard denote the class of all n E SOrd which are cardinals (initial 
ordinals) in S. HCard is defined the same way, but  in the sense of H .  

PROPOSITION 4.9. [ H S T - ]  ~ maps SCard onto HCard in a 1-1 order 
preserving way. 

PROOF. The principal point is to prove that  if A < ~ are cardinals in 
SCard then in H there does not exist a function which maps ~(A) onto 
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( (n) .  Let, on the contrary, f be such a function. Using C, we obtain a 
map f~ : ~)~ onto °n. By Standardization, fr  may be assumed standard.  
By Transfer, fr  maps A onto n, which leads to contradiction. [] 

PROPOSITION 4.10.  [ H S T -  ] Let X be a set of standard size (or, which 
is the same by Lemma 4.6, a wellorderable set). Then c a r d X  E H C a r d .  

P R o o f .  By definition, we obtain a 1-1 map X onto a set ~S, where 
S is a s tandard  set, then onto °n, where n E SCard is the cardinality of 
S in 5, finally onto ~(~) E H C a r d .  [] 

Thus  we have got a complete description of wellorderable cardinalities 
in H S T - ;  all of them are members  of HCard and nothing more. One 
more conclusion is that  only relatively small sets (those of s tandard size) 
have wellorderable cardinalities in H S T - .  We can easily prove that  a set 
x E D not  of a s tandard finite number of elements (e. g. a nonstandard 
na tura l  number)  is not a set of s tandard size in H; the (non-wellorderable) 
cardinality of such a set in H is greater than any n E H C a r d .  

4 .3 .  T h e  m a i n  t h e o r e m  

THEOREM 4.11. [ E E S T ]  H models H S T :  i f  @ is an H S T  axiom 
then h¢b is a theorem of E E S T .  In addition, the class of all H-internal 
elements of H is isomorphic to B, the internal subuniverse. 

PROOF. The proof  of the theorem consists of two parts; in part  1 we 
check some of the axioms in H directly and prove two important  lemmas, 
in par t  2 we obtain the rest of the axioms as formal consequences. 

Part  1 

We argue in E E S T ;  thus let E, n, 5 denote resp. the universe of all sets 
in E E S T  and its subuniverses of internM (satisfying the formula int in 
H ) and s tandard  sets. We first consider the requirements related to internal 
sets. The next temma is an easy consequence of Lemma 3.15. 

LEMMA 4.12. 1. Let x E TI. Then i n t x  is true in H iff x E hE • 

2. hE is hE-transitive in H .  

The required isomorphism between elements of 7-/ internal in the sense of 
H is defined by the correspondence x ~ x (for all x E hu ). The fact that  
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this is actually an isomorphism (that  is, it preserves equality, membership,  
and standardness) is implied by Lemma 3.15. 

A x i o m s  o f  i t e m  4.2.1. We prove internality of standard sets in H. Let 
x = [TF] E 7-I satisfy hstx .  By definition A E I ( T , F )  and x = FT(A) 
is s tandard.  Then X = {x} is s tandard by Transfer, therefore X = hX is 
s tandard  in H again by definition, and x hE X by Lemma 3.15. 

The transitivity of the internal subuniverse follows from Lemma 4.12.2. 

We prove Standardization. Let X = [TF] E ~/. Assume first that  
T ¢ {A}. Let A = MinT  (a legitimate set by the E E S T  Separation).  
Moreover, D = {x : 3a E A ([TF](<a>) =~ x)} is a set by Theorem 2.11. 
(Collection), therefore by the E E S T  Standardization there exists a stan- 
dard set S which contains the same standard elements as D does. Let 
S = hs, so that  S =~ S by Lemma 3.15. One can easily verify that  
V S t x ( x E S  < ) x E X )  is true in H using Lemma 3.15. 

Assume that  T =  {A}. Then X ~ X, where X = F ( A ) i s  an internal  
set. By the E E S T  Standardization there exists a s tandard set S which 
contains the same standard dements  as X. Let S = hS, and so on. -~ 

B S T  in t h e  i n t e r n a l  s u b u n i v e r s e  follows from 3.15. and 4.12: the 
quotient of hi via h_ is isomorphic to I . I n f i n i t y  is inherited from ] . 
E x t e n s i o n a l i t y  is implied by Proposition 3.16. 9 

P a i r s .  Let x =  rUH] E'H, y =  [RG] E 7-/, and 

T =  {A} U { l ^ u : u E V }  U { 2 ^ r : r E  R } ,  

F ( l ^ u ) = H ( u )  for u E M a x U ,  and F ( 2 n r ) = G ( r )  for r E M a x R ,  

so that  p =  [TF t ET-/, T I = U ,  F I = H ,  T 2 = R ,  F 2 = G .  (Werecal l  
that  T ~ = { t :  a^t  E T} and F"(t) = F(a^t)  for t E T " . )  Therefore 
p = { x , y }  is true in H by Lemma 3.13. -~ 

For the remainder, let us denote this p by {x, y}h, and define 

( x , y )  h = {{x ,x}  h , { x , y ) h }  h, 

so that  it is true in H that  (x, y)h is the ordered pair of x, y.  The following 
two lemmas are quite essential to prove the rest of the theorem. 

LEMMA 4.13. [S-images] In H, every set is an image of a standard set. 

PROOF. More accurately, we assert that  the following holds in H : 

VX 3stS 3 f  I f  is a function, d o m f  C_ S, and X = ran f ] .  
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Let X =  [ T F  1 ET{. Assume that  T ~ { A } .  (The case T = { A }  is quite 
easy: then X is formally internal in H by Lemma 4.12, therefore formally 
a subset  of a s tandard  set.) Let A = MinT.  We put  x ~ = [T~F~ 1 for 
a E A ;  thus x ~ET-/.  By Proposit ion 2.9 A C _ S  for a s tandard set S. Let 
S = hs,  A = hA. We finally define f = [RG 1 E ~/ so that  M i n R =  A 
and f ~ =  (ha, x~/h for all a E A ,  so that  it is true in H that  f maps A 
onto X and A is a subset of the standard set S .  -t 

LEMMA 4.14. It is true in H that if S is standard and X C_ S then 
X = Cp for an internal p .  

PROOF. 9 Let S E ~/ be s tandard in the sense of H, so that  S ~  S 
for a s t a n d a r d  set S by Lemma 3.15. Let X = [TF 1 E ~ and X C_ S 
in H. Then X = {x E S : hx hE X} is a st-E-definable subclass of S, 
therefore a set by the E E S T  Separation. Hence X = Cp for some p by 
the E E S T  Parametr izat ion axiom. Applying lemmas 4.12 and 3.15, one 
can easily verify that  X = C hp is true in H, as required. H 

W e a k  r e g u l a r i t y ,  lo Let x = [TF~ E ~ .  Assume that  x is nonempty  
and does not contain internM elements in H. Then A = Min T is nonempty  
(otherwise T = {A),  therefore x = F(A)  is internalin [ ,  and Lemma 3.15. 
easily gives a contradiction with the choice of x ). Hence 

T ' =  {t E T :  3 a  E M i n t  [[TF](t)  h= [TFI((a))] } 

is nonempty,  too; actually M i n T  C T r. As T is well-founded there ex- 
ists t E T ~ such that  none among the expansions tab belongs to T ~. Let 
a E M i n T  demonst ra te  that  t E T'. Then y = [T~F ~1 E ~ (see Defini- 
tion 3.12.) and y hE x by Lemma 3.13. Notice that  (a} ¢ I ( T , F )  since 
otherwise A E I (T  ~, F ~) and y would be internal in H by Lemma 4.12. 

We assert that  x M y = 0  in H. Let, on the  contrary, w =  [UH] ET-t 
satisfy w hE x and w hE y.  Then, in particular, there exists a t E Min T 

such that  w k=_ [TF]((a'}). On the other hand, there exists b E M i n t  ~ 
such that  w h= [T~F~ l((b)), which means that  w k_=_ [TF]  ((a, b}). We 
conclude that  [TFI((a'}) It=_ [TFl((a,b}) .  

Since [TFI( t  ) It=_ [TFI((a} ) and (a} ~_ I (T ,F ) ,  there exists some b' 
such that  t' = t^b ' E T and [TFI(t '  ) h= [TFl((a,  bl). Then [TF~(t') k=_ 
[TFI({a'}) , therefore t' E T' ,  leading to contradiction. -~ 

9 Take notice tha t  since the class of internal  sets is t ransi t ive in H, the notion of Cp 
retains its " internal"  sense in H : Cp = (Cp in the sense of U) , 

10 The  set of all nons tandard  n-natural numbers  shows that  the usuM Z F C  Regular i ty  
fails in H S T .  
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S e p a r a t i o n .  Let X = [TF] E ~ ,  and ¢(x)  be a st-E-formula which may 
contain elements of 7-/ as parameters. Assume first that  T ¢ {A}. We put  

A = M i n T ,  d + = { a E A : h O ( x ~ ) ) ,  T + = { A } u  LJ { a ^ t : t E T a } ,  
aEA+ 

and finally F + = F ~ T +. By Lemma 3.13, Y = r T + F  +] E 7-I is as 
required for Separation, that is, V x [ x E Y  ( ~ x E X  & ~(x)]  in H.  If 
T = {A}, so that  F(A) = some internal x, then we first define 

T ' = { A } U { ( y ) : y E x }  F ' ( ( y ) ) = y  forall  y E x ,  

so that  [TF] 1t=_ [T 'F ' ] ,  and apply the former construction to r T ' F  '] . -~ 

Co l l ec t ion .  Let ¢(x,  y) be a st-E-formula having elements of 7-/ as pa- 
rameters. Separation and Lemma 4.13. reduce the problem to the following 
form. Let S be a standard set and S = hS E 7-l. Find Y E 7-l satisfying 

Vx e S [ 3 y ¢ ( x , y )  ..... ~ 3y  e Y ¢ ( x , y ) ]  

in H. By Theorem 2.12. there is a standard set Y such that ,  for every 
x E S' = {x E S : 3 y  E 7-/ h~(hx,y)},  there exists some y E 7~(l lYl 
satisfying hO(hx,y) .  (We recall that  IYl = {C~: b E Y} .) I~ other words, 

Vx E s '  3b E Y [Cb E 7-t ~ h¢(hx,Cb)] .  

We define Y'  = {b E Y : Cb E ~-~}. Let Cb = [RbG b] for b E Y'. It 
remains to put R = {A} U {b^r : r E R b & b E Y~} and respectively 
G(b^r) = Gb(r) for r E Ma×Rb; then Y = [RG] E 7-/ is as required. -~ 

P a r t  2. 

The remaining H S T  axioms are proved as formal consequences of what 
has already been checked in H, in other words, as theorems in the theory of 
H S T -  yet minus Replacement and Union but plus lemmas 4.13. and 4.14. 
Thus we argue in the universe H of this theory and let S and U denote 
the classes of standard and internal (that is, those distinguished in H by 
formulas st and int ) sets respectively. 

R e p l a c e m e n t  is a consequence of Separation and Collection. 

U n i o n .  We first prove the existence of cartesian products in H. Let Xa, X2 
be arbitrary sets. By Lemma. 4.13, there exist standard sets Si and func- 
tions f i : S i  o n t o X i ,  i = 1 , 2 .  Then 

x l  × x2 = {(f l (s l ) ,  f2(s2)): s~ E Sl ~ s2 e S~} 
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is u set by the already proved axioms of Pairs, Collection, Separation, and 
Z F C  in $ (to prove the existence of $1 × $2 ). We now prove the axiom 
of Union. Let X be an arbitrary set. By Collection, Standardization, and 
Lemma 4.13. there exist s tandard S and a set F of functions such that  

V x E X 3 s E S 3 f E F ( f  maps s onto x) .  

Let U denote the union U S  of 
Then  U is s tandard,  and, on the 
is transitive. Thus U X c_ { f (u )  : 
Replacement,  Separation, and the 

S taken in l, the internal subuniverse. 
other hand, u = U  S also in H since B 
( u , f )  E U x F  & u E d o m f }  i s a s e t b y  
already proved existence of U × F .  -q 

E x t e n s i o n .  Let S be a s tandard set, F a function defined on S so 
tha t  F(x) contains internal elements for all x E aS = {s E S : st s}. Using 
Replacement  and Standardization, we obtain a standard function G defined 
on S such tha t  F(x) M G(x) contains an internal element for all x E ~S. 
Then  R = U x e s G ( x )  is s tandard and F(x)MRMD ~ 0 for all x E aS. By 
Lemma 4.14, there exists an internal p such that  

c , =  {(x,y) e s × R : y  E r ( z ) ) .  

Thus we have VStx E S 3 y ((x, y) E Cp), which implies, by the B S T  Exten- 
sion theorem (Theorem 1.4), the existence of an internal function f defined 
on S and satisfying f(x) E F(x) for all s tandard x E S, as required. 9 

Therefore we also have Saturation by Lemma 4.7. 

S t a n d a r d  Size Cho ice .  Let F be a function, d o m F  = X be a set of 
s tandard size, and F(x) ~ 0 for all x E X. We have to find a function f 
defined on X and satisfying f(x) E F(x) for all x E X .  By the definition 
of s tandard  size one may  assume that  X = aS~ where S is s tandard.  By 
Union, U = U~cx F(x) is a set, and one may assume, by Lemma 4.13, that  
U contains only internal elements. It remains to apply Extension. 9 

D e p e n d e n t  Cho ice .  Let X be a nonempty set, R a binary relation 
on X, and dora R = X. It is asserted that  there is an infinite sequence 
(x~ : n E w )  of elements of X ' s u c h t h a t  (xn, xn+l) E R for all n E w .  
Indeed, Lemma 4.13. reduces the question to the case when the set X is 
s tandard.  We may  assume that  R = CB for someinternM p by Lemma 4.14. 
Applying in g Theorem 1.5. to the formula (x ,y)  E Cp, we obtain an 
internal  function f defined on the set N of all n-natural numbers and 
satisfying VStn E N [( f (n) , f (n+ 1)) E R]. It remains to set zn = f(n) 
for all s tandard  n E  N and recall that  w = ~ N = { n E  N : s t n } .  -~ 



374 V. Kanovei, M. Reeken 

This ends the proof  of Theorem 4.11. 

COROLLARY 4.15. H S T  admits an interpretation in B S T  such that the 
class of all formally internal (satisfying the formula int ) sets in the sense 
of the interpretation is isomorphic to the ground B S T  universe. 

P t t o o r .  Follows from Corollary 2.6. and the theorem. 

4 .4 .  D i s c u s s i o n  

This is a continuation of the discussion in Section 2.4. In the same sense as 
was considered there, a mathematician working in B S T  can legitimately 
assume that  the universe | of B S T  is an internal part  of an external  uni- 
verse which satisfies the axioms of H S T .  The elements of this enlargement 
may  be seen as the objects which can be obtained via Definition 3.1 applied 
to T and F which are bounded definable classes in the sense of g . 

Let us consider a couple of examples. 

A m o n a d .  Let R denote the set of reM numbers  in B, the universe of 
B S T .  A monad of a s tandard x E R is the "set" #x = {Y E R : x  ~ y} 
(not a set in I ) ,  where x ~ y means Vsts > 0 ( I x -  Yl < s). We put  
T = { A } U { ( y ) : y , . ~ x }  and F ( ( y ) ) = y  for y ~ x ;  so that  F[T]=#x .H 

T h e  se t  o f  all  m o n a d s .  Every monad is a bounded definable class, 
so that  this is still in the framework of Section 2. However the collection 
of all monads is not a bounded definable class (of internal sets), therefore 
this is the point where the "cumulative" construction seriously enters the 
reasoning. We put F ( ( x , y ) ) = y  for x E  aR and y ~ x ,  and 

T =  { A } U { ( x } : x e ~ R } U { ( x , y ) : x e a R  ~ y ~ x } ,  

so that  FIT] represents the collection of all monads of s tandard reals ( that  
is, x = [TF] is the set of all monads of s tandard ~-reMs in H ). -t 

One can develop in this manner most of nonstandard mathemat ics  in 
B S T  using the external H S T  enlargement H of the B S T  universe 0. 
This is restricted by the capacities of the theory H S T  itself, mainly by  the 
lack of the Power Set axiom in H S T .  In particular we shall face problems 
if we try to develop in H S T ,  say, Loeb measures or hyperfinite descriptive 
set theory, that  is, topics where we actually need external power sets. 

One cannot hope to fix this by a minor modification of the model  for 
H S T  we use, or H S T  itself, since it was demonstra ted by Hrba~ek [5] 
that  Power Set is incompatible with Saturation plus Collection. 
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For tunate ly  there is a suitable solution. It happens that  H S T  admits 
a sys tem of subuniverses which satisfy Power Set and a weakened version of 
H S T  where Saturat ion is reduced to a previously fixed s tandard cardinal. 
Thus we can gain Power Set and save as much Saturation as necessary. 

This will be the topic of the 3rd article in this series. 
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