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Preface

This paper accomplishes the series of three articles on set theoretic founda-
tions of nonstandard mathematics in this Journal.

The first article [12] introduced bounded set theory BST, a modification
of Nelson’s internal set theory IST, which, similarly to IST, is a theory in
the st-€-language ! | containing all of ZFC (Separation and Replacement
formulated in the €-language), together with the Transfer and Standardiza-
tion axioms of IST, an Idealization somewhat weaker than the one of IST,
and an axiom which postulates that every set is a member of a standard set
(incompatible with IST ).

It is an essential advantage of BST in comparison to IST that it
implies several useful theorems impossible or unknown for IST in such
a general form. In particular BST provides a uniform description of all
bounded definable classes (i. e. st-€-definable subclasses of sets — they are
not necessarily sets in BST since Separation is available in BST only in
the €-language) — see Subsection 1.1. This description (or parametrization),
introduced in [13], the second article in the series, allows to extend the uni-
verse | of BST to the universe E = E(1) of all definable bounded classes
in I, so that E models a reasonable nonstandard theory of “external” type
(in particular, Separation for all st-€-formulas holds in E ). It was named
EEST, elementary external set theory (see below).

Unfortunately non—internal sets cannot be elements of other sets in E;
therefore E is e. g. not closed under pairing, which is a serious inconve-
nience. However E admits a further extension. We demonstrated in [13]
that the known construction of “assembling” sets along well-founded trees
leads to a wider universe H = H(E) which models an “external” theory
more advanced than EEST -— we called it HST, Hrbacek set theory,
since it is equal, modulo some details, to a theory introduced in [6]. Note
that HST is a quite convenient nonstandard set theory; it contains Satura-
tion, as well as all of ZFC (in particular, the Separation and Replacement
schemata in the st-€-language) with the exception of the Power set, Choice,
and Regularity axioms.

In fact some amount of Choice (standard size Choice) and Regularity
(Regularity over the internal subuniverse 1) is provided in HST, but the
Power set axiom straightforwardly contradicts Saturation plus Replacement.
This can be considered as a serious defect of HST .

1 The language which has the membership € and the standardness st as the atomic
predicates.
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The main goal of this paper is to show how to save the Power set axiom
in this line of reasoning. We shall see that HST is strong enough to define,
given an infinite standard cardinal «, aninner universe H, (sections 2 and
3) which models a k-version of HST (Saturation somehow restricted by
k ) plus the Power set axiom, and another inner subuniverse H/, (Section 4)
which models a slightly weaker x-version of HST plus the Power set axiom
and the full axiom of Choice.

It will be demonstrated at the end of the paper how these technical ar-
rangements can be used for a practical development of nonstandard analysis.

1. Review of nonstandard set theories

To make the exposition more or less self-contained, we give a brief review
of the nonstandard theories considered in the paper.

1.1. Bounded set theory

Bounded set theory BST is a theory in the st-€-language which includes
all of ZFC (in the €-language) together with the following axioms:

Bounded Idealization BI :
Vg 3z € X Va€ A®(z,a) « Iz € XV &(z,a);

Standardization S: VX FY V2 [z€Y «— z€X & ®(2)];
Transfer T: 3z &(z) — Iz &(x);
Boundedness B: Vz X (z € X).

The formula ® must be an €-formulain BI and T, and ® may contain
only standard sets as parameters in T, but ® can be any st-e€-formula in
S and contain arbitrary parametersin BI and S. The quantifiers 3°* and
¥t have obvious meaning: there ezists standard, for all standard. V™A
means: for all standard finite A. X is a standard set in BI.

Thus BI is weaker than the Idealization I of internal set theory IST
of Nelson [21] (I results by replacing in BI the set X by the universe of
all sets), but the Boundedness axiom B is added.

It occurs that BI is equivalent in ZFC+B+T to the following axiom
of Internal Saturation:

IS: VA C AgJzVae A ®(z,a) «— Tz Vta € Ay &(z,0a),
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where Ap is a standard set and ® an €-formula ([12], Lemma 1.3).

It is the key point in our development of external sets on the base of BST
that, by Theorem 2.2 in [13], definable bounded classes (i. e. st-€-definable
subclasses of sets) have in BST the following regular form:

Cp = Useet Nieep n(a,b), where p=(A,B,n), A and B arestandard
sets, n being a function defined on A X B,
and 7§ = {s € §:sts} for any set S .2

This result is an easy consequence of Theorem 1.5 in [12] (which asserts
that every st-€-formula is provably equivalent in BST toa X§' formula3 ),
and the following lemma, which allows to restrict the two principal quanti-
fiers in a X5' formula by standard sets.

LEMMA 1.1 (Lemma 1.7 in [12]) [ BST ]

Let ¢(a,b,z) be an €-formula, X a standard set, k = card X. There
exist standard sets A and B of cardinality < 22" such that for all z € X,
Ita Vb ¢(a,b,z) ——

— Ftac AV*b p(a,b,2) «— F*ac AV*b€ B ¢(a,b,z).

The proof of this lemma in [12] contained an incorrect argument * . We give
here a corrected proof.

Proor. We define, for all ¢ and b,

X[a,0] = {zeX: ¢(a,b,2)} c X
X[a] = {X[a,b]:0 is an arbitrary set} C P(X); and
X[] = {X[a]:a is an arbitrary set} C P X).

Thus the set X[] has cardinality at most A = 22° while every set X[a] has
cardinality at most 2%. Using the ZFC Collection and Choice, and then
Transfer, we obtain standard sets A and B, of cardinality < 22" each,
such that Va’ 3a € A (X[a] = X[a']), and V¥ Ib € B (X[a,b] = X[a,b])
for any a € A. We assert that A and B are as required.

Let (1), (2), (3) denote the parts of the equivalence of the lemma from
left to right. It is clear that (2) implies both (1) and (3).

2 The definitions of C, and °S will be frequently used and very important in the
remainder of the paper.

3 We recall that Y3 denotes the class of all formulas 3**aV**b (e-formula).

% The wrong part was inserted by the authors into the final text of [12] after the paper
had been refereed and accepted.
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To prove (1) — (2), let a standard set @ satisfy V*'b¢(a,b,z).
By the choice of A and Transfer, X[a] = X[a'] for a standard o’ € A. It
is asserted that (a’,b’,z) is true for every standard b’. We observe that
X|a’, ¥ is astandard member of the set X[a] = X[a'], therefore by Transfer
X[a’,b'] = X[a,b] for a suitable standard b. Then ¢(a,b,z) holds by the
choice of a, so z € X[a,b]= X[d',b], and ¢(a’,¥’,z), as required.

To prove (3) — (2), let astandard a € A satisfy Vb € B ¢(a, b, z).
We assert that (a,b’,z) is true for every standard b’. Notice that X[a,d’]
is a standard member of X[a], therefore X[a,b] = X[a,b] for a standard
b € B by Transfer and the choice of B. Then we have ¢(a,b,z) by the
choice of a, so z € X[a,b] = X[a,b'], and finally ¢(a,b’,2). ]

Let s be a standard cardinal, i. e. K € S and it is truein § (orin I,
which is equivalent by Transfer) that & is a cardinal. The following weaker
versions of some of the BST axioms will be of special interest:

BI, — Bounded Idealization BI in the case when card X <k in §;
IS, — Internal Saturation IS in the case when card Ag <k in $§;

B, — Boundedness: Vz 3*X (z€ X & card X <k in §).

Obviously BI, and IS, are weaker than resp. BI and IS, but B, is
stronger than B .

ProPOSITION 1.2 In the theory ZFC+ T + B,, BI, implies IS, while
I1S,« implies BI, .

Proor. The result can be obtained by a straightforward evaluation of
cardinalities in the proof of Lemma 1.3 in [12] (the one which proves that
the unrestricted forms of IS and BI are equivalent to each other). |

1.2. Elementary external set theory

This theory was introduced in [13] to describe the “world” of all definable
bounded classes over a universe of BST .

Let intz (“z is internal”) be the st-€-formula I**y (z € y) (saying: z
belongs to a standard set). Thus the Boundedness axiom of BST postulates
that all sets z satisfy intz (“are internal”). This is not true in EEST,
although still only internal sets can be elements of other sets.

The FElementary external set theory EEST has the following list of
axioms:
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1. ¥z (intz) : all standard sets are internal;
Vinty Vy € o (inty) : transitivity of the internal subuniverse;
Standardization: VX Y V*z (z €Y «— z€ X).
2. BST™ : all axioms of BST relativized to the formula int ;
3. Extensionality and the ZFC Separation for all st-c-formulas;
4. The Parametrization axiom: VC 3p (C =C,).

The last axiom may be seen as a quite artificial statement, but actually it
postulates that all sets are bounded definable classes from the point of view
of the internal universe. Usually one cannot express statements of this kind
legitimately; it is a very special property of bounded set theory BST that
an indirect formulation (via classes C, ) is available.

1.3. Hrbaéek set theory

Hrbacek set theory HST is also a theory in the st-€-language, admitting
non—internal sets, but in essential ways more powerful than BST. It relates
to EEST in the same way as ZFC minus the Power set axiom relates to
a second order Peano arithmetic. More exactly, HST includes:

1. and 2. The same as items 1 and 2 of EEST above.

3. The ZFC Pair, Union, Extensionality, Infinity axioms, together with
Separation, Collection, Replacement for all st-€-formulas.

4. Extension: assume that S is a standard set and F a is function
defined on the set 2§ = {z € §:stz}, and F(z) contains internal
elements for all = € %5; then there exists an internal function f de-
fined on S and satisfying f(z) € F(z) for every z € °S .

5. Saturation: if X is a set of standard size such that every z € X isin-

ternal and the intersection [ X'’ is nonempty for any finite nonempty
X' C X, then N X is nonempty.
6. Choice in the case when the domain X of the choice function is a set

of standard size (standard size Choice), and Dependent Choice.

7. Weak regularity: if a nonempty set X contains only noninternal ele-
ments then there exists z € X such that cNX =0.

We recall that, in “external” theories, sets of standard size are those of the
form {f(z):z € °X}, where X is standard and f any function, but, in
HST, “standard size” = “wellorderable”, see [13].
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2. Natural partially saturated internal universes

Hrbacek proved in [6] that the Power set axiom fails in (a prototype of)
HST, because external subsets of an internal set which has more than a
standard finite number of elements, are too numerous to be a “set—size”
collection. Thus the only way to define, in HST, external subuniverses
satisfying the Power set axiom is to reduce the multitude of external sets.

This section outlines one of the two available approaches how such a
reduction can be achieved. It will be the key fact (Theorem 2.2 — item 4)
that, given a standard set S and a standard cardinal x, the family of all
subsets of § of the form C, = U,ees Noeo 1(a,b), where p = (A, B,7)
belongs to a standard set of cardinality < k, is a “set—size” collection.
Thus one has to find an external subuniverse which does not contain sets of
internal sets other then those of the mentioned form. Following this idea, we
introduce, in the next section, an external subuniverse (the universe H, )
satisfying a suitable x-form of HST plus the Power set axiom at the cost
of a k-restriction imposed on the “standard size” parts of HST .

The first step is to define the relevant internal subuniverse I, C 1, which
then will be the internal part of H,. This is the aim of this section.

We argue in HST in this section; thuslet H, 1, S denote the ground
HST universe and the classes of all internal and standard sets respectively.
Let k be a fixed standard infinite cardinal, that is, a standard set which is
an infinite cardinal in the sense of | or §, which is equivalent by Transfer.

DEFINITION 2.1 I, ={z:3*X (z € X & card X < k in §)}, the class
of all internal sets of order k, introduced in [9]° .

Take notice that I, is not a transitive subclass of 1. However Theorem 2.2
(item 1) implies that every nonempty X € 1, contains an element in 1 .

THEOREM 2.2 [HST] |, contains all standard sets. Furthermore,

1. l; is an elementary submodel of 1| with respect to all €-formulas.
Moreover, if a set = € | is st-€-definable in | using sets in 1, as
parameters then z € 1, .

2. |, satisfies BST,, the theory containing all azioms of ZFC (in the
€-language), Transfer, Standardization, and the k-forms BI,, IS,
B, of Bounded Idealization, Internal Saturation, and Boundedness.

5 1In the particular case x = Rq, these sets were introduced by Luxemburg [20] under
the name of o-quasistandard objects. The general definition was first given in a nonpub-
lished version of Hrbagek [7]. — Pointed out by the referee.



300 V. Kanovei, M. Reeken

3. If f €1 isa function defined on a standard set X, card X <k in
S, and f(z) € 1, for all standard z € X, then there exists a function
f' €1, such that f(z)= f'(x) for all standard z € X .

4. For any standard X there exists standard P such that every set
C C X definable (as a class) in 1 by a st-€-formula having only
elements of 1. as parameters, is equal to some C,, p€ PN, .°

Proor. 1. If z is standard then X = {z} is standard, too; thus
S Cl,. Let ®(z,po) be an €-formula having a set pg € I, as a parameter.
We prove that, in I, Iz ®(z,p0) — Jz €1, ®(z,p0). Let py € P,
where P is standard, card P < £ in §. By the ZFC Collection in I,
there exists a set X € | of cardinality < s such that

Vpe P[Iz &(z,p) — Tz € X ®(z,p)]

in 1. By Transfer there is a standard X of this kind. We put p = po .

To prove the “moreover” assertion, let z € | be the unique set sat-
isfying ®(z) in 1, where ® is a st-€-formula with parameters in 1.
One may assume, by Theorem 1.5 in [12], that ® is a T3 formula, say
Fa Vb ¢(z,a,b), where ¢ is an €-formula. Following Nelson [21], we
observe that there exists a standard a such that z is the unique set satis-
fying V*'b ¢(z,a,b), that is, V& [V**b ¢(£,a,b) «— € ==z], in 1. Using
BI, we find a standard finite set B such that,in I,

VE[VbE B (€ a,b) — E=z].

On the other hand, all elements of a standard finite set are standard; hence
the implication can be replaced by the equivalence in the displayed formula.
We conclude that z is definable in | by an €-formula with parameters in
i.. This implies z € i, by the already proved elementary equivalence.

2. Therefore 1, is amodel of ZFC satisfying Transfer. Standardization
holds since § C I,. Bounded Idealization BI, holds in 1, because BI
holds in 1 and every standard set X of cardinality < « in § retains
all elements in I,. Boundedness B, holds by definition. Finally Internal
Saturation IS, is a consequence of BI, by Proposition 1.2.

3. We argue in 1. Since f(z)€l, forall z € °X = {z € X :stz}, we
obtain, using a known consequence of Standardization, a standard function
F defined on X and such that f(z) € F(z) and card F(z) < k for every

® Since the class | of all internal sets is transitive in HST, the definition of C, (see
Subsection 1.1.) retains its “internal” sense.
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standard z € X. By Transfer, card F(z) < k holds for all z € X, therefore
R = Uzex F(z) is a standard set of cardinality < k. Furthermore f(z) ¢
R for all standard z € X. Let X’ C X be a finite set containing all
standard elements of X and satisfying f(z) € R for all z € X'. Then
the restriction g = f | X’ belongs to the standard set G of all functions
mapping a finite subset of X to R . Therefore g € 1, since cardG < k.
It remains to extend, in 1., ¢ to a function f’ defined on X .

4. We argue in 1. Let C = {z € X : ®(z,q)}, where ¢ € Q, Q@ a
standard set of cardinality < k. Let 6 = max{card X,x}, A = 2%°, and
P = {(A\A,n):n maps A x A onto P(X)}. We prove that C = C, for
some p€ PNl .

One can assume, by Theorem 1.5 of [12], that ®(z,¢) has the form
Fta Vb (z, a,b,q), where ¢ is an €-formula. By Lemma 1.1, there exist
standard sets A, B of cardinality < A, satisfying

®(z,q) «— F'ac AV*b€ B ¢(z,a,b,q) — forall z€ X and ¢€ Q.

Let f and g be standard maps from A onto A and B respectively. We
define n(a,B8) = {z € X : ¢(z, f(a),9(8),q)} forall a, 8 < A, and then
p={(AAn), thus Cp={z € X :®(z,q)}=C and pe P.

We verify that p € I,. Since A is standard, it suffices to prove that
7 € l.. To see this, we note that 7 belongs to the set H = {5, :¢q € Q},
where each 7, is a function defined on A X A by

ny(@,B) = {z € X : p(z, f(a),9(8),9)}-

However H is a standard set (because X, A, f, g are standard) of cardi-
nality not greater than card @), thatis, <«. [ |

We conclude this section with a useful additional property of I, .

LEMMA 2.3 Let I € 1. If X =1 N1, is a set of standard size then
ICI, and I is a set of a standard finite number of elements.

Proor. Let,in l;, f be a function mapping an ordinal o = {7y :
¥ < a} bijectively on I. This property of f is then also true in | by
Theorem 2.2. Then a is a standard natural number. (Otherwise there
exists a nonstandard natural number n < a. Since every k£ < n belongs
to 1., theset R = {f(k):k < n} is a subset of I NI, having exactly
n elements. Thus W = {k : k < n} is a set of standard size in I, a
contradiction with BI.)

So I has a standard finite number n of elements. It follows easily from
Theorem 2.2 (item 1) that f(k) € I, forall k <n, hence I CI,. [
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3. Natural partially saturated external universes

We argue in HST in this section. As above, H, I, § denote the ground
HST universe and the classes of all internal and standard sets respectively.

Let x € § be an infinite cardinal in the sense of § or 1.

The plan is to define an external partially saturated “envelope” H, over
the class 1., which models a corresponding s-fragment of HST. This class
will consist of those sets in the basic HST universe H which one obtains
using a known cumulative construction of assembling sets along well-founded
trees definable in 1. Item 4 of Theorem 2.2 will imply the Power set axiom
in H, because all subsets ¥ € H, of a standard set X have the form C,,
p € P, for a certain standard set P (depending on X ).

3.1. Assembling sets along well-founded trees

Let Seq denote the class of all internal sequences, of arbitrary (internal)
sets, of standard finite length. For ¢t € Seq and every set a, t”a is the
sequence in Seq obtained by adjoining a as the rightmost additional term
to t. The notation a”t is to be understood correspondingly. A is the
empty sequence. The formula ¢ C ¢ means that the sequence ¢ € Seq
extends t' € Seq (perhaps t' =1t in this case).

A tree is a nonempty (possibly external) set 7' C Seq such that, when-
ever t/,t € Seq satisfy ¢/ Ct, then t € T implies ¢’ € T. Thus every tree
contains A. MaxT is the set of all C-mazimalin T elements t € T .

A tree T is well-founded (wf tree, in brief) if and only if every nonempty
(possibly external) set T' C T contains a C-maximal element.

DEFINITION 3.1 Let a wf pair be any pair (T, F) such that T is a wf
tree and F is a function defined on MaxT. In this case, the family of sets
Fr(t), t €T, is defined as follows:

1) if t € MaxT then Fr(t) = F(1);

2) if te T\ MaxT then Fr(t)={Fr(t"a):t"aeT}.

We finally set F[T]= Fr(A).

Let, for example, T = {A} and F(A)==2z. Then F[T]|=Fr(A)==.
Since HST contains Replacement, Definition 3.1 works well directly;

thus for every (T, F) € H the function Fr is uniquely defined on 7 and
the final set F[T] = Fr(A) is also well defined.
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3.2. Class of elementary external sets

In particular we shall be interested to study the construction of Definition 3.1
from the point of view of the class E = {C, : p € 1}, of all elementary
ezternal sets. It is shown in [13] that E models EEST, elementary external
set theory, described in Subsection 1.2. above.

We observe that 1 C E and every set X € E satisfies X C .
Let H denote the class of all wf pairs (T, F) such that T, F € E.

LEMMA 3.2 Let T € E be a wf tree in the sense of E. Then T is a wf
tree in the sense of H, too. Hence the class H 1is st-€-definable in E as
a subclass of E X E .

ProoF. Since E models Separation, the wellfoundedness of T in E
allows to define, in E, a standard ordinal p(t) for all t € T by the
scheme: p(t) = 0 for t € MaxT, and p(t) = Ssup{p(t"a) : t"a € T}
for t ¢ MaxT, where, for a set O of standard ordinals, Ssup O denotes
the least standard ordinal bigger than all ordinals in O. (The Collection

and Standardization axioms of HST prove that p(t) is defined correctly
for t ¢ MaxT .)

The existence of the function p proves the wellfoundedness of T in H
as well because by the HST Standardization the class of standard ordinals
is well-founded in H . [ |

Since E contains only those sets which have internal elements exclu-
sively, for a wf pair (T, F) € H the set F[T] can be not a member of E.
However, one can determine, in E, when F[T] € G[R], or F[T] = G[R],
for given wf pairs (T, F) and (R,G) in H.

PROPOSITION 3.3 There exist 4-ary st-€-predicates "= and ¢ and a bi-
nary st-€-predicate “st such that the following holds for all wf pairs (T, F)
and (R,G) in H :

F[T)=G[R] iff itistruein E that (T,F)"= (R,G);
F[T) e G[R] iff itistruein E that (T,F)P (R,G);
st F[T) iff it is true in E that bst (T, F).

ProOF. Let us first distinguish the case when Fr(t) takes an internal
value. We set idp(T) = {t € T : Fr(t) is internal} whenever (T, F) € H
(the domain of internal definability); for instance, MaxT C idp(T').
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LEMMA 3.4 If (T,F) € H then the set idp(T) and the restriction Fr |
idp(T) belongto E.

PROOF. As is the proof of Lemma 3.2, one conducts the definition of
an internal set f(t) for ¢ € T by the scheme:

1) f(t)= F(t) for t € MaxT ;

2) if t € T\ MaxT and the set X; = {f(¢t"a) : t"a € T} is internal
then we put F(t) = X;;

3) if X; is not internal then the values f(t'), ¢’ Ct, are not defined.

It follows that dom f = idp(T) € E and f = Fr | idp(T) belong to E
by the EEST Separation, truein E . [ |

To continue the proof of the proposition, let us associate, with each pair
of wf pairs (T,F) and (R,G), a function E = Erppe € E mapping
T xR into 2={0,1}. The values E(t,r) (t €T and r € R) are defined
by the same type of induction in E, as follows.

(i) If ¢t € idp(T) and r € idg(R) then E(t,r)=1 iff Fr(t) = Gg(r).
(i) If ¢t € idp(T) but r ¢ idg(R), or vice versa, then E(t,7)=0.

(iii) If ¢ ¢ idp(T) and r ¢ idg(R) then E(t,r) = 1 iff 1st, for any
t"a € T there exists 7"b € R such that E(t"a,r”b) =1, and 2nd,
for any r”b € R there exists t"a € T such that E(t"a,7"b) =1.

Since E Errrag € E, the formula Erp RG(A,A) = 1 can be taken as
(T, F) ’= (R,G).

Let, for any set z, C® be the function defined on the singleton {A}
by C*(A) = z; then ({A} C*) is a wf palr and C*[{A}] = z. One takes
the formula Iz (T, F) "= ({A},C7)) as bst(T,F).

Finally let (T, F) % (R,G) be the formula which says that either R #
{A} and Erpre(A, (b)) =1 for some b such that the one-term sequence
(b) belongs to R, or R={A}, and there exists a set # € G(A) such that
(T,F) "= ({A},C7) . =

3.3. The partially saturated subuniverse

We consider the internal subuniverse 1, of Section 2 as the base for our
construction of an external subuniverse H,. The construction involves Def-
inition 3.1. To guarantee that no external subsets of internal sets except
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those of the form C,, p € ., appear, we have to keep the construction
under the control of 1,. For example we can admit only those wf trees T
and associated functions F which have the form C,, where p€ i, .

Weput E,={Cp:p€l.}; sothat EL CE.

ProrosiTION 3.5 1. Ifa set X C 1 is definable in E as a class by a
st-€-formula having sets in E as parameters then X € E .

2. If all parameters in the formula belong to E, then X € E,.

3. If in the latter case X €1 then X € 1; so E, N1 =1, — therefore
internal sets not in 1, do not enter E,. via external definitions.

Proor. 1. Use the EEST Separation, truein E.

2. By definition of E, we may assume that all parameters in the for-
mula which defines X in E belong to I,. Then, since the truth in E,
the EEST universe, can be expressed in |, its internal part (see Proposi-
tion 2.8 in [13]), X is st-€-definablein 1 as a class via the same parameters.
Therefore X € E, by Theorem 2.2 (item 4).

3. Apply Theorem 2.2 (item 1). |

One might consider it quite natural to define a subuniverse H, C H
having I, as its internal part as the collection of all sets F[T'] where both
F and T belong to E.. However this does not work properly because
the class obtained this way is not extensional. (Note that even E, is not
extensional. Indeed, let x = 8y and X = w; in §. Then both X and
Y = Xnl, belong to E, and have the same elementsin E,., but X #Y .)

To fix this problem, we have to impose a suitable restriction on wf pairs.
This is realized by the notion of k-illegal point.

DEFINITION 3.6 1. Let (T, F) € H. t € T is a s-illegal point in T if
there exists a set I € I, such that INl, = Fp(t) # 1.

2. Hy is the collection of all wf pairs (T, F) € H such that both T
and F belong to E,, T Cl., and T does not contain k-illegal points.

3. He={F[T]:(T,F) € Hy}.

However we shall see (Lemma 3.12 below) that the restriction is not harmful:
sets which are left out are suitably replaced by internal sets.

We end this subsection with a useful lemma.

LEMMA 3.7 Let (T,F) € H,.. Then Fr(t) € Hy for all t € T. Further-
more if Fr(t) is internal then Fr(t) €l .
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(In particular F(t) € 1, for all ¢ € MaxT, provided the wf pair (T, F)
belongs to H,. In general functions in E, map elements of 1. to I .)

ProofF. Weput T¢ = {r:txr € T}, where t*r is the concatenation,
and Fi(r) = F(t+r) for t+r € MaxT; thus (T% F') € H, and actually
€ H. by Proposition 3.5. Moreover Fr(t*r) = Fir«(r) for all r € T
In particular, Fr(t) = Fi7:(A) € H, . This proves the first statement. The
second one is implied by Lemma 3.4 and Proposition 3.5. [ |

COROLLARY 3.8 Let X € Hs. If X € H, then X €, .

3.4. The principal theorem

We recall that, in external nonstandard theories, a set of standard size is a
functional image of a set of the form 99 = {s € § : sts}, where § is a
standard set. The following definition is a variant of this notion.

DEFINITION 3.9 Let & be a standard cardinal. X is a set of standard

k-size if there exist a standard set S of cardinality < k in $§ and a
function F defined on S such that X = {F(z):z € 95} .

Let us demonstrate that H, models a s-version of HST in which
the axioms involving standard size (see Subsection 1.3.) are weakened to
standard k-size, but also models the Power set axiom.

TueorEM 3.10 [HST] INH, =1, so 1, is the class of all formally
internal 7 sets in H, . In addition the following statements hold in H, :

1. The azioms of Pair, Union, Extensionality, Infinity, together with Col-
lection, Separation, Replacement for all st-€-formulas.

2. Ezxtension in the form of item 4 in Subsection 1.3. for standard sets §
satisfying card S <k in §.

3. Saturation and Choice for sets X of standard k-size, and Dependent
Choice.

4. Weak regularity.
5. The ZFC Power set aziom.

Finally H. satisfies the following closure property: if Z C H, is a set of
standard k-size then Z € H,, .

7 Satisfying the formula ints, thatis, 3*X (z € X) .
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Proor. We start with internal sets. Let = € I,. We put T = {A}
and F(A) = z, so that evidently (T, F) € H, and F[T]= z. This proves
1. € H,. The inclusion H, N1 C I, is guaranteed by Lemma 3.7. -

Extensionality. Suppose that (T, F) and (R,G) belong to H, and
the sets X = F[T] and Y = G[R] satisfy X NH, =Y N H,. We assert
that then X =Y.

If neither of T, R is equal to {A} then X UY C H, by Lemma 3.7.
If T=R={A} Then both X and Y belong to 1, by Lemma 3.7,
so XN, =YnNI, implies X =Y by Theorem 2.2 (item 1).

Assume finally thate. g. R ={A} but T # {A}. Then Y = G(A) € 1,
as above. In particular, Y C I, so YNH, =Y NINH, =Y NI, (since
INH, = I, ). On the other hand, X C H, by Lemma 3.7 because T # {A},
so X NH, = X. We conclude that X =Y Nnl,. But A is not x-illegal in

T,s0o X=Y. 5
Weak regularity is inherited from H, the universe of HST, because
if X €H, but X €1, then X C H, by Corollary 3.8. -
Infinity is inherited from § . .

Extension. The k-version of Extension ( card S < x in the standard
universe) is reduced to the HST Extension by Theorem 2.2 (item 3). A

Saturation. The k-size Extension reduces the k-size Saturation to the
case when the given standard size family has the form {f(a) : a € 94p},
where Ag is a standard set of cardinality card 49 < k in § and f a
function in 1,. This is simply IS, the k-case of Internal Saturation in
l.. 8 However IS, istruein 1, by Theorem 2.2 (item 2). -

The verification of the other axioms in H, proceeds by certain transfor-
mations of wf pairs. Let us prove two technical lemmas.

Lemma 3.11 In H, every set X C 1 is covered by a standard set.

Proor. By the Boundedness axiom in I, for each # € X there exists
a standard set s such that = € s. By the HST Collection in H, we havea
set S such that every 2 € X belongs to a standard s € §/. By the HST
Standardization, there exists a standard set § having the same standard
elements as §/. Weput Y =|J5; then Y isstandardand X CY. =

8 Tndeed, it is known (see e. g. [13] or [6]) that finite (in the sense of the ordinary
ZFC definition) sets in HST are those having a standard S-finite number of elements.
If such a set contains only internal elements then it is internal.
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LEMMA 3.12 Let 7 C H, be a set definable in E as a subclass of E X E,
using only sets in E, as parameters, and Z = {F[T|:(T,F) € t}. There
exists Z € H, such that ZNH, = Z. Fach of the following two conditions
s sufficient for Z itself to belong to Hy :

1. Z contains at least one noninternal element.

2. Z is a set of standard size.

ProoF. The idea is clear: present 7 as 7 = {(T,, F,) : a € A}, put
R={A}u{ae’t :t € T,} and define G appropriately so that G[R] = Z.
We have only to keep the construction within E, and avoid illegality.

By definition for any (T, F) € 7 there exist p, ¢ € I, suchthat T = C,
and F = C,. By the HST Collection and Lemma 3.11 there is a standard
set S such that p, ¢ of this kind can be found in § for every pair (T, F) €
7. The set

A={(p,g) € S* N 1.:{Cp,CleT}CE

is then definable in E using only sets in E, as parameters, therefore we
have A € E, by Proposition 3.5. We define (R,G) € H as follows:

1) R={A} U {a™:a=(p,q) € A& tcC,}, and
2) G(a™)=Cy(t) forall a=(p,q)€ A and t€C,.

Evidently Ggr({a)) = C4[C,] whenever a = (p,q) € A, so that G[R] =

Z ={F[T):(T,F) € 7}. Moreover R, G € E, again by Proposition 3.5.

If A is not k-illegal in R then immediately (R,G) € H,, and Z = G[R].

If A is k-illegal then there exists Z € 1, such that ZNH, = G[R] = Z .
Condition 1. Apply Corollary 3.8 to Z .

Condition 2. It suffices to show that Z = Z. Let on the contrary
Z # Z, therefore Z ¢ H.. Then Z € I, by Corollary 3.8. Furthermore
Z C 1, by Lemma 2.3, so that still Z = Z, contradiction. [ ]

It follows from Lemma 3.12 that °5 € H, for every standard set 5.
(We continue the proof of the theorem.)

Pairs — an immediate consequence of Lemma 3.12. -

Separation. Let X = F[T], (T,F) € H,, and all parameters in a
st-€-formula ®(z) belong to H,. We define a set 7 C H,, as follows.

If T # {A} then the set MinT = {a : (a) € T} is nonempty. For
a € MinT, we put 7% = {t : a™t € T} and F°(t) = F(a™t) for all
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a™t € MaxT. Obviously (T, F°) € H, forall a. Let 7 be the set of all
wf pairs (T, F*), where a € MinT, such that ®(F*[T*]) holdsin H, .

Suppose that T = {A}, so that X = F(A) € l,. In this case, we define
X' ={z € Xnl, : &) holds in H,.}. We recall that for any internal
¢ the wf pair Pz = ({A},C*) € H is defined by C*(A) = z, so that
C*[{A}Y=z. Let r={Pz:z€ X'}.

In both cases 7 C H,, and the set Y = {G[R]: (R,G) € 7} satisfies
the equality ¥ = {y € X : ®(y) holds in H.}. Thus the required result
would follow from Lemma 3.12 as soon as we have proved that 7 is definable
in E as a subclass of E x E, using only setsin E, as parameters.

We first note that H is definable in E by Lemma 3.2, therefore H, is
definable in E using only k as a parameter (but & is standard). Further-
more definability in H, (by the formula @ )is reducible to definability in E
by Proposition 3.3. Thus 7 is actually definable (that is, st-€-definable) in
E using as parameters only &, (7T,F), and several wf pairs (U, H) € H,
such that H[U] occurs in ®, as required. =

Union. Suppose that X = F[T] € H,, where (T,F) € H,. We have
to prove that the set H,N{JX belongs to H, .

For a two—element sequence (a,b) € T, we define T% = {¢t:a"b"t € T}
and F(t) = F(a”b’t) for all at € MaxT. Obviously (T, Feb) € H,.
The sets F**[T] give the first group of elements of the union (JX in the
subuniverse H,.

The other group consists of all sets z € F({a)) N I, where a is such
that the one—element sequence (a) belongs to MaxT. Each x of this type
is presented in H, by the wf pair Pz = ({A},C%).

One easily sees that the set 7 of the wf pairs determined by the two

groups is definable in E as a subclass of E x E, using only sets in E, as
parameters. It remains to apply Lemma 3.12. .

Collection. By the HST Collection, it suffices to verify the following;:
if aset X satisfies X C H, then there exists X' € H, such that X C X'.
Using Collection again and definition of H., we conclude that there exists
a set P C 1 such that

VY € X Ap, g€ P ((Cp,Cy) € He & Y = Cy[Cp)).

By Lemma 3.11, we have P C § for a standard set S. We finally apply
Lemma 3.12 to the set 7 of all wf pairs (Cp,C,) € H,, where p, g€ §. -

Replacement is a consequence of Collection and Separation. =
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The closure property. By the HST standard size Choice, there
exists a set 7 C M, of standard k-sizes. t. Z = {F[T]:(T,F) € t}. By
Lemma 3.12 (condition 2) it suffices to prove that 7 is definablein E by a
st-€-formula having only sets in E, as parameters.

By the standard size Choice again, there exists aset II C I, of standard
k-size satisfying the equality = = {{(C,,C,) : (p,q¢) € II}. Using Theo-
rem 2.2 (item 3) and then Proposition 3.5, we see that II € E,. Thus 7 is
st-€-definable in E wusing only Il € E, and k as parameters. 4

Choice in the k-size version and Dependent Choice follow from the
same HST axioms and the closure property. -

Power set. We first prove that an arbitrary standard S has the power
set P(S5) in H.. Then the result will be expanded to the general case.

Thuslet § € S. Theorem 2.2 (item 4) implies the existence of a standard
set P such that all subsets of § in E. belong to the collection |P|, =
{Cp : p € PN 1,}. We assert that every set X € H,, X C 5, satisfies
X =C, in H, for some p € PNl,; this is enough to get the power set of
S in H, by the already proved axioms of Separation and Collection.

Let X = F[T]e H,, (T,F)e H,, X CS§ in H,. We observe that
the set C = {z € §NI,: bz be (T, F)} belongs to E, by propositions 3.3
and 3.5. It follows that C' = C, for some pe PnNl,.

On the other hand, one easily proves that X NH, = C by the definition
of Bz and the choice of the formula Ye .

We now consider the general case. It suffices to prove that every set is a
functional image of a standard set in H, .

To prove this proposition, let (T,F) € H,, X = F[T] € H,. We
may assume that X contains noninternal elements in H, (otherwise apply
Lemma 3.11). Then T # {A}. In this case, the set MinT = {a: (a) € T}
is nonempty. Since Min7T C 1 by definition, Lemma 3.11 gives a standard
set S such that A= MinT C S. The function f defined on § by

Fr({a)) when a € MinT

a fixed element zg € X  otherwise

-

maps S onto X in Hy, as required. ( f belongs to H! by the already
proved axioms, in particular Separation.) -

This ends the proof of the theorem. |
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4. Standard size partial external universes

One can prove easily that although some amount of Choice is available in
the universes H, by Theorem 3.10 (item 3), the general form of Choice does
not hold in H,; for example N, the (standard) set of all natural numbers
in the sense of 1 or S, cannot be wellordered even in H, the ground HST
universe. (Take notice that N C I, since & is infinite, therefore N belongs
to H, with all its elements.)

It is the aim of this section to show that one can provide the full Choice in
an external subuniverse, keeping the Power set axiom and the other items of
Theorem 3.10, in particular the standard s-size Saturation, only at the cost
of BI. in the internal subuniverse — but preserving Internal Saturation
IS, which is weaker in the k-restricted case.

A different system of external subuniverses H/ will be defined so that
every set has standard size in H/. This is quite sufficient to get the Power
set and Choice axioms in HY .

The construction is based on two principal ideas: first we define the
ground internal subuniverse I, as an ultrapower of the standard universe,
but actually the ultrapower turns out to be an inner class in H because
HST provides a sufficient amount of Saturation to obtain ultraproducts as
inner classes; second, taking care that only standard size sets belong to H/,
we use only trees T of “standard size” branching in the operation F[T] to
obtain the required external “envelope” of I/, .

Let, as above, H, I, S denote the ground HST universe and its sub-
universes of internal and standard sets respectively, and & be a standard
infinite cardinal.

4.1. Standard size internal subuniverse

The construction of the new system of internal subuniverses is not so straight-
forward as the definition of I, in Section 2. The idea resembles the one used
in the proof of Theorem 2.4 in [12] (every model of ZFC is the standard part
of a model of BST ). We shall proceed the same way as if a & -saturated
enlargement of a ZFC universe were being constructed.

We argue in | n this subsection.
Let us recall several definitions from [12}, Section 2.

Let C be an arbitrary set. We put Cfin = Pg,(C). A nonprincipal
ultrafilter U C P(Cin) = {I: I C Ci*} is C-adequate iff it contains all sets
I(C,i) = {i € Cim 1 4g C i}, where ig € Cfn, If in this case D C C then
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wedefine U D={ulD:uecU}, where u| D={inND:i€u} forany
w C Cfin, Then U | D is a D-adequate ultrafilter.

There are two useful operations over ultrafilters.

Operation 1. Let U and U’ be a C-adequate and a C’-adequate
ultrafilter respectively. Suppose that C N C! = . We put

UsU' ={wC(CuCH™:Uil'i (iui cw)}.

(Ui ¢(i) means: {i€l:¢(i)} € U, whenever U is an ultrafilter over a set
I. Here I = Cfin for the quantifier U7 and I' = C'™ for the quantifier
U'd.) Then W =U=x*U' is a (C UC’)-adequate ultrafilter, W | C = U,
W C'=U', and Wj &) is equivalent to Ui U'¢' ¢(zU ). -i

Operation 2. Assume that A is a limit ordinal, U, is a C,-adequate
ultrafilter for all o < A, Co C Cp and U, = Ug | C,, whenever o < .
Let Cy = UacrCo- Then there exists a Cy-adequate ultrafilter U, such
that U, = Uy | C, for all ordinals a < A. o

Let = = kt; thus £ € S and it is truein | and $§ that Z is the
least cardinal greater than k. There exists a (unique) standard increasing
sequence (2o : @ < EZ) of ordinals Q, < = such that each set D, =
Qot1 \ Q, has order type k and Q) = limyey Q4 for limit ordinals A .

Operations 1 and 2 allow to define a standard (by Transfer) =-adequate
ultrafilter U C P(Zfin) such that Uyyy1 = U® % Uy, where U, = U | Q,
and U* =U { D, — for all «. Such an ultrafilter is fixed for the sequel.
We put I, = 0, = {i C Q, : ¢ finite} and

Fao ={f: [ is a function defined on I, with arbitrary values}

for all @ < E, and F = Uyez Fa, I = Iz = Efin Take notice that if
f € F is standard then f € F, for a standard o < = by Transfer.

By Bounded Idealization BI there exists i € I which belongs to every
standard set u € U. (So i belongs to the monad of U .) We fix i and put

Jo = {f[i] : f € F, is standard} and I, =Jez = Uscs Jas

where f[i] = f(iNQ,) for f € Fo. Thus I, is a st-€-definable class in
I, the ground BST universe.

The following theorem shows that the universe I, = (I/; =, €, st) has
properties rather similar to those of the universe 1, of Section 2, although
it models a somewhat weaker theory than 1. does. One more difference is
that 1/, is not uniquely defined; the definition depends on the choice of the
ultrafilter U and the particular element 1.
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THEOREM 4.1 I, contains all standard sets. Furthermore,

1. V. is an elementary submodel of 1 with respect to all €-formulas.

2. 1, satisfies BST., the theory containing all azioms of ZFC (in
the €-language), Transfer, Standardization, and the k-forms 1S, of
Internal Saturation and B, of Boundedness.®

3. If g €1l isa function defined on a standard set X, cardX < &
in S, and g(z) € V). for all standard z € X, then there exists a
function g¢' € V), such that g(z)= g'(z) for all standard z € X .

ProoF. The inclusion § C I}, is obvious.

1. We prove the property of being an elementary submodel. It suffices
to verify that every J,, o < E, is an elementary submodel of 1. The proof
proceeds by induction on the complexity of the involved €-formulas. The
step for 3 is the only one which needs a special consideration.

Thus let @®(z,y) be an €-formula (all free variables indicated), the or-
dinal o < E and f € F, be standard. Assume that 3z ®(z, f[i]) holds
in 1. The goal is to find z € J, satisfying ®(z, f[i]). One may assume
that 3z ®(z,y) holds in 1 for all y. (Otherwise replace ® by the formula
O(z,y) VIze=0 & ~32'®(z',y)].) By Transfer, Vi € I,z &(=z, f(3)) is
true in S, therefore there exists a standard function g € F, such that
®(g(1), f(2)) is truein | for all ¢ € I,. Take z = g[i] = g(iN Qy) .

2. Thus we have all of ZFC and Transfer in 1),. Standardization holds
in I/, since § C V.. We check B,. Let & € I/. There exist a standard
ordinal @ < Z and a standard function f € F, such that z = f[i]. Hence
z belongs to X = {f(¢):i € I}, astandard set of cardinality <« .

The continuation of the proof involves a Los-like lemma.

LeMMA 4.2 Let ¢(z1,...,2,) be an €-formula, fi,...fn € F and a<ZE
all be standard, and every fi belongs to some F,, o' = a'(k) < a. Then
the following is true in 1 :

e(filily s fali) — Ui@(fild), ., falil) — Uat @(filil; ..., fulil).

(Werecall that U ¢ 9([¢]) and Uyt 9(¢) mean that {¢ € I : 9p(inf,)} €U
and {7 € I, : ¥(¢)} € Uy respectively.)

9 This is weaker than BST, of item 2 of Theorem 2.2: BI,, the x-form of Bounded
Idealization is absent. In principle we expect a weaker version of BI by Proposition 1.2,
say BI, provided 2* < &, but it is not clear whether BI, itself holdsin [/ .
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Proor. Either theset X = {¢ € I : ¢(fi[t], ..., fa[¢])} or the comple-
ment X¢=I,\ X belong to U,. If X € U, then both the left—-hand and
the right-hand side are true, while in the case X° € U, both of them are
false. (Indeed, i =1NQ, € X°.) The expression in the middle is equivalent
to the right—hand one because U | (1, = Uy and all f; belong to F<, .B

We prove that IS, Internal Saturation in the case when the standard
set Ao satisfies card Ag < k in §, holdsin . One may assume that Ao
is equal to Dy = Qu41 \ Qo for a standard o < E, and all parameters in
the e-formula ®(z,a) belong to J,. Let, to simplify the notation, ®(z,a)
contain a single parameter p = f[i], where f € F, is standard. Thus ®
is ®(z,a,p), and IS takes the form

ving C D, dzVé e Ad(2,6,p) — Iz Vs e D, 8(z,6,p).

It suffices to prove the direction — . Assume that the left-hand side is
truein 1/. Then it holdsin I as well by the elementary submodel property.
(All standard sets belong to I, .) Therefore by Lemma 4.2 we have

vei*A € D, UyiJz V6 € A ®(a, 8, £(4))
in 1. Then U*¢'Uy,i3z V6 € ®(z,6, f(3)), so that, by the choice of U,
Uayr1j 3z V6 € A(G) @(2,6, f[5]),

where A € F,y1 is defined by A(j) = jND,. Let A= A[i] =in Dy,;
obviously A € I,. Again by Lemma 4.2, we obtain 32V é € A ®(x,6,p) in
I. Since I/, is an elementary submodel, such a set z existsin I/, .

It remains to verify that i contains all standard elements of D,. Let
6 € D, be standard. We observe that Uyy4qi (6 € i) because Uyyq is
Qu+1-adequate. Therefore § € i by Lemma 4.2.

3. We proveitem 3 of the theorem. Let S be a standard set of cardinality
k in § and g an internal function defined on S and satisfying g(z) € I/,
for all standard = € S. We have to find a function ¢’ € I/, which coincides
with ¢ on the standard elements of S .

Since = has cofinality > k, we have astandard ordinal o < = such that
for any standard z € S there exists a standard function f € F, such that
g(z) = f[i]. Using Standardization, we get a standard map H : § — F,
such that for every standard z € § the function h, = H(z) € F, satisfies
g(z) = hg[i]. Let, for i € I,, f; be a function defined on S by fi(z) =
hy(i). Then F(i) = f; is a standard function in F,. Let g’ = F[i}; thus
g' € 1. Then ¢'(z) = F[i](z) = hz[i] = g(z) for all standard z€ 5. =
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4.2, Standard size partially saturated external universe

The class 1/, will be the internal base for an external subuniverse of H.
This is close to the approach of Section 3. However there is an essential
difference: we use the “standard size” version of Definition 3.1 to assemble
sets rather than the E.-definable version applied in the previous section.
Fortunately this makes the construction essentially easier.

We argue in the HST universe H in this subsection.

To keep extensionality, a definition similar to Definition 3.6 is necessary.

DEerINITION 4.3 1. Let (T, F)e H. t€ T is a «-illegitimate point in T
if there exists I € I/, such that TNV, = Fr(t) #1.

2. H! is the collection of all (T, F) € H such that both T and F
are subsets of 1, and T does not contain k-illegitimate points.

3. H, = {F[T):(T,F)e H.}.

The treatment of H/ is quite similar to the development of H, in Section 3.
One detail differs: we have to guarantee that the trees obtained by this or
another transformation keep standard size rather than membership in E,,
which facilitates the reasoning a great deal.

The following lemma stands behind the technical treatment of H/.. Prov-
ing the lemma, we shall also see that the sets of standard size have power
sets, also of standard size, in HST, which will later reduce the verification
of the Power set axiom in H/ to a triviality. 1°

LEMMA 4.4 Let X C H),. Then X is a set of standard size.

ProOOF. Fact 1. We prove that at least each set X C I/, has standard
size. Indeed, by definition every z € X hasthe form z = f[i] for a standard
f€eF. By the HST Collection in H and Lemma 3.11 there exists a
standard set F' C F such that every z € X is equal to f[i] for a standard
function f € F. Thus X is an image of theset F = {f € F:st f}.

Fact 2. We prove (in HST ) that if Y is a set of standard size then
the (external) power set P(Y) exists and is also a set of standard size. It
suffices to consider the case when Y = °S and S is standard. Let P be
the “standard” power set of S, that is, the power set taken in the standard
universe §S. We put P’ = {°U : U € “P}. Thus P’ is a set of standard

1° This way of reasoning was suggested by the referce. Our original approach was more
cumbersome.
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size. Furthermore, by the HST Standardization P’ contains all subsets
of 2§ and only those sets, that is, P’ = P(°5) in H, as required.

We prove the lemma. Thus suppose that X C H/. By definition and
the HST Collection, there exists a standard set S such that every z € X
has the form F[T] for a wf pair (T, F) satisfying TUF C §' = SnI..
We observe that §’ is a set of standard size by Fact 1 and P(S5’) exists
and is a set of standard size by Fact 2. =

LEMMA 4.5 Let (T,F)e H! and t € T. Then Fr(t) € H, . If in addi-
tion Fr(t) is internal then Fr(t) € 1, .

Proor. The first assertion is quite obvious. We verify the additional
part. If ¢t € MaxT then Fr(t) = F(t) € I/, by definition. The wellfound-
edness assumption allows to use induction. Thus it suffices to prove the
following: every internal set X C I/ belongs to I/, .

By Lemma 4.4, X is a set of standard size. But, in HST an internal
set of standard size is necassarily a set of standard finite number of elements
by Saturation. Finally every subset of 1/ having a standard finite number
of elements belongs to I, by Theorem 4.1 (item 3). [

The following theorem shows that the system of subuniverses HJ) has
a certain advantage with respect to the universes H, of Section 3: full
Choice is achieved. But we should not forget a certain loss, too: first,
Bounded Idealization BI, in the internal subuniverse I, is missing, second
the subuniverses are no longer unique.

THEOREM 4.6 [HST ]| I, =1NH,. Hence IV, is the class of all formally
internal sets in H!, . In addition, the following azioms hold in H/; :

1. The azioms of Pair, Union, Extensionality, Infinity, together with Col-
lection, Separation, Replacement for st-€-formulas.

2. Extension in the form of item 4 in Subsection 1.8. for sets S satisfying
cardS <k in §.

3. Saturation for sets X of standard k-size, and the full Choice: every
set has standard size and is well-orderable.

4. Weak Regularity.
5. The ZFC Power set axiom.

Finally H’, satisfies the following closure property: if X C H!, then either
X € H, or there exists Y € I, suchthat X =Y NH, =Y NI, .
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ProoF. Lemma 4.5 proves the equality 1N H/, = I.. =

The closure property. Since X has standard size by Lemma 4.4, one
gets, using the HST standard size Choice, a standard set A and sequences
(T* :a € “A) and (F*:a € °A) such that X = {F%[T%] : e € A} and
(T*, F*) € H!, for all standard a € A. Let (T,F) € H be defined by

T={A}uU{e™t:a€c’A & teT*}

and F(at) = F(t) for t € MaxT?. We observe that X = F[T], and the
wif pair (T, F) meets all the requirements of the definition of (T, F) € H’,
except, perhaps, that A can be k-illegitimate. If A is not x-illegitimate
then (T, F) € H) and X = F[T] € H/, as required. Suppose that A is
k-illegitimate. Then by definition there exists ¥ € I', hence € H’, such
that X =Y N1, as required. =

K?

Extensionality. We argue as in the proof of Theorem 3.10. Assume that
(T,F) and {R,G) belong to HJ, and the sets X = F[T] and Y = G[R]
satisfy X NH), = Y N H); we prove X = Y. The case when neither of
the trees 7', R is equal to {A} is easy: then both X and Y are subsets
of H,. Let T = {A}, sothat X = F(A) e V.. If R = {A}, too, then
Y €1/ as well and the equality X =Y follows from the fact that I’ is an
elementary submodel of | by Theorem 4.1. Thus assume that R # {A}.
Then Y = X because A is not a k-illegitimate point of R . =

Extension and Saturation. The standard k-size form of Extension
follows from the HST Extension and item 3 of Theorem 4.1. Using this,
one easily obtains the k-size form of Saturation in H/ from the Internal
Saturation IS, (truein I/, by Theorem 4.1). -

Routine axioms. We reduce the axioms of Pair, Infinity, Weak Regu-
larity, Union, Separation, Collection, and Replacement in H/, to the ground
HST universe using the closure property. u

Standard size and well-ordering. It follows from Lemma 4.4 and the
closure property that every set has standard size in H/. This suffices to
conclude that every set is well-orderable in H/,, and therefore H! satisfies
the full Choice. (Basically HJ still only satisfies the standard size Choice
— but all sets have standard size in H/, !) n

Power set. We simply use Fact 2 in the proof of Lemma 4.4 plus the
closure property. .

This ends the proof of the theorem. [ |
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REMARK. We observe that the Separation, Collection, and Replacement
schemata hold in H/, also in a form which does not presuppose that the
core formula is relativized to H/. For instance, it follows from the closure
property and Lemma 4.4 that for any X € H), and any st-€-formula ®(z)
which may contain arbitrary setsin H (not only in H/ ) as parameters, the
set Y ={z€ XnNH,:P(z) istruein H} belongs to H’ .

Thus, modulo the fact that the classes I, and H/, are not uniquely de-
fined, one can conclude that the system of subuniverses I}, and H/, models
the stratified theory SNST of Fletcher [4] in the upgraded form which in-
cludes k-size Saturation in the external subuniverses H/, rather than simply
k-size Internal Saturation IS, in the internal subuniverses I, .

5. Discussion

This section is written to explain, in brief, how the methods of the paper
can be used to model various forms of nonstandard reasoning on the base
of bounded set theory BST. It is not our intension here to give a practi-
cally useful introduction in this matter — this would need more space and
another style of writing than the frameworks of this paper allow. We rather
suggest an “intoduction to an introduction”, which intends to show how the
technique developed in the paper allows to realize the known patterns of
reasoning in nonstandard set universes with external sets given by Hrbacek
[6, 7] and Kawai [14], but still on the base of BST, a nonstandard set
theory of “internal” type similar to IST .

Let us take as an example some topics related to descriptive set theory
on hyperfinite sets: the Loeb measure and Borel sets. These topics do not
seem to be easily carried out in a theory which involves only internal sets,
like BST in its straightforward setting or IST .

Let us first review how these topics are usually handled via nonstandard
structures in the ZFC universe. 1! One considers subsets of a set S of
the form § = {1,2,3,..., H}, where H is a hyperfinite number in a fixed
nonstandard structure. Some of them are called internal — those presented
in the internal part of the superstructure.

If one is interested in Borel sets, one puts Il = ¥ = all internal
subsets of §. Then one runs the known definition:

! Diener and Reeb [3], Henson and Keisler [5), Hurd and Loeb [8], Keisler [15], Keisler,
Kunen, Miller, and Leth [16], Lindstrgm [17], Lutz and Goze [18], Luxemburg [19], Stroyan
and Bayod [24] are suggested as the basic references on the matter of “superstructural”
treatment of nonstandard analysis.
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¥4 = countable unions of sets in {J,<,IL,

II, = complements of sets in X,

for all countable ordinals «. If one is interested in Loeb measures, one pro-
ceeds the following way. Each internal set X C S has a certain (hyperfinite
or finite) number of elements #X < H. The hyperrational fraction

_#X

is called the counting measure of X. There exists a unique standard real
number z = uX, called the standard part of pX (and more often denoted
by st X, but this notation is here occupied by the standardness predicate),
such that z = pX. (a = b means that the difference ¢—b is infinitesimal.)
Ifaset Z C S (not necessarily internal) satisfies

sup{%uX : X € Z isinternal} = inf{%uX : Z C X C 5, X is internal}

then Z is called Loeb measurable, and the value determined by the displayed
formula is called the Loeb measure of X, in symbols Lu(X).

To run these constructions on the base of BST, we first of all consider
the HST enlargement H of the ground BST universe I, where | is the
subuniverse of all internal sets, as in [13]. Take notice that essentially H is
(isomorphic to) a st-€-definable structure in I; therefore all sorts of activity
related to H can be embedded down to | — in other words one does not
leave the framework of BST .

Then we have to choose, in 1, an infinite standard cardinal x, which
is the desired amount of saturation. Let us put, for instance, k¥ = 22°°, the
cardinality of the hypercontinuum.

At this point the construction splits into two directions.

One may choose the natural system of subuniverses, described in sections
2 and 3. Then the choice of k also guarantees that every internal set X
of subsets of N belongs to 1., just because X € P(P(N)), which is a
standard set of cardinality x. All internal real numbers and all internal sets
of real numbers also belong to .. (If we need to guarantee more internal
sets not to be missed, or more Saturation, we can increase K as desired.)

Then one begins to arguein H,, asubuniverse of H defined in Section 3.
This class satisfies the axioms indicated in Theorem 3.10, in particular, the
Power set axiom. Therefore, the external power set P = Pey(N) exists in
Hi. ( Pext is the usual power set defined in H,; we adjoin the subscript
ext to make a distinction from the internal power P(N) defined in 1.)
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From the point of view of I, P contains all internal subsets of N, and a
suitable part of st-€-definable subclasses of N, namely, those which can be
defined in | by st-€-formulas having only setsin 1, = INH, as parameters
(but no restriction on the type of formulas involved is imposed).

Alternatively, one may choose the standard size system of subuniverses,
described in Section 4. Then one begins to argue in H/, a subuniverse
satisfying Theorem 4.6, in particular, the Power set and Choice axioms. But
in this case, not all internal natural numbers belong to 1/, = H' N1I.

In both the natural and the standard size cases, one has the standard
k-size Saturation in the chosen subuniverse, either H, or H/. Take notice
that, due to a 1 — 1 correspondence between the standard cardinals and
the cardinals in the sense of H described in [13], the saturation property
is in fact Saturation for the families (of internal sets) having cardinality
less than the & th infinite ZFC-cardinal in H. In addition, one has all
of ZFC in the subuniverse with the exception of Choice for the natural
subuniverse (but Choice for standard size families is secured) and Regularity
(but regularity over the internal subuniverse is secured) — which is quite
sufficient to develop things like Loeb measures or Borel sets.

Let us see how one proceeds with this matter practically.

Arguing in the chosen subuniverse, one picks up a nonstandard (= hy-
perfinite) natural number H and then freely runs the definitions of the
Borel hierarchy, starting from internal subsets of the set § = {1,2,...,H}
and the Loeb measure, because the tools which theorems 3.10 and 4.6 prove
to be available in the subuniverses H, are strong enough to conduct these
constructions exactly as they are carried out in the usual setting.

Perhaps one detail, related to the Standardization axiom, is worth to be
especially indicated. One may ask why the sup and inf in the definition of
the Loeb measure do exist. Thus the problem is how to prove in HST that
every nonempty set X of standard real numbers, bounded by a standard
real from above, has a standard supremumn.

First of all, let us agree that the equality @’ = supX (where z is a
standard real while X a nonempty set of standard reals) will be understood
in HST sothat z < 2’ forall z € X and no smaller standard real z" < z’
satisfies the same property with respect to X .

To prove the assertion, let, by Standardization, Y be a standard set of
reals such that Y NS = X NS — thatis, simply X =7Y =Y NS in this
case. The standard set Y has the supremum y = supY € § in § since
§ is a ZFC universe. One easily proves that y = sup X in the external
universe because X = %Y .
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