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P r e f a c e  

This  paper  accomplishes the series of three articles on set theoret ic  founda- 
t ions of nons tanda rd  mathemat ics  in this Journal .  

The  first article [12] in t roduced bounded set theory B S T ,  a modif icat ion 
of Nelson's internal  set theory I S T ,  which, similarly to I S T ,  is a theory in 
the  st-E-language 1 , containing all of Z F C  (Separat ion and Replacement  
formula ted  in the E-language), together  with the Transfer and Standardiza-  
t ion axioms of I S T ,  an Idealization somewhat  weaker than  the one of I S T ,  
and an axiom which postulates  tha t  every set is a member  of a s t anda rd  set 
( incompatible  with I S T  ). 

It is an essential advantage of B S T  in comparison to I S T  tha t  it 
implies several useful theorems impossible or unknown for I S T  in such 
a general form. In part icular  B S T  provides a un i form description of all 
bounded definable classes (i. e. st-E-definable subclasses of sets - -  they  are 
not  necessarily sets in B S T  since Separat ion is available in B S T  only in 
the  E-language) - -  see Subsection 1.1. This description (or parametrization), 
in t roduced  in [13], the second article in the series, allows to extend the  uni- 
verse I of B S T  to the universe E = E(I) of all definable bounded  classes 
in I, so tha t  E models a reasonable nons tandard  theory of "external" type  
(in part icular ,  Separat ion for all st-E-formulas holds in E ). It was named  
E E S T ,  elementary external set theory (see below). 

Unfor tunate ly  non- in te rna l  sets cannot  be elements of other  sets in F; 
therefore E is e. g. not  closed under  pairing, which is a serious inconve- 
nience. However E admits  a further  extension. We demons t r a t ed  in [13] 
tha t  the  known construct ion of "assembling" sets along well-founded trees 
leads to a wider universe H = H(E) which models an "external" theory  
more  advanced than  E E S T  - -  we called it H S T ,  Hrbadek set theory, 
since it is equal, modulo  some details, to a theory in t roduced  in [6]. Note  
tha t  H S T  is a quite convenient nons tandard  set theory; it contains Satura-  
t ion, as well as all of Z F C  (in particular,  the Separat ion and Replacement  
schemata  in the st-E-language) with the exception of the  Power set, Choice, 
and  Regular i ty  axioms. 

In fact some amoun t  of Choice (s tandard  size Choice) and Regular i ty  
(Regular i ty  over the internal  subuniverse I ) is provided in H S T ,  but  the  
Power  set axiom straightforwardly contradicts  Satura t ion  plus Replacement .  
This  can be considered as a serious defect of H S T .  

1 The language which has the membership E and the standardness st as the atomic 
predicates. 
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The main goal of this paper is to show how to save the Power set axiom 
in this line of reasoning. We shall see that  H S T  is strong enough to define, 
given an infinite s tandard cardinal n, an inner universe H~ (sections 2 and 
3) which models a n-version of H S T  (Saturation somehow restricted by 

) plus the Power set axiom, and another inner subuniverse H~ (Section 4) 
which models a slightly weaker n-version of H S T  plus the Power set axiom 
and the full axiom of Choice. 

It will be demonstrated at the end of the paper how these technical ar- 
rangements  can be used for a practical development of nonstandard analysis. 

1. R e v i e w  of n o n s t a n d a r d  set  theor ies  

To make the exposition more or less self-contained, we give a brief review 
of the nonstandard theories considered in the paper. 

1 .1 .  B o u n d e d  s e t  t h e o r y  

Bounded set theory B S T  is a theory in the st-E-language which includes 
all of Z F C  (in the E-language) together with the following axioms: 

Bounded Idealization BI  : 

vstfmA 3 x E X ~/a E A r  a) ( , 3 x E X VSta ~ (x ,a )  ; 

Standardization S : v s t x  3sty Vstx [x e Y , ) x E X ~: r  

Transfer T :  3x  Cb(x) ~ 3s tx  r  

Boundedness B :  V x 3~tX (x e X ) .  

The formula �9 must  be an E-formula in BI  and T,  and ~ may contain 
only s tandard sets as parameters in T,  but ~ can be any st-E-formula in 
S and contain arbitrary parameters in BI  and S. The quantifiers 3 st and 
V ~t have obvious meaning: there exists standard, for all standard. VstfmA 
means: for all standard finite A .  X is a standard set in B I .  

Thus B I  is weaker than the Idealization I of internal set theory I S T  
of Nelson [21] ( I results by replacing in BI  the set X by the universe of 
all sets), but the Boundedness axiom B is added. 

It occurs that  B I  is equivalent in Z F C  + B + T to the following axiom 
of Internal Saturation: 

I S :  V s t f m A C _ A 0 3 x V a E A r  ~ ~ q x W t a e A 0 ~ ( x , a ) ,  
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where A0 is a standard set and �9 an E-formula ([12], Lemma 1.3). 

It is the key point in our development of external sets on the base of B S T  
that,  by Theorem 2.2 in [13], definable bounded classes (i. e. st-E-definable 
subclasses of sets) have in BST the following regular form: 

Cp = UaeaA ["]beo-S y(a,b), where p = (A,B,y) ,  A and B are standard 
sets, ~/ being a function defined on A • B ,  

and ~ S = { s E S : s t s )  for any set S . 2  

This result is an easy consequence of Theorem 1.5 in [12] (which asserts 
that every st-E-formula is provably equivalent in B S T  to a E~t formula 3 ), 
and the following lemma, which allows to restrict the two principal quanti- 
tiers in a E~t formula by standard sets. 

LEMMA 1.1 (Lemma 1.7 in [12]) [ B S T  ] 

Let ~(a ,b ,x )  be an E-formula, X a standard set, a = cardX.  There 
exist standard sets A and B of cardinality <_ 2 2~ such that for  all x E X ,  
3StaVStb ~p(a,b,x) < > 

, > 3Sta E A VStb 9(a ,b ,x)  < ) 3Sta E A V~tb E B qa(a,b,x). 

The proof of this lemma in [12] contained an incorrect argument 4.  We give 
here a corrected proof. 

PROOF. 

X[a,b] 

xN 

We define, for all a and b, 

x[] 

= {x E x : v (a ,b ,x) )  c x ;  

= { X [ a ,  b]: b is an arbitrary set} C_ ~o(X); 

= { X [ a ] : a  is an arbitrary set} C_ P2(X) .  

and 

Thus the set X[]  has cardinality at most A = 2 2" while every set X[a] has 
cardinality at most 2 ". Using the ZFC Collection and Choice, and then 
Transfer, we obtain standard sets A and B, of cardinality < 2 2~ each, 
such that Va' 3a  e A (X[a] = X[a']), and Vb' 3b e B (X[a,b] = X[a,b']) 
for any a E A. We assert that A and B are as required. 

Let (1), (2), (3) denote the parts of the equivalence of the lemma from 
left to right. It is clear that (2) implies both (1) and (3).  

2 The definitions of Cp and ~S will be frequently used and very important  in the 
remMnder of the paper. 

3 We recall that E~t2 denotes the class of all formulas 3StaVStb (E-formula). 
4 The wrong part was inserted by the authors into the final text of [12] after the paper 

had been refereed and accepted. 
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To prove (1) ~ (2), let a s tandard  set a satisfy VStb ~(a,b,x) .  
By the  choice of A and Transfer,  X[a] = X[aq for a s tandard  a' E A. It  
is asser ted t ha t  ~ (a  ~, U, x) is t rue for every s tandard  b ~. We observe tha t  
X[a', bq is a s t andard  member  of the set X[a] = X[a'],  therefore by Transfer  
X[a', b'] = X[a, b] for a suitable s tandard  b. Then  ~(a ,  b, x) holds by the  
choice of a, so x E X[a,b] = X[a',bq, and T(a',b' ,z) ,  as required. 

To prove (3) ~ (2), let a s tandard  a E A satisfy VStb E B T(a,  b, x). 
We assert t ha t  ~(a ,  b', x) is t rue for every s tandard  b'. Notice tha t  X[a, bq 
is a s t anda rd  m e m b e r  of X[a], therefore Z[a, U] = X[a, b] for a s t andard  
b E B by Transfer  and the  choice of B. Then we have T(a, b, x) by the  
choice of a, so x E X[a,b] = X[a, bq, and finally ~p(a,b',x) . �9 

Let ~ be a s t andard  cardinal, i. e. n E $  and it is t rue in $ (or in I, 
which is equivalent by Transfer) tha t  n is a cardinal. The  following weaker 
versions of some of the  B S T  axioms will be of special interest:  

B i n  - Bounded  Idealization B I  in the case when card X _< ~ in $ ; 

IS~ - Internal  Satura t ion IS in the case when card A0 _< ~ in $ ; 

B~ - Boundedness:  Vx 3stX (x E X & c a r d X  <_ ~ in $ ) .  

Obviously B i n  and ISn are weaker than  resp. B I  and IS,  but  Bn is 
s t ronger  t h a n  B .  

PROPOSITION 1.2 In the theory Z F C  + T + Bn,  B in  implies ISn while 
IS2~ implies BI,~.  

PROOF. The  result can be obtained by a s traightforward evaluation of 
cardinalities in the proof  of Lemma  1.3 in [12] ( the one which proves tha t  
the  unres t r ic ted  forms of IS and B I  are equivalent to each other) .  �9 

1 . 2 .  E l e m e n t a r y  e x t e r n a l  s e t  t h e o r y  

This theory was in t roduced  in [13] to describe the "world" of all definable 
bounded  classes over a universe of B S T .  

Let int x (" x is internal")  be the s t -e-formula 3Sty (x e y) (saying: x 
belongs to a s t andard  set). Thus  the Boundedness a~iom of B S T  postulates  
t ha t  all sets x satisfy int x ("are internal").  This is not t rue in E E S T ,  
a l though still only internal  sets can be elements of other  sets. 

The  Elementary external set theory E E S T  has the following list of 
axioms: 



298 V. Kanovei, M. Reeken 

1. VStx (int x) : all s tandard sets are internal; 

Vintx V y E x (int y) : transitivity of the internal subuniverse; 

Standardization: VX 3sty VStx (x E Y ~ ~ x E X ) .  

2. B S T  int : all axioms of B S T  relativized to the formula int ; 

3. Extensionali ty and the Z F C  Separation for all st-E-formulas; 

4. The Parametr iza t ion axiom: V C 3intp (C = gp) �9 

The last axiom may  be seen as a quite artificial s ta tement ,  but  actually it 
postulates tha t  all sets are bounded definable classes from the point of view 
of the internal universe. Usually one cannot express s ta tements  of this kind 
legitimately; it is a very special property  of bounded set theory B S T  that  
an indirect formulation (via classes gp ) is available. 

1 .3 .  H r b a ~ e k  s e t  t h e o r y  

Hrba~ek set theory H S T  is also a theory in the st-E-language, admit t ing 
non- in te rna l  sets, but  in essential ways more powerful than  B S T .  It relates 
to E E S T  in the same way as Z F C  minus the Power set axiom relates to 
a second order Peano arithmetic. More exactly, H S T  includes: 

1. and 2. The same as items 1 and 2 of E E S T  above. 

3. The Z F C  Pair, Union, Extensionality, Infinity axioms, together  with 
Separation, Collection, Replacement for all st-E-formulas. 

4. Extension: assume that  S is a s tandard set and F a is function 
defined on the set aS = {x E S : st x ) ,  and F ( x )  contains internal  
elements for all x E aS; then there exists an internal function f de- 
fined on S and satisfying f (x)  E F(x) for every x E ~S. 

5. Saturation: if X is a set of s tandard size such that  every x E X is in- 
ternal  and the intersection [7 X ~ is nonempty  for any finite nonempty  
X ~ C X,  then [7 X is nonempty.  

6. Choice in the case when the domain X of the choice function is a set 
of s tandard size (standard size Choice), and Dependent  Choice. 

7. Weak regularity: if a nonempty  set X contains only noninternal  ele- 
ments  then there exists x E X  such that  x N X = ~ .  

We recall that ,  in "externM" theories, sets of standard size are those of the 
form { f ( x )  : x E ~X}, where X is s tandard and f any function, but,  in 
H S T ,  "s tandard s i z e " =  "wellorderable", see [13]. 
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2. N a t u r a l  p a r t i a l l y  s a t u r a t e d  i n t e r n a l  u n i v e r s e s  

HrbaSek proved in [6] tha t  the Power set axiom fails in (a p ro to type  of) 
H S T ,  because external  subsets of an internal  set which has more  than  a 
s t andard  finite n u m b e r  of elements,  are too numerous  to be a "set-size" 
collection. Thus  the  only way to define, in H S T ,  external  subuniverses 
satisfying the  Power set axiom is to reduce the mul t i tude  of external  sets. 

This  section outlines one of the two available approaches how such a 
reduct ion  can be achieved. It will be the key fact (Theorem 2.2 - i tem 4) 
tha t ,  given a s t andard  set S and a s tandard  cardinal a, the  family of all 
subsets of S of the  form Cp = [.J~e~A NbeaB y(a, b), where p = (A, B, y) 
belongs to  a s t andard  set of cardinality _< a, is a "set-size" collection. 
Thus  one has to  find an external  subuniverse which does not  contain sets of 
in ternal  sets o ther  then  those of the ment ioned form. Following this idea, we 
in t roduce,  in the  next  section, an external subuniverse (the universe H~ ) 
satisfying a suitable a-form of H S T  plus the Power set axiom at the cost 
of a a-restr ict ion imposed on the "s tandard  size" parts  of H S T .  

The  first step is to define the relevant internal subuniverse I~ ___ I, which 
then  will be the  in ternal  par t  of H~. This is the aim of this section. 

We argue in H S T  in this section; thus let H, I, S denote the ground 
H S T  universe and the classes of all internal  and s tandard  sets respectively. 
Let a be a fixed s t andard  infinite cardinal, tha t  is, a s t andard  set which is 
an infinite cardinal in the  sense of I or $, which is equivalent by Transfer.  

DEFINITION 2.1 I~ = {x : 3 s t x  (x E X ~ c a r d X  < a in 
of all in ternal  sets of order a, in t roduced in [9] ~ 

$)},  the class 

Take notice tha t  |~ is not  a transit ive subclass of I. However Theorem 2.2 
( i tem 1) implies tha t  every nonempty  X E I~ contains an element in I . .  

THEOREM 2.2 [ H S T  ] ix contains all standard sets. Furthermore, 

I. I~ is an elementary submodel of ] with respect to all E-formulas. 
Moreover, if a set x E i is st-E-definable in ] using sets in 1~ as 
parameters then x E Ix.  

2. I~ satisfies B S T ~ ,  the theory containing all axioms of Z F C  (in the 
E-language), Transfer, Standardization, and the to-forms Bin ,  IS~, 
B~ of Bounded Idealization, Internal Saturation, and Boundedness. 

5 In  the  par t icular  case t~ = R0, these sets were int roduced by Luxemburg  [20] under 
the  name  of t r -quasis tandard objects.  The  general definition was first given in a nonpub-  
lished version of Hrba~ek [7]. - -  Pointed out by the re]eree. 
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3. I f  f e I is a funct ion defined on a standard set X ,  c a r d X < a  in 
$, and f ( x )  e In for all standard x e X ,  then there exists a func t ion  
f '  e Ix such that f ( x )  = f ' ( x )  for  all standard x e X . 

4. For any standard X there exists standard P such that every set 
C C X definable (as a class) in I by a s t -e- formula having only 
elements of  In as parameters, is equal to some Cp, p e P gl gn �9 6 

PROOF. 1. If x is s tandard  then X = {x )  is s tandard ,  too; thus  
5 _C In. Let r be an e- formula  having a set P0 e In as a paramete r .  
We prove tha t ,  in I, 3 x ~ ( x , p o )  ~ 3 x e  I n r  Let p0 e P, 
where P is s tandard ,  card P _< tr in $. By the  Z F C  Collection in I, 
there  exists a set X e I of cardinality _< ~ such tha t  

V p e P [ 3 x r  ~ 3 x e X r  

in I. By Transfer there is a standard X of this kind. We pu t  p = p0 �9 

To prove the "moreover" assertion, let x e I be the unique set sat- 
isfying �9 (x) in I, where (I) is a s t -e- formula  with parameters  in |n. 
One m a y  assume, by Theorem 1.5 in [12], t ha t  ~ is a z~t formula,  say 
3Sta VStb ~o(x, a,  b), where ~ is an e-formula.  Following Nelson [21], we 
observe tha t  there exists a s tandard  a such tha t  x is the  unique set satis- 
fying VStb ~o(x,a,b), tha t  is, V~ [VStb ~o(~,a,b) ~ ~ ~ = x ] ,  in i. Using 
BI ,  we find a s tandard  finite set B such tha t ,  in I ,  

V [VbeB ((,a,b) (=x].  

On the other  hand,  all elements of a s tandard  finite set are s tandard;  hence 
the implicat ion can be replaced by the equivalence in the displayed formula.  
We conclude tha t  x is definable in ! by an E-formula with paramete rs  in 
In. This implies x E |n by the already proved e lementary  equivalence. 

2. Therefore In is a model  of Z F C  satisfying Transfer.  S tandardiza t ion  
holds since $ C_ |n. Bounded Idealization B in  holds in In because B I  
holds in ] and every s tandard  set X of cardinali ty < ~ in S retains 
all elements in Ix. Boundedness Bn holds by definition. Finally In ternal  
Sa tura t ion  IS,, is a consequence of BI~ by Proposi t ion 1.2. 

3. We argue in I .  Since f ( x )  E In for all x e ~ X = { x e X : s t x ) ,  we 
obtain,  using a known consequence of Standardizat ion,  a s t anda rd  funct ion 
F defined on Z and such tha t  f ( x )  e F(x )  and card F(x )  <_ ~ for every 

Since the class I of all internal sets is transitive in H S T ,  the definition of Cp (see 
Subsection 1.1.)retains its "internal" sense. 
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s tandard  x E X. By Transfer, ca rdF(x)_<  ~ holds for all x E X, therefore 
R = (.Jzex F(x)  is a s tandard set of cardinality < a. Fur thermore  f ( x )  E 
R for all s tandard  x E X. Let X ~ C_ X be a finite set containing all 
s tandard  elements of X and satisfying f (x )  E R for all x E X I. Then 
the  restriction g = f [ X ~ belongs to the s tandard set G of all functions 
mapping a finite subset of X to R .  Therefore g E I~ since card G < Jr 
It remains to extend,  in I~, g to a function f l  defined on X .  

4. We argue in I .  Let C =  {x E X : ~ ( x ,  q0)}, where qo E Q, Q a 

s tandard  set of cardinality < a. Let 0 = m a x { c a r d X ,  a}, A = 22e, and 
P = {(A,A,r/) :~/ maps A •  onto 7~(X)}.  We prove that  C = Cp for 
some p E P f 3 1 ~ .  

One can assume, by Theorem 1.5 of [12], that  q~(x, q) has the form 
3Sta VStb ~(x,a,b,q) ,  where ~2 is an E-formula. By Lemma 1.1, there exist 
s tandard  sets A ,  B of cardinality _ A, satisfying 

q~(z, q) ( ) 3Sta e A VStb e B 90(x,a, b,q) - for all x E X and q E Q .  

Let f and g be s tandard maps from A onto A and B respectively. We 
define ~l(a, fl) = {x E X :  ~(x, f(a),g(fl),qo)} for all a ,  fl < A, and then 
p = ( A , A , ~ ) ,  thus C v = { x E X : r  q 0 ) } = C  and p E P .  

We verify tha t  p E I~. Since A is standard,  it suffices to prove tha t  
r /E  I~. To see this, we note that  ~/ belongs to the set H =  {7/q : q E  Q}, 
where each 7/q is a function defined on A • A by 

yq(a,~) = {x E X :  ~(x , f (a) ,g( f l ) ,q )} .  

However H is a s tandard set (because X, )t, f ,  g are s tandard)  of cardi- 
nali ty not greater  than  cardQ,  that  is, < ~ .  �9 

We conclude this section with a useful additional property of I~. 

LEMMA 2.3 Let I E ]~. I f  X = I f3 |~ is a set of standard size then 
I C I~ and I is a set of a standard finite number of elements. 

PROOF. Let, in I~, f be a function mapping an ordinal a = {7 : 
7 < a}  bijectively on I .  This property of f is then also true in I by 
Theorem 2.2. Then  a is a s tandard natural  number.  (Otherwise there 
exists a nonstandard natura l  number  n < a. Since every k < n belongs 
to ]~, the set R = { f (k )  : k < n} is a su bse t  of I M l ~  having exactly 
n elements. Thus W = {k : k < n} is a set of s tandard size in ], a 
contradict ion with B I  .) 

So I has a s tandard  finite number  n of elements. It follows easily from 
Theorem 2.2 ( i tem 1) that  f (k )  E I~ for all k < n, hence I C_ I~. �9 
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3. N a t u r a l  p a r t i a l l y  s a t u r a t e d  e x t e r n a l  u n i v e r s e s  

We argue in H S T  in this section. As above, H, l, $ denote the ground 
H S T  universe and the classes of all internal and standard sets respectively. 

Let ~ E $ be an infinite cardinal in the sense of $ or I . 

The plan is to define an external partially saturated "envelope" H. over 
the class I., which models a corresponding a-fragment of H S T .  This class 
will consist of those sets in the basic H S T  universe H which one obtains 
using a known cumulative construction of assembling sets along well-founded 
trees definable in I.. Item 4 of Theorem 2.2 will imply the Power set axiom 
in H~ because all subsets Y E H~ of a standard set X have the form Cp, 
p E P, for a certain standard set P (depending on X ). 

3.1. Assembling sets along well-founded trees 

Let Seq denote the class of all internal sequences, of arbitrary (internal) 
sets, of standard finite length. For t E Seq and every set a, t ^a  is the 
sequence in Seq obtained by adjoining a as the rightmost additional term 
to t. The notation a^t  is to be understood correspondingly. A is the 
empty sequence. The formula t t _C t means that the sequence t E Seq 
extends t ~ E Seq (perhaps t I = t in this case). 

A tree is a nonempty (possibly external) set T C Seq such that,  when- 
ever t ~ , t E S e q  satisfy t I _ t ,  then t E T  implies t ~ET.  Thus every tree 
contains A.  MaxT is the set of all C-maximal in T elements t E T .  

A tree T is well-founded (wf tree, in brief) if and only if every no^empty 
(possibly external) set T ~ C T contains a C-maximal element. 

DEFINITION 3.1 Let a wfpair  be any pair (T,F)  such that T is a wf 
tree and F is a function defined on MaxT. In this case, the family of sets 
FT(t), t E T, is defined as follows: 

1) if t E MaxT then FT(t) = F(t) ; 

2) if t E T \ M a x T  then F T ( t ) = { F T ( t ^ a ) : t ^ a E T } .  

We finally set F[T] = FT(A). 

Let, for example, T = {A) and F(A) = x. Then F[T] = FT(A) = x .  

Since H S T  contains Replacement, Definition 3.1 works well directly; 
thus for every ( T , F ) E  ~ the function FT is uniquely defined on T and 
the final set FIT] = FT(A) is also well defined. 
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3.2. Class of e l ementary  external  sets 

In particular we shall be interested to study the construction of Definition 3.1 
from the point of view of the class F = {Cp : p �9 I}, of all elementary 
external sets. It is shown in [13] that  F models E E S T ,  elementary external 
set theory, described in Subsection 1.2. above. 

We observe that  ~ C E  and every set X � 9  satisfies XC_ i .  

Let 7-/ denote the class of all wf pairs (T, F) such that  T, F �9 F . 

LEMMA 3.2 Let T E E be a w f  tree in the sense of E. Then T is a wf 
tree in the sense of H, too. Hence the class ~ is st-E-definable in [: as 
a subclass of [= • [= . 

PROOF. Since F models Separation, the wellfoundedness of T in F 
allows to define, in F, a standard ordinal p(t) for all t �9 T by the 
scheme: p(t) = 0 for t e MaxT,  and p(t) = Ssup{p( t^a)  : t ^a  �9 T}  
for t r MaxT,  where, for a set O of standard ordinals, Ssup O denotes 
the least s tandard ordinal bigger than all ordinals in O. (The Collection 
and Standardization axioms of H S T  prove that  p(t) is defined correctly 
for t r M a x T  .) 

The existence of the function p proves the wellfoundedness of T ill H 
as well because by the H S T  Standardization the class of standard ordinals 
is well-founded in H.  �9 

Since F contains only those sets which have internal elements exclu- 
sively, for a wf pair (T, F) �9 7"/ the set FIT] can be not a member of F. 
However, one can determine, in E, when FIT] �9 G[R], or F[T] = G[R], 
forg iven  wfpai rs  (T,F)  and ( R , G ) i n  7-/. 

PKOPOSITION 3.3 There exist 4-ary st-E-predicates h= 
nary st-E-predicate hst 

and hE and a bi- 
such that the following holds for all wf pairs (T, F) 

and (R,G) in 7-l : 

FIT] = G[R] iZ it is true in F that (T, F) L__ (R, G) ; 

FIT] �9 GIRl iff it is true in F that (T, F) hE (R, G}; 

st FIT] iff it is true in F that hst (T, F ) .  

PROOF. Let us first distinguish the case when FT(t) takes an internal 
value. We set idF(T)  = {t E T :  FT(t) is internal} whenever (T, F)  E 7-/ 
(the domain of internal definability); for instance, M a x T  C i d F ( T ) .  
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LEMMA 3.4 If  (T, F) E 7-/ then the se t  idF(T) and the restriction FT I 
i dF(T)  belong to E.  

PROOF. 
an internal set f ( t )  for t E T by the scheme: 

1) f ( t ) =  F(t) for t E M a x T ;  

2) if t E T \ M a x T  and the set Xt = {f( tna)  : t^a E T} 
then we put  F ( t ) = X t ;  

3) if Xt is not internal then the values f(t ') ,  t' C_ t, are not defined. 

It follows that  d o m f  = idF(T)  E E and f = FT ~ i dF(T)  belong to 
by the E E S T  Separation, true in E .  

As is the proof of Lemma 3.2, one conducts the definition of 

is internal 

E 

To continue the proof of the proposition, let us associate, with each pair 
of wf pairs (T,F) and (R,G}, a function E = ETF, RG E E mapping 
T x  R into 2 = {0,1}. The values E(t,r)  ( t  E T and r E R ) are defined 
by the same type of induction in E, as follows. 

(i) If t E idF(T)  and r E idG(R) then E( t , r )=  1 iff FT(t)= Gn(r).  

(ii) If t E idF(T)  but r • i da (R) ,  or vice versa, then E(t ,r)  = O. 

(iii) If t 9~ idF(T)  and r r i da (R)  then E(t,r)  = 1 iff 1st, for any 
t^a E T there exists r^b E R such that  E(tAa, rAb) = 1, and 2nd, 
for any r^b E R there exists tAa E T such that  E(t^a,r^b)  = 1 . 

Since E = ETF, RG E E, the formula ETF, RG(A, A) = 1 can be taken as 
(T, FIh.=_ (R,G).  

Let, for any set x, C x be the function defined on the singleton {A} 
by C~(A) = x; then ({A},C ~) is a wf pair and C~[{A}] = z. One takes 
t he fo rmu la  3Stx((T,F) h-=_ ({A},Cx)) as h s t ( T , F ) .  

Finally let (T, F) hE (R, G) be the formula which says that  either R 
{A} and ETF, Ra(A, (b)) = 1 for some b such that  the one-term sequence 
(b) belongs to R, or R = {A), and there exists a set x E G(A) such that  
(T,F) h= ({A},C~) .  �9 

3 .3 .  T h e  p a r t i a l l y  s a t u r a t e d  s u b u n i v e r s e  

We consider the internal subuniverse I~ of Section 2 as the base for our 
construction of an external subuniverse H.. The construction involves Def- 
inition 3.1. To guarantee that  no external subsets of internal sets except 
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those of the form Cp, p E I~, appear, we have to keep the construction 
under  the control of I~. For example we can admit only those wf trees T 
and associated functions F which have the form gp, where p E I~. 

We put  I=,~= { C p : p E  I~}; so that  I=.C F:. 

PROPOSITION 3.5 1. I f  a set X C_ I is definable in [= as a class by a 
st-E-formula having sets in E as parameters then X E E . 

2. I f  all parameters in the formula belong to E~ then X E I=~ . 

3. I f  in the latter case X E | then X E I~; so I=~ M I = I~ - - there fore  
internal sets not in I~ do not enter I=~ via external definitions. 

PROOF. 1. Use the E E S T  Separation, true in I=. 

2. By definition of I=~ we may assume that  all parameters  in the for- 
mula  which defines X in I= belong to I~. Then, since the t ru th  in F, 
the  E E S T  universe, can be expressed in I, its internal part  (see Proposi- 
tion 2.8 in [13]), X is st-E-definable in I as a class via the same parameters .  
Therefore X E I=~ by Theorem 2.2 (item 4). 

3. Apply Theorem 2.2 (item 1). �9 

One might consider it quite natural  to define a subuniverse H~ C_ H 
having i~ as its internal part  as the collection of all sets FIT] where both  
F and T belong to F~. However this does not work properly because 
the class obtained this way is not extensional. (Note that  even F:~ is not 
extensional. Indeed, let a = ~0 and X = r 1 in 5. Then both X and 
Y = XN I. belong to F .  and have the same elements in F:~, but X ~ Y .) 

To fix this problem, we have to impose a suitable restriction on wf pairs. 
This is realized by the notion of a-illegal point. 

DEFINITION 3.6 1. Let ( T , F )  E 7-/. t E T is a a- illegal point in T if 
there exists a s e t  I E  |~ such that  I M | ~ = F T ( t ) ~ I .  

2. :H~ is the collection of all wf pairs (T, F)  E :H such that  both  T 
and F belong to F~, T C_ i~, and T does not contain a-illegal points. 

3. H~ = {F[T] : ( T , F )  E 7-l~}. 

However we shall see (Lemma 3.12 below) that  the restriction is not harmful: 
sets which are left out are suitably replaced by internal sets. 

We end this subsection with a useful lemma. 

LEMMA 3.7 Let ( T , F )  E 7-l,~. Then FT(t) E H,~ for all t E T. Further- 
. , o r e  i f  r T ( t )  is in ternal  then F r ( t )  E . 
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(In par t icular  F(t) E I~ for all t E MaxT ,  provided the wf pair  (T ,F )  
belongs to 7-/.. In general functions in F:. map  elements of l .  to n~ .) 

PROOF. We put  T t = ( r  : t . r  E T} ,  where t . r  is the concatenat ion,  
and Ft(r)  = F( t  �9 r) for t �9 r E M a x T ;  thus (T t, F t) E 7-/, and actually 
E 7-/,~ by Proposi t ion 3.5. Moreover FT(t * r) = FtTt(r)  for all r E T ~. 
In part icular ,  FT(t) = F~Tt(A) E H,~. This proves the first s t a tement .  The  
second one is implied by Lemma  3.4 and Proposi t ion 3.5. [] 

COROLLARY 3.8 Let X E H~. I f  X ~ H~ then X E |~ �9 

3 . 4 .  T h e  p r i n c i p a l  t h e o r e m  

We recall tha t ,  in external nons tandard  theories, a set of standard size is a 
funct ional  image o f a s e t  of the form aS = {s E S : s t s } ,  where S is a 
s t andard  set. The  following definition is a variant  of this not ion.  

DEFINITION 3.9 Let a be a s tandard  cardinal. X is a set of  standard 
g-size if there exist a s tandard  set S of cardinality ~ ~ in $ and a 
funct ion F defined on ~S such tha t  X = {F (x )  : x  E ~S}.  

Let us demons t ra te  tha t  H~ models a a-version of H S T  in which 
the  axioms involving s tandard  size (see Subsection 1.3.) are weakened to 
s t andard  a-size, but  also models the Power set axiom. 

THEOREM 3.10 [ H S T  ] H M H,~ = L~, so i~ is the class of all formally 
internal 7 sets in H~ . In addition the following statements hold in H~ : 

1. The axioms of Pair, Union, Extensionality, Infinity, together with Col- 
lection, Separation, Replacement for all st-E-formulas. 

2. Extension in the form of item 4 in Subsection 1.3. for standard sets S 
satisfying card S <_ a in 5 . 

3. Saturation and Choice for sets X of standard a-size, and Dependent 
Choice. 

4. Weak regularity. 

5. The Z F C  Power set axiom. 

Finally H~ satisfies the following closure property: if  Z C H, is a set of  
standard a-size then Z E H~ . 

r Satisfying the formula  int x, that  is, 3stX (x E X )  . 



Internal a p p r o a c h . . .  307 

PROOF. We start with i n t e r n a l  sets.  Let x E I~. We put T = {A} 
and F(A) = x, so that  evidently ( T , F )  E 7-l~ and F[T] = x. This proves 
I~ C_ H~. The inclusion H~ N I C_ I~ is guaranteed by Lemma 3.7. -t 

E x t e n s i o n a l i t y .  Suppose that  ( T , F  I and (R ,G)  belong to 7-/~ and 
the sets X = F[T] and Y = G[R] satisfy X N H ~  = Y A H ~ .  We assert 
that  then X = Y. 

If neither of T, R is equal to {A} then X U Y C H~ by Lemma 3.7. 

If T =  R =  {A} Then both X and Y belong to ]~ by Lemma 3.7, 
so X N I ~ = Y M I ~  implies X = Y  by Theorem 2.2 ( i t e m l ) .  

Assume finally that  e. g. R = {A} but T ~ {A}. Then Y = G(A) E I~ 
as above. In particular, Y___ I, so Y N H ~  = Y N I N H ~  = Y M I ~  (since 
INH~ = I~ ). On the other hand, X _C H~ by Lemma 3.7 because T ~ {A}, 
so X N H ~ = X .  We conclude that  X = Y N I ~ .  But A is not a-illegal in 
T, so X = Y .  A 

W e a k  r e g u l a r i t y  is inherited from H, the universe of H S T ,  because 
if X E H ~  but  X ~ I ~  then XC_H~ by Corollary 3.8. A 

I n f i n i t y  is inherited from $ .  A 

E x t e n s i o n .  The a-version of Extension ( card S _ a in the standard 
universe) is reduced to the H S T  Extension by Theorem 2.2 (item 3). -q 

S a t u r a t i o n .  The a-size Extension reduces the a-size Saturation to the 
case when the given standard size family has the form { f ( a )  : a E ~Ao), 
where A0 is a s tandard set of cardinality card A 0 _  a in $ and f a 
function in I~. This is simply IS . ,  the a-case of Internal Saturation in 
I~. s However IS~ is true in I~ by Theorem 2.2 (item 2). -q 

The verification of the other axioms in H.  proceeds by certain transfor- 
mations of wf pairs. Let us prove two technical lemmas. 

LEMMA 3.11 In H, every set X C_ I is covered by a standard set. 

P R o o f .  By the Boundedness axiom in I, for each x E X there exists 
a s tandard set s such that  x E s. By the H S T  Collection in H, we havea  
set S ~ such that  every x E X belongs to a standard s E S ~. By the H S T  
Standardization, there exists a standard set S having the same standard 
elements as S ~. We put  Y = (.J S; then Y is standard and X C_ Y .  �9 

s Indeed,  it  is known (see e. g. [13] or [6]) tha t  finite (in the sense of the ordinary 
Z F C  definition) sets in H S T  are those having a s tandard  S-finite n u m b e r  of elements.  
If such a set conta ins  only in terna l  elements then it is internal.  
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LEMMA 3.12 Let r C 7/~ be a set definable in 1= as a subclass of F_ • E, 
using only sets in [:n as parameters, and Z = {FIT] :  (T, F)  E r}.  There 
exists Z E Hn such that Z O Hn = Z .  Each of the following two conditions 
is su~c ien t  for  Z itself to belong to Hn : 

1. Z contains at least one noninternal element. 

2. Z is a set of  standard size. 

PROOF. The idea is dear:  present r as r = {(T~,Fa) : a E A}, put  
R = {h}  U {an t  : t E T~} and define G appropriately so that  G[R] = Z .  
We have only to keep the construction within En and avoid illegality. 

By definition for any (T, F)  E V there exist p, q E I~ such that  T = Cp 
and F = Cq. By the H S T  Collection and Lemma 3.11 there is a s tandard 
set S such that  p, q of this kind can be found in S for every pair (T, F)  E 
r. The set 

A = {(p,q) E S 2 O I~: (Cp,Cq) E r}  C E 

is then definable in E using only sets in Fn as parameters,  therefore we 
have A E En by Proposition 3.5. We define (R, G) E 7/ as follows: 

1) R = {a}  U { a ^ t : a  = (p,q) E A ~5 t E e p } ,  and 

2) G(aAt)  = Cq(t) for all a = (p,q) E n and t E Cp.  

E v i d e n t l y  G.((a))= Cq[Cp] w h e n e v e r  a = (p,q) E A, so  that  G[R] = 
Z = (F[T] : (T ,E)  E r} .  Moreover R, G E t:n again by Proposition 3.5. 
If A is not a-illegal in R then immediately (R, G) E 7/n, and Z = G[R]. 
If A is a-illegal then there exists Z E In such that  Z n H~ = G[R] = Z . 

Condition 1. Apply Corollary 3.8 to Z .  

Condition 2. It suffices to show that Z = Z.  Let on the contrary 
Z # Z, therefore Z ~ H.. Then Z E In by Corollary 3.8. Furthermore 
Z C In by Lemma 2.3, so that  still Z = Z, contradiction. �9 

It follows from Lemma 3.12 that  "S E Hn for every standard set S .  

(We continue the proof of the theorem.) 

P a i r s  - an immediate consequence of Lemma 3.12. 

S e p a r a t i o n .  Let X = F[T], (T, F) e 7/n, and all parameters in a 
st-Z-formula if(x) belong to Ha. We define a set v C 7-/~ as follows. 

If T y~ {A} then the set M i n t  = {a : (a) E T} is no^empty.  For 
a E MinT,  we put  T ~ = {t : a ^ t  E T} and F~(t) = F(aAt )  for all 
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a^t  �9 M a x T .  Obviously (Ta, F a) �9 7-ln for all a. Let 7- be the set of all 
wf pairs (Ta,Fa),  where a �9 MinT ,  such tha t  r holds in Ha .  

Suppose tha t  T = {A}, so tha t  X = F(A) �9 In. In this case, we define 
X '  = {x �9 X f3 In : ~(x)  holds in Ha}. We recall tha t  for any internal  
x the  w f p a i r  lax = ( { A } , C  ~) �9 7-/ is defined by Cx(A) = x, so tha t  
C ~ [ { A } ] = x .  Let r = { ~ : x � 9  

In bo th  cases v C_ 7-/n, and the set Y = {G[R] : (R ,G)  �9 r}  satisfies 
the  equali ty Y = {y �9 X : ~(y)  holds in Ha}. Thus  the required result 
would follow f rom L e m m a  3.12 as soon as we have proved tha t  7- is definable 
in I = as a subclass of I= x I=, using only sets in I=n as parameters .  

We first no te  tha t  7-/ is definable in I = by Lemma  3.2, therefore 7-/n is 
definable in I= using only ~ as a parameter  (but a is s tandard) .  Further-  
more  definability in Hn (by the formula (I)) is reducible to definability in I= 
by Propos i t ion  3.3. Thus  v is actually definable ( that  is, s t- �9 in 
E using as parameters  only ~, (T, F) ,  and several wf pairs (U, H} �9 7-/~ 
such tha t  H[U] occurs in ~,  as required, q 

U n i o n .  Suppose tha t  X = F[T] �9 Ha, where (T, F)  �9 7-/n. We have 
to prove t ha t  the  set Hn Cl ( i X  belongs to Hn �9 

For a two-e lement  sequence (a, b) �9 T, we define T ab = {t : a^b^t  �9 T}  
and Fab(t) = F(a^b^ t )  for all a^t �9 MaxT.  Obviously (T ab, F ab) �9 ~ln. 
The  sets F ab[T ab] give the first group of elements of the union [J X in the 
subuniverse Ha. 

The  o ther  group consists of all sets x �9 F((a)) f) In, where a is such 
tha t  the one-e lement  sequence (a) belongs to MaxT.  Each x of this type  
is presented in 7-/n by the wf pair hx = ( { A } , C z ) .  

One easily sees tha t  the set v of the wf pairs determined by the two 
groups is definable in I= as a subclass of I= x I=, using only sets in I=n as 
parameters .  It  remains to apply Lemma  3.12. -t 

C o l l e c t i o n .  By the  H S T  Collection, it suffices to verify the following: 
if a s e t  X satisfies X C_ Hn then  there exists X I � 9  Hn such tha t  X C_ X ~. 
Using Collection again and definition of Ha, we conclude tha t  there exists 
a s e t  P C  I such tha t  

v Y e  x 3p, q e e ((cp, cq) �9 Y = cq[cp]). 

By L e m m a  3.11, we have P C_ S for a s tandard  set S. We finally apply 
L e m m a  3.12 to the  set r of all wf pairs (Cp, Cq) E 7-/n, where p, q E S. -t 

Replacement is a consequence of Collection and Separation. -t 
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T h e  c losu re  p r o p e r t y .  By the H S T  standard size Choice, there 
exists a set 7- C 7-/. of standard a-size s . t .  Z = {FIT] : (T, F)  E r} .  By 
Lemma 3.12 (condition 2) it suffices to prove that  7- is definable in F by a 
st-E-formula having only sets in F~ as parameters.  

By the standard size Choice again, there exists a set II _C I. of s tandard 
~-size satisfying the equality 7- = {(Cp,Cq) : (p,q) E I I ) .  Using Theo- 
rem 2.2 (item 3) and then Proposition 3.5, we see that  I IE  I=~. Thus v is 
st-E-definable in I= using only I IE  I=~ and ~ as parameters,  q 

C h o i c e  in the ~;-size version and D e p e n d e n t  C h o i c e  follow from the 
same t t S T  axioms and the closure property. -q 

P o w e r  set .  We first prove that  an arbitrary standard S has the power 
set 79(S) in H~. Then the result will be expanded to the general case. 

Thus let S E $ .  Theorem 2.2 (item 4) implies the existence of a s tandard 
set P such that  all subsets of S in I:~ belong to the collection IPI~ = 
{Cp : p  E P A I ~ ) .  We assert that  every set X E H~, X C S, satisfies 
X = Cp in H. for some p E P N I~; this is enough to get the power set of 
S in H~ by the already proved axioms of Separation and Collection. 

Let X = F[T] E H~, (T,F) E ~ ,  X CC_ S in H~. We observe that  
the set C = {x E S f3 I~ : lax hE (T, F)} belongs to I: .  by propositions 3.3 
and 3.5. It follows that  C = Cp for some p E P N I~. 

On the other hand, one easily proves that  X n H,~ = C by the definition 
of l~x and the choice of the formula hE . 

We now consider the general case. It suffices to prove that  every set is a 
functional image of a standard set in H~. 

To prove this proposition, let (T,F) E 7-l~, X = F[T] E H~. We 
may assume that  X contains noninternal elements in H~ (otherwise apply 
Lemma 3.11). Then T ~ {A). In this case, the set M i n T  = {a :  (a) E T )  
is nonempty.  Since Min T C_ I by definition, Lemma 3.11 gives a s tandard 
set S such that  A = M i n T C S .  The function f defined on S by 

f ( a ) =  ( FT((a)) 
a fixed element :Co E X 

when a E M i n T  

otherwise 

maps S onto X in H.,  as required. ( f  belongs to H'~ 
proved axioms, in particular Separation.) 

by the already 
q 

This ends the proof of the theorem. �9 
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4. S t a n d a r d  s ize  p a r t i a l  e x t e r n a l  u n i v e r s e s  

One can prove easily that  although some amount of Choice is available in 
the universes H~ by Theorem 3.10 (item 3), the general form of Choice does 
not hold in H~ ; for example N, the (standard) set of all natural  numbers 
in the sense of I or $, cannot be wellordered even in H, the ground H S T  
universe. (Take notice that  N C I~ since n is infinite, therefore N belongs 
to H~ with all its elements.) 

It is the aim of this section to show that one can provide the full Choice in 
art external subuniverse, keeping the Power set axiom and the other items of 
Theorem 3.10, in particular the standard n-size Saturation, only at the cost 
of BI~ in the internal subuniverse - -  but preserving Internal Saturation 
I S ,  which is weaker in the n-restricted case. 

A different system of external subuniverses H i will be defined so that  
every set has s tandard size in H i .  This is quite sufficient to get the Power 
set and Choice axioms in H i . 

The construction is based on two principal ideas: first we define the 
ground internal subuniverse I t as an ultrapower of the standard universe, 
but  actually the ultrapower turns out to be an inner class in H because 
H S T  provides a sufficient amount  of Saturation to obtain ultraproducts as 
inner classes; second, taking care that  only standard size sets belong to Hi,  
we use only trees T of "standard size" branching in the operation F[T] to 
obtain the required external "envelope" of i t . 

Let, as above, H, 1, $ denote the ground H S T  universe and its sub- 
universes of internal and standard sets respectively, and n be a s tandard 
infinite cardinal. 

4 .1 .  S t a n d a r d  s ize  i n t e r n a l  s u b u n i v e r s e  

The construction of the new system of internal subuniverses is not so straight- 
forward as the definition of I~ in Section 2. The idea resembles the one used 
in the proof of Theorem 2.4 in [12] (every model of Z F C  is the standard part  
of a model  of B S T  ). We shall proceed the same way as if a n -saturated 
enlargement of a Z F C  universe were being constructed. 

We argue in I in this subsection. 

Let us recall several definitions from [12], Section 2. 

Let C be an arbitrary set. We put C fm = 7)fro(C). A nonprincipal 
ultrafilter U C T'(C fro) = {I  : I C C fro} is C-adequate iffit contains all sets 
I (C,  i o ) = { i E C  fin : io C_ i}, where i o e C  f~. If in this case D C C  then 
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we define U [ D = { u  I D : u E  U}, where u [ D = { i N D : i E u }  for any 
u C_ C fin. Then U [ D is a D-adequate  ultrafilter. 

There  are two useful operations over ultrafilters. 

Operation 1. Let U and U t be a C-adequate  and a Ct-adequate  
ultrafilter respectively. Suppose that  C N C t = 9. We put 

u ,  v t = c (c  u Ct)fm : V i  Ut4 t (4U4' E w)}. 

( U i r means: {i E I :  r E U, whenever U is an ultrafilter over a se t  
I .  Here I = C fm for the quantifier U i and I t = C t fin for the quantifier 
U tit .)  Then W =  U , U  I i s a  (CUCt ) - adequa teu l t r a f i l t e r ,  W [ C =  U, 
W [ C'  = U', and W j  r  is equivalent to U i V ' i '  r  U i ' ) .  q 

Operation 2. Assume that  A is a limit ordinal~ Us is a Ca-adequate  
u l t raf i l te r for  all a < A, Ca_C C z and U~ = UZ r C a  whenever a </~.  
Let CA = [J~<~ Ca. Then there exists a CA-adequate ultrafilter U~ such 
tha t  U ~ = U ~  r C a  for all ordinals a < A .  

Let - - =  a+; thus ~ E $ and it is t rue in I and S tha t  ~ is the 
least cardinal greater than to. There exists a (unique) s tandard  increasing 
sequence ( ~  : a < ~) of ordinals ~ < ~ such that  each set D~ = 
~ + 1  \ g/a has order type a and ~;~ = lim~<~ ~ for limit ordinals A. 

Operations 1 and 2 allow to define a s tandard (by Transfer) ~-adequate  
ultrafilter U___ 7)(-~rm) such that  U~+I = U ~ * U ~ ,  where Us = U r ~ 
and U ~ = U [ D~ - -  for all a .  Such an ultrafilter is fixed for the sequel. 
We put I ~ = g t a  f i n = { 4 _ C ~ : 4  finite} and 

F ~  = { f  : f is a function defined on I~ with arbi t rary values} 

for all a < E, and .7 = = [.J~<=9~, I = I= = ~ . "  Take notice tha t  if 
f E .T" is s tandard  then f E .~'~ for a standard a < E by Transfer. 

By Bounded Idealization BI  there exists i E I which belongs to every 
standard set u E U. (So i belongs to the monad of U .) We fix i and put 

J~ = {f[i] : f E ~ is s tandard} and I~ = J<= = [J~<=- O~, 

where f[i] = f ( i  N f ~ )  for f E ~ '~ .  Thus B~ is a st-E-definable class in 
I, the ground B S T  universe. 

The following theorem shows that  the universe I~ = (U~; =,  E, st ) has 
properties ra ther  similar to those of the universe I~ of Section 2, al though 
it models a somewhat weaker theory than |~ does. One more difference is 
that  I~ is not uniquely defined; the definition depends on the choice of the 
ultrafilter U and the particular element i .  
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THEOREM 4.1 I~ contains all standard sets. Furthermore, 

1. l" is an elementary submodel of  I with respect to all E-formulas. 

2. I~ satisfies BST~,  the theory containing all axioms of  Z F C  (in 
the E-language), Transfer, Standardization, and the t~-forms IS~ of 
Internal  Saturation and B~ of Boundedness. 9 

3. I f  g E I is a funct ion defined on a standard set X ,  card X < 
in $, and g(x)  E I~ for all standard x e X ,  then there exists a 
funct ion  g' E I~ such that g(x) = g'(x) for  all standard x E X . 

PROOF. The inclusion $ C I" is obvious. 

1. We prove the proper ty  of being an elementary submodel. It suffices 
to verify tha t  every J=,  a < E, is an elementary submodel of t. The proof 
proceeds by induction on the complexity of the involved E-formulas. The 
step for 3 is the  only one which needs a special consideration. 

Thus let O(x, y) be an E-formula (all free variables indicated), the or- 
dinal c~ < ~ and f E ~'~ be standard. Assume that  3 x ~(x ,  f[i]) holds 
in |. The goal is to find x E 3~ satisfying O(x, f [ i ] ) .  One may  assume 
tha t  3 x  O(x , y )  holds in I for all y. (Otherwise replace �9 by the formula 
'~(x ,y)  V [x = 0 ~ - , 3 x ' r  By Transfer, Vi  e I ~ 3 x O ( x , f ( i ) )  is 
t rue in S, therefore there exists a s tandard function g E 2:~ such tha t  
,~ (g( i ) , f ( i ) )  is t rue in ! for all i E Is .  Take x = g[i] = g ( i N ~ ) .  

2. Thus we have all of Z F C  and Transfer in I ' .  Standardization holds 
in I~ since S C_ !~. We check B~. Let x E !~. There exist a s tandard  
ordinal a < E and a s tandard function f E j r  such that  x = f[i]. Hence 
x belongs to X = { f ( i )  : i E Is} ,  a s tandard set of cardinality < ~ .  

The continuation of the proof involves a Log-like lemma. 

LEMMA 4.2 Let  ~(x l , . . . , xn )  be an E-formula, f l , . . . , f n  E ~ and a < ~ 
all be standard, and every fk belongs to some .Ta, , a t = a ' (k)  < a. Then 
the following is true in I : 

r ..., f,~[i]) , , U i ~(f l[ i ] ,  ..., f,~[i]) ( , U~ i ~(f l[ i ] ,  ..., fn[i]). 

(Werecall  tha t  Ui  r and U~i r  mean that  {i e I :  r  e U 
and {i e I n :  r  E U~ respectively.) 

9 This is weaker than BST~ of item 2 of Theorem 2.2: BI~, the n-form of Bounded 
Idealization is absent. In principle we expect a weaker version of BI by Proposition 1.2, 
say Bin provided 2 x _< n, but it is not clear whether BI~ itself holds in |~ . 
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PROOF. Either the set X = {i E I s :  ~P(fl[i],---,fn[i])} or the comple- 
ment  X ~ = Is  \ X belong to U~. If X E Us then both  the le f t -hand  and 
the r igh t -hand  side are true, while in the case X r E Us both of them are 
false, (Indeed, i = i [q fts E Xr The expression in the middle is equivalent 
to the r igh t -hand  one because U [ ~ = Us and all fi belong to 5c<~ . �9 

We prove tha t  IS,~, Internal Saturat ion in the case when the s tandard  
set A0 satisfies card A0 < g in 5, holds in |~. One may  assume tha t  A0 
is equal to Ds = f ts+l  \ f ls  for a s tandard a < ~, and all parameters  in 
the E-formula 4)(x, a) belong to J~.  Let, to simplify the notat ion,  ~(x ,  a) 
contain a single parameter  p = f[i], where f E 9c~ is s tandard.  Thus 
is r  and IS takes the form 

V s t f i n A C D ~ 3 x V 6 E A ~ ( x , 6 ,  p) ( ~ 3 x V S t 6 E D c ~ ( x ,  ii, p).  

It suffices to prove the direction ~ . Assume that  the l e f t -hand  side is 
t rue in I ' .  Then it holds in I as well by the elementary submodel property.  
(All s tandard  sets belong to I~ .) Therefore by Lemma 4.2 we have 

VstfinA C Ds Uc~i 3x  Vii E A (~(x, ii, f ( i ) )  

in I. Then U s i' U~ i 3 x V ii E i' ~(z,  ii, f ( i)) ,  so that ,  by the choice of U, 

Us+lj  3x  Vii E A ( j )  r  ii, f[j]),  

where ,4 E . T s + I  is defined by A ( j )  =jClDc, .  Let A = ~4[i] = i N D s ;  
obviously A E I~. Again by Lemma 4.2, we obtain 3 x Vii E A ~(x ,  ii, p) in 
I. Since I~ is an elementary submodel, such a set x exists in B" . 

It remains to verify that  i contains all s tandard elements of Ds.  Let 
ii E Ds be standard.  We observe that  U s + l i  (ii E i) because U~+I is 
f~s+l-adequate.  Therefore ii E i by Lemma 4.2. 

3. We prove i tem 3 of the theorem. Let S be a s tandard  set of cardinality 
in 5 and g an internal function defined on S and satisfying g(x )E  a~ 

for all s tandard  x E S. We have to find a function g~ E I~ which coincides 
with g on the s tandard elements of S .  

Since ~ has cofinality > n, we have a s tandard ordinal c~ < ~ such tha t  
for any s tandard  x E S there exists a s tandard function f E J:'s such tha t  
g(x) = f[i]. Using Standardization, we get a s tandard  map H : S ) .T~ 
such that  for every s tandard x E S the function h,~ -- H(x)  E 5ca satisfies 
g(x) = hx[i]. Let, for i E Is, fi be a function defined on S by f i (x)  = 
hx(i). Then F ( i ) =  fi is a s tandard function in 9us. Let g ' =  F[i];  thus 
g' E I'~. Then  g'(x)"- F[i](x) = hx[i] = g(x) for all s tandard  x E S .  �9 
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4.2. S t a n d a r d  s ize  p a r t i a l l y  s a t u r a t e d  e x t e r n a l  u n i v e r s e  

The class |~ will be the internal base for an external subuniverse of H. 
This is close to the approach of Section 3. However there is an essential 
difference: we use the "standard size" version of Definition 3.1 to assemble 
sets rather than the F~-definable version applied in the previous section. 
Fortunately this makes the construction essentially easier. 

We argue in the H S T  universe H in this subsection. 

To keep extensionality, a definition similar to Definition 3.6 is necessary. 

DEFINITION 4.3 1. Let (T ,F)  E 7-/. t E T is a a-illegitimate point in T 
if there exists I E  |~ such that I N | ~ = F T ( t ) ~ I .  

2. 7-/~ is the collection of all ( T , F ) E  ~ such that both T and F 
are subsets of |~, and T does not contain a-illegitimate points. 

3. H~ = {F[T]:  (T ,F)  E 7-/~}. 

The treatment of H i is quite similar to the development of H. in Section 3. 
One detail differs: we have to guarantee that the trees obtained by this or 
another transformation keep standard size rather than membership in F~, 
which facilitates the reasoning a great deal. 

The following lemma stands behind the technical treatment of H i. Prov- 
ing the lemma, we shall also see that the sets of standard size have power 
sets, also of standard size, in HST,  which will later reduce the verification 
of the Power set axiom in H i to a triviality. 10 

LEMMA 4.4 Let X C H i.  Then X is a set of standard size. 

PROOF. Fact 1. We prove that at least each set X C I~ has standard 
size. Indeed, by definition every x E X has the form x = f[i] for a standard 
f E 9 ~. By the H S T  Collection in H and Lemma 3.11 there exists a 
standard set F C_ 5 ~ such that every x E X is equal to f[i] for a standard 
function f E  F. Thus X is an image of the set a F = { f E  F : s t f ) .  

Fact 2. We prove (in H S T  ) that if Y is a set of standard size then 
the (external) power set 7)(Y) exists and is also a set of standard size. It 
suffices to consider the case when Y = aS and S is standard. Let P be 
the "standard" power set of S, that is, the power set taken in the standard 
universe ~i. We put pt = {~U : U E ~ Thus P~ is a s e t  of standard 

10 This way of reasoning was suggested by the referee. Our original approach was more 
cumbersome. 
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size. Furthermore,  by t h e  H S T  Standardization pI  contains all subsets 
of aS and only those sets, that  is, PI = T'(~S) in H, as required. 

We prove the lemma. Thus suppose that  X C_ H~. By definition and 
the H S T  Collection, there exists a standard set S such that  every x E X 
has the form F[T] for a w f p a i r  (T ,F )  satisfying T U F  C S' = S N | ~ .  
We observe that  S ~ is a set of standard size by Fact 1 and T'(S ~) exists 
and is a set of standard size by Fact 2. �9 

LEMMA 4.5 Let (T ,F}  E ~ and t E T. Then FT(t) E H~ . I f  in addi- 
tion FT(t) is internal then FT(t) E I~ . 

PROOF. The first assertion is quite obvious. We verify the additional 
part.  If t E M a x T  then FT(t) = F(t) E I~ by definition. The wellfound- 
edness assumption allows to use induction. Thus it suffices to prove the 
following: every internal set X _C I~ belongs to I~ . 

By Lemma 4.4, X is a set of standard size. But,  in H S T  an internal 
set of s tandard size is necassarily a set of standard finite number  of elements 
by Saturation. Finally every subset of I~ having a s tandard finite number  
of elements belongs to I~ by Theorem 4.1 (item 3). �9 

The following theorem shows that  the system of subuniverses H~ has 
a certain advantage with respect to the universes H. of Section 3: full 
Choice is achieved. But we should not forget a certain loss, too: first, 
Bounded Idealization B I .  in the internal subuniverse B~ is missing, second 
the subuniverses are no longer unique. 

THEOREM 4.6 [ H S T  ] |~ = i N H~. Hence |'~ is the class of all formally 
internal sets in H~ . In addition, the following axioms hold in H~ : 

1. The axioms of Pair, Union, Extensionality, Infinity, together with Col- 
lection, Separation, Replacement for st-E-formulas. 

2. Extension in the form of item ~ in Subsection 1.3. for sets S satisfying 
c a r d S < a  in $ .  

3. Saturation for sets X of standard a-size, and the full Choice: every 
set has standard size and is well-orderable. 

Weak Regularity. 

The Z F C  Power set axiom. 

4. 

5. 

Finally H~ satisfies the following closure property: if X C H~ 
x e H "  

then either 
or there exists Y E ~ such that X = Y N H~ = Y N U~ . 
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PROOF. Lemma 4.5 proves the equality i n H~ = ]~. 

T h e  c losure  p r o p e r t y .  Since X has standard size by Lemma 4.4, one 
gets, using the H S T  standard size Choice, a standard set A and sequences 
(T a : a  E ~A) and (F  a : a  E ~A} such that X = {F~[T~]:a E ~A} and 
(T a, F ~} E 7t5 for all standard a E A. Let (T, F) E 7-/ be defined by 

T =  {h} u U{a^t:ae  t E T  

and F(aAt)= F~(t) for t E MaxT a. We observe that X = FIT], and the 
wf pair (T, E) meets all the requirements of the definition of (T, F) E U~ 
except, perhaps, that A can be a-illegitimate. If A is not a-illegitimate 
then (T ,F)E  7-/~ and X = F[T] E H~ as required. Suppose that A is 
a-illegitimate. Then by definition there exists Y E 0~, hence E H~, such 
that  X = Y M I~, as required. -~ 

E x t e n s i o n a l i t y .  We argue as in the proof of Theorem 3.10. Assume that 
{T,F) and (R,G) belong to :H~ and the sets X =  FIT] and Y =GIRl 
satisfy X M H ~  = YMH~;  we prove X = Y. The case when neither of 
the trees T, R is equal to {A} is easy: then both X and Y are subsets 
of H~. Let T = {A}, so that X = F(A) E I~. If R =  {A}, too, then 
Y E i~ as well and the equality X = Y follows from the fact that I~ is an 
elementary submodel of | by Theorem 4.1. Thus assume that R ~ {A}. 
Then Y = X because A is not a a-illegitimate point of R .  -t 

E x t e n s i o n  a n d  Sa tu ra t i on .  The standard a-size form of Extension 
follows from the H S T  Extension and item 3 of Theorem 4.1. Using this, 
one easily obtains the a-size form of Saturation in H~ from the Internal 
Saturation IS ,  (true in I~ by Theorem 4.1). 

R o u t i n e  ax ioms.  We reduce the axioms of Pair, Infinity, Weak Regu- 
larity, Union, Separation, Collection, and Replacement in H~ to the ground 
H S T  universe using the closure property. -~ 

S t a n d a r d  size and  wel l -o rder ing .  It follows from Lemma 4.4 and the 
closure property that every set has standard size in H~. This suffices to 
conclude that  every set is well-orderable in H~, and therefore H i satisfies 
the full Choice. (Basically H~ still only satisfies the standard size Choice 
- -  but all sets have standard size in H~ !) -t 

P o w e r  set.  We simply use Fact 2 in the proof of Lemma 4.4 plus the 
closure property. -~ 

This ends the proof of the theorem. �9 
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REMARK. We observe that  the Separation, Collection, and Replacement 
schemata  hold in H~ also in a form which does not presuppose tha t  the 
core formula is relativized to H~. For instance, it follows from the closure 
proper ty  and Lemma 4.4 that  for any X E H~ and any st-E-formula r  
which may  contain arbi t rary sets in H (not only in H~ ) as parameters ,  the 
set Y = { x E X N H ~ : r  is true in H) belongs to H~.  

Thus, modulo the fact that  the classes I~ and H~ are not uniquely de- 
fined, one can conclude that  the system of subuniverses I~ and H~ models 
the stratified theory S N S T  of Fletcher [4] in the upgraded form which in- 
cludes R-size Saturat ion in the external subuniverses H~ ra ther  than simply 
R-size Internal Saturation IS~ in the internal subuniverses B~. 

5. D i s c u s s i o n  

This section is writ ten to explain, in brief, how the methods of the paper  
can be used to model various forms of nonstandard  reasoning on the base 
of bounded set theory B S T .  It is not our intension here to give a practi- 
cally useful introduction in this ma t te r  - this would need more space and 
another  style of writing than the frameworks of this paper allow. We ra ther  
suggest an "intoduction to an introduction",  which intends to show how the 
technique developed in the paper allows to realize the known pat terns  of 
reasoning in nonstandard set universes with external  sets given by Hrba~ek 
[6, 7] and K a w d  [14], but still on the base of B S T ,  a nons tandard  set 
theory of "internal" type similar to I S T .  

Let us take as an example some topics related to descriptive set theory 
on hyperfinite sets: the Loeb measure and Borel sets. These topics do not 
seem to be easily carried out in a theory which involves only internal  sets, 
like B S T  in its straightforward setting or I S T .  

Let us first review how these topics are usually handled via nons tandard  
structures in the Z F C  universe. 11 One considers subsets of a set S of 
the form S = { 1 , 2 , 3 , . . . , H ) ,  where H is a hyperfinite number  in a fixed 
nons tandard  structure.  Some of them are called in ternal  - those presented 
in the internal part  of the superstructure.  

If one is interested in Borel sets, one puts ri0 = ~0 = all internal  
subsets of S. Then one runs the known definition: 

ix Diener and Reeb [3], Henson and Keislcr [5], Hurd and Loeb [8], Keisler [15], Keisler, 
Kunen, Miner, and Leth [16], Lindstrr [17], Lutz and Goze [18], Luxemburg [19], Stroyan 
and Bayod [24] are suggested as the basic references on the matter of "superstructural" 
treatment of nonstandard analysis. 
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~ a  = countable unions of sets in I.J.y<~IIz 

H a  = complements of sets in ~ 

for all countable ordinals c~. If one is interested in Loeb measures, one pro- 
ceeds the following way. Each internal set X C S has a certain (hyperfinite 
or finite) number  of elements # X  _< H. The hyperrat ional  fraction 

#x 
# X =  H 

is called the  counting measure of X. There exists a unique s tandard real 
number  x = ~ called the standard part of # X  (and more often denoted 
by st #X,  but  this notat ion is here occupied by the standardness predicate),  
such tha t  x ~ #X.  ( a ~ b means that  the difference a - b  is infinitesimal.) 
If a set Z C S (not necessarily internal) satisfies 

sup{~ : X  C Z is internal} = i n f { ~  : Z C X C S, X is internal} 

then Z is called Loeb measurable, and the value determined by the displayed 
formula is called the Loeb measure of X, in symbols L#(X) .  

To run  these constructions on the base of B S T ,  we first of all consider 
the H S T  enlargement  H of the ground B S T  universe |, where I is the 
subuniverse of all internal sets, as in [13]. Take notice that  essentially H is 
(isomorphic to) a st-E-definable structure in I; therefore all sorts of activity 
related to H can be embedded down to ! - -  in other words one does not  
leave the framework of B S T .  

Then  we have to choose, in I, an infinite s tandard cardinal a, which 
is the desired amount  of saturation. Let us put, for instance, a = 2 2~~ , the 
cardinality of the hypercontinuum. 

At this point the construction splits into two directions. 

One may  choose the natural system of subuniverses, described in sections 
2 and 3. Then the choice of a also guarantees that  every internal set X 
of subsets of N belongs to I,~, just because X E 7~(7)(N)), which is a 
s tandard  set of cardinality a. All internal real numbers and all internal sets 
of real numbers  also belong to I~. (If we need to guarantee more internal 
sets not  to be missed, or more Saturation, we can increase a as desired.) 

Then  one begins to argue in H. ,  a subuniverse of H defined in Section 3. 
This class satisfies the axioms indicated in Theorem 3.10, in particular,  the 
Power set axiom. Therefore, the external power set P = T~exr exists in 
H~. ( :Pext is the usual power set defined in H~; we adjoin the subscript 
ext to make a distinction from the internal power :P(N) defined in ! .) 
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From the point of view of l, P contains all internal subsets of N, and a 
suitable par t  of st-E-definable subclasses of N, namely, those which can be 
defined in I by st-E-formulas having only sets in I~ = ] ;3 H~ as parameters  
(but  no restriction on the type of formulas involved is imposed).  

Alternatively, one may choose the standard size system of subuniverses, 
described in Section 4. Then one begins to argue in Hi ,  a subuniverse 
satisfying Theorem 4.6, in particular, the Power set and Choice axioms. But  
in this case, not all internal natural  numbers  belong to I~ = H ~ ;3 I . 

In bo th  the natural  and the s tandard size cases, one has the s tandard  
It-size Saturat ion in the chosen subuniverse, either H~ or H i .  Take notice 
that~ due to a 1 - 1 correspondence between the s tandard  cardinals and 
the cardinals in the sense of H described in [13], the sa tura t ion proper ty  
is in fact Saturat ion for the families (of internal sets) having cardinality 
less than the tr th infinite ZFC-cardina l  in H. In addition, one has all 
of Z F C  in the subuniverse with the exception of Choice for the natura l  
subuniverse (but  Choice for s tandard size families is secured) and Regulari ty 
(but  regularity over the internal subuniverse is secured) - -  which is quite 
sufficient to develop things like Loeb measures or Borel sets. 

Let us see how one proceeds with this ma t t e r  practically. 

Arguing in the chosen subuniverse, one picks up a nons tandard  (=  hy- 
perfinite) natural  number  H and then freely runs the definitions of the 
Borel hierarchy, starting from internal subsets of the set S --- {1, 2, ..., H }  
and the Loeb measure,  because the tools which theorems 3.10 and 4.6 prove 
to be  available in the subuniverses H~ are strong enough to conduct these 
constructions exactly as they are carried out in the usual setting. 

Perhaps  one detail, related to the Standardization axiom, is wor th  to be 
especially indicated. One may  ask why the sup and i n f  in the definition of 
the Loeb measure do exist. Thus the problem is how to prove in H S T  that  
every nonempty  set X of s tandard real numbers,  bounded by a s tandard  
real from above, has a s tandard supremum. 

First  of all, let us agree that  the equality x ~ = sup X (where x is a 
s tandard  real while X a nonempty  set of s tandard reals) will be unders tood  
in H S T  so that  x < x ~ for all x E X and no smaller standard real x" < x ~ 
satisfies the same proper ty  with respect to X .  

To prove the assertion, let, by Standardization, Y be a s tandard  set of 
reals such that  Y ;3 S = X ;3 $ - -  that  is, simply X = o y  = y ;3 5 in this 
case. The s tandard  set Y has the supremum y = s u p Y  E S in $ since 
5 is a Z F C  universe. One easily proves that  y = sup X in the external  
universe because X = o]I .  
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