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Lebesgue measure and gambling

V.G. Kanověı, T. Linton and V.A. Uspensky

Abstract. Lebesgue measure of point sets is characterized in terms of the
existence of various strategies in a certain coin-flipping game. ‘Rational’
and ‘discrete’ modifications of this game are investigated. We prove that if
one of the players has a winning strategy in a game of this type depending
on a given set P ⊆ [0, 1], then this set is measurable.

Bibliography: 11 titles.

Introduction

A typical coin-flipping game has a gambler betting on whether a coin flip will
turn up heads or tails (so that the probabilities of heads and tails are both 1/2),
and the gambler returns his bet and is additionally paid the amount of his bet
when he correctly predicts the outcome, or otherwise he loses his bet. Martingale
theory guarantees that there is no betting strategy for the gambler that (in finite
time) will turn this game into a favourable one [1]. That is to say, after n rounds of
this game the gambler’s expected profit is zero, regardless of the betting strategy
employed.

The game we consider in this paper involves two main modifications of this
elementary game. First, we give the casino a more active role by allowing it to pick
heads or tails for each coin flip. And, on making this choice the casino will know
whether the gambler is betting on heads or tails. To compensate for this advantage,
we allow the game to continue for infinitely many steps and require the casino to
produce a sequence of flips that belongs to a prescribed pay-off set.

We consider the space D = {−1, 1}N equipped with a countable product of the
Bernoullian probability measure on the set {−1, 1} that gives value 1/2 to either
point. It is well known that then the Lebesgue measure of any set P ⊆ D is equal to
the probability that a coin flipped independently and infinitely often will produce
a sequence in P . (We identify heads with 1 and tails with −1.) Thus, we have
replaced the local probabilistic event that a fair coin comes up heads or tails by the
global probabilistic event that a sequence of flips belongs to P .

In § 1 we define the modified game and related notions. Two key strategies of
players in this game are considered in § 2. § 3 analyses the case when the pay-off
set P has null measure. We study the positive-measure case from the gambler’s
point of view in § 4 and from the point of view of the casino in § 5. Some estimates
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1598 V.G. Kanověı, T. Linton and V.A. Uspensky

of the outer and the inner Lebesgue measures of a given set P , in terms of the
existence of certain strategies in this game, are given in those sections. These
estimates belong to the main results of this paper. They can be interesting even
for knowingly measurable sets P , when there is no need to distinguish between the
outer and the inner measures.
§§ 6 and 7 contain two modifications of our game. In the first we require the bets

by the gambler to be rational (as opposed to an arbitrary real number). It is used to
give another proof (from the axiom of determinacy) that all sets are Lebesgue mea-
surable. Therefore, the game under consideration is connected with the set-theoretic
question of Lebesgue measurability/non-measurability of point sets. The second,
‘discrete’ modification, where we require the bets to be integer multiples of a fixed
real number, is closer to an actual casino-style game (where bets are generally
restricted to integer dollar amounts). We shall see that this modification gives the
casino a definite advantage.

We use R to denote real numbers, N for natural numbers (including 0), and
D = {−1, 1}N to denote the Cantor set of all infinite dyadic sequences with terms
equal to −1 and 1, with the usual product topology. We denote by S = {−1, 1}<N =⋃

n∈N{−1, 1}n the set of all finite sequences of −1 and 1, and ŝ t, for s, t ∈ S, is
the concatenation of s and t, that is, the terms of t follow the terms of s (with
preservation of order) within either group. Further, s ⊂ t means that s is a proper
initial segment of the sequence t, while s ⊆ t allows s and t to coincide. The
length lh s of a finite sequence s is equal to the unique number n ∈ N such that
s ∈ {−1, 1}n. If a sequence ~x is either infinite or finite of length not less than n,
then ~x � n = 〈x0, x1, . . . , xn−1〉 denotes the initial segment of ~x of length n. The
basis of clopen sets of D consists of Baire intervals Ds = {~x ∈ D : s ⊂ ~x}; thus Ds

contains all infinite extensions ~x ∈ D of a finite sequence s ∈ S. Lebesgue measure
on D (the homogeneous probability product measure) is denoted by λ.

§ 1. A modification of the standard coin flipping game

The game described here emerged as the result of analysis of another coin flipping
game, introduced in [2] as a basic tool of definition of the notion of an infinite
sequence random in the sense of the computability theory. (See a popular exposition
of related issues in [3].)

A typical coin flipping game has a gambler betting on whether a coin flip will
turn up heads or tails. If the gambler plays this game once for each natural number
n ∈ N, the coin flips produce a sequence 〈pn〉n∈N, of numbers pn = 1 (heads) and
pn = −1 (tails), that is, an element of the set D. Our modification introduces
a second player who is given the option of selecting the sequence 〈pn〉n∈N, digit by
digit, with the requirement that the sequence belongs to a given pay-off set P ⊆ D.
Thus the game has two players, identified as Gambler and Casino. At the start
of the game, a non-empty pay-off set P ⊆ D is fixed. We assume that Gambler
begins with the initial balance of B0 = 1 dollars. The game has one turn for each
natural n and each turn is played so that Gambler places a bet bn (a real number
of absolute value not exceeding Bn, his current balance), and then, seeing this bet,
Casino plays a digit, pn = +1 or pn = −1 and Gambler’s balance is updated to

Bn+1 = Bn + pnbn.
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Hence, a negative bet by Gambler is a stake that Casino will play pn = −1, and
a positive bet by Gambler is a stake that Casino will play pn = 1, since these
two situations result in an increase in Gambler’s balance. During the course of
a run in the game, Casino produces an infinite sequence of flips ~p = 〈pn〉n∈N ∈ D
(pn = ±1 is the nth digit played by Casino), and Gambler produces a sequence of
bets ~b = 〈bn〉n∈N ∈

∏
n∈N[−Bn, Bn] ⊂ RN, where Bn is Gambler’s balance at the

start of round n. The actual order in which these plays are made is:

b0, p0, b1, p1, . . . , bn, pn, . . . ,

and both players have total knowledge of all things played earlier. In particular,
when Casino plays pn, it knows the value of bn. To make the game non-trivial
we require that Casino produces a sequence ~p = 〈pn〉n∈N that belongs to a given
pay-off set P . We shall refer to this game as Γ(P ).

We do not directly define the result of a run in this game (that is, the decision
who is the winner after the whole infinite sequence of moves is made). This is
because the results on games of the form Γ(P ) that we obtain all have the following
general form: one of the two players has a strategy which will guarantee some
inequality between either the limit or the supremum of Gambler’s balances and the
reciprocal of the measure λ(P ) of the pay-off set P . However, no single form of
such an inequality will capture all the results related to this game simultaneously.
Hence there is no definition fixed once and for all of who the winner should be. Yet
the general goal of Gambler is to increase the balances Bn (or to force Casino to
play a sequence ~p = 〈pn〉n∈N outside P ). Accordingly, the general aim of Casino is
to decrease Bn (and to stay inside P ).

Consider now a version of the game of the form Γ(P ) which does contain the
definition of a winner. Suppose that a non-negative real number H > 0 is fixed
at the outset along with the set P ; here H can also be equal to ∞. In most cases
H will be close to 1/λ(P ). The game Γ(P,H) is played in an identical manner
to Γ(P ), but we say in addition that Gambler wins a run of Γ(P,H) if one of the
following two conditions is satisfied:

1) ~p /∈ P ;
2) ~p ∈ P , ∀n ∈ N (|bn| 6 Bn), and in addition

(a) supn∈N Bn > H in the case when H < ∞,
(b) supn∈N Bn = ∞ in the case when H = ∞.

If we say that Casino ‘cheats’ whenever ~p /∈ P , and Gambler ‘cheats’ by betting
more than his current balance, then we have declared Gambler the winner, in
particular, if either Casino or both players cheat. Clearly, neither player can force
the other to cheat, so we shall assume throughout the paper that clause 2) always
holds. And in this case clauses 2), (a) and 2), (b) define our notion of winner for H
finite or infinite, respectively.

Intuitively, Gambler is given a balance of 1 dollar and is betting on an event
~p ∈ P of probability λ(P ) (when P is Lebesgue measurable). Thus, we might
expect that Gambler can increase his balance to the value 1/λ(P ). On the other
hand, if P has null measure but is dense, it is not quite clear whether Gambler can
earn an infinite amount of money in this case. Still we shall see that this is possible.
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We now define the notion of a strategy for the two players. Generally, a strategy
in games of this type is a rule that tells the player (on the basis of the previous
turns) what to play on each turn. For instance, when it is Gambler’s turn to play,
the previous turns (if it is not the initial turn) have produced:

• the current balance Bn = B0 +
∑n−1

i=0 pibi ∈ R ∩ [0,∞);
• a sequence ~b � n = 〈b0, b1, . . . , bn−1〉 ∈ Rn of bets by Gambler;
• a sequence of digits played by Casino, ~p � n = 〈p0, . . . , pn−1〉 ∈ {−1, 1}n;

and Gambler’s strategy must define the next bet bn ∈ [−Bn, Bn] from these quan-
tities. Thus, the system of strategies for Gambler is exactly the set of all functions

σ : R× (R× {−1, 1})<N → R

such that for all n ∈ N and B we have −B 6 σ(B, 〈~b � n, ~p � n〉) 6 B.
When it is Casino’s turn to play, there will be:
• the current balance Bn ∈ R ∩ [0,∞);
• a sequence of bets by Gambler, ~b � n + 1 = 〈b0, . . . , bn−1, bn〉 ∈ Rn+1;
• a sequence of digits played by Casino, ~p � n = 〈p0, . . . , pn−1〉 ∈ {−1, 1}n;

and the strategy should produce the next digit pn = ±1. Thus, the system of
strategies for Casino is exactly the set of all functions

τ : R×
⋃
n∈N

(
Rn+1 × {−1, 1}n

)
→ {−1, 1}.

In fact, the value of Bn is completely determined by ~b � n and ~p � n, so including
the balance in the domain of the strategies is not necessary. However, all of the
strategies that we employ below depend only on Bn and ~p � n, so for this paper,
on the contrary, including ~b � n in the domain of the strategies is not necessary.

Note that we have built into Gambler’s strategies the rule that Gambler can-
not ‘cheat’ by betting more than the current balance. Still we need the following
additional definition related to Casino’s strategies. A strategy τ for Casino will be
called admissible, if for every sequence ~b of legal bets by Gambler, Casino obtains
~p ∈ P following τ .

We say that Gambler follows a strategy σ, if for each turn n Gambler bets
bn = σ

(
Bn, 〈〈b0, . . . , bn−1〉, 〈p0, . . . , pn−1〉〉

)
. Likewise, Casino follows a strategy τ

if for each n Casino plays pn = τ
(
Bn, 〈〈b0, . . . , bn〉, 〈p0, . . . , pn−1〉〉

)
.

Example 1. We take the following countable dense set as P :

P1 = {~p ∈ D : ∃N ∀n > N (pn = 1)}.

Then in the game Γ(P1) Gambler can increase his initial balance unboundedly.
Namely, in this case the strategy for Gambler that sets bn = Bn/2 will lead to
limn→∞ Bn = ∞, and hence will win the game Γ(P1,∞). Indeed, as Bn > 0 for
all n, and since Casino must produce ~p ∈ P1 when Gambler follows this strategy,
he will be paid on a cofinite set: if N is where ~p becomes constant 1 starting from
the Nth position, then

lim
n→∞

Bn =
BN

2
+

BN

2
+

BN

2
+ · · · = ∞.
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We summarize the above example by saying that, in Γ(P1), Gambler has a strat-
egy that guarantees limn→∞ Bn = ∞. The precise meaning of this is that Gambler
has a certain strategy σ such that for every ~p ∈ P1, when Gambler follows σ and
Casino plays a sequence ~p ∈ P1, the balances converge to infinity. Below we shall
state our results using this terminology. For example, the assertion that Casino has
a strategy (in Γ(P ) ) that guarantees supn∈N Bn < 1/λ(P ) means that Casino
has a strategy τ such that whenever Gambler makes legal bets (so that |bn| 6 Bn)
and Casino follows τ , a sequence ~p ∈ P is produced such that for some ε > 0 we
have Bn 6 1/λ(P )− ε for all n.

For games similar to Γ(P,H) we say that Gambler wins Γ(P,H) if Gambler
has a winning strategy, that is, a strategy that guarantees supn∈N Bn > H (or
supn∈N Bn = ∞ when H = ∞). Correspondingly, we say that Casino wins Γ(P,H)
if Casino has a strategy that guarantees supn∈N Bn 6 H (or supn∈N Bn < ∞ when
H = ∞).

We note here that if Casino has a strategy that guarantees a small limit of
the balances in some sense, then this same strategy will also guarantee that the
supremum of the balances is equally small, since Gambler is allowed to bet zero on
any turn, which preserves the achieved balance. When we make a claim that one of
the two players has a strategy guaranteeing some inequality (or equality) involving
limn→∞ Bn, we mean here that the limit exists and satisfies this inequality.

§ 2. Two key strategies

We now describe two special strategies for Gambler and Casino, which play
a crucial role in this game. The main idea is that Gambler would like to be able
to bet a certain amount so that, after Casino plays, Gambler is no worse off than
he was at the start of the turn. When it is Gambler’s turn to play, the position of
the game can be described by the current balance B = Bn and the initial segment
s = ~p � n = 〈p0, . . . , pn−1〉 of the infinite sequence ~p played by Casino. For s ∈ S,
we denote by λs(P ) the relative measure of the set P in Ds:

λs(P ) =
λ(P ∩ Ds)

λ(Ds)
= λ(P ∩ Ds) 2lh s ∈ [0, 1] ∩ R.

It is now reasonable to define the quality of the position 〈B, s〉 to be equal to
B/λs(P ) (at least when P is measurable). The reason of such a definition is as
follows: in this position Gambler has B dollars to bet on an event of probability
λs(P ), and both the increase of B and the decrease of λs(P ) (so that Casino’s
moves become more predictable) improve Gambler’s standing. Hence we make the
following definition.

Definition 2. For s ∈ S, B ∈ R, and P ⊆ D the P -quality of the position 〈B, s〉
is defined by

QB
s (P ) =

B

λs(P )
=

B

λ(P ∩ Ds)2lh s
,

where λ denotes Lebesgue measure whenever P is measurable and Lebesgue outer
measure otherwise.
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Note that the quality is always not smaller than the balance. From the position
〈B, s〉 one can derive the two possible qualities of the next position. If Gambler
bets b and Casino plays pn = −1, then the new quality is

q−1(b) =
B − b

λsb(−1)(P )
,

while the response pn = 1 of Casino yields the quality

q1(b) =
B + b

λsb1(P )
.

In the case where neither of the two relative measures of P is zero, using the fact
that 2λs(P ) = λsb1(P ) + λsb(−1)(P ), we see that there is a unique bet

b∗ = B
λsb1(P )− λsb(−1)(P )
λsb1(P ) + λsb(−1)(P )

,

which will give
q−1(b∗) = q1(b∗) = QB

s (P )

and hence preserve the quality regardless of Casino’s answer. For all the other
bets b ∈ [−B,B], one of the two resulting qualities qi(b) is strictly less than the
quality QB

s of the original position (correspondingly, the second resulting quality
q−i(b) is greater than QB

s ). This is illustrated by Fig. 1, where we assume that
λsb1(P ) > λsb(−1)(P ).

Figure 1

Thus, we see that when both relative measures are positive, it is always possible
for Gambler to make an admissible bet bn = b∗ so that the new quality is precisely
equal to the quality of the original position. However, when one of the relative
measures is zero, Gambler does not have as much control and, as pointed out below,
may be forced to accept a decrease in quality. This strategy deserves a special name.
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Definition 3. For any measurable set G ⊆ D the strategy for Gambler in the game
Γ(P ) that is defined by

bn = b∗n = Bn

λ(~p �n)b1(G)− λ(~p �n)b(−1)(G)
λ(~p �n)b1(G) + λ(~p �n)b(−1)(G)

will be called the G-quality preserving strategy and will be denoted by σG.

The set G in this definition should be viewed as an approximation to the actual
pay-off set P determining the game. The strategies for Gambler that we shall
consider will be combinations of G-quality preserving strategies for appropriate
approximations G of the set P , but as a rule, the P -quality preserving strategy
itself will not be used. Note that σG depends only on the sequence ~p � n of
previous moves played by Casino and, of course, also on the current balance Bn.
Thus, Gambler is free to switch from σG to some other σG′ at any point of the
game, then return to σG if necessary at a later point, or switch to σG′′ for yet
another approximation G′′, and so on.

These quality preserving strategies have one major flaw: they are not good in
positions 〈B, s〉 such that either λsb1(G) or λsb(−1)(G) = 0. By definition the
strategy σG bets everything on the opposite event. For instance, suppose that
λ(~p �n)b1(G) = 0 on turn n, but P ∩ D(~p �n)b1 6= ∅. Then the strategy σG will
inform Gambler to play bn = −Bn, that is, to bet everything on the move pn = −1
of Casino. Now Casino may choose pn = 1, collect all Gambler’s money on this
turn and comfortably finish the game leaving Gambler with zero balance and the
impossibility of non-zero bets. (Casino is free to continue the game with the only
aim to obtain ~p ∈ P ∩ D(~p �n)b1 at the end, which is possible since it is assumed
that P ∩ D(~p �n)b1 6= ∅.) Note, however, that when G is an open set containing P ,
this situation never arises.

The notion of quality also provides a strategy of fundamental importance for
Casino. The main idea is as follows. Any strategy τ for Casino should at least
preserve the chance to stay within the pay-off set P . Therefore, whenever the
players reach a position where P ∩D(~p �n)bi = ∅, the strategy τ must play pn = −i.
(By the way, in this position Gambler can bet the whole of the balance on pn = −i.)
When both extensions (~p � n)̂ i, i = ±1, give positive relative measures for P and
Gambler bets the P -quality preserving amount, then Casino can play by a move bn

equal to 1 or −1, with the same effect. When both extensions give positive relative
measures for P , but Gambler bets something different from the P -quality preserving
amount, then Casino can play so that the P -quality of the position decreases.

Definition 4. For any Lebesgue measurable set F ⊆ D, the strategy for Casino
which plays pn = 1 whenever one of the following conditions is satisfied:

1) λ(~p �n)b(−1)(F ) = 0;
2) bn is the F -quality preserving bet and λ(~p �n)b1(F ) > λ(~p �n)b(−1)(F ),
3) bn is not the F -quality preserving bet and

Bn + bn

λ(~p �n)b1(F )
<

Bn − bn

λ(~p �n)b(−1)(F )
;

and plays pn = −1 in all other cases will be called the F -quality decreasing strategy
for Casino and will be denoted by τF .
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We can observe that τF decreases the F -quality whenever Gambler’s previous
bet is not F -quality preserving in the above-defined sense. Again, Casino is free to
switch from τF to another τF ′ at any time, or even change the strategy infinitely
often. By the way, when F ⊆ P is a closed set, τF is an admissible strategy, which
means that it will produce ~p ∈ F , because τF always produces a digit pn with
F ∩ Dsbpn

6= ∅, so ~p ∈ F since the set F is closed.
To get a feel of how these strategies behave, we give an example in which, quite

surprisingly, σP is not the best of Gambler’s strategies.

Example 5. For n ∈ N let sn = 〈(−1)2n+1, 1〉 be the finite sequence starting with
2n + 1 copies of −1 followed by a single copy of 1. Let −~1 be the constant infinite
sequence of −1’s. The set P = 〈−~1〉 ∪

⋃
n∈N Dsn

is closed and has measure 1/4 +
1/16 + 1/64 + · · · = 1/3. Let us show that Casino has an admissible strategy τ in
Γ(P ), which guarantees supn∈N Bn < 1/λ(P ) = 3.

Initially, we have a position of quality 1
1/3 = 3 and we have λ〈1〉(P ) = 0 and

λ〈−1〉(P ) = 2/3. It is clear that Casino must play p0 = −1 for otherwise ~p /∈ P .
Therefore, the strategy σP calls for

b∗0 = B0

λ〈1〉(P )− λ〈−1〉(P )
λ〈1〉(P ) + λ〈−1〉(P )

= 1 · 0− 2/3
0 + 2/3

= −1

(that is, the bet of the whole of the initial balance B0 = 1 on the move pn = −1).
The required strategy τ for Casino selects p0 = −1, and the new balance becomes
B1 = 1− b0 6 2.

If Gambler in fact bets b0 = −1 following σP , then the new P -quality remains
equal to

B1

λ〈−1〉(P )
=

2
2/3

= 3.

After this the two relative measures of P are equal to

λ〈−1,1〉(P ) = 1, λ〈−1,−1〉(P ) = 4
(

1
16

+
1
64

+
1

256
+ · · ·

)
=

1
3

.

Thus, the P -quality preserving bet of Gambler will be

b∗1 = B1
1− 1/3
1 + 1/3

=
B1

2
.

Should Gambler bet any amount b1 satisfying b1 < B1/2, τ plays p1 = 1, and
we obtain ~p ∈ P independently of the following moves in the game, so that Casino
can concentrate on reducing Gambler’s balance. After the next pair of moves (with
b1 < B1/2), there will be B2 < 3 and Casino can reduce the balance whenever
Gambler bets any non-zero amount in the future.

However, if Gambler bets b1 > B1/2 on turn 1, then τ calls for the bet p1 = −1.
In this case the new balance will be equal to B2 6 1, and we are essentially back
at the start of the game with balance no greater than the original balance B0 = 1.
That is, the balance has not increased, and the pay-off set P on the Baire interval
D〈−1,−1〉 looks identical to the pay-off set at the start of the game. Thus, Casino
can continue to play in accordance with the same plan. This outlines the strategy τ .
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Should Gambler follow the P -quality preserving strategy on each turn, that is,
bn = Bn/2, the balances will be

Bn =

{
1 if n is even,

2 if n is odd,

while the above-defined Casino’s strategy τ will produce ~p = −~1 ∈ P .
If on any odd turn n Gambler bets bn < Bn/2, then τ plays pn = 1 and,

as above, the current balance will be strictly less than 3 and can only decrease
whenever Gambler makes a non-zero bet in the future.

Should Gambler ever bet bn > Bn/2 on any odd turn, τ would play pn = −1 and
the quality decreases to 3− ε for some ε > 0. Then Casino can maintain a quality
(and hence a balance) of 3− ε or less for the rest of the game.

Thus, in all cases the strategy τ guarantees that the balances are always strictly
less than 3. As far as Gambler is concerned, his optimal strategy is simply to bet
b0 = −1 at the start, then b1 = 1− ε, and bn = 0 for n > 2. By doing so, Gambler
continues with a balance of 3− ε dollars during the course of the game, which, for
small ε, looks much better than the permanent oscillations between 1 and 2 dollars
that occur when Casino follows the strategy τ and Gambler follows the P -quality
preserving strategy.

§ 3. Case of measure zero

In this section we characterize zero-measure sets as the class of all sets P ⊆ D
such that Gambler has a strategy in Γ(P ) that guarantees supn→∞ Bn = ∞. A sim-
ilar characterization of zero-measure sets was discovered in [4] (see also [2] and [5]
on related results). We use λ+(P ) to denote Lebesgue outer measure of a set P ⊆ D,
that is, the infimum of measures of the open sets covering P .

Theorem 6. Let P ⊆ D.
1. If λ+(P ) = 0, then Gambler wins Γ(P,∞), that is, Gambler has a strategy

in Γ(P ) that even guarantees limn→∞ Bn = ∞.
2. If Gambler wins Γ(P,∞), then λ+(P ) = 0.

Proof. 1. When P has measure zero, Casino is forced to produce ~p from a very
limited set. Therefore, it is reasonable to assume that Casino’s moves will become
sufficiently predictable so that Gambler will be able to capitalize on this. The quality
preserving strategies convert this assumption into a precise result. Let 〈Gn〉n∈N be
a decreasing sequence of open sets such that

(i) P ⊆ Gn for each n ∈ N;
(ii) limn→∞ λ(Gn) = 0.
The required Gambler’s strategy can be described as follows.
Let m0 be the least number such that λ(Gm0) 6 1/2. Gambler begins by keeping

half of his initial 1 dollar in a ‘bankroll’, pretending his balance is only 1/2 dollar.
Gambler follows σGm0

, that is, the Gm0-quality preserving strategy, until after the
first turn n0 when Casino has produced a finite sequence

sn0 = 〈p0, p1, . . . , pn0〉 ∈ {−1, 1}n0+1
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such that Dsn0
⊆ Gm0 . This must happen since the entire infinite sequence ~p must

belong to the set P , and therefore to the open set Gm0 that covers P . Note that
by definition the intersection P ∩ Dsn0

is non-empty.
Following the strategy σGm0

on this first series of turns Gambler obtains the
Gm0-quality of the final position equal to the original Gm0-quality:

Bn0

λsn0
(Gm0)

=
Bn0

1
=

1/2
λ(Gm0)

>
1/2
1/2

= 1,

therefore the balance Bn0 is at least equal to 1 and in fact even to 1 + 1/2 = 3/2
since Gambler still has 1/2 dollar in the bank. By the same reason the actual
Gambler’s balance is at least 1/2 on each of these first turns.

Now let m1 be the least integer > m0 such that λsn0
(Gm1) 6 1/2. Note that

in fact λsn0
(Gm1) > 0, as otherwise the open set Dsn0

∩Gm1 would be empty, and
the set Dsn0

∩ P would also be empty, contrary to what we said above.
Starting the second series of turns Gambler now reserves at least 1 dollar, keeps

precisely 1/2 dollar for gambling, and follows the Gm1-quality preserving strategy
σGm1

until after the first turn n1 > n0 when the sequence

sn1 = 〈p0, p1, . . . , pn1〉 ∈ {−1, 1}n1+1

of Casino’s plays satisfies Dsn1
⊆ Gm1 . Such n1 exists by the same reasons as above,

and the intersection P ∩ Dsn1
is non-empty. After turn n1, since the Gm1-quality

does not decrease, Gambler’s balance will be at least 1 dollar because

Bn1

λsn1
(Gm1)

=
Bn1

1
=

1/2
λsn0

(Gm1)
>

1/2
1/2

= 1,

but in fact it will be at least 2 dollars together with the reserved amount of at least
1 dollar. Note that in the course of this second series of turns (from n0 to n1) the
actual balance will always be at least 1.

We consider now the least integer m2 > m1 such that λsn1
(Gm2) 6 1/2; then

λsn1
(Gm2) > 0, as above. In the third series of turns Gambler reserves > 3/2

dollars, still keeping precisely 1/2 dollar for gambling, and follows the Gm2-quality
preserving strategy until after the first turn n2 > n1 when Dsn2

⊆ Gm2 . Then the
balance will increase by at least 1/2 dollar; and so on.

It is clear that following such a strategy Gambler ensures the inequality

lim
n→∞

Bn = ∞.

2. Suppose that Gambler has a strategy σ guaranteeing that independently
of Casino playing any sequence ~p ∈ P in Γ(P ) the balances grow to ∞, that is,
supn∈N Bn = ∞. For any finite sequence s ∈ S let Cσ(s) be the balance that
results from Gambler following the strategy σ and Casino producing the sequence
of plays s (after the number of turns equal to the length of s). Clearly, the quantities
Cσ(ŝ 1) and Cσ(ŝ (−1)) are equal to Cσ(s) + b and Cσ(s)− b, respectively, where
b = σ(Cσ(s), 〈~bs, s〉) (the bet that σ tells Gambler to make), and ~bs is the sequence
of previous bets made by Gambler. Therefore,

Cσ(ŝ 1) + Cσ(ŝ (−1)) = 2Cσ(s),

and this immediately implies that
∑

s∈{−1,1}n Cσ(s) = 2n.
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Now let Sn = {s ∈ S : Cσ(s) > n}. Obviously, the set Gn =
⋃

s∈Sn
Ds is open

and satisfies P ⊂
⋂

n∈N Gn, and if we can show that λ(Gn) 6 1/n, then P will
have outer measure 0. Assume by contradiction that λ(Gn) > 1/n. Each open
set G ⊆ D can be approximated by its clopen subsets of measure arbitrarily close
to λ(G). Thus, we can find a finite system of sets S′ ⊆ Sn such that:

• if s 6= t belong to S′, then Ds ∩ Dt = ∅;
• λ

(⋃
s∈S′ Ds

)
=

∑
s∈S′ 2

− lh s > 1/n.
If s ∈ {−1, 1}n, then the balances Cσ(t) of the extensions t of length n + k of

the sequence s in S obviously add up to 2kCσ(s). We put ` = maxs∈S′{lh s} and
consider the set

T =
{
t ∈ {−1, 1}` : ∃ s ∈ S′ (s ⊆ t)

}
⊆ {−1, 1}`

of all finite sequences of length ` that are extensions of some element in S′. Then

2` =
∑

s∈{−1,1}`

Cσ(s) >
∑
t∈T

Cσ(t) =
∑
s∈S′

2`−lh sCσ(s)

= 2`
∑
s∈S′

2− lh sCσ(s) > 2` 1
n

n = 2`,

a contradiction. Thus, each set Gn has measure at most 1/n, and therefore P has
outer measure 0.

Corollary 7. For P ⊆ D the following conditions are equivalent :
• λ(P ) = 0;
• Gambler wins Γ(P,∞), that is, has a strategy in the game Γ(P ) that guar-

antees limn∈N Bn = ∞.

§ 4. The case of positive measure from Gambler’s point of view

In this section we verify that Gambler can always increase his balance to about
1/λ+(P ), and conversely, that optimal earnings by Gambler produce upper bounds
for the outer measure of the (not necessarily measurable) set P . In principle, this
is consistent with Theorem 6 if we set 1/0 = ∞.

Theorem 8. Let P ⊆ D and suppose that 0 < h 6 1.
1. If λ+(P ) 6 h then for any ε > 0 Gambler wins Γ(P, h−1 − ε) and even has

a strategy in Γ(P ) that guarantees limn→∞ Bn > h−1 − ε. In particular, if
λ+(P ) < h, then Gambler wins Γ(P, h−1).

2. If Gambler wins Γ(P, h−1), then λ+(P ) < h. In particular, if Gambler wins
Γ(P, h−1 − ε) for each ε > 0, then λ+(P ) 6 h.

Proof. 1. Here we must prove both the existence of the limit and the fact that it is
greater than h−1 − ε. The idea of the proof is roughly the same as in the first part
of the proof of Theorem 6. If P is open, then the P -quality preserving strategy
yields

Bn

λ~p �n(P )
=

1
λ(P )

> h−1,
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and the relative measure in the denominator (λ~p �n(P )) will eventually become 1.
The small number ε is necessary to reduce the general case to the case of open sets
since quality preserving strategies produce reliably the expected result only in the
case of open sets.

Fix ε > 0. If either h = 1, or h < 1 and h−1−ε 6 1 simultaneously, then Gambler
can bet zero on each turn of the game. Therefore, we may assume that h < 1 and
h−1 − ε > 1, so that h < h/(1− εh) < 1. In this case there is an open set G such
that P ⊆ G and λ(G) < h/(1 − εh). Assume that Gambler plays in accordance
with σG. Eventually, Casino’s plays pn will produce a finite sequence sn0 such that
Dsn0

⊆ G. Since the G-quality does not change, we shall have

B0

λ(G)
=

1
λ(G)

=
Bn0

λsn0
(G)

=
Bn0

1
.

Thus, Bn0 = 1/λ(G) > (1−εh)/h = h−1−ε. For all the following turns from n0+1
onwards Gambler can simply bet zero, and then limk→∞ Bk = Bn0 > h−1 − ε, as
required.

2. The second statement of this part of the theorem is an easy consequence of
the first, so we shall only verify the first statement. The idea is as in the proof
of Theorem 6: any Gambler’s strategy can make individual balances large, but when
one sums all the balances after n turns of the game corresponding to s ∈ {−1, 1}n,
then the total is exactly 2n, and there cannot be many finite sequences s of the
form ~p � n for ~p ∈ P .

Let σ be a strategy for Gambler that guarantees that at least supn∈N Bn > h−1.
For s ∈ S let Cσ(s) denote the balance that results from Gambler following the
strategy σ and Casino playing a (finite) sequence of plays s. Let

Sh = {s ∈ S : Cσ(s) > h−1},

so that P ⊆ G =
⋃

s∈Sh
Ds, and it is sufficient to show that λ(G) < h. Assume

the converse, so that λ(G) > h. Consider an arbitrary sequence s0 ∈ Sh. Then for
some ε0 > 0 we have Cσ(s0) = h−1 + ε0. It is clear that if h′ is close to h and
B > h−1, then h′ · B is close to 1. We take δ > 0 such that if h′ > h − δ, then
h′ · h−1 > 1− ε02− lh s0 . We can find a finite subsystem S′ ⊆ Sh such that:

• s0 ∈ S′;
• if s 6= t ∈ S′, then Ds ∩ Dt = ∅;
•

∑
s∈S′ λ(Ds) =

∑
s∈S′ 2

− lh s > h− δ.
Let ` = maxs∈S′{lh s}; then

2` =
∑
s∈2`

Cσ(s) >
∑
s∈S′

2`−lh sCσ(s) = 2`
∑
s∈S′

2− lh sCσ(s)

> 2`
[
(h− δ)h−1 + ε02− lh s0

]
> 2`,

a contradiction. Thus, λ(G) < h, and therefore λ+(P ) < h since P ⊆ G.

Corollary 9. For P ⊆ D and 0 < h 6 1 the following conditions are equivalent :
• λ+(P ) 6 h;
• for each ε > 0 Gambler wins Γ(P, h−1 − ε), that is, has a strategy in the

game Γ(P ) that guarantees supn∈N Bn > h−1 − ε.
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§ 5. The case of positive measure from Casino’s point of view

In this section we characterize the inner measure λ−(P ) of a set P in terms of
optimal strategies for Casino. We show that Casino can always keep the supremum
of Gambler’s balances below or equal to the reciprocal of the inner measure of P , and
optimal strategies for Casino produce lower bounds for the inner measure of P .

Theorem 10. Let P ⊆ D and h ∈ (0, 1].
1. If λ−(P ) > h, then Casino wins the game Γ(P, h−1), that is, it has an admis-

sible (ensuring ~p ∈ P ) strategy in Γ(P ) that guarantees supn∈N Bn 6 h−1.
2. If Casino wins the game Γ(P, h−1 + ε) for each ε > 0, then λ−(P ) > h.

Proof. 1. The idea is to employ the F -quality decreasing strategies for Casino for
appropriate large closed sets F ⊆ P . To begin with, note that λ−(P ) > h, and
therefore there is a set U =

⋃
n∈N Fn ⊆ P , where 〈Fn〉n∈N is an increasing sequence

of closed sets with λ(F0) > 0 and h = λ(U) = limn→∞ λ(Fn). The required strategy
for Casino can be defined as follows.

The whole course of the game is split into two parts. The first part is that initial
segment of the game (which can be empty, or, the other way around, can contain
the entire game) on which Gambler follows the U -quality preserving strategy σU .
Casino’s moves do not affect the U -quality of positions, which remains the same
during this part of the game, hence Casino can play while taking into account
arguments related to the closed set F0 rather than the set U . Namely, during this
part Casino will respond by plays pn = ±1 defined so that λsbpn

(F0) > λs(F0). To
be more precise, if Gambler plays

bn = Bn

λ(~p �n)b1(U)− λ(~p �n)b(−1)(U)
λ(~p �n)b1(U) + λ(~p �n)b(−1)(U)

(the U -quality preserving bet), then Casino answers by

pn =

{
1, if λ(~p �n)b1(F0) > λ(~p �n)b(−1)(F0),

−1 otherwise.

If Gambler follows the strategy σU for the entire game, then Casino produces
a sequence ~p ∈ F0 ⊆ P (because F0 is closed) and, at the same time, the U -quality
never changes. Thus, since the balance never exceeds the quality, it follows that
Bn 6 h−1 for all n ∈ N.

But if Gambler leaves the strategy σU at some point, then let n be the first turn
where Gambler does not follow σU . Here the second part of the game starts, and
now Casino changes its strategy, too. Namely, Casino can choose its next move
pn = ±1 so that the new U -quality will be strictly less than the original one. Then
there is ε > 0 such that

Bn+1

λ~p �(n+1)(U)
= h−1 − 2ε.

And since limn→∞ λ(Fn) = λ(U), Casino can choose k ∈ N so that

Bn+1

λ~p �(n+1)(Fk)
< h−1 − ε.
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Suppose Casino follows the Fk-quality decreasing strategy from this point on.
In this case the Fk-quality of positions will not increase, therefore the balances,
bounded above by the quality, will satisfy supm>n Bm 6 h−1 − ε. As regards
the balances B0 through Bn (the first part of the game), they are bounded by the
original U -quality, h−1. Therefore, following this game plan, Casino always has
supn∈N Bn 6 h−1, while on the other hand we have either ~p ∈ F0 (when the second
part of the game does not exist), or ~p ∈ Fk (if the second part exists), therefore
~p ∈ U in both cases, as required.

2. To begin with, we define an analogue Cτ (β) of the balance function Cσ(s)
introduced above. If τ is an admissible strategy for Casino (that is, τ always
produces sequences ~p ∈ P ) and β = 〈b0, . . . , bn1〉 is the sequence of n initial bets of
Gambler, then Cτ (β) denotes the balance after the n turns when Gambler bets
b0, . . . , bn1 and Casino follows the strategy τ .

Lemma 11. Let P ⊆ D, let τ be an admissible strategy for Casino in Γ(P ) and
ε > 0. Then there is a closed set P ′ ⊆ P , and for each ~p′ ∈ P ′ there is an infinite
sequence of bets ~b~p′ ∈ {−1, 1}N by Gambler such that for each n ∈ N:

(i) if ~p′ � n = ~p′′ � n, then ~b~p′ � n = ~b ~p′′ � n;

(ii) τ produces ~p′ � n when Gambler bets ~b~p′ � n;

(iii)
∑

s∈P ′
n

B̃τ (~bs) > 2n − 2nε.

Proof. We shall define P ′ as the set of branches of the tree T =
⋃

n∈N P ′
n ⊆

{−1, 1}<N, where P ′
n ⊆ {−1, 1}n. The sequence ~b~p′ of Gambler’s bets that cor-

responds to the sequence ~p′ ∈ P ′ will be defined by induction, so the sequence of
bets corresponding to the sequence ~p′ � n will be an initial segment of the sequence
corresponding to ~p′ � n + k, and τ will always be used to produce the responses
p′n+k. Hence branches of the tree will correspond to runs of Γ(P ), where Casino
follows τ and Gambler bets a sequence ~b~p′ , and therefore P ′ ⊆ P . We shall only
be required to determine P ′

n (the nodes of the tree of the nth level) from P ′
n−1. To

clarify notation we suppress the dependence of the values of τ on everything but
Gambler’s current bet (for instance, bn) since all the other inputs (for instance,
previous bets by Gambler) will be clear from the context.

We begin with the definition of the 0th level P ′
0 = 〈Λ〉, where Λ is the empty

sequence (of length 0). This corresponds to the beginning of the game, and since
Gambler makes the initial bet, we can define ~bΛ = Λ, which leads to the balance
equal to the initial balance 1 > 20 − ε.

Assume now that we have defined the levels P ′
n ⊆ {−1, 1}n of the required tree

for n = 0, 1, . . . , k − 1 such that:
• for all n < n′ < k and s ∈ P ′

n there is at least one sequence t ∈ P ′
n′ such

that s ⊂ t;
• to each s ∈ P ′

n we have associated a sequence of bets ~bs by Gambler such
that
– when Gambler bets the sequence ~bs, then the strategy τ produces the

sequence s of Casino’s answers,
– if the sequences s and t, s ⊂ t, belong to

⋃
n<k P ′

n, then ~bs ⊂ ~bt;
• if n < k, then

∑
s∈P ′

n
Cτ (~bs) > 2n − 2nε.
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We must now define P ′
k so that the properties above survive. For arbitrary

fixed δ > 0 we shall show that each sequence s ∈ P ′
k−1 can be extended to one or

two elements in {−1, 1}k that come from concrete bets by Gambler and by Casino
following τ , so that the total balance corresponding to either of the extensions is
at least 2Cτ (~bs)− δ.

Case 1: τ(bk) = 1 for all bets bk ∈ [−Cτ (~bs), Cτ (~bs)], that is, τ recommends the
answer 1 regardless of the bet bk by Gambler. In this case we put in the set of
possible extensions Tk only one extension ŝ 1 and set ~bsb1 = ~bŝ Cτ (~bs). In other
words, Gambler bets all of his money on 1, and since the strategy τ also plays 1,
the balance doubles.

Case 2: τ(bk) = −1 for all bets bk ∈ [−Cτ (~bs), Cτ (~bs)]. Then we put only one
extension ŝ (−1) in Tk and set ~bsb(−1) = ~bŝ − Cτ (~bs). Again, the balance doubles
for the same reasons.

Case 3: the strategy τ as a function is not constant on the interval

[−Cτ (~bs), Cτ (~bs)].

Then there exist two values on this interval, say, b
(1)
k and b

(−1)
k , such that τ(b(i)

k ) = i

(i = ±1) and |b(1)
k −b

(−1)
k | < δ.1 We put both extensions in Tk and set ~bsbi = ~bŝ b

(i)
k

(i = ±1). The two corresponding changes of the balance sum up to

2Cτ (~bs) + b
(1)
k − b

(−1)
k > 2Cτ (~bs)− δ.

Thus, to define Tk we fix a sufficiently small δ > 0 (see below on the choice of δ)
and then add to P ′

k one or two extensions of each sequence s ∈ P ′
k−1, as indicated

above, defined for this δ. By the induction hypothesis∑
s∈P ′

k−1

Cτ (~bs) > 2k−1 − 2k−1ε.

On the other hand, ∑
s∈P ′

k

Cτ (~bs) > 2
∑

s∈P ′
k−1

Cτ (~bs)− 2k−1δ

by definition. Therefore, there is a sufficiently small real number δ > 0 such that∑
s∈P ′

k
Cτ (~bs) > 2k − 2kε, as required.

The induction step of the construction obviously preserves all the required prop-
erties. This finishes the proof of Lemma 11.

We now return to the proof of claim 2 of Theorem 10. To prove that λ−(P ) > h
consider an arbitrary δ > 0. We shall find a closed set P ′ ⊆ P with λ(P ′) > h− δ.
We may assume that δ < h.

It is clear that to obtain the required set it is sufficient to ensure additionally
the inequality card(P ′

n) > 2n(h−δ) for all n ∈ N in the construction from the proof
of the lemma, where card X is the cardinality of the finite set X.

1Note that these values can be chosen among rational numbers. This will be of some importance
below for our study of the rational form of the game.
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First, we pick ε1 such that 0 < ε1 < δ/(h(h − δ)), and then we have ε2 =
δ(h−1 + ε1)− hε1 > 0. Let τ be an admissible strategy for Casino that guarantees
that

sup
n∈N

Bn 6 h−1 + ε1.

Using Lemma 11 for this strategy τ we find a closed set P ′ ⊆ P satisfying∑
s∈P ′

n

Cτ (~bs) > 2n − 2nε2

for all n. Then ∑
s∈P ′

n

Cτ (~bs) 6 (h−1 + ε1) cardP ′
n ,

and hence

cardP ′
n >

∑
s∈P ′

n
Cτ (~bs)

h−1 + ε1
>

2n − 2nε2

h−1 + ε1
=

2n − 2nδ(h−1 + ε1) + 2nhε1

h−1 + ε1

=
2n(h− δ)(h−1 + ε1)

h−1 + ε1
= 2n(h− δ).

This implies that λ−(P ′) > h− δ, so that we have proved claim 2 of Theorem 10.

Corollary 12. If P ⊆ D and 0 < h 6 1, then the following conditions are
equivalent :

• λ−(P ) > h;
• Casino wins Γ(P, h−1), that is, has a strategy in Γ(P ) that guarantees

supn∈N Bn 6 h−1.

It is an interesting problem whether supn∈N could be replaced by limn→∞ (that
is, by the requirement that the limit exists) in part 1 of Theorem 10. Lebesgue’s
density theorem [6] can be used to show that our strategy actually ensures the
existence of limn→∞ Bn for almost every (in the sense of measure) ~p ∈ P . Indeed, we
have limn→∞ λ~p �n(P ) = 1 for almost all ~p ∈ P , so that in the limit the balance and
the quality are equal. Since the qualities form a bounded non-increasing sequence
of real numbers, they converge. In spite of this, we were unable to eliminate a zero-
measure set and to replace fully supn∈N by limn→∞. We point out the following. If
F0 ⊆ P is a closed set of positive measure such that each point ~p ∈ F0 is a density
point of P , that is, limn→∞ λ~p �n(P ) = 1, then a similar argument shows that either
limn→∞ Bn = h−1, or supn∈N Bn < h−1. Hence, if Gambler can actually force the
sequence of balances not to converge (to any limit), then he will forfeit some part
of his potential earnings.

Another potential improvement of part 1 of Theorem 8 that one might hope for
is eliminating ε, that is, proving that if λ+(P ) 6 h, then Gambler has a strategy
in Γ(P ) guaranteeing limn→∞ Bn > h−1. However, Example 5 gives us a closed set
of measure 1/3 such that Casino guarantees that supn∈N Bn < 3 = 1/λ(P ). Thus,
in fact, ε is necessary. The next result (to save space, we skip the simple proof of
it, which follows the constructions of Example 5) shows that a similar set can be
defined to have any fixed measure h ∈ (0, 1).
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Proposition 13. For each real number h ∈ (0, 1) there is a closed set Ph ⊆ D
with λ(Ph) = h such that Casino has an admissible strategy in the game Γ(Ph) that
guarantees supn∈N Bn < h−1.

In the light of this result one might conjecture that part 1 of Theorem 10 can be
strengthened as follows:

if λ−(P ) > h, then Casino has a strategy in Γ(P )
that guarantees sup

n∈N
Bn < h−1

(the last inequality is now strict). However, if G is an open set with λ(G) = h > 0,
then the G-quality preserving strategy for Gambler guarantees that

lim
n→∞

Bn = h−1,

so Casino cannot have a strategy ensuring supn∈N Bn < h−1. However, it should
be noted that part 2 of Theorem 10 is actually stronger with ε than without it.

We finish this section by deducing the Lebesgue measurability of a fixed set P
from the existence of certain strategies for Casino in games of the form Γ(P, h) for
appropriate values of h.

Corollary 14. Let P ⊆ D be a set satisfying λ+(P ) > 0 and let

h =
λ+(P ) + λ−(P )

2
.

Then Gambler does not have a winning strategy in the game Γ(P, h−1). If Casino
has a winning strategy in the game Γ(P, h−1), then the set P is measurable.

Proof. Assuming that Gambler still has a winning strategy in the game Γ(P, h−1),
Theorem 8 implies

λ+(P ) <
λ+(P ) + λ−(P )

2
, and hence

λ+(P )
2

<
λ−(P )

2
,

which is a contradiction. Suppose that Casino has a winning strategy. Then The-
orem 10 implies that

λ−(P ) >
λ+(P ) + λ−(P )

2
, and hence

λ−(P )
2

>
λ+(P )

2
.

This shows that λ−(P ) = λ+(P ), so P is measurable.

§ 6. A ‘rational’ modification of the game

Here we study a modification of the game Γ(P ) that involves restricting
Gambler’s bets to rational amounts. The modified game turns out to be very
similar to Γ(P ) and allows us to give another proof (assuming the axiom of deter-
minacy) that all subsets of D are Lebesgue measurable.

Thus, if P ⊆ D and 0 6 H 6 ∞ (H is not necessarily rational), then we define the
games ΓQ(P ) and ΓQ(P,H) to be identical to Γ(P ) and Γ(P,H), respectively, except
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that Gambler must bet rational amounts. To be more precise, the game ΓQ(P,H)
still involves two players, identified as Gambler and Casino. The game consists
of infinitely many steps (turns) numbered by natural integers n. Gambler starts
with a balance of B0 = 1 dollar and on each turn chooses a rational number bn of
absolute value not exceeding his current balance Bn. Then Casino plays pn = ±1
and the new value of Gambler’s balance becomes

Bn+1 = Bn + bn · pn ∈ Q.

As above, we require Casino to produce a sequence of plays ~p = 〈pn〉n∈N in P and
say that Gambler wins a run of ΓQ(P,H) if supn∈N Bn > H. When H = ∞, we say
that Gambler wins a run in the game ΓQ(P,∞) if supn∈N Bn = ∞. Accordingly,
we say that Casino wins a run in ΓQ(P,H) if supn∈N Bn < H (or supn∈N Bn < ∞
in the case when H = ∞).

Again, we say that Gambler (or Casino) wins the game ΓQ(P,H) if Gambler
(Casino, respectively) has a winning strategy in the game, that is, an (admissible)
strategy guaranteeing the required inequality between H and supn Bn in ΓQ(P ).
The notion of admissible strategy for Gambler now includes the additional require-
ment that all bets are rational numbers.

This modification does not change the rules for Casino. That is, any admissible
strategy for Casino in Γ(P ) is also an admissible strategy for Casino in ΓQ(P ).
Hence the following result is an easy consequence of Theorem 10.

Theorem 15. If P ⊆ D and h ∈ (0, 1], then λ−(P ) > h if and only if Casino wins
ΓQ(P, h−1).

Proof. The implication =⇒ is an immediate consequence of Theorem 10. To prove
the implication ⇐= assume that τ is a winning strategy for Casino in the game
ΓQ(P, h−1). If we could conclude that τ is still a winning strategy in Γ(P, h−1),
where Gambler has much more freedom in betting, then Theorem 10 would imme-
diately give us the desired inequality. Unfortunately, we cannot prove this property
of strategies. On the other hand, one can easily accommodate our proof of Theo-
rem 10 to the ‘rational’ modification of the game. (See the footnote on page 1611.)

One could conjecture that the restriction of Gambler’s bets to rational numbers
gives Casino a certain additional advantage and therefore requires weakening the
conclusions of part 1 of Theorem 6 and part 1 of Theorem 8. However, each of
these results involves ε (or ∞), and hence in fact a minor modification of the
quality preserving strategies allows us to prove the same assertions for the modified
game.

Consider an arbitrary open set P ⊆ D. Recall that for s ∈ S and B ∈ R the bet

σP (B, s) = B
λsb1(P )− λsb(−1)(P )
λsb1(P ) + λsb(−1)(P )

(∗)

is what the P -quality preserving strategy σP calls for; here B is Gambler’s bal-
ance before this turn and s is the sequence of previous plays by the Casino. As noted
before, following this strategy in Γ(P ) Gambler keeps the P -quality of positions
equal to the initial quality 1/λ(P ) during the entire game regardless of Casino’s
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moves. In the ‘rational’ game ΓQ(P ) the strategy σP is not necessarily admissible:
the values of bets computed in accordance with (∗) are not necessarily rational. Yet
it is clear that, for any small fixed δ > 0, the strategy σP can be transformed into
a ‘rational’ (giving only rational values of bets) strategy σδ

P such that for any n and
any sequence s ∈ {−1, 1}n+1 of plays by Casino, if Gambler follows σδ

P , then the
P -quality of the position after n+1 turns differs from the value 1/λ(P ) by at most
δ(1− 2−n−1). Such a strategy σδ

P can be called a P -quality δ-preserving strategy,
where δ-preservation means preservation up to δ.

The proofs of the next two theorems are similar: one simply uses quality δ-
preserving strategies instead of the quality preserving strategies in the proofs of
Theorems 6 and 8. We shall give only a sketch of the proof of the second result.

Theorem 16. For a non-empty set P ⊆ D, λ+(P ) = 0 if and only if Gambler wins
ΓQ(P,∞).

Theorem 17. For P ⊆ D and h ∈ (0, 1], λ+(P ) 6 h if and only if Gambler wins
ΓQ(P, h−1 − ε) for every ε > 0.

Proof. To prove the implication =⇒ fix ε > 0. If either h = 1, or h < 1 and
h−1 − ε/2 6 1, then Gambler wins by betting zero on each turn. Therefore, we
can assume that h < 1 and h−1 − ε/2 > 1, so that h < h

1−εh/2 < 1. Then
we can find an open set G such that P ⊆ G and the measure λ(G) is rational
and satisfies λ(G) < h

1−εh/2 . If Gambler plays in accordance with any (fixed)
G-quality ε/2-preserving strategy, then Casino must eventually produce a sequence
sn0 satisfying Dsn0

⊆ G. In this case the G-quality will change by at most ε/2.
Thus,

1
λ(G)

− ε

2
<

Bn0

λsn0
(G)

=
Bn0

1
.

Hence

Bn0 >
1

λ(G)
− ε

2
>

1− εh/2
h

− ε

2
= h−1 − ε.

For turns n0 +1 and onwards Gambler can bet zero to obtain the required equality
limk→∞ Bk = Bn0 > h−1 − ε.

To prove the implication ⇐=, for any ε > 0 let σε be a winning strategy for
Gambler in ΓQ(P, h−1 − ε). Then σε guarantees supn∈N Bn > h−1 − ε also in the
game Γ(P ). By Theorem 8,(2), we obtain λ+(P ) 6 h.

The following analogue of Corollary 14 is used to prove, from the axiom of
determinacy, that all subsets of D are Lebesgue measurable. The proof is based on
the following fact: for games of the form ΓQ(P ) each player has only a countable
(and even two-element for Casino) set of possible moves.

Corollary 18. If a set P ⊆ D satisfies λ+(P ) > 0 and h = (λ+(P ) + λ−(P ))/2,
then Gambler does not win ΓQ(P, h−1), while if Casino wins ΓQ(P, h−1) then the
set P is measurable.

We now show how this implies that every subset of D is measurable, assuming
the axiom of determinacy. The result itself appeared first in [7], and a modern
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proof can be found, for example, in [8] or [9]. We start by a brief introduction to
determinacy.

We consider games involving two players, usually denoted by I and II, making
alternating choices from a fixed countable set X. Player I plays first and chooses
x0 ∈ X, player II responds by x1 ∈ X, then I once again moves x2 ∈ X, II selects
x3 ∈ X, and so on ad infinitum. A run of the game produces an infinite sequence
~x = 〈xn〉n∈N ∈ XN of elements of the set X, where the moves of player I are the x2n,
and the moves of player II are the x2n+1. A pay-off set P ⊆ XN is fixed before the
game starts. Either player has the full knowledge of this set, and before each of his
moves knows all the previous choices (by him and his opponent) in the game. The
result is defined as follows: if ~x ∈ P , then II wins the run, otherwise I wins the run.
This game is denoted by G(P ).

A strategy for one of the players in G(P ) is a rule (or function) which tells the
player what to pick on the nth turn on the basis of the previous choices. A strategy
is a winning strategy if the player wins all the games in which he follows the choices
of this strategy, regardless of the answers made by the opponent. The game G(P )
and the set P are called determined if one of the two players (it cannot be both
players) has a winning strategy.

Note that the fact that I has a winning strategy in G(P ) can be expressed by
the formula

∃x0 ∀x1 ∃x2 ∀x3 · · · (~x /∈ P ).

(We mean here that the strategy for I selects the existentially quantified values x2n

on the basis of all values of xi for i < 2n.) Accordingly, if II has a winning strategy,
then this can be expressed as

∀x0 ∃x1 ∀x2 ∃x3 · · · (~x ∈ P ).

Thus, the statement the game G(P ) is determined is expressed by the following
infinitary form of the law of the excluded middle:

∃x0 ∀x1 ∃x2 ∀x3 · · · (~x /∈ P ) ∨ ∀x0 ∃x1 ∀x2 ∃x3 · · · (~x ∈ P ).

The axiom of determinacy AD consists in the statement that all sets are determined,
or, saying it differently, that for any set P the game G(P ) is determined. It is
known that this is a very powerful axiom; in fact, it contradicts the full axiom of
choice AC, but is consistent with the axiom of dependent choices DC. (The latter
allows an infinite sequence of choices even in the case when the set from which
the next choice should be made depends on the results of previous choices.) To be
more precise, the consistency of AD + DC with the axioms of Zermelo-Fraenkel set
theory ZF (without the axiom of choice) has been established under the assumption
that some other proposition (namely, the statement of existence of infinitely many
so-called Woodin cardinals) is consistent with ZF, and, in fact these two consistency
hypotheses are equivalent. Woodin cardinals belong to the family of large cardinals
(together with, for example, inaccessible and measurable cardinals, but they are
much bigger that the latter two types); see more on this in [10], Ch. 33.

On the other hand, we can prove that fairly simple sets are determined. For
instance, Martin [11] showed that all Borel sets P ⊆ XN are determined. (We recall
that the set X is at most countable, for example X = N.)
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One can hardly hope that the determinacy theory for games on countable sets X
is directly applicable to the analysis of games of the form Γ(P ) since they do not
restrict possible moves of both players by a countable set. Yet it is quite clear that
the ‘rational’ modifications ΓQ(P ), where the moves are restricted to a countable
set, can be coded as games of the form G(P ′) for appropriate sets P ′ ⊆ NN (so
that each player chooses natural numbers). Thus, AD implies that for each set
P ⊆ D and each value of h, 0 6 h 6 ∞, the game ΓQ(P, h) is determined. Then
Corollary 18 provides another proof of the following known result (first established
in [7]; see a presentation in Russian in [9]).

Corollary 19. Under the assumption of the axiom of determinacy AD every set
P ⊆ D is Lebesgue measurable.

§ 7. A ‘discrete’ modification of the game

Here we introduce yet another, and more substantial, modification of games
of the form Γ(P ). It involves increasing Gambler’s initial balance B0 to some
positive integer, possibly a very large one, and requiring Gambler to bet only integer
amounts and (to avoid some trivialities) to bet non-zero amounts infinitely often.
Clearly this is essentially the same as keeping the initial balance of 1 dollar and
allowing to bet only multiples of 1/n for a fixed natural n. We use ΓZ(P,B0) to
denote this game.

The results relating to this game are strikingly different from those for Γ(P ),
and we shall see that, in fact, Casino can eventually force Gambler to go bankrupt.

Theorem 20. If B0 ∈ N and P ⊆ D satisfies λ−(P ) > 0, then Casino has a strat-
egy in the game ΓZ(P,B0) that guarantees Bn0 = 0 for some n0 (and then also for
all n > n0).

Proof. The main idea is as follows. In the original version of the game with
real-valued bets, if Gambler’s optimal strategy calls for a very small stake, say,
1/2 cent, then in the ‘discrete’ case Gambler can either bet 1 dollar (or more),
therefore losing in the quality of the position and balance, or pass with zero stake,
which allows Casino to play either digit and hence keep the amount of the next opti-
mal bet small; but by definition eventually Gambler has to bet a non-zero amount
and make a loss! This happens, for example, when the relative measure of P in the
current domain D~p �n is close to 1. After partitioning this domain into two smaller
subintervals, the corresponding relative measures will again be close to 1, which
implies another small stake. We shall show that, at the cost of a very small loss,
Casino can force Gambler to ‘visit’ positions with relative measures very close to 1
from time to time. Now we come to the details.

We consider the case of a closed set P first. Let ` be the least integer greater than
B0/λ(P ), the initial P -quality. Thus, if Casino follows the P -quality decreasing
strategy then the balances will remain less than ` and the sequence ~p of Casino’s
plays will belong to the set P . It suffices to show that Casino has a strategy which,
after finitely many turns, reduces this P -quality by a certain fixed amount (for
instance, 0.6) since once the quality decreases by this amount, Casino can assume
it is starting a new game for the set P ∩ Ds (s being the play of Casino to this
point) to decrease the quality again by 0.6 by using the same strategy, and so on.
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Here follows the description of one such strategy for Casino.
Fix a very small ε > 0; the precise value will be made clear later. There is

a finite set I of pairwise disjoint Baire intervals Ds such that P ⊆ U =
⋃

I and
λ(U) < λ(P ) + (ε/`)2. Let

I ′ =
{

Ds ∈ I : λs(P ) > 1− ε

`

}
,

so that for the sets U ′ =
⋃

I ′ and P1 = P ∩U ′ we obtain m1 = λ(P1) > λ(P )−ε/`.

The first requirement for ε: B0
λ(P )−ε/` < `.

The second requirement for ε: B0
λ(P )−ε/` < B0

λ(P ) + 0.1.

The first requirement guarantees that the initial P1-quality is less than `, and
the second guarantees that the initial P1-quality is within 0.1 from the original
P -quality. Casino starts by following the P1-quality decreasing strategy, so that the
balances will remain less than `. By the definition of P1, after several turns,
the finite sequence ~p � n = s of Casino’s plays satisfies Ds ∈ I ′. At this moment,
we see that d = λs(P ) = λs(P1) > 1− ε/`. Therefore, the corresponding quantities
di = λsbi(P ) = λsbi(P1), i = ±1, both satisfy 1 > di > 1 − 2ε/`. Let B be the
current balance at this point (that is, after the last play by Casino in the sequence s)
and b the next bet by Gambler, so that |b| 6 B < `. Then the values q, q−1, and q1

of the P1-quality for the sequences s, ŝ (−1), and ŝ 1, respectively, satisfy the
relations

q =
B

d
, q−1 =

B − b

d−1
, q1 =

B + b

d1
.

In this position, the P -quality preserving bet by Gambler will be close to 0. How-
ever, by definition the stakes can now be only integers.

Case 1: Gambler bets b 6= 0. Then

q−1 − q1 =
B(d1 − d−1)− b(d−1 + d1)

d−1d1
.

However, |d1 − d−1| 6 2ε/`, so B|d1 − d−1| 6 ` 2ε
` = 2ε. On the other hand,

|b|(d1 + d−1) = |b|2d > 2d > 2− 2ε/`.

The third requirement for ε: 2ε < 0.1 and at the same time 2− 2ε/` > 1.7.
If this holds, then |q−1−q1| > 1.6, and hence at least one of the two possible new

qualities is far away from the current quality. Furthermore, since d = (d−1 +d1)/2,
it follows that

|q−1 + q1 − 2q| =
∣∣∣∣B(d1 − d−1)2 + b(d2

−1 − d2
1)

2dd−1d1

∣∣∣∣
6

∣∣∣∣B(d1 − d−1)2 + |b| |d2
−1 − d2

1|
2dd−1d1

∣∣∣∣ 6 `

[
2
(

ε

`

)2

+ 2
ε

`

]
.

The fourth requirement for ε: ε2/` + 2ε < 0.2.
If this holds, then |q−1 + q1− 2q| < 0.2. Therefore, one of the quantities q−1 and

q1 satisfies the inequality qi < q−0.7. If q1 < q−0.7, then Casino plays 1, otherwise
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Casino plays −1. Thus, the P1-quality has been decreased at least by 0.7. On the
other hand, the final P1-quality is equal to the final P -quality, since P∩Ds =P1∩Ds,
while the initial P1-quality is not greater than the initial P -quality plus 0.1. Hence,
in general, we have succeeded in decreasing the P -quality by at least 0.6.

Case 2: Gambler bets b = 0.
In this case Casino merely ‘waits’ by playing pn = ±1, so that the relative

measure λsbpn
(P1) > λs(P1), and therefore, the quality does not increase. Casino

continues to play in this manner until the next turn of Gambler making a non-zero
bet. At this point, as outlined above in Case 1, Casino can reduce the P -quality
by at least 0.6.
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