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STRUCTURE OF CONSTITUENTS OF H~-SETS 

V. G. Kanovei UDC 5]7.5 

]. INTRODUCTION. FORMULATION OF PROBLEMS AND MAIN RESULTS 

Origin of the Problems. Problems, connected with the interrelation of the first un- 
countable cardinal number N~ and the cardinality of the continuum c = 2 n0, were in the 
center of attention in the descriptive set theory from the very beginning. The axiom of 
choice enables us to prove without any special difficulty the inequality N~e , i.e., to 
construct a subset of the continuum that has the cardinality Ni. However, this construction 
does not give an "individual" example of a point set of cardinality N~ (individual in the 
same, e.g., of a transcendental number, say ~, in counterpoise to the proof of the existence 
of transcendental numbers by analysis of cardinalities). Luzin turned repeatedly to the in- 
vestigation of the problem, going back to Lebesgue, of construction of an "individual" point 
set of cardinality ~ and related problems in his works of the ]930s [I, pp. 552-682]. 

In particular, it has been observed in [I, p. 643] that "notwithstanding considerable 
efforts, extending over more than thirty years," it has not been possible to indicate an 
"individual" point set of cardinality N~ and, moreover, it has not been possible to con- 
struct an "individual" totality of N~ Borel sets of bounded rank, i.e., the complexity of 
these sets in the sense of position in the Borel hierarchy must be bounded above by a certain 
single countable ordinal. Considering various methods leading to the construction of "in- 
dividual" totalities of N{ Borel sets, Luzin [I] posed a series of problems, which have the 
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following common sense: Is there any method to construct a totality of this kind with bounded 
rank? These problems, the exact formulation of which is given below, have been considered 
by Luzin at the weakened forms of the continuum problem. 

The present article is devoted to the solution of the problem, posed by Luzin. We show 
that some of these problems are solved negatively ("the construction is not possible") and 
others turn out to be unsolvable within the framework of the Zermelo--Fraenkel axiomatic set 
theory ZFC, but are solvable in a certain well-studied extension of this theory. 

The Borel Hierarchy. Sets that can be obtained by repeated application of the opera- 
tions of complementation and countable union (and countable intersection, which can be ex- 
pressed in terms of the first two operations) from open sets in a given space are called 

0 0 Borel sets. The Borel sets form a hierarchy, consisting of the classes Ep, Np, and A~, de- 
fined for each ordinal @, I < p < wz, by induction over ~ in the following manner: 

E~ is the totality of all open sets; 

0 0 is the totality of the complements of all sets from ~@; Hp 

~p0 (for p ~ 2) is the totality of all countable unions of sets of the class ~p 

= n 

Thus, ~ i s  the c l ass  o f  c losed  se t s .  Each Bore l  set  be longs to one o f  the c lasses  A~ 
(and, in this case, to an arbitrary A~ with ~ > p). The least ordinal p such that X~A~, 
is called the rank of the Borel set X. (Luzin uses the term "class" in place of "ran.") 
See [2, Chap. 8] for more details about Borel sets. 

Sieves and Constituents. The Baire space I, consisting of all the functions defined on 
the set of natural numbers ~ = {0, I, 2,...} with values in ~ and holomorphic to the set of 
all irrational points of the number line [3], is usually considered as the basic space in 
modern works on descriptive set theory. Let Q denote the set of all rational points of the 
number line. 

Each subset R of I • Q is called a sieve. It is convenient to represent a sieve R in 
the form of a family <Rq:q~Q> of the sets Rq={x:<x, q> ~R}~! , situated in the ordinary 
Cartesian plane on the horizontal lines with ordinates q. 

Each sieve R determines a partition of the space I into two sets [R] and [R],, called 
the outer and the inner sets: 

[R]={x~1: the section R"x=,{q:x~R~} is well ordered in the sense of the natural order 
on the set Q); 

[R], : { x ~ I : R "  is not well ordered}. 

In its turn, each of these sets is decomposed into ~ pairwise disjoint sets [R]w and [R],~, 
called the outer and the inner constituents, respectively, and defined for each ordinal v < 
~z by the following equations: 

[RL =,{x ~ [R] : IR"xl =~};  

where, for each S~Q , the symbol Isl denotes the order type of the greatest well-ordered 
initial segment of the set S, coinciding with S when S is itself well ordered. 

If the sieve R is Borel (as a subset of the space I • Q with the discrete topology on 
Q), then all the constituents [R]~ and [R],~ are Borel sets, [R], belongs to the class E~ 
(i.e., is the projection of a certain closed subset P of 12 on I), and JR] belongs to the 
class H~ (consisting of the complements of the Z~-sets). 

To investigate the nature of the constituents, Luzin [I] introduced the notion of a 
derived sieve. The derived sieve R' of a given sieve R is defined by the following equation: 

R' =~{<x, q> ~ R : ~ r <  q(<x, r> ~R)}. 

Thus, each section R/"x is obtained by deleting the least point from R"x if R"x has such a 
point; in the contrary case, R/"x and R"x coincide. The sequence <RW:~ < ~z> of the derived 
sieves R v is defined by induction over ~: 

R ~  R "+ i= (~ ' ) '  ~rall ~andRX n ~v ~ralll imit ~<m~. 
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If the initial sieve R is Borel, then all sieves R v are also Borel. It is clear that R ~  

for ~ ~ w. 

See [I] and [2, Translator's Appendix] for more details about sieves and constituents. 

Formulation of Problems. We begin with the formulation of two problems, called "the 
fundamental problem of the theory of analytic classes" and "the fundamental problem of the 
theory of sieves" by Luzin [I, pp. 658, 661]. 

Problem I. Does there exist an open (as a subset of I • Q) sieve R, the totality of all 
outer and inner constituents of which is bounded in rank (i.e., all the sets [R]~ and [R],w 
have rank less than a fixed ordinal p < mi) and contains an uncountable number of nonempty 
sets? 

Problem 2. Does there exist an open sieve R, the sequence of the derived sieves R~ of 
which is bounded in rank and is nonstationary (i.e., R w+1 is strictly contained in R w for 
each w)? 

An affirmative solution of Problem I would lead to the solution of the Luzin "narrow 
continuum problem," consisting in the construction of a concrete "individual" partition of 
the continuum into ~i nonempty Borel sets that is bounded in totality in rank. 

In the following two problems we are concerned only with outer constituents, which occur 
significantly more often than the inner ones in the works of the 1920s and 1930s on descrip- 
tive set theory. The interest in outer constituents originates from their connection with the 
fundamental problem of perfect kernels of uncountable ~-sets. The fact is that if the sieve 
R is Borel, then the ~-set [R] has a perfect subset if and only if at least one of the con- 
stituents [R] v is uncountable. Therefore, to construct an uncountable Z~-set that does not 
have perfect subsets, it is sufficient (and also necessary) to construct a Borel sieve that 
has an uncountable number of nonempty outer constituents and is such that each outer con- 
stituent of it is at most countable. (Luzin has considered only open sieves.) 

Problem 3. Does there exist an open sieve R that has an uncountable number of nonempty 
constituents [R]~ and is such that the sequence of all the outer constituents [R]~ of it is 
bounded in rank? 

Problem 4. Does there exist an open sieve R that has an uncountable number of nonempty 
constituents [R]~ and is such that all the constituents [R]v can be embedded in pairwise 
disjoint Borel sets, forming a bounded (in rank) sequence? 

Problem 3 specially attracted the attention of Luzin (see [I, pp. 173, 555, 624, 672, 
etc.]). Problems I-4 are mentioned among important unsolved problems of descriptive set 
theory in the survey articles [4-6]. 

Main Results. Before formulating theorems, giving the solutions of the formulated prob- 
lems, we introduce one more ordinal characteristic of the constituents -- the separability 
index. We call the least ordinal p < w1 such that a E~-set contains entirely a constituent 
[R]~, but does not intersect any constituent [R]~ with ~ < ~, the separability index (in 
short, S.I.) of the constituent [R]~. We introduce an analogous notion for the inner con- 
stituents. It is clear that the rank of no constituent is less than its S.I., and therefore 
each sequence of constituents, bounded in rank, is also bounded in the separability index. 

The following two theorems give negative solutions of Problems I and 2. 

1.1. THEOREM. If a sequence of inner constituents [R],~ of a Borel sieve R contains 
an uncountable number of nonempty sets, then this sequence is unbounded in S.I., i.e., for 
each p < ~i there exists a number w < ~i such that the S.I. of the constituent [R],~ is 
greater than p. 

1.2. THEOREM. If the sequence of the derived sieves R ~ of a given Borel sieve R is non- 
stationary, then it is unbounded in rank. 

A negative solution of Problem I ("such sieves do not exist") is deduced from Theorem 
1.1 in the following manner. Let, on the contrary, an open, or even a Borel, sieve R satisfy 
the conditions of Problem I. Then the number of nonempty constituents is at most countable 
by Theorem 1.1. Consequently, the set [R]~ ~<~1|R]*v is Borel. Then [R] = I[R], is also 

a Borel set. Hence, by a well-known theorem of descriptive set theory (see, e.g., [2, Appen- 
dix, Sec. 2]),the number of nonempty outer constituents [R]~ is also at most countable. Thus, 
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R has in all an at most countable number of constituents of both types, which is a contra- 

diction with the choice of E. 

In distinction from Problems I and 2, Problems 3 and 4 are unsolvable in the classical 
sense, i.e., on the basis of the axioms of ZFC, according to the following theorem. 

1.3. THEOREM. The following statements (a)-(g) are pairwise equivalent and undecidabie 

by means of ZFC: 

(a) Problem 3 has an affirmative solution ("such a sieve exists"). 

(b) Problem 4 has an affirmative solution. 

(c) There exists an open sieve, each outer constituent of which contains at most one 
point and the number of nonempty outer constituents of which is uncountable. 

(d) There exists an open sieve with an uncountable number of outer constituents, the 
ranks of the nonempty outer constituents of which do not converge to w1, i.e., 

~P<~l  V~ <~i ~([Rl~Arank~ [R]~p);  

(e) There exists a Borel sieve with an uncountable number of nonempty outer constituents, 
the separability indices of the nonempty outer constituents of which do not converge to ~l. 

(f) Each statement lying between (c) and (e) [as, e.g., the statements (a) and (b)] is 
valid. 

(g) There exists z~f such that ~[z] = ~i. 

We denote the ~-th (in magnitude) uncountable cardinal in the class L[z] of all sets 
that are constructible with respect to z by ~[z] [2, 7]. The statement (g) has been studied 

quite well. In particular, we know that it is nondeducible in ZFC [8] and does not contra- 
dict ZFC (since it is a consequence of the noncontradictory axiom of constructibility). We 
also know that (g) is equivalent to each of the following two statements, which can there- 
fore be added to Theorem 1.3: 

(h) There exists an uncountable ~-set that does not have perfect subsets. 

(i) There exists an open sieve, each outer constituent of which is at most countable and 
the number of nonempty outer constituents of which is uncountable. 

Novikov [9] has proved that the axiom of constructibility V = L implies (h). It has 
been shown in [10] that the premise in this statement can be replaced by the statement (g), 

which is weaker than V = L. Thus, (g) § (h). The reverse implication has been proved by 
Solovay [11]. The equivalence (h) +-~ (i) is one of the classical theorems (see [I] or [2, 
Appendix]). Finally, the equivalence (i) -I+ (c) has been established in [12]. By virtue of 
all these results, to prove Theorem 1.3 it is sufficient to prove the implication (e) + (g), 
which we shall do. 

As is obvious from Theorems 1.1 and 1.3, the inner and the outer constituents have vari- 
ous properties with respect to the considered problems. This is explained by the fact that 

nonempty inner constituents must occur quite often when their number is uncountable, whereas 
this does not hold for the outer constituents. We can indicate a series of additional con- 
ditions that ensure a sufficiently frequent appearance of nonempty outer constituents and 
enable us to prove theorems, similar to Theorem 1.1, for the outer constituents. The fol- 
lowing theorem can serve as an example. 

1.4. THEOREM. If all the outer constituents of a Borel sieve are nonempty, then their 
sequence is unbounded in separability index. 

In the sequel we will indicate a weaker condition. 

Estimation of the Rate of Growth of Separability Indices (S.I.). By Theorem 1.3, if 
under the supposition of ~ (g) a Borel sieve R has an uncountable number of nonempty outer 
constituents [R]v , then the separability indices of nonempty [R]~j converge to ~I. The fol- 
lowing two theorems enable us to give a lower bound for the rate of growth of S.I. Before 
their formulation, let us observe that for each set or class M we introduce the part A[(M) 
of the totality A[ of all Borel sets thst consists of all the sets which admit a Z~- or a 
HI-definition with parameters from M (see Sec. 2). 
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1.5. THEOREM. Let z~I, i~p<ml , mt~ , the sieve R belong to k~(L[z]), and 
[R]w a ~. Then by S.I. of the constituent [R]v is strictly greater than the ordinal ] + p. 
The same is valid for the inner constituents. 

1.6 THEOREM. Let z~I, l~p<~[z], .LEz] �9 wO <~I, and the sieve R~A~(L[z]) have an 
uncountable number of nonempty outer constituents. Then there exists an outer constituent 
[R]D with the index D < ~[z] whose S.I. is greater than I + p. The same is valid for the 
inner constituents. 

The proof of Theorems 1.1-1.6 is the content of the present article. The proof of Theo- 
rem 1.5 (Secs. 2-5), which is the main theorem of our article, occupies most of the space. 
It is organized in the following manner. In Sec. 2 we consider the problems of definability 
of the sequence of the constituents of Borel sieves and of definability of a special coding 
of Borel sets. In Sec. 3 we give a proof of the absoluteness of certain properties of con- 
stituents and Borel codes. In Sec. 4 we carry out proof of Theorem 1.5, leaving two auxiliary 
statements unproved; these are proved in Sec. 5. Finally, Sec. 6 contains the deduction of 
Theorems 1.1-1.4 and 1.6 from Theorem 1.5. 

Some Remarks. The main results of the present article have been published by the author 
in the notes [12, 13]. 

Theorems 1.1-1.4 can be reformulated quite naturally in the language of the arithmetic 
of second order A2, speaking only about natural numbers and points of the space I. The same 
can be done (although not in such a direct manner) for Theorems 1.5 and 1.6 also. Therefore, 
the question of the possibility to prove these theorems by means of the theory A2 or its 
conservative extension ZFC- (i.e., ZFC without the axiom of power) is quite natural. This 
possibility exists for all the classical theorems of descriptive set theory. An analysis of 
the proposed proofs shows that Theorems 1.3 and 1.5 (more precisely, their reformulations) 
can be proved in A2. On the contrary, the possibility of proof in A2 remains open for Theo- 
rems 1.1, 1.2, 1.4, and 1.6. The fact is that our proofs of the last four theorems use the 
principle of Borel determinacy [14], which is provable in ZFC but not in A2. On the contrary, 
this principle can be removed from the proofs of Theorems 1.3 and 1.5. 

By Theorem 1.3, the absence of uncountable bounded (in rank) sequences of Borel sets, 
given by determined constructions, is deduced in the theory ZFC + ~ (g). Certain other state- 
ments of descriptive set theory, undecidable by means of ZFC (see [10, 11, and 2, Appendix]), 
are decidable in this theory. In the theory ZF + Axiom of Determinacy, we can prove [15] 
that, in general, there do not exist any bounded (in rank) sequences that contain R~ pair- 
wise different sets. (This result, as the axiom of determinacy itself, contradicts the axiom 
of choice.) There are no such sequences in the well-known Levy--Solovay mode, where all the 
sets are Lebesgue-measurable (a result of Stern [16]; see also [2, Appendix]). Incidentally, 
a certain statement, formulated without proof in [16] (Theorem 4.2 below), plays an important 
role in the proof of Theorem 1.5. 

The reader can find a series of interesting results, similar to the theme of the present 

article, in the articles [17, 18]. 

2. ANALYTIC EXPRESSIONS FOR CERTAIN RELATIONS 

Analytic Formulas. Each Borel sieve, which is, in general, an uncountable object, can 
nevertheless be given by countable information�9 Below we set forth one of the methods of 
mounting this information, directly realizing a Borel structure. Another method uses the 
definition of Borel and projective sets with the help of analytic formulas, i.e., formulas 
of the language of the arithmetic of second order. 

This language contains I) variables i, j, k, l,... of type ~ with the domain m; 2) vari- 
ables x, y, z, f, w,... of type I with the domain I; 3) the functional symbols of addition 
and multiplication for variables of type ~; and 4) the three-place predicate symbol x(i) = j. 

Analytic formulas, not having connected variables of type m, are said to be arithmetical. 
Formulas of the forms 

ax% Vx% axVy~, Vxay~, 

where ~ is an arithmetical formula, are called, respectively, the ~-formulas, the ~-for- 
mulas, the El-formulas, and the H~-formulas. 

The free variables of the analytic formulas can, in the usual manner, be replaced by 
variables from m and I. For an arbitrary set, or class, M we denote the totality of all 
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subsets of the space of the form I m • ~n, defined by Z~-formulas, in which parameters of type 
from ~ and of type I from MNf can occur, by Z~(M). The classes H~(M), E~(M), and H~(M) 

are defined analogously and A~(M)=E~(M) ~ H~(M). The totality of all Borel sets in the 
indicated spaces, denoted by A~, coincides exactly with A~(1). 

Codes of Sieves. Having fixed once for always some natural enumeration Q:{qh:k~} 
of the set of rational numbers Q, we carry over the notions, connected with analytic defin- 
ability, to sieves. 

We agree to call each pair R=~<'~>, consisting of a Z~-formula ~(x, k) and a H~-for- 
mula ~(x, k), having the free variables x and k only such that 

v k ~  ~ Vx~I(~(x, k ) - ~ ( x ,  ~)), 

a code of sieve. Each such pair R defines the Borel sieve 

R=,{<x, q~>:~(x, k)}={<x, qk>:~(x, k)}. (1) 

Conversely, by virtue of the equation 5~ = 5~(I), each Borel sieve R is defined in the in- 
dicated manner by a certain code of sieve R. We denote the codes of sieves by simple letters 
R, whereas the sieves themselves are denoted by semibold letters R. 

If a sieve R is defined by the code of sieve R by the relation (I), then we set 

[R] = ]R], ]R], = [R],, 
[Rlv= [Rlv and [R]*v ,= [n],v 

for all v < ~l. 

We say that a sieve R belongs to the class A~(M) when there exists a code of sieve R = 
<9~> such that all parameters of type I of the formulas ~ and 9 belong to the set MNI 
and R is obtained from R by Eq. (I). In other words, it is required that the set 

{<x, k > : k ~  ~ A <x, qk> ~ R }  ~ I •  

should belong to the class A~(M). 

Let us observe that a code of sieve is, in essence, a suite of points of the space I, 
natural numbers, and logical symbols, which can also be assumed to be (coded) natural num- 
bers. Consequently, if M is a transitive model (TM) of the theory ZFC, then a sieve R would 
belong to AI(M) if and only if there exists a code of sieve R~M, giving R by Eq. (i). 

Analytic Expression of Belongingness to Constituents. We fix a code of sieve R=<9@) 
and write down the formulas, expressing belongingness to the constituents [R] v and [R],v, 
and also to the sets [R] and JR], and to the "approximations" 

If xEI , then we set 

x'O={qk:x(k) =0} and x*={<q~, q~) :x(i) =]}. 

Thus, x'0~Q, and x* is a function from Q into Q. 

We write down the following formulas: 

~(w, x)++ ~/ (the restriction ]* ~ w'O of the function f* to the set w'O is an order- 
isomorphism (in short, OI) of w'O onto R'x='{qk :~(x, k)}); 

�9 R,(w, x).++2J(]* l w'O) is an of of the set w'O onto a certain initial segment (in short, 
IS) u of the sets R"x such that the difference R"x -- u is nonempty and does not have any 
least element); 

~F~(w, x)~-~u is an IS of the set w'O) A (f* ~ y'O is an OI of y'O onto a certain 
IS u of the set R"x) A (at least one of the sets w'O - y'O and R"x -- u is either es~ty 
or does not have any least element)]~w'O=,y'O~u=B'x); 

�9 R~(W,x)~+u the set R"x -- u is nonempty and does not have any least 
element). 

(In the last formula, the same expression stands within the square brackets as in the 
preceding formula.) Further, if ,w~! and m ~  , then we define a function w<~f by the 
relations W<m(k) = w(k) for qk < qm and W<m(k) = I for qk ) qm" We write down four more 
formulas: 
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cI),<(to, x) ~ am(to(m)=OA cD.(to<~, x)); 

T.<(w,  x) ++ ~m(w(m) = 0  A W~(w<~, x)), 

and exactly the same formulas for #PR<,(w, x), and (1)R<, (W, X). 

Finally, we write down the formula 

Oa(x) +-~ Vy(y'O ~-- R"X A y'O ~ ~ -~ y'O has a least element). 

These formulas have the following meaning. Let us set 

WO-----{tO~I:tO'O is wellordere@. 

and WO~={w~WO:lw'Ol=v} for each ordinal v < c01. The following lemma is valid. 

2.1. LEMMA. Let v<ot, tO~WO, , and x~f . Then 

x ~  [RL ~-~ ~9~(tO, x) ~-~ ~F~(w, x); 
x ~ [R],~ .,-,- 0 ~ ,  (to, x) - ~ .  (w, x); 

x ~ R ] < .  ~ cI).<(tO, x) +-~ W~<(w, x); 

x ~ [RI.<~ ~ (I)R<. (w, x) ~ ~ , < ,  (w, x); 

x ~ JR] - ~  OR (x) and x ~ [RI ,  - ~  ~OR (x). 

This lemma is proved by direct analysis of the definitions of Sec. I. We leave its 
proof to the reader. 

2.2. Remark. The formulas OR, ~R,, OR<, and ~R,< are Z~-formulas and the formulas 
~R,~R*, ~<, ~R*< , and e R are ~-formulas. All these formulas can be effectively obtained 
from the formulas ~ and ~, constituting the considered code of sieve R, and do not contain 
parameters of type I, except those which already occur in ~ and @. 

Indeed, all "verbal" fragments in the definitions of these formulas can be replaced by 
the corresponding arithmetical formulas, and the expressions of the type k~R"x can be 
eliminated with the help of the Z~-formula ~(x, k) in some places and with the help of the 
N~-formula @(x, k) in other places; moreover, this can be done such that the obtained ex- 
pressions can be transformed into the desired form with the help of known rules [2, Appendix 
Sec. 2) and [19, Chap. 7]. Inequalities of the form qk < ql, which occur after passage from 
rational numbers to natural numbers with the help of the enumeration k § qk, can be replaced 
by suitable arithmetical formulas (which exist if the enumeration is chosen in a natural 
manner). 

Borel Codes. The proposed method of coding of Borel sets is based on the fact that 
for p ) 2 each set of the class ~ in the space I is the complement of a countable union of 
sets of the class ~p, and conversely. 

For each ordinal y, we denote the totality of all finite sequences of ordinals less than 
y, including the unique sequence h of length zero, by Seqy. Let us set Seq= U Seq~, where 

Ord is the class of all the ordinals. The length of a sequence o~Seq is denoted by domo. 
The relation ~ means that T is a proper extension of o. If o~Seq and ~Ord , then 
we denote the sequences obtained by affixing the element ~, respectively, to the right and 
to the left of the elements of the sequence o by oa~ and ~6 , respectively. 

We will call each nonempty subset T of Seq, satisfying the following relation, a tree: 

o ~ T  A T ~ S e q A T ~ o ~ x ~ T .  

Each tree trivially contains the sequence A. We say that a tree T is grounded if there do 
not exist any infinite paths ~ T z ~  ..., where each zi belongs to T. In this case, with 
each o~T we can uniquely associate an ordinal Ioi T such that 

In addition, ]glr = 0~-~o ~ Max T , where 

M a x T =  { o ~  T : n ~  T(o~  ~)}. 

We c a l l  t h e  o r d i n a l  ITt = IAI T t he  h e i g h t  o f  t h e  t r e e  T and d e n o t e  t h e  l e a s t  o r d i n a l  u s u c h  
t h a t  T ~ S e q ~  by s u p T .  
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We call each pair <T, d> such that T is a grounded tree with sup T<~ and d~ T~ 

a Borel code. With each such pair we associate a Borel set IT. d] ~I in the following man- 
ner. We fix once for always some natural enumeration <l~:k~> of all basic closed--open 

sets of the space I. For each o~T we define by induction over Ioi T the set [T, d, o] ~I 
according to the equations: 

[ T , d , ( ~ ] = I - -  U. I~ for [ S ] T = O ;  
((~,h)~d 

[ T , d , s ] ~ I - -  U [T,d, sAa] for [ S [ T ~ J . .  
c~Aa~T 

Now, let us set [T, d] = IT, d, A]. The sets [T, d, o] are all Borel sets. More pre- 
cisely [T, d, o] 0 0 , ~,+i~i T_ , and therefore IT, d] ~ ~I+ITI. 

Conversely, if p < ms, then each subset of I of the class H~+p can be expressed in the 
form [T, d], where the tree T has height p. We call a grounded tree T~Seq~ a universal 
tree of height o if IT] = p and for each H~+p-set X~I there exists a set d~ T X ~ such 
that X = [T, d]. 

2.3. LEMMA. Let p < wz. Then there exists a universal tree T~Seq~ of height 0. 

We prove this lemma by induction over p. The tree To = (A} is universal of height zero, 
since each ff~-set (i.e., closed) X~I has the form X:I-- U I~ (and now it is necessary 

to take d= {AJ~ X u). ~u 

Let us suppose that p ~ I and that for each ordinal a < p there exists a universal tree 
Ta of height ~. We take a function g:~ onto p = [a:a < p}, taking each of its values a < p 
an infinite number of times. The tree 

is universal of height p. Indeed, let X~H~+~ . By the choice of the function g, we can 

write down X=I-- U X~ , where each X i belongs to ~+g(i). By virtue of the universality of 

the trees T~, we have Ta, X i = [Tg(i), di] for suitable sets d~Tg(~)Xo. Let us set 

d =  {~,~xo, k>:n~ ~ A <o, k> ~ d ~ }  

and get X = [Tp, d]. 

2.4. Remark. The inductive construction in the proof of Lemma 2.3 up to the step p in- 
clusively becomes completely determined as soon as we fix a bijection of w onto p. There- 
fore, Lemma 2.3 can be strengthened in the following manner. 

If M is a TM of the theory ZFC and p < ~, then there exists a grounded tree T~M, 
such that T~ Seq~ and in each TM, extending the model M (in particular, in M and in the 
universe of all sets), it is true that Tp is a universal tree of height p. 

An Analytic Expression for Belongingness to [T, d]. Let M be a TM of the theory ZFC 
(a set or a class), the Borel code [T, d] belong to M, and supT < w~. 

2.5. THEOREM. Under these conditions, there exist a ~-formula ~Td(X) and a ~-for- 

mula PTd(X), both with parameters from M, such that the following equivalences are true for 
each x~f in each TM of the theory ZFC that extends M: 

x ~ [T, d] - ~  ~ ( x )  ~ ~ ( x ) .  

Proof. Without loss of generality, we can suppose that T~Seq~ �9 (If supT > ~, then, 

since supT < ~, there exists a bijection b~M. b:w onto sup T which belongs to M and whose 
action can "transfer" T and d into Seqw. ) The formula 

~Td(X) +"" ~ g ( [ ( g  : T ~ {0, ~}) A v s  ~ Max  T(g(s)  = t .,--,. 

Vk(<o,  k > ~ d ~  x ~ I k ) )  A v ~ T - M a x T ( g ( o ) = l  
+-,- Vn(o'Xn ~ T ~ g(o~n)  = 0))]  A g ( - \ )  = l )  

satisfies, as is easily verified, the desired equivalence. The formula ~Td is not formally 
a ~-formula if only because it includes the parameter T not belonging, in general, to ~ or 
I. However, using some bijection, belonging to M, of ~ onto Seq~, and introducing parameters 
that belong to M NI , corresponding to the sets T and in a natural manner under this bijec- 
tion, we can easily rewrite the definition of ~Td such that the variable g becomes a variable 
over I and the formula within the outer parentheses becomes an arithmetical formula. 

205 



The second desired formula can be defined as follows: 

�9 ~d(x) +-,- vg([. . . ]  ~ g(A) = 1), 

where the square brackets contain the same expression as in the formula ~Td(X). We leave 
the details to the reader. 

3. ABSOLUTE PROPERTIES OF CONSTITUENTS AND BOREL CODES 

Let us consider the following situation. Let M be a transitive model (TM) of the theory 
ZFC and the Borel code <T, d> and the code of sieve R belong to M, and, in addition, supT < 
w E. How are the properties of <T, d> and R in the universe V of all sets related with their 
properties in M? The following theorem gives a list of the properties, whose validity in M 
and in V are interconnected. 

3.1. THEOREM. (a) The following statement is valid in M: R is a code of sieve. 

(b) If R has an uncountable number of nonempty inner constituents [R],~, then this is 
true in M also, i.e., for each v < ~  there exists an ordinal ~>~,. ~ v . ,  such that 
[R],~=/=~ is true in M. 

(c) If ~ M  and 9<~ , then the statements 

"there exists a constituent JR] vwith SI > I + 9" and 

"there exists a constituent [R],v with SI > p" are absolute for M, i.e., each of them 
is true in M if and only if it is true in the universe V of all sets. 

(d) If x ~MNI and 'v, 9<~ , then the following statements and their analogs for 
inner constituents are absolute for M: 

(1) [R]~N[T, d ] ~ ;  

(2) [ R ] < ~ [ T ,  d]; 

(3) x ~ [ R ] 4  

(4) the S.I. of JR] v does not exceed I + P. 

(e) If ~{~M, then the statement [R] n[T, d] ~ and [R],~[T, d]=/=~ are absolute forM. 

All the statements of this theorem, except (c) and (d) (4), are proved by an elementary 
application of the following two principles: 

The Mostowski Absoluteness Principle. All closed E~-formulas and Z~-formulas with param- 
eters from M are absolute for M. 

The Shoenfield Absoluteness Principle. If ~i ~ M ,  then all closed Z~-formulas and Z~- 
formulas with parameters from M are absolute for M. 

A proof of the Shoenfield principle can be found in [19] or in [2, Appendix, Sec. 2]. 
The Mostowski principle is proved in the course of the standard proofs of the Shoenfield 
principle. 

Proof of (a). The fact that R=<~, ~> is a code of sieve can be written down by the 
formula 

V x ~ I V k ~ ( ~ ( x ,  k)+-+ ~(x, k)), 

i.e., by a ~-formula with parameters from M, since R~M . (More precisely, this formula 
is reduced to Z~-form with parameters from M with the help of the rules of [19, Chap. 7].) 
Now we use the Mostowski principle, according to which a E~-formula, true in the universe V, 
is also true in M. 

Proof of (b). We fix an ordinal ~<~'. It is clear that there exists a w ~WO~nM. 

Now the existence of a nonempty constituent [R]~ with ~ ~v can (in M as well as in V) be 
expressed by the following E~-formula with parameters from M: 

~x ( ] o, (x) A q ~ < ,  (w, x)). 

After this, we apply the Mostowski principle. 

Proo[ of (d) (1, 2, 3). It is necessary to use the same Mostowski principle by means of 
the following formulas with parameters from M: 
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,~x(Ci)~(w, x) A (9~(x)) 

Vx((O.(w, x) ~ W~(x) )  

O.(w,  x) 

(E~ -fom~ula ); 

(Hi-formula ); 

( E 1-formula .), 

where w is an arbitrary element of WO~nM . 

2roof of (e~. We prove (e) with the help of the Shoenfield principle and the following 
Z~-formula: ~x(OR(x) A~T~(x)) �9 Incidentally, the condition o~M is introduced in (e) so 
that the Shoenfield principle can be applied. 

The Borel Determinacy. To prove the statement (e) and the absoluteness of (d) (4), we 
must use the principle of Borel determinacy. We begin with some definitions, connected with 
this principle. 

Each function s:Seq~ § ~ ("strategy") determines two continuous mappings x--~xXs and 
x~-~sXx from I into I in the following manner: If x~f, then the points y=xXs~f and 
Z.=sXx~f are given by the relations 

y(k)=s(x ~ ( k + ~ ) )  and z(k)=s(x ~ k) ~ra11 k. 

A subset A of 12 is said to be determined if there exists a strategy s:Seq~ § ~ such that 

Vy(<sXy, y> ~A)VAx(<x,  x~s> ~A). 

The Principle of Borel Determinacy [14]. Each Borel subset A of 12 is determined. 

Before using this principle in the proof of the remaining statements of Theorem 3.1, 
let us observe that for each ordinal p < ~l there exists a subset U of I that belongs to the 
class ~+0,'but does not belong to ~+p, and therefore there exist a ~-formula ~(x) and a 
~-formula ~(x) such that 

The standard construction of these sets and formulas [2, Chap. 8] by induction over 0 is 
quite "effective" for the proof of the following lemma (for our model M). 

3.2. LEMMA. If p < ~, then there exist a E~-formula ~p(x) and a ~-formula ~p(X), 
both with parameters from M only, such that the following statement is true in each TM of 
the theory ZFC that extends M (in particular, in M and in the universe V): 

( x  : = : - 

We fix the formulas ~p(X) and %(x), given by this lemma for the ordinal p < ~ that 
occurs in the statements (c) and (d) of Theorem 3.1. We write down the following two for- 
mulas: 

O ~ ( w ) + - ~ . ~ s : S e q ~ y ( ( ~ ( W ,  y) ~ W~(sXy) A ( ~ < ( w ,  y) ~ ~ ( s X y ) ) ) ;  

W~(w) ~ ~s : S e q ~ ~  o V x ( ( ~ ( x )  ~ W . < ( w ,  xXs)) A (qW~(x) ~ W.(w, xXs)))~ 

3.3. LEMMA. The following statement is true in each TM of the theory ZFC that extends 
M: If w < ~M and w~WO~ , then 

~p(W) ~ WRp(w) ~ sl '[RL < l + P. 

Proof. We reason in an arbitrary TM of the indicated form. Let us set U={x:(Dp(x)}= 
{x:~p(x)}. If ~Rp(W) is true, then the corresponding strategy s ensures the inequality SI x 
[R] v ~< I + p, since in this case the set {y:sXy~U} belongs to E~ being a continuous in- 

0 verse image of the El+p-set U, and also contains [R]v entirely and does not intersect [R]<v 
(it is necessary to use Lemma 2.1). 

If SI[R] w ~< I + 0, then ~Rp(W). Indeed, let us suppose that the E~ Z separates 
[R] v from [R]< v and, at the same time, the strategy s ensures n~FR~(w) . Then U={x:xXs~Z}, 
i.e., U~11~ as a continuous inverse image of a ~~ (the complement of Z), which con- 
tradicts the choice of the formulas ~0 and ~p and the definition of U. 

Finally, the implication ~Rp('W)-+dDRp(w) is proved by applying the principle of Borel 
determinacy to the Borel set 

A = (<x, y> : (x ~ U A y ~ [R]<~) V (x r U A y ~ [RL).}. 
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Proof of Statement (c) of Theorem 3.1. By virtue of Lemma 3.1, the fact of existence 

of a constituent [R] v with SI > I + p can be expressed by the E~-formula 

~w(WO(w) A n ~ p ( w ) )  

with parameters from M, where WO(w) is the ~-formula 

Vy(y'O ~ w'O A y'O ~ ~ - + y ' O  hasaleastelement), 

determining the set WO canonically. Now it remains to use the Shoenfield principle. 

Proof of the Statement (d)(4). Since v < ~, there exists a w~WO, NM. Let us ob- 
serve that ~Rg(W) is essentially a E~-formula with parameters from M by Remark 2.2 and the 
choice of the formulas ~p and ~p (the quantifier ~s can be replaced by a quantifier over I). 

�9 i . I 
In the same manner, ~Rp(W) ~s a ~2-formula w~th parameters from M. Thus, we have a ~2-for- 

1 . . . . .  mula and a ~2-formula w~th parameters from M, each of which, by Lemma 3.3, es equivalent (~n 
M and in the universe V) to the statement (d)(4), in which we are interested. Now the ab- 
soluteness of (d)(4) is given by the Mostowski principle. 

The proof of Theorem 3.1 is complete. 

Remark. We restrict ourselves to the proof of the statements (c), (d), and (e) for the 
outer constituents only. The proof for the inner constituents is carried out in exactly the 
same manner. 

4. PROOF OF THEOREM 1.5 

In accordance with the statement of this theorem, we fix z~f , an ordinal p such that 

1~p<~o L[zl, and an ordinal v such that oL[zl~v<r Let us assume the contrary. According 
to what we have said at the beginning of Sec. 2, the assumption of the contrary gives us a 
code of sieve R~L[z] such that [R]~=f=~ and the S.I. of the constituent [R] does not ex- 
ceed I + P. (We restrict ourselves to the consideration of outer constituents. The proof 
for the inner constituents is completely analogous.) We begin the deduction of a contradic- 
tion from the assumption of the contrary with some definitions. 

For each ordinal % < ~l we denote the totality of all Borel codes <T, d>~L[z] such that 
[T] <~)~ and 

�9 L[z~l~ 
VaVa (a^~ ~ T--+ a < Wla~T I 

by CX. Each of  the  s e t s  C A b e l o n g s  to  L [z ]  and has c a r d i n a l i t y  (OL$ *l in L [ z ] .  

F u r t h e r ,  i f  %~Ord , t hen  we deno t e  the  t o t a l i t y  of  a l l  f u n c t i o n s  p such t h a t  domp---r 
i s  f i n i t e  and ranp-----~ by PX. The s e t  P ~ L [ z ]  (even b e l o n g i n g  to  L) i s  o r d e r e d  by r e v e r s e  
i n c l u s i o n :  p<.q-*--,- q~--p. (The r a t i o n a l  numbers do no t  f i g u r e  in  Secs .  4 and 5, and the  l e t -  
t e r s  p,  q,  and r w i l l  be used f o r  d e n o t i n g  e l e m e n t s  o f  the  s e t s  P%.) 

F i n a l l y ,  in  a c c o r d a n c e  wi th  Lemma 2.3  and Remark 2 . 4 ,  we f i x  a t r e e  To~L[z], Tp=-Seq~. , 
which is a universal tree of height p in an arbitrary TMof the theory ZFC that is an exten- 

sion of h[z]. Let us set IaI=Ialr0 for o~y,. 

Let there exist a set t ~L[z] such that t---P~X(TpXco) With each pair p~P~, and a~Tp 
we associate a set Z,v~[ by induction over Iol such that 

Z . p = l - -  U Ik for I o [ = O ,  (1) 
N~S 

where S = - { k ~ :  ~tq, r~P~(r<~pAr<~qA<q, <o, k>>~t )} ;  

Zap= I - -  U ZaArt, q for ] ~ [ >~ 1. ( 2 ) 
q<.p,aAnETf3 

The proof of the following theorem is given separately in Sec. 5. 

4.1. THEOREM. There exist a po~.P~ and a set t~L[z], t=--P~X(TpX(o), such that the 
set Zip0, defined by (I) and (2), satisfies the following conditions: 

[R],~ fl ZAp o -= f~J and [RI<v  ~ ZAp o. 

We fix the sets po~P~ and t, given by this theorem, and prove a theorem, playing an 
important role in obtaining the contradiction. This theorem realizes an idea of [16]. 
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4.2. THEOREM. For each pair p~P~ and o~ To there can be selected a code <T~p, d~p>~ 

Ci~ 1 such that Z~p=[T~v, do~]. 

We prove this theorem by induction over I(~l:IOITp. 

A. Let p~P~ and o~Tp, be such that io$ = 0. It is easily verified that the sets 
Ta~-----~ {A} and dop={A}XS [where S is defined as in (I)] form the desired code. 

B. Let us suppose that p~P~ and ~T0, foist , and let Theorem 4.2 be valid for all 
~]~T~ such that o~E . Thus, for each q~P~ and each ~ a code 

<T~q, d~q> ~ C<E~I = UT<IoiC~ 

such that [T~q, dnq ] = Z~q has been constructed. Let us suppose that 

the function ~], q~ <Tnq, dnq> belongs to L[z]. (3) 

Under this supposition, which is justified below, we construct the desired code <Top, d~p>~C1~l. 
�9 Lf, z} As is easily verified, the set C<i~ I has cardinality ~i~l in L[z]. 

L[z]  t 

be a certain enumeration of the set C<L~I in L[z]. Let B denote the totality of all ordi- 

nals ~i~i~--" Lrz] such that there exists an n~c0 and a q~P~ such that q~p,~oAn~Tp , and 

<T(g), d($)> = <T(~AT~,q, d(~An,q>. 

Let us set Top={~ ^~:~B/~T~T~)}U{A} and 

d ~ =  {<~A ~, k> : ~ ~ B  A <~, k> ~d(~)}. 

The structured pair <Top , dop> belongs to the totality Cio I by virtue of the choice of the 
enumeration of the set C<Iol and according to the supposition (3), ensuring belongingness to 
L[z]. It remains to verify that [Top , dop ] = Zop. 

By construction, we have [T~v, d~p, <~>]=[T(~), d(~)] for all ~B . Consequently, 

[Tap, d(~p] = I - -  U [T~), d(~]. (4)  

Let us observe that if ~B, then, by definition, there exist an n~ and a q~P,, such 
that q~p, oAn~T,, and <T(~),d(~)>=<T~A~.q, doA~.q) �9 Conversely~ if n~) and q~P~ are such 

that o~n~To and q ~< p, then there exists ~B such that 

<T(~), d(~)> = < T(~An, q, d (~An.q>, 

since the enumeration of the codes <T(~), d(~)> exhausts the whole set C<I~ .  Finally, according 

to the choice of the codes <T~, dn~> , for o~ we have [ToAn.q, doAn.q]=ZoAn,q for all n~0) 

and q~P~. Therefore, Eq. (4) can be rewritten in the form 

[T,;v,  do~,] - -  I - -  O Z,~A,,.q. 
oAn~Tp,q~P 

By the definition (2), this means that [Top , dop] = Zop , which was required to be proved. 

It is interesting (and this is the main step of the proof) that the union in the right- 
hand side of Eq. (2), the number of whose terms can be very large in L[z] according to the 
magnitude of ~, can be replaced, in the process of the construction B, by the union in the 
right-hand side of (4), the number of whose terms does not depend directly on v and cannot 

exceed the magnitude of the ordinal o~ot~ ] in L[z]. 

Finally, let us observe that the constructions A and B can be completely carried out in 
L[z], since t~L[z] This gives a justification for the assumption (3). Theorem 4.2 is 
proved. 

We use this theorem to obtain a contradiction from the supposition of the contrary at 
the beginning of this section. By the choice of t (Theorem 4.]), there exists a po~IP~ such 
that the set ZAp 0 satisfies the relation 

[R]~ N Z ~  o =- ;~  A [R]<~ _= Z~po. (5) 

209 



Theorem 4.2 gives us a code <T', d'>~C0 such that Zip o = IT ~, d'] (remark: iii= 
]Tp[ = p)~ By definition, we have the equation 

[T', d'] = I - -  U IT', d ' ,<a>]. 
<a)~T' 

Therefore, by (5) there exists an ordinal ~ such that <~>~T' and 

A I = ITp 

[R] N IT', d', <g>] ~ ~aad [R]<~ N IT', d', <a>] r ~. (6)  

The Borel code IT, d], given by the relations 

T = {T : gh'l;  ~ T'} and d = {('l:, k )  : (gh%, k> ~ d'}, 

belongs to the totality C l for a certain X < p and satisfies the equation [T d] -- [T ~, dV 

< a > ] .  T h e r e f o r e ,  t h e  s t a t e m e n t  (6 )  c a n  be  r e w r i t t e n  i n  t h e  f o l l o w i n g  f o r m :  

[R] N[T, d i e ' a n d  [ R ] < , t l [ T ,  d ] = ~ .  (7) 

Now we need the following theorem, whose proof, together with that of Theorem 4.1, will 

be given in Sec. 5. 

4.3~ THEOREM. In the situation under consideration, there exists a set G such that 

.< L[z] 
Let G satisfy this double inequality~ Let us observe that sup T-~ wl and <T, d)~L[z], 

since <T, d>~Cx. Therefore, <T, d)~L[z][G] and supT < ~L[z][G] by the choice of G. Let 

us also recall that R~L[z] and, all the more, R~L[z][G]. Therefore, by (7) and 3.1(e), 
the relation [R] N[T, d]~ is true in the model M = L[z][G], i.e., there exists an ordinal 

< w L[z][G] such that [T, d] N[~]~r in L[z][G] also. Consequently, [R]~N[T, d]r in the 
universe V of all sets by 3.1(d)(1). We have obtained a contradiction with the second state- 

ment of (7), since D < ~. 

This contradiction refutes the assumption of the contrary at the beginning of Sec. 4 

and completes the proof of Theorem 1.5 ("modulo" Theorems 4.1 and 4.3). 

5~ PROOF OF THEOREMS 4~I AND 4.3 

We begin with the first of these theorems. At first we prove that Theorem 4.1 is valid 

in an arbitrary countable TM of the theory ZFC. After this we will show how to transform 

this proof into a proof in the universe of all sets. 

Thus, let M be a countable TM of the theory ZFC, z~MNI, and 1 <~ p < ~ LM[z]- , where 

L ~ [ z I = { x ~ M :  x~L[z]} is true i nM}.  

LM[z] 4 v < M (then p,~L~[z] ) and R~LM[z] be a code of sieve in M. Further, Also, let 
let a groundedV tree T~LM[z], Tp---Seq~, be a universal tree of height p in all TM that are 

extensions of LM[z]. Finally, let us suppose that the following condition is fulfilled: 

(i) (in M) the S. I. of [R]~ does noc exceed 1 + p. In this situation, it is necessary 

to find a po~P, and a t~L~[z], t~--PvX(ToXo)), such that the set ZApo, defined in M by Eqs. 

(I) and (2) of Sec. 4, satisfies the relations 

( 2 )  (bM){RbRZA~o= ~ aria IRI<~--~ZAv o. 

The construction of the desired t and Po uses the method of forcing. As the set of the 
forcing conditions we consider the set P~ (p ~< q means that each inference that can be forced 
by q can also be forced by p). The models M and LM[z] will be the initial models for the 

generic extensions. 

Let us recall some definitions and facts connected with forcing. Let K = M or K = LM[z]. 

A subset G of Pv is said to be P~-generie over K if 

(a) p~P, Aq~G Aq<~p-+p~G, 

(b )  Vp, q~Gar~G (r~pA r~q) and 

(c) the intersection of G with each dense subset D~K, D~--P~, is nonempty. 

(A subset D of P~ is dense in Pv if for each p~P~ there exists a q~D, such that 
q ~< p.) The reader can find a proof of the properties of generic setsand forcing, set forthin 
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A-D, in [2, Chap. 4] and also (in somewhat other terminology) in [7, 19]. 

A. For each p~Pv there exists a Pv-generic subset G of Pv over K that contains p. 
This statement is easily proved, starting from the countability of the model K. 

B. Let a subset G of Pv be Pv-generic over K. Then there exists a unique smallest 
countable TM of the theory ZFC that contains G and all the sets from K. We denote this model 
by K[G]. The ordinal series of K and K[G] coincide. 

In this case, if x~K[G], a~K , and x~a, then there exists a set t~K,t~P~Xa, such 
that x = iG(t) , where 

~(t)={y: a p ~ G ( < p ,  g > ~ t ) } .  

The sets t such that t~P~Xa for a certain ~ are called Pv-terms. Special Pv-terms ~* = 
Pv x a play a crucial role. It is clear that iG(a*) = G and a*~K whenever a~K.. 

C. The notion of forcing itself is as follows. Let p~P~, ~(xl, ..., x~) be a ~-formula 
(i.e., a formula in the language of set theory), and tl,...,t n be Pv-terms. We write p1~ 
~(tl, .,., t~), if for each Pv-generic subset G of P~ over M that contains p the statement 

~(~( t~ ) ,  . . ., i~(t~) ) 

is true in the model M[G]. The forcing is considered only in connection with the initial 
model M, but not in connection with LM[z]. 

D. The following property is a basic property of forcing. If a subset G of Pv is Pv- 
generic over M, p~G, and ~(i~(t~), ~.., i~(t~)), is true in M[G], then there exists q'~G, q~p, 
such that ql~T(tl, ... , t~). 

We continue the proof of Theorem 4.1 in M. We fix a (existing by virtue of A) Pv- 
generic subset G of P over M. First of all, let us observe that the following statement is 
true in M[G]: R is a code of sieve. Indeed, as we have seen in the proof of Theorem 3.1(a), 
the fact that R is a code of sieve can be expressed by a H~-formula with parameters from M 
(in fact, R~M). By the Shoenfield principle, such formulas are absolute. (The Shoenfield 
principle is applied in M[G]; the ordinal series of M and M[G] coincide.) Consequently, by 
Theorem 3.1(d)(4) (applicable in M[G]), the statement (I) is true in M[G]. 

We pass to the model N=L~[z][G] ~M[G]. The set g= U@ belongs to this model and is 
a mapping of ~ onto v by the choice of the v-curtailing set Pv of forcing conditions [7, 19]. 
Therefore, the ordinals v and p are countable in N, and we can apply Theorem 3.1(d)(4) in 
M[G] to the TM N and obtain the truth of the statement (I) in N. 

Further, let us recall that the tree Tp, fixed in the beginning of Sec. 5, is a uni- 
versal tree of height p in each TM that is an extension of LM[z] and, in particular, in M. 
Consequently, by the truth of (1) in N there exists a set d~N, d~ToXo , such that the fol- 
lowing relations are true in N: 

(3) [R]~N[Tp, ~ =~ and [R]<~[T0, d]~ 

Next Step. According to B, there exists a set t~LU[z], t~P,X(ToXo), such that d = 
iG(t). With this choice of t the model N = LM[z][G] plays its own role in the proof. It 
makes possible the choice of t from LM[z], whereas the consideration of the model M[G] would 
give us only t~M. 

Let us observe that, by Theorem 3.](d)(I, 2), the statement (3), true in N, is true in 
M[G] also. Therefore, by virtue of (d) there exists a forcing condition p0~G such that 

(4) poll--[T~, t] n [R*]~, = ~ A [R*]iv, ~ ITS, t]. 

We show that the desired relation (2) is fulfilled for the constructed t and P0. 

LEMMA I. The following relation is true for arbitrary o~T~ and p~P, in M: 

acnI:  p l l -x*  ITs, t, 
Proof. We prove this lemma by induction over [ol = IoITp. Let Io[ = 0 and X~Mnl. 

Let us suppose that x~Z~p in M. By a definition of Sec. 4, there exist q, r~P~ and k such 
that r~p, r~q, x~I~, and <q, <o, k>>~t. By the property A of generic sets there exists a 
P~-generic subset H of Pv over M that contains r. Then q~H (see A), i.e., <o, ~>~i~(t). 
Consequently, x~[T~, i~(t~ ~] in M[H]. But p also belongs to H. This means that p cannot 
force the formula x*~{To, t,~*]. 
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~ ~'3" Then there exists a P~-generic subset H of Conversely, let p not force x*~iT0, t , 
Pv over M that contains p and is such that x~[T0, iR(t), o] is true in M[H]. By a definition 
of Sec. 2, there exists a pair <~, k>~iu(t) such that x~l~, We have <q, <o, k>>~t for a 
certain b~H, by the definition of iH(t). But, since H is generic, there exists an r~P~ 
(even ~H ) such that r ~ p and r ~ q. Hence, it follows from Eq. (I) of Sec. 4 that x~Z~v 
in M. 

Induction Step. Let iol ~ I and suppose that the lemma has been proved for all N~2'p 
such that o~ (i.e., I~[ < lot). Let x~Z~p in M. By Eq. (2) of Sec. 4, there exist a 
q~P~ and an n ~, such that q~p, annETp , and x~ZaAn, q. By the induction hypothesis 

(applied to N=gnn ) we have qII--x*~[Tp, t, (qnn)*]. Let us consider the Pv-generic subset 
H of Pv over M that contains q. By the definition of I~, the statement x ~[T0, f~(t), onn ], 
and, by the same token, the statement x~[To, ill(t), o], is true in M[H]. But p~H, since 
q ~ p. Therefore, p cannot force the formula x*~[T~,t,~*]. 

* t,~*]. Then there exists a Pv-generic subset H of Conversely, let p not force x*~[T~, _ 
P~ over M that contains p and is such that x~[To, ill(t), ,~] is true in M[H]. This means that 
x~[To, iu(t), oAn] in M[H] for a certain n such that oAn~To. Now, by virtue of the property 
D of forcing, we can choose a condition q~H, q~p, that forces x*~[To, t,(~An)* ]. By the 
induction hypothesis, we have x~Zahn, q in M. Now x~Zap is fulfilled by virtue of Eq. 

(2) of Sec. 4. The induction step has been made and the lemma is proved. 

Completing the proof of Theorem 4.1 in M, we verify that the relations (2) are true in 
M (see the beginning of Sec. 5). We prove the first of them. Let x~l~M and x~ZAp o 

$ 
in M. Then po[l--x*~[T~,t,A], i.e., p[~-x*~[Tp, t] by Lemma 1. Therefore, x~[To, d] is 
true in M[G], since d = iG(t) and p0~G. But the statement (3) is also true in M[G] (see 
above). Therefore, x~[R]~ in M[G] and, consequently, x~[R], in M by Theorem 3.](d)(3). 

We prove the second relation of (2). Let x~[R]<~ in M. Again, by virtue of 3.1(d)(3) 
the relation x~[R]<, is true in each model M[H]. Consequently, each p.~P,, including our 
P0, forms x~[R*]<w, ; whence by (4) we have 

Po]l--x*~[T~,t], i.e., po]l--x*~[Tp, t, Al. 

Now x~Z~p ~ in H by Lemma I, which was required to be proved. 

The proof of Theorem 4.] in the model M is complete. 

In essence, the only reason for which we have preferred to give the proof of Theorem 4.1 
at first in a countable model M is the possibility to consider Pv-generic extensions of the 
model M, a possibility that obviously does not exist for the universe of all sets. However, 
we know a method that enables us to obtain information about the Pv-generic extensions of the 
universe V, provided such extensions actually exist. This method of Boolean-valued models 
consists in the introduction of a special class of terms V (Pv), which plays the role of a Pv- 
generic extension of the universe V of all sets. The mapping ~ + ~* is an embedding of V 
into V (Pv). Each standard fact, valid for the extensions M § M[G], turns out to be valid for 
the "extensions" V § v(Pv) also. In particular, the set t~L[z] , desired in the sense of 
Theorem 4.1, exists. See [7, 20] for more details about such a realization of forcing. 

Proof of Theorem 4.3. The proof of this theorem also uses forcing. The class L[z] plays 
L[z] 

the role of the initial model, and the set Py, where ~=~ , �9 the role of the set of 
forcing conditions. Let us observe that the generalized continuum hypothesis is true in L[z]. 
(The verification of GCH in classes of the form L[z], z~I , is completely analogous to the 
GSdel proof of GCH in the constructible universe L; see [2, Chap. 5] or [7].) Therefore, the 

totality S of all sets D-P~,D ~ L[z] has cardinality L~z]~Z[~] , ~+~p in L[z]. Consequently, 

the totality S is countable in the universe V of all sets, since ~z]~w<~r. Therefore, 
there exists a Py-generic subset G of Py over L[z] [2, Chap. 4, Sec. 2]. 

We show that the constructed set G is the desired one for Theorem 4.3. As in the proof 
of Theorem 4.3. As in the proof of Theorem 4.1, the set g=UG maps ~ onto Y. Therefore, 

?<~z]~] . On the other hand, the set Py, having cardinality y in L[z], trivially does not 
L[Z~ 

contain any antichain of cardinality at least ~§ in L[z]. (A subset A of Py is called 
an ffn$~ if any two different p, q~A are inconsistent in Py, i.e., there is no r~P~ 
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such t h a t  r ~ p and r ~ q . )  
L[z]  [2 ,  Chap. 4,  Sec.  3 ] .  

. L [ z I | G ]  / ~L[i] 
Consequently, ~ ~wX+] . 

In other words, Py satisfies the u of antichains in 

In this situation, y+ remains a cardinal in the class L[z][G]. 

But ~ + I ~ p, since h < @. Finally, we have 

which was required to be proved. Theorem 4.3 is proved. 

By the same token, the proof of the main theorem 1.5 is complete. We have restricted 

ourselves to the proof of this theorem for outer constituents: The proof for inner consti- 
tuents does not differ at all. We now return to Theorems 1.1-1.4 and 1.6. 

6. PROOF OF REMAINING THEOREMS 

Proof of Theorem 1.6. We again restrict ourselves to outer constituents. According to 

what we have said at the beginning of Sec. 2, we must prove that if z~f, 1~-~@<~ Ez], ~[zI<~i, 
the code of sieve R belongs to L[z], and the number of nonempty constituents [R] v is unstable, 

then there exists an ordinal ~<~zj such that SI[R]v > I + p. 

By the condition, there exists a nonempty constituent [R]~ with the index w~D]. 
According to the already-proved theorem 1.5 SI[R]v is greater than I + p�9 Thus, R has an 
outer constituent with SI > I + p. This statement must be true in L[z] also by Theorem 3.1- 

(c), i.e., there exists an ordinal ~<~[zl such that SI[R] v > I + p in L[z]. An application 

of 3�9 completes the proof. 

Let us observe that Theorem 1.6 has the following corollary. 

6 1. COROLLARY. Le t  z ~ / , l ~ p < m ~  [al, L ~ z ] j  �9 . wp <--~lu, and the code of sieve B~L[z] be 

such that the number of the nonempty constituents [R]w is uncountable. Then there exists a 

constituent [R]~ with SI > I + @. The same is true for inner constituents. 

Proof of Theorems 1.1 and 1.4. At first we carry out the proof under the following 

supposition: 

1) For each point z~l there exists a countable TM of the theory ZFC that contains z. 

To prove Theorem 1.1, we assume the contrary: p < ~z and the code of sieve R is such that 

all [R],~ have SI ~ ] + p, but the number of the nonempty inner constituents [R],w is un- 
countable. Let us observe that R is a suite of sets of very simple nature (see Sec. 2) and 
P < ~z .  Therefore, there exists a point z~[ that effectively codes R and p. We choose, 

using (1), a countable TM M that contains z. We get: 

2) The statement p<~[zl is true in M and R~L[z]. 

Let ~=m~ MEzl Let us consider the model N = M[G], obtained by adjoining the Px-generic 
subset G of PI over M to the model M. The statement (2) is true in N also, since LM[z] = 
LN[z]. Moreover, h < ~z is true in N, since g= UG maps w onto ~. Therefore, we can use 

Corollary 6.1 in N [the uncountability of the number of the nonempty inner constituents [R],w 
in N is ensured by Theorem 3.](b)]. As a result, we get an ordinal n < w~ such that the fol- 
lowing statement is true in N: SI[R],n > I + 0. By 3.1(d)(4), we have SI[R],n > I + p in 
the universe also, which contradicts the supposition of contrary. By the same token, the 
proof of Theorem 1.1 with the help of (I) is complete�9 

The proof of Theorem 1.4 is carried out in exactly the same manner. The only difference 
is that the uncountability of the number of the nonempty [R]w in N is ensured not by reference 
to 3.](b), but by reference to the absoluteness of the statement [R]~ ~ r (where w < ~ is 
arbitrary), which is deduced from 3.1(d)(I) if as <T, d> we take the canonical code <{A), r 
of the set I. 

As is obvious, the requirement of nonemptiness of all [R]v in the condition of Theorem 
1.4 can be replaced by the following weaker requirement: For each TM N of the theory ZFC, 
containing a given code of sieve R, the number of nonempty outer constituents [R]v is un- 
countable in N, i.e., the following statement is true in N: 

V F < 6 ~ a v  ~ ~ ([Rd :#: ~). 

We now show how to  b y p a s s  t h e  a s s u m p t i o n  1) in  t h e  p r o p o s e d  p r o o f s .  The p r i n c i p Z e  of  
Borel determinacy of Sec. 3, Corollary 6.1, and the statement that the totality of all sets of 
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set-theoretic rank < w + ~ (see [7, 19]) is a set and forms a model of the Zermelo system ZC 

(obtained by replacement of the axiom of substitution in ZFC by the axiom of separation) are 

theorems of ZFCo Let A denote a finite fragment of ZFC, sufficient for the proof of these 
theorems. The theory A is sufficiently rich for the proof of the following two statements: 

3) Corollary 6.1 is true in each TM of the theory A. 

4) Theorem 3.1 is true for all TM M of the theory A (and not only for models of the 
theory ZFC). 

In addition, since the theory A is finite, the following statement is a theorem of ZFC: 

5) If z~l , then all the axioms of A and the equation LV[z] : Lv(P)[z] are true in each 
Boolean-value extension V (P) of the universe V. 

Let B denote a finite fragment of ZFC that contains A and is sufficient for the proof 
of (5). We have the following statements: 

6) For each z~f there exists a countable TM of the theory B that contains z. 

7) If M is a countable TM of the theory B and N is a generic extension of the model M, 
then N is a model of the theory A and LN[z] = LM[z] for each z~MnL 

Since B is finite, the statement 6) is a consequence of the reflection principle [7, 
19]. To prove 7), it is sufficient to note that from the point of view of M the model N is 
a Boolean-valued extension of the universe of all sets. 

As is easily verified, the statements 3), 4), 6), and 7) enable us to eliminate the 
hypothesis I) from the above proof of Theorems 1.1 and 1.4 by considering models of the theo- 
ries A and B in place of models of the theory ZFC. 

Proof of Theorem ].2. Let us consider a Borel sieve R such that the sequence of the 
derived sieves R v, ~ < ~l, is bounded in rank. The following equation is valid for each 
ordinal ~: 

(The easy verification is left to the reader.) Therefore, the sequence of inner constituents 
is also bounded in rank. By the same token, the number of nonempty [R],~ is countable by 
Theorem 1.1, proved already. In this case, the number of nonempty outer constituents [R]~ 
must also be countable (see Sec. I, deduction of negative solution of Problem I from Theorem 
1.1). Thus, there exists an ordinal v < ~z such that [R],~ = [R]~ = r for all ~ > w. Hence 
it is easily deduced that R ~ = R ~ for all ~ ~ v, which was required to be proved. 

Proof of Theorem ].3. By what we have said in Sec. I, it is sufficient to prove that 

(e) § (g). We fix a code of sieve R and prove under the assumption of ~ (g) that the sepa- 
rability indices of nonempty [R] w converge to I~i, if it is known that the number of nonempty 
[R]v is uncountable. It is sufficient to indicate for each p < ~i an ordinal % < w1 such that 

SI[R]~ > + p whenever v ~ h and [R]~ ~ 0. 

As we have seen at the beginning of Sec. 6, there exists a point z~[ such that R ~L[z] 

L [ z ]  ~ . 
and p~[z] Then (0~ ~w1 . Indeed, under the assumption of ~ (g), the "present" cardinal 

= ~l is strongly inaccessible in L[z] for each z~I [8]. Hence ~:~[z! But p < ~z = ~; 

whence 

p ~ ~ 

Thus, the ordinal k=~ satisfies the inequality h < ~ 1 .  It follows from Theorem 1.5 
that if h E ~ < ~i and [R]~ ~ ~, then SI[R]w > I + p, which was required to be proved. 

~ 

2. 

3. 
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STRONGLY HOMOGENEOUS TORSION-FREE ABELIAN GROUPS 

P. A. Krylov UDC 512.541 

A torsion-free Abelian group G is called strongly homogeneous if the automorphism group 
of G acts transitively on the set of all pure subgroups of rank I, i.e., if A and B are any 
pure subgroups of G of rank I, then aA = B for some ~Au[G. 

Strongly homogeneous groups form an important and interesting class of groups. Closely 
connected with these groups are the strongly homogeneous torsion-free rings. An associative 
ring R with unity is called strongly homogeneous if each element is an integral multiple of 
some element that is invertible in R. The additive group R + of a strongly homogeneous tor- 
sion-free ring R is strongly homogeneous. Indeed, if A and B are pure subgroups of R + of 
rank I, then there exist invertible elements u~A and v~B Left multiplication of R by 
the element w : vu -I is an automorphism of the group R + and wA = B. 

In certain special cases, strongly homogeneous torsion-free groups of finite rank were 
described in [I-3]. Arnold [4] completed the description of strongly homogeneous groups of 
finite rank. In the present paper we study strongly homogeneous torsion-free groups of arbi- 
trary rank and their endomorphism rings. We prove that a strongly homogeneous torsion-free 
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