
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 375, Number 12, December 2022, Pages 8651–8686
https://doi.org/10.1090/tran/8710

Article electronically published on October 3, 2022

ON THE ‘DEFINABILITY OF DEFINABLE’ PROBLEM OF

ALFRED TARSKI, PART II

VLADIMIR KANOVEI AND VASSILY LYUBETSKY

Abstract. Alfred Tarski [J. Symbolic Logic 13 (1948), pp. 107–111] defined
Dpm to be the set of all sets of type p, type-theoretically definable by param-
eterfree formulas of type ≤ m, and asked whether it is true that D1m ∈ D2m

for m ≥ 1. Tarski noted that the negative solution is consistent because the
axiom of constructibility V = L implies D1m /∈ D2m for all m ≥ 1, and he
left the consistency of the positive solution as a major open problem. This
was solved in our recent paper [Mathematics 8 (2020), pp. 1–36], where it
is established that for any m ≥ 1 there is a generic extension of L, the con-
structible universe, in which it is true that D1m ∈ D2m. In continuation of
this research, we prove here that Tarski’s sentences D1m ∈ D2m are not only
consistent, but also independent of each other, in the sense that for any set
Y ⊆ ω � {0} in L there is a generic extension of L in which it is true that
D1m ∈ D2m holds for all m ∈ Y but fails for all m ≥ 1, m /∈ Y . This gives a
full and conclusive solution of the Tarski problem.

The other main result of this paper is the consistency of D1 ∈ D2 via
another generic extension of L, where Dp =

⋃
m Dpm, the set of all sets of

type p, type-theoretically definable by formulas of any type.

Our methods are based on almost-disjoint forcing of Jensen and Solovay
[Some applications of almost disjoint sets, North-Holland, Amsterdam, 1970,
pp. 84–104].
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Section I. Introduction

1. Preamble

Questions of definability of mathematical objects were raised in the course of
discussions on the foundations of mathematics, set theory, and the axiom of choice
in the early twentieth century. See, for example, the famous Sinq lettres [22] by
Baire, Borel, Hadamard, and Lebesgue. Later, with the development of mathemat-
ical logic, Alfred Tarski [50]1 showed that the notion of ‘being definable’ can be

1And apparently Kurt Gödel, unpublished, even earlier. See Murawski [49] on the history of
this discovery and the role of Gödel.
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rigorously analyzed only by first specifying a particular formal context in which the
notion of definability is considered.

Generally, Tarski’s definability theory was applied and further developed in such
classical works as Kleene [40, 41] and in more recent research such as Addison [2],
Cegielski [7], Kossak [44] among many other papers. From a broader point of
view, modern set-theoretic studies on definability are precisely characterized by the
following definition by Yiannis Moschovakis [48, page xiv]:

[. . . ] the central problem of [. . . ] definability theory in general [is]
to find and study the characteristic properties of definable objects.

Various aspects of definability have been in the focus of modern set theoretic
research, in particular those related to the broadest context of the set or class uni-
verse [3,9,46] or even multiverse as one of the modern concepts in the mathematical
foundations [4], or particular models of set theory as e.g. a recent comprehensive
study of the Cohen-generic model in [39], as well as those focused on the domain
of reals and sets of reals typically studied by descriptive set theory. In the latter
case, the context of definability can be limited to the descriptive set theoretic defin-
ability, or can be extended as wide as to the ordinal definability in the set theoretic
universe. In the first direction, we may mention such recent papers as

[13] on generic models with long projective wellorderings of the reals,
[17] on a Π1

2 violation of the schema of dependent choices DC in the presence
of the full axiom of countable choice ACω,

[18] on a model in which all projective sets of reals are Lebesgue measurable,
but there is a Δ1

3 set without the Baire property,

among many other research, while for the second direction we suggest the following
selection of related results:

[8] on the existence of ordinal definable (OD, for brevity) equivalence classes
of Σ1

1 equivalence relations on the reals, containing no OD elements,
[23] on algebraic definability,2 notably extended in [20] and then in [12] where

it is established that, in the Sacks and some other generic extensions of L
by a real, there is an OD partition of the reals into two non-OD parts,

[52] on Russell non-typicality, or blurry definability,3 extended in [19, 38].

This study of ours touches upon the field of definability in type theory, which in a
certain sense lies between the two directions indicated.

2. The problem

More specific, restricted types of definability, in particular, the type-theoretic
definability, were considered by Tarski in his subsequent work [51]. The following
key definition will be elaborated upon later in more detail in Subsection 6.

Definition 2.1 (Tarski [51]). If m, p < ω then Dpm is the set of all objects X of
type p (type 0 = ω, type 1 = P(ω), type 2 = P(P(ω)) = P2(ω), etc.), definable
by a parameter-free type-theoretic formula ϕ of type m (i.e., all variables are over
types ≤m). Furthermore, Dp =

⋃
m Dpm is the set of all objects of type p, definable

by a parameter-free formula of any type. �

2A set is algebraically definable iff it belongs to a finite ordinal definable set.
3A set is Russell non-typical, or blurry definable, iff it belongs to a countable OD set.
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Studying the definability properties of these sets Dpm in the obligatory case
p ≤ m+ 1 (otherwise Dpm = ∅), Tarski noted that Dpm ∈ Dp+1,m+1, but Dpm /∈
Dp+1,m in all cases except for p = 1, m ≥ 1.4 This led Tarski to the following
questions left in [51] as major open problems.

Problem 2.2 (Tarski [51]).

(A) Is it true that D1 ∈ D2?
(B) Let m ≥ 1. Is it true that D1m ∈ D2m?

Tarski observed in [51], with a reference to Gödel’s work on constructibility,
that the positive solution, i.e., a straight proof of D1 ∈ D2 or D1m ∈ D2m, is
“very unlikely”. Basically if the axiom of constructibility V = L (or even a weaker
hypothesis ωL

1 = ω1, Lemma 8.2) holds then D1 /∈ D2 and D1m /∈ D2m for all m.5

Thus the negative solution of Problem 2.2 does not contradict the ZFC axioms.
As for the positive solution, one naturally has to construct a generic extension

of L, the constructible universe, in which D1 ∈ D2 holds, or D1m ∈ D2m holds for
a given m ≥ 1. Such stronger sentences as D1 = P(ω) ∩ L or D1m = P(ω) ∩ L
can be considered as well; it’s clear that P(ω) ∩ L ∈ D11.

3. Early studies and Harrington’s statement

The existence of such models was widely discussed in early years of forcing,
especially in the case m = 1 corresponding to analytic definability in second-order
arithmetic. The early survey [47] by A.R.D. Mathias6 contains Problem 3112,
that requires finding a model of ZFC in which it is true that the set of analytically
definable reals is analytically definable, that is, D11 ∈ D21; reals in this context
mean subsets of ω. Another problem P 3110 there suggests a sharper form of this
statement, namely: find a model in which it is true that analytically definable reals
are precisely the constructible reals, that is, D11 = P(ω) ∩ L. The set P(ω) ∩ L
of all constructible reals is (lightface) Σ1

2 , and hence D21, so that the equality
D11 = P(ω) ∩ L implies D11 ∈ D21.

Somewhat later, Problem 87 in Harvey Friedman’s survey One hundred and two
problems in mathematical logic [14] requires to prove that for each n ≥ 3 there is a
model of ZFC + “the constructible reals are precisely theΔ1

n reals”. (For n ≤ 2 this
is definitely impossible by the Shoenfield absoluteness theorem.) At the very end of
[14], it is noted that Leo Harrington had solved this problem affirmatively. A similar
remark is given in [47] (p. 166), a comment to P 3110. Meanwhile an independent
construction of a generic model, in which it is true that D11 = P(ω) ∩ L, was
published in [29].

And indeed, Harrington’s handwritten notes [24] include a sketch of a generic
extension of L on pp. 2–4 in which it is true that P(ω)∩L = all Δ1

3 reals, and a few
sentences on p. 5 to explain, without going into details, how Harrington planned
to get some other claimed models, namely those of “P(ω) ∩L = all Δ1

n reals”, for

4If we slightly change the definition of Dpm by stipulating that only quantified variables in
ϕ have type ≤ m in Definition 2.1, then the case m = 0 of arithmetical definability becomes
meaningful for p = 2 (sets of reals). Addison [1] established that D01 /∈ D02 holds with such a
modification, in other words, the set of all arithmetical reals is not arithmetically definable. See
[6, Section 23.2] for the proof of the Addison result, and see further similar results, related rather
to the ramified type theoretic hierarchy, in [43].

5See [42] on more consequences of the axiom of constructibility related to the Tarski problem.
6The original typescript of [47] had been in circulation among set theorists since 1968.
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a given n, and those of “P(ω) ∩ L = D11”. Unfortunately no detailed proofs of
these results have ever emerged in Harrington’s published mathematical works. An
article by Harrington, entitled Consistency and independence results in descriptive
set theory, which apparently might have contained these results, was announced “to
appear in Ann. of Math., 1978” in the References list in Hinman’s book [25, p. 462],
but in fact this or similar article has never appeared.

Anyway, a relevant part of Harrington’s statement was (re)proved in our recent
papers [34, 35], with complete proofs of Theorems 3.1 and 3.2.

Theorem 3.1 (Theorem 1 in [35]). Let n ≥ 3. There is a generic extension of L
in which it is true that P(ω) ∩ L = all Δ1

n reals.

Theorem 3.2 (Theorem 2 in [34]). Let M ≥ 1. There is a generic extension of
L in which it is true that D1M = P(ω) ∩ L, and hence, D1M ∈ D2M , and on the
other hand D1n /∈ D2n for all n �= M .

Thus, for every particular M ≥ 1, there exists a generic extension of L in which
the Tarski sentence D1M ∈ D2M holds (whereas D1n /∈ D2n for all n �= M).

4. The main results of this paper

This paper extends our research project on the issues of definability in models
of set theory that was started in [21, 30, 31] (among other papers). The paper is a
continuation of [34], and is devoted to the proof of two new theorems (Theorem 4.1
and Theorem 4.2) on the existence of generic models related to Problem 2.2.

Theorem 4.1. Assume that Υ ⊆ ω�{0} is a set in L. There is a generic extension
of L in which it is true that for every m ≥ 1: D1m ∈ D2m iff m ∈ Υ.

Thus not only it is consistent with ZFC that D1m ∈ D2m holds for all m ≥ 1
rather than for a single pre-selected M ≥ 1 as in Theorem 3.2, but any finite, or
say recursively-infinite conjunction of sentences of the form D1m ∈ D2m and their
negations, non-contradictory in an elementary sense, is still consistent with ZFC.

Theorem 4.2. There is a generic extension of L in which it is true that D1 =
L ∩ P(ω), therefore D1 ∈ D2.

These results will be established by applications of the methods sketched by
Harrington and further developed in our previous paper [34] on the Tarski problem.

We may note that sentences D1m ∈ D2m in Theorem 4.1 cannot be strengthened
to D1m = L ∩ P(ω), as in Theorem 4.2 or Theorem 3.2, because we have D1m �
D1,m+1 strictly for all m. In fact it is not hard to check that if D1m = L ∩ P(ω)
for some m then D1n /∈ D2n holds for all n < m.

5. The structure of the paper

Section II of the paper includes some preliminary and mostly well-known material
related to definability, constructibility, and forcing. In particular we consider the
Cohen-style collapse forcing Cω+1 = Fn(ω,Ω1) ∈ L that adjoins a generic collapse

map ω
onto−→ Ω1 = ωL

ω+1. The collapse is necessary since any model for Theorem 4.1

(with an infinite set Υ) has to satisfy the inequality ωL
ω+1 ≤ ω1 (see Corollary 8.3),

and we have to collapse ωL
ω+1, too, to avoid complications related to the singularity

of ωω.
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We also make use of smaller collapse forcings Cn = Fn(ω, ωL
n ). The finite support

product CΥ = Cω+1 ×
∏

n∈Υ Cn ∈ L is our first major forcing notion. Each generic

set ζ ⊆ CΥ naturally splits into a generic collapse map ζω+1 : ω
onto−→ Ω1 and an

array of generic maps ζn : ω
onto−→ ωL

n , n ∈ Υ. If M ∈ Υ then we consider finite

generic strings ζΥ
<M = {ζk}k∈Υ,k<M and ζΥ

≤M = ζΥ
<M+1, and the corresponding

submodels

L[ζΥ
<M ] ⊆ L[ζΥ

≤M ] = L[ζΥ
<M , ζm] ⊆ L[ζ],

and define a set wΥ
M [ζ] ∈ L[ζΥ

≤M ], wΥ
m[ζ] ⊆ ω × ω, whose slices (wΥ

m[ζ])n, n < ω,

provide a simple enumeration of reals in L[ζΥ
<M ] (Definition 10.4).

Section III introduces the main coding tool used in this paper, the almost disjoint
forcing of Jensen and Solovay [27].

The model for Theorem 4.1 is defined in Section IV. We make use of a product
forcing of the form CΥ×

∏
M∈Υ PM in L, where each PM is itself equal to a product

PM =
∏

n,i<ω PM (n, i) ∈ L, with each factor PM (n, i) being an almost-disjoint type

forcing determined by a set UM (n, i) ∈ L, UM (n, i) ⊆ FunM = (ΩM
ΩM )∩L, where

ΩM = ωL
ω+M . These sets UM (n, i) are introduced by Theorem 16.1.

Any corresponding generic extension of L has the form L[ζ, {GM}M∈Υ], where
ζ ⊆ CΥ is CΥ-generic and each GM ⊆ PM is PM -generic over L, so that GM =
{GM (n, i)}n,i<ω, where each factor GM (n, i) = {p(n, i) : p ∈ GM} is PM (n, i)-
generic over L. Such an extension is a “basic product model” (Subsection 18).

Further, using the sets wΥ
M [ζ] as above, we define the key submodel

L[ζ, G�wΥ[ζ]] = L[ζ, {GM (n, i)}M∈Υ∧〈n,i〉∈wΥ
M [ζ]]

of the basic product model L[ζ, {GM}M∈Υ] in Subsection 19. This will be a model

for Theorem 4.1, in particular, if M ∈ Υ then D1M = P(ω) ∩ L[ζΥ
<M ] ∈ D2M in

L[ζ, G�wΥ[ζ]]. This will be established by Theorem 20.2 and Remark 20.4.
Theorem 20.2 contains three claims, and one of them will be dealt with in the two

last parts of the paper. In particular, we introduce forcing approximations in Sec-
tion V, an auxiliary forcing-like relation that admits invariance under some trans-
formations, including the permutations of the index set ω × ω, see Subsection 32.
The actual forcing notions PM = P[UM ] =

∏
n,i<ω PM (n, i) are definitely not in-

variant under permutations, but the completeness property (ii) of Theorem 16.1,
maintained through the inductive construction of systems UM in L, allows us to
prove that the auxiliary forcing is in the same relation to the truth in the generic
extensions considered, as the true PM -forcing relation (Theorem 28.1).

Finally, Section VI presents the proof of the hidden invariance theorem (Theo-
rem 30.1) for forcing approximations, and completes the proof of Theorem 4.1.

Theorem 4.2 is established in Subsection 23 on the basis of the proof of Theo-
rem 4.1, but the material of Sections V, VI is not involved.

Section II. Preliminaries

For the convenience of the reader, this section contains a brief account of key def-
initions and results of our earlier paper [34], related to definability, constructibility,
and forcing, and instrumental in the proof of Theorems 4.1 and 4.2.
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6. Type-theoretic definability and Lévy hierarchy

The type-theoretic language deals with variables xk, yk, . . . of types k < ω, and
includes the Peano arithmetic language for type 0 and the atomic predicate ∈ of
membership used as xk ∈ yk+1. The type of a formula ϕ is equal to the highest
type of all variables in ϕ, and each quantifier ∃xk, ∀xk is assumed to be relativized
to the k-th iterated power set

Pk(ω) = P(. . .P(P(ω)) . . . )︸ ︷︷ ︸
k times the powerset operation

.

If k,m < ω, k ≥ 1, then Dkm is the set of all xk ∈ Pk(ω), definable in the form

xk = {xk−1 ∈ Pk−1(ω) :ϕ(xk−1)}
by a parameter-free formula ϕ of type ≤ m. We let Dk =

⋃
mDkm, the set of all

xk ∈ Pk(ω) definable by a parameter-free type theoretic formula of any type.
We’ll occasionally extend the definition of D1m to sets x ⊆ ω × ω and the

definition of D2m to sets X ⊆ P(ω)×P(ω), with the natural understanding that
e.g. a set X ⊆ P(ω)× P(ω) (say a wellordering of P(ω)) belongs to D2m iff it is
definable by a parameter-free formula ϕ of type ≤ m.

We refer to e.g. [5, Part B, 5.4], or [26, Chap. 13] in matters of the Lévy hierarchy
of ∈-formulas and definability classes ΣH

n , ΠH
n , ΔH

n for any transitive set H as the
domain of definability. In particular, we put

ΣH
n = all sets X ⊆ H, definable in H by a parameter-free Σn formula;

Σn(H) = all sets X ⊆ H definable in H by a Σn formula with parameters in H.

Writing ΣH
n (x), x ∈ H, we understand that x is admitted as a parameter. If P ⊆ H

then ΣH
n (P ) is understood so that all x ∈ P are admitted as parameters. Π-classes

ΠH
n , ΠH

n (x), ΠH
n (P ) are defined similarly, and ΔH

n = ΣH
n ∩ΠH

n , etc.
We let ΣH

∞ =
⋃

n<ω ΣH
n = all sets X ⊆ H parameter-free definable in 〈H;∈〉.

Note that if 1 ≤ k ≤ m and X ∈ Pk(ω) then X ∈ Σ
Pm(ω)
∞ iff X ∈ Dkm.

Theorem 6.1 demonstrates that ∈-definability even over much bigger sets can be
reduced to the type-theoretic definability. If κ is an infinite cardinal then

Hκ = {x : card (TC (x)) < κ}, where TC is the transitive closure.

In particular, HC = Hω1, all heredidarily-countable sets.

Theorem 6.1 (Theorem 3 in [34]). If m ≥ 1, the generalized continuum hypothesis
2ϑ = ϑ+ holds for all infinite cardinals ϑ < ωm−1, and X ⊆ ω or X ⊆ P(ω), then
X belongs to D1m, resp., D2m, iff X ∈ ΣHωm

∞ .

In case m = 1 (then Hωm = Hω1 = HC and the GCH premise is vacuous), this
result was mentioned, in [28, p. 281], a detailed proof see [26, Lemma 25.25].

7. The pairing function and definability

Let Ω be an infinite cardinal. Then κ = Ω+ is the next cardinal. Theorem 7.3
reduces definability in Hκ to definability in a smaller set P(Ω) = {X :X ⊆ Ω}
with a pairing function as an extra atomic element.

To define the pairing function, let � be the wellordering of Ord×Ord defined
so that 〈α, β〉 � 〈α′, β′〉 iff

〈max{α, β}, α, β〉 �lex 〈max{α′, β′}, α′, β′〉
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lexicographically. Let p : Ord × Ord
onto−→ Ord be the order preserving map:

〈α, β〉 � 〈α′, β′〉 iff p(α, β) ≤ p(α′, β′); p is the canonical pairing function.

Lemma 7.1 (routine). If κ is an infinite cardinal then p maps κ × κ onto κ
bijectively, and the restriction p�(κ× κ) is constructible and ΔHκ

1 . �
It is perhaps an interesting question whether the restricted map p�(Ω × Ω) is

definable in 〈Ω;∈〉 or in a bigger (but still much smaller than HΩ+) structure
〈P(Ω);∈〉. As explained by James Hanson at Mathoverflow question 384194, this
question likely answers in the negative. Yet we fortunately can circumwent this
obstacle by simply allowing p as a background parameter.

Definition 7.2. Let a p-formula be any ∈-formula containing occurrences of p(·, ·).
Let Ω be a cardinal. If ϕ is a closed p-formula with sets in P(Ω) as parameters,

then P(Ω) |= ϕ is understood in the natural sense, and we say that ϕ is Ω-true.

By Σ
P(Ω),p
∞ we denote the collection of all sets X ⊆ P(Ω), definable in P(Ω) by

a parameter-free p-formula in this sense. �
The following result will be of key importance. It shows that under the assump-

tions of Lemma 7.1 the definability in Hκ is reducible to the definability in a much
smaller set P(Ω), with only a minor help of the pairing function.

Theorem 7.3 (Theorem 4 in [34]). If x, y ⊆ ω,Ω is a regular cardinal, κ = Ω+,

and x ∈ ΣHκ
∞ (y), then x ∈ Σ

P(Ω),p
∞ (y). �

8. Constructibility and definability issues

Recall that L is the constructible universe and <L is the Gödel wellordering of
L. Let κ be an infinite cardinal. The following are some well-known facts.

(i) The set Hκ ∩ L is an initial segment of L w.r.t. <L;
(ii) The set Hκ ∩ L belongs to ΣHκ

1 and is equal to (Hκ)L;
(iii) The restriction <L�(Hκ ∩ L) is a ΣHκ

1 relation.
(iv) If n ≥ 1, Hκ ⊆ L, p ∈ Hκ is any parameter, and R(x, y, z, . . . ) is a ΔHκ

n (p)
relation on Hκ, then the following derived relations are ΔHκ

n (p), too:

∃x <L y R(x, y, z, . . . ) and ∀x <L y R(x, y, z, . . . ).

Lemma 8.1 (Theorem 5(i) in [34]). Assume that L[F ] is a generic extension of
L, κ > ω is a cardinal in L[F ], and Y ∈ L, Y ⊆ H = (Hκ)L, n ≥ 1, Y belongs to

ΣH
n , and H[F ] = (Hκ)L[F ]. Then Y ∈ Σ

H[F ]
n , too. �

Lemma 8.2 (essentially Tarski [51]). If n ≥ 1 and D1n ∈ D2n then L ∩ P(ω) ⊆
D1n, ω

L
1 < ω1 strictly, and there is a real z ∈ D1,n+1 such that ω

L[z]
1 > ωL

1 .

Proof. Suppose to the contrary that X = L ∩ P(ω) �⊆ D1n. and let x be the
<L-least element of X �D1n. Note that X is Σ1

2 by (iii) and Theorem 6.1, hence
X ∈ D21. It follows that the difference X � D1n belongs to D2n as D1n ∈ D2n.
The relation <L belongs to D21 via (iii) and Theorem 6.1. It easily follows that x
itself is D1n, which is a contradiction.

The inequality ωL
1 < ω1 is an immediate consequence as D1n is countable.

And finally by [51] there is a universal formula of type n+1 for all (parameterfree)
formulas of type n. This yields a D1,n+1 set z ⊆ ω × ω such that D1n is equal to
the collection of all slices (z)n = {k : 〈n, k〉 ∈ z}. Such a z is as required. �

https://mathoverflow.net/questions/384194
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Corollary 8.3. If D1n ∈ D2n holds for infinitely many n then ω1 ≥ ωL
ω+1.

Proof. Suppose that e.g. D13 ∈ D23 and D16 ∈ D26. By the lemma, there is a

real z ⊆ ω in D14 such that ω
L[z]
1 > ωL

1 . Then both the set L[z] ∩ P(ω) and
the canonical wellordering <L[z] on L[z] ∩ P(ω) belong to D24. Using <L[z] and
L[z] ∩ P(ω) instead of <L and L ∩ P(ω), we obtain a real w ∈ D17 such that

ω
L[w]
1 > ω

L[z]
1 . Then ω1 ≥ ω

L[w]
1 > ω

L[z]
1 > ωL

1 , in other words, ω1 ≥ ωL
3 . �

9. Forcing issues

Let κ is an infinite ordinal. By [26, Chap. 15], a forcing notion P = 〈P ;≤〉:
• is κ-closed, if any ≤-decreasing sequence {pα}α<λ in P , of length λ ≤ κ,
has a lower bound in P ;

• is κ-distributive, if the intersection of κ-many open dense sets is open dense,
and a set D ⊆ P is open, iff q ≤ p ∈ D =⇒ q ∈ D, and dense, iff for any
p ∈ P there is q ∈ D, q ≤ p;

• satisfies κ-chain condition, or κ-CC, if every antichain A ⊆ P has cardi-
nality strictly less than κ;

We’ll make use of the following general results in forcing theory.

Lemma 9.1 (Lemma 5 in [34]). Assume that, in L, ϑ < Ω = ϑ+ are regular
cardinals, and Q,P ∈ L are forcing notions, Q satisfies Ω-CC in L, and P is
ϑ-closed in L. Let 〈F,G〉 be a pair (Q× P )-generic over L. Then

(i) P remains ϑ-distributive in L[F ],
(ii) Ω is still a cardinal in L[F,G] and every set X ∈ L[F,G], X ⊆ Ω, bounded

in Ω, belongs to L[F ]. �
Definition 9.2 (see [11]). A forcing notion P = 〈P ;≤〉 is cone homogeneous,
if for any conditions p0, q0 ∈ P there exist stronger ones p ≤ p0, q ≤ q0, such
that the cones P≤p = {p′ ∈ P : p′ ≤ p} and P≤q of stronger conditions are order-
isomorphic. �
Lemma 9.3. Assume that K is any set, κ > ω is a cardinal in L[K], H[K] =
(Hκ)L[K], Q ∈ H[K] is a forcing cone homogeneous in L[K], a set F ⊆ Q is Q-
generic over L[K], κ remains a cardinal in L[K,F ], H[K,F ] = (Hκ)L[K,F ], and

a set X ∈ L[K,F ], X ⊆ H[K], belongs to Σ
H[K,F ]
∞ (parameterfree ∈-definable in

H[K,F ]). Then X ∈ Σ
H[K]
∞ (Q) (with Q as the only parameter), hence X ∈ L[K].

Proof. Suppose that X = {x ∈ H[K] :ϕ(x)} in H[K,F ], ϕ being a parameterfree

formula. We have X = {x ∈ H[K] : ∃ q ∈ F (q � ϕ(
�
x))}, where �

x is a canonical Q-

name of x ∈ H[K]. But if some q forces ϕ(
�
x) then any other q′ ∈ Q also forces ϕ(

�
x)

by the cone homogeneity of Q. Therefore X = {x ∈ H[K] : ∃ q ∈ Q (q � ϕ(
�
x))}.

Finally as Q ∈ H[K], the Q-forcing relation � is ∈-definable in H[K] with Q as
the only parameter. �

10. Collapse forcing

It follows from Corollary 8.3 that if D1n ∈ D2n holds for all (or even infinitely
many) integers n ≥ 1, then ωL

ω+1 ≤ ω1. Technically, we’ll need even ωL
ω+1 < ω1.

To maintain such a collapse in a way compatible with its applications below, we
make use of a suitable product of the ordinary Cohen-style collapse forcing notions
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Fn(ω,X) (also denoted by Coll(ω,X)). Recall that by [45] Fn(ω,X) consists of
all functions c : dom c → X, where dom c ⊆ ω is finite, ordered by inclusion (if
c ⊆ c′ then c′ is stronger). We let Cn = Fn(ω, ωL

n ), Cω+1 = Fn(ω,Ω1) (recall that
Ω1 = ωL

ω+1), and consider some forcing products of these sets.

Definition 10.1. For the remainder, fix a set Υ ⊆ ω�{0} in L as in Theorem 4.1.
�

Definition 10.2. We define

CΥ = Cω+1 ×
∏
n∈Υ

Cn (finite-support product), CΥ
<m =

∏
n∈Υ,n<m

Cn,

and CΥ
≤m = CΥ

<m+1. Thus CΥ ∈ L, cardCΥ = Ω1 = ωL
ω+1 in L, and Ω1 is countable

in CΥ-generic extensions. Note that CΥ
≤m = CΥ

<m × Cm in case m ∈ Υ. �

Each set ζ ⊆ CΥ, CΥ-generic over L, naturally adjoins a Cω+1-generic map

ζω+1 : ω
onto−→ Ω1 and, for each n ∈ Υ, a Cn-generic map ζn : ω

onto−→ ωL
n . We put

ζΥ
<m = {ζk}k∈Υ,k<m and ζΥ

≤m = ζΥ
<m+1; if m ∈ Υ then ζΥ

≤m = 〈ζΥ
<m, ζm〉.

Lemma 10.3 (routine). If a set ζ ⊆ CΥ is CΥ-generic over L, and m ∈ Υ, then

ωL[ζ]
γ = ω

L[ζω+1]
γ = ωL

ω+1+γ and ω
L[ζΥ

≤m]
γ = ωL[ζm]

γ = ωL
m+γ

for any ordinal γ ≥ 1. Moreover, ζm and ζΥ
<m are resp. Cm-generic map and

CΥ
<m-generic tuple over L. �

Definition 10.4 works within a broader framework.

Definition 10.4. Recall that (z)n = {i : 〈n, i〉 ∈ z} for any z ⊆ ω × ω. Assume

that M ∈ Υ, and a pair 〈s, θ〉 is (CΥ
<M ×CM )-generic over L. Then ω

L[�s]
1 ≤ ωL

M ; let

(1) P(ω) ∩ L[s] = {Aν [s] : ν < ωL
M}

be a canonical Gödel enumeration (perhaps with repetitions) definable in LωL
M
[s]

with s as the only parameter. We put w[s, θ] := {〈n, i〉 :n, i < ω ∧ i ∈ Aθ(n)[s]}, so
(w[s, θ])n = Aθ(n)[s] and

(2) P(ω) ∩ L[s] = {Aθ(n)[s] :n < ω} = {(w[s, θ])n :n < ω}

by (1) and because θ : ω
onto−→ ωL

M by the genericity.

If ζ is a set CΥ-generic over L then these definitions are applicable for s = ζΥ
<M

and θ = ζM . We define then wΥ
M [ζ] = w[ζΥ

<M , ζM ]. �

Lemma 10.5 (by (2) above). If ζ is CΥ-generic over L and M ∈ Υ then wΥ
M [ζ] ∈

L[ζΥ
≤M ] and P(ω) ∩ L[ζΥ

<M ] = {(wΥ
M [ζ])n :n < ω}. �

Section III. Almost disjoint forcing

This is the main coding tool used in the proof of Theorem 4.1, an uncountable
version of almost disjoint forcing of Jensen and Solovay [27], which depends on the
choice of an uncountable regular cardinal in L.
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11. Almost disjoint forcing

Definition 11.1 introduces the cardinals and related sets which we’ll systemati-
cally deal with in the proof of our main results.

Definition 11.1. If M < ω then we define an L-cardinal ΩM = ωL
ω+M , and put

HM = (HΩM+1)
L = {x ∈ L : card (TC (x)) < ΩM+1 in L}, and

HM [G] = (HΩM+1)
L[G] = {x ∈ L[G] : card (TC (x)) < ΩM+1 in L[G]},

provided L[G] is a generic extension of L and ΩM+1 remains a cardinal in L[G]. �
The cardinals ΩM , M ≥ 1, will be our working cardinals.

Corollary 11.2 (of Lemma 10.3). If a set ζ ⊆ CΥ is CΥ-generic over L, then Ω1

is countable in L[ζ], whereas if M ≥ 2 then ΩM = ω
L[ζ]
M−1 remains a cardinal. �

The next definition of SeqM , FunM , ∗PM corresponds to SeqΩ, FunΩ,
∗PΩ

in [34, Section 2.4] in case Ω = ΩM . In the context of [34], Ω was any regular
L-cardinal; here we restrict the generality to the cardinals ΩM = ωL

ω+M , M ≥ 1.

• SeqM = (ΩM
<ΩM � {Λ}) ∩L, the set of all constructible non-∅ sequences

s of ordinals < ΩM , of length lh s = dom s < ΩM , called strings. We stress
that SeqM ∈ L, and Λ, the empty string, does not belong to SeqM .

• FunM = ΩM
ΩM ∩L ∈ L, all constructible ΩM -sequences of ordinals < ΩM .

• If X ⊆ FunM , put X∨ = {f�ν : f ∈ Fp ∧ 1 ≤ ν < ΩM}, a tree in SeqM .
• A set X ⊆ FunM is dense iff X∨ = SeqM , i.e. for any s ∈ SeqM there is

f ∈ X such that s ⊂ f .
• If S ⊆ SeqM , f ∈ FunM then let S/f = sup{ν < ΩM : f�ν ∈ S}. If S/f is
unbounded in ΩM then say that S covers f , otherwise S does not cover f .

Definition 11.3 (in L). Let M ≥ 1. ∗PM is the set of all pairs p = 〈Sp;Fp〉 ∈ L of
sets Fp ⊆ FunM , Sp ⊆ SeqM of cardinality strictly less than ΩM in L. Elements
of ∗PM will be called (forcing) conditions.

Let p, q ∈ ∗PM . Define q � p (q is stronger) iff Sp ⊆ Sq, Fp ⊆ Fq, and the
difference Sq � Sp does not intersect F∨

p , that is, Sq ∩ F∨
p = Sp ∩ F∨

p . Here F∨
p =

(Fp)
∨. Clearly q � p iff Sp ⊆ Sq, Fp ⊆ Fq, and Sq ∩ F∨

p = Sp ∩ F∨
p .

If u ⊆ FunM then put P [u] = {p ∈ ∗PM :Fp ⊆ u} ∈ L. �
By definition, the sets SeqM , FunM , ∗PM belong to L and card (SeqM ) = ΩM

whereas card (FunM ) = card ∗PM = ΩM+1 in L.
If u ⊆ FunM in L, and G ⊆ P [u] then put SG =

⋃
p∈G Sp; thus SG ⊆ SeqM .

Lemma 11.4 (Lemma 13 in [34]). Suppose that M ≥ 1 and, in L, u ⊆ FunM is
dense. Let G ⊆ P [u] be a set P [u]-generic over L. Then

(i) if f ∈ FunM in L then f ∈ u ⇐⇒ SG does not cover f ;
(ii) G = {p ∈ P [u] :Sp ⊆ SG ∧ (SG � Sp) ∩ F∨

p = ∅}, hence L[G] = L[SG]. �

12. Homogeneity

Let M ≥ 1. Assume that conditions p, q ∈ ∗PM satisfy

(3) Fp = Fq and Sp ∪ Sq ⊆ F∨
p = F∨

q .

Following [35, § 2.4], we define a transformation hpq acting as follows.
If p = q then define hpq(r) = r for all r ∈ ∗PM — the identity.
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Suppose that p �= q. Then Sp �= Sq, and p, q are incompatible by (3) and
Definition 11.3. We put dpq = {r ∈ ∗PM : r � p ∨ r � q}, the domain of hpq. Let
r ∈ dpq. We define hpq(r) = r′ := 〈Sr′ , Fr′〉, where Fr′ = Fr and

(4) Sr′ =

⎧⎨⎩(Sr � Sp) ∪ Sq in case r � p,

(Sr � Sq) ∪ Sp in case r � q.

Thus, assuming (3), the difference between Sr and Sr′ lies entirely within the set
X = F∨

p = F∨
q , so that if r � p then Sr ∩X = Sp but Sr′ ∩X = Sq, while if r � q

then Sr ∩X = Sq but Sr′ ∩X = Sp.

Lemma 12.1 (in L). Assume that M ≥ 1. Then:

(i) if u ⊆ FunM is dense and p0, q0 ∈ P [u] then there exist conditions p, q ∈
P [u] with p � p0, q � q0, satisfying (3);

(ii) if p, q ∈ ∗PM satisfy (3) then hpq an order automorphism of the set dpq =
{r ∈ ∗PM : r � p ∨ r � q}, satisfying hpq(p) = q and hpq = (hpq)

−1 = hqp;
(iii) if u ⊆ FunM and p, q ∈ P [u] satisfy (3) then hpq maps the set P [u] ∩ dpq

onto itself order-preserving.

Proof. (i) We argue in L. By the density of u there is a set F ⊆ u satisfying
cardF < ΩM , Fp ∪ Fq ⊆ F , and Sp ∪ Sq ⊆ F∨ = {f�ν : f ∈ F ∧ 1 ≤ ν < ω1}. Put
p = 〈Sp, F 〉 and q = 〈Sq, F 〉. Claims (ii), (iii) are routine. �

Corollary 12.2 (in L). Assume that M ≥ 1 and a set u ⊆ FunM is dense. Then
P [u] is cone homogneous in the sense of Definition 9.2. �

13. Product almost disjoint forcing

Arguing under the assumptions and notation of Definition 11.1, we consider
I = ω × ω, the cartesian product, as the index set for a product forcing.

Definition 13.1 (in L). LetM ≥ 1. We define ∗PM = (∗PM )I to be the L-product
of I copies of ∗PM ordered componentwise: p � q (p is stronger) iff p(n, i) � q(n, i)
in ∗PM for all n, i < ω. Thus ∗PM ∈ L consists of all maps p ∈ L, p : I → ∗PM .

Let p ∈ ∗PM . If n, i < ω then put Sp(n, i) = Sp(n,i), Fp(n, i) = Fp(n,i), and

F∨
p (n, i) = F∨

p(n,i) = {f�ν : f ∈ Fp(n, i) ∧ 1 ≤ ν < ΩM}.
Thus p(n, i) = 〈Sp(n, i);Fp(n, i)〉 ∈ ∗PM , and Fp(n, i) ⊆ FunM , Sp(n, i) ⊆ SeqM

are sets of cardinality <ΩM in L. Let |p| = {〈n, i〉 : p(n, i) �= 〈∅;∅〉}. �

Let M ≥ 1. An M-system is any map U ∈ L, U : I → P(FunM ) such that
each set U(n, i) is empty or dense in FunM . In this case, let

P[U ] = {p ∈ ∗PM : ∀n, i (Fp(n, i) ⊆ U(n, i))},
the L-product of the sets P [U(n, i)], n, i < ω.

We take the next easy lemma from [34, Lemma 14].

Lemma 13.2 (in L). Let M ≥ 1 and U be an M -system. Then it holds in L that
cardP[U ] = ΩM+1 and

(i) the forcing notion P[U ] is ΩM−1-closed, hence ΩM−1-distributive;
(ii) the forcing notion P[U ] satisfies ΩM+1-CC, both in L and in any generic

extension of L in which ΩM+1 remains a cardinal. �
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Definition 13.3. Suppose that M ≥ 1 and z ⊆ I. If p ∈ ∗PM then define p′ = p�z
to be the usual restriction, so that dom (p�z) = z and p′(n, i) = p(n, i) for all
〈n, i〉 ∈ z. Several special cases of restriction: if m, i < ω then let

p� �=〈m,i〉 = p�z, where z = (I � {〈m, i〉}),
p�<m = p�z, where z = {k : k < m} × ω,

p�≥m = p�z, where z = {k : k ≥ m} × ω,

p�m = p�z, where z = {m} × ω.

If U is an M -system then define U�z, U�<m, U�≥m, U�m similarly to the above.
Finally, if Q ⊆ ∗PM then let Q�z = {p�z : p ∈ Q}; Q�z ⊆ ∗PM �z. This will
be applied, e.g., in case Q = P[U ], where U ∈ L is a system, and then we get
P[U ]�z = {p�z : p ∈ P[U ]}, P[U ]��=〈n,i〉, P[U ]�≥m, etc. �
Remark 13.4. Suppose that z ∈ L in Definition 13.3. If p ∈ ∗PM , then p�z can be
identified with a condition q ∈ ∗PM such that q�z = p�z and q(n, i) = 〈∅;∅〉 for
all 〈n, i〉 ∈ I � z. For instance, this applies w.r.t. p��=〈n,i〉, p�≥m, p�<m, p�m.

With such an identification, we have ∗PM �z ⊆ ∗PM , and Q�z ⊆ ∗PM for Q ⊆
∗PM (in case z ∈ L). But if z /∈ L then such an identification fails.

The same applies for the restrictions U�z of systems U . �

14. Product almost disjoint extensions

Assume that M ≥ 1 and U is an M -system in L. Consider P[U ] ∈ L as a forcing
notion. We’ll study P[U ]-generic extensions L[G] of the ground universe L. Define
some elements of these extensions. Every set G ⊆ ∗PM , generic over L, can be
viewed as an array G = {G(n, i)}n,i<ω, where G(n, i) = {p(n, i) : p ∈ G} ⊆ ∗PM is
∗PM -generic over L. We let

SG(n, i) = SG(n,i) =
⋃
p∈G

Sp(n, i) for any n, i < ω.

Thus SG(n, i) ⊆ SeqM . By the way, this defines a sequence
#»

SG = {SG(n, i)}n,i<ω

of subsets of SeqM .
If z ⊆ I then let G�z = {p�z : p ∈ G}.
If z ∈ L then G�z can be identified with {p ∈ G : |p| ⊆ z}.
Put G��=〈n,i〉 = {p ∈ G : 〈n, i〉 /∈ |p|} = G�(I � {〈n, i〉}).

Lemma 14.1. Let M ≥ 1, U be an M -system in L, and G ⊆ P[U ] be a set

P[U ]-generic over L. Then L[G] = L[
#»
SG], and if n, i < ω then the set G(n, i) =

{p(n, i) :p ∈ G} ∈ L[G] is P [U(n, i)]-generic over L, hence if f ∈ FunM then

f ∈ U(n, i) ⇐⇒ SG(n, i) does not cover f .

Proof. To prove L[G] = L[
#»
SG] apply Lemma 11.4(ii). The genericity of G(n, i)

holds by the product forcing theorem, then use Lemma 11.4(i). �

Section IV. The forcing notion and the model

To get a model for Theorem 4.1, we define, in L, a certain M -system UM for each
M ≥ 1, such that its different layers {UM (n, i)}i<ω, n < ω, satisfy different defin-
ability and completeness requirements that depend on M and n. Each system UM

is equal to the limit UM =
∨

γ<ΩM+1
UM

γ of an increasing sequence of small systems
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UM
γ given by Theorem 16.1 in Subsection 16. This key theorem was established in

[34] on the basis of a diamond-style construction.
We define, in Subsection 17, forcing notions PM = P[UM ], and consider the

product forcing CΥ ×
∏

M∈Υ PM (with the collapse forcing CΥ of Subsection 10) in
L. Any corresponding generic extension of L has the form L[ζ, {GM}M∈Υ], where
ζ ⊆ CΥ is CΥ-generic and each GM ⊆ PM is PM -generic over L, so that GM =
{GM (n, i)}n,i<ω, where each factor GM (n, i) = {p(n, i) : p ∈ GM} is PM (n, i)-
generic over L. Such an extension is a “basic product model”, Subsection 18.

Further, using the sets wΥ
M [ζ] ⊆ ω × ω, as in Definition 10.4, we define the key

submodel

(5) L[ζ, {GM (n, i)}M∈Υ∧〈n,i〉∈wΥ
M [ζ]]

in Subsection 19, which will be a model for Theorem 4.1. Theorem 20.2 commu-
nicates the main definability properties of the submodel (5), relevant to the proof
of Theorem 4.1. Those amount to the fact that, for any M ∈ Υ, it is true in the
submodel (5) that the set D1M is equal to P(ω)∩L[ζΥ

<M ] and belongs to D2m (see
Remark 20.4). This basic fact is split into four separate claims of Theorem 20.2.
Of those, three claims are established in this section, while the fourth one takes
more effort in the remainder. Lemmas 20.1, 22.1 provide important reductions of
the definability claims involved to simpler models.

We’ll take special care of the case M /∈ Υ in Subsection 22. The proof of
Theorem 4.2 (our second main result) follows in Subsection 23.

15. Systems, definability aspects

We argue in L and make use of notation of Definition 11.1, in particular

ΩM = ωL
ω+M ,

HM = (HΩM+1)
L = {x ∈ L : card (TC (x)) < ΩM+1 in L}.

• An M -system U is disjoint iff U(n, i)∩U(k, j) = ∅ whenever 〈n, i〉 �= 〈k, j〉.
Let DSM (disjoint systems) be the set of all disjoint M -systems.

• An M -system U is small, if each U(n, i) has cardinality ≤ ΩM in L. Let
sDSM (small disjoint systems) be the set of all smallM -systems U ∈ DSM .

• If U, V are M -systems and U(n, i) ⊆ V (n, i) for all n, i, then V extends U ,
in symbol U � V .

• If {Uγ}γ<λ is a sequence of M -systems then the limit M -system U =∨
γ<λ Uγ is defined by U(n, i) =

⋃
γ<λ Uγ(n, i), for all n, i.

Define sDSM�≥m = {U�≥m :U ∈ sDSM}, and similarly sDSM�<m etc.
The sets DSM , sDSM , sDSM�≥m, DSM�<m etc., and the order relation �,

belong to L, of course.

Lemma 15.1 (in L). Let M ≥ 1. The following sets belong to ΔHM
1 ({ΩM}) and

to ΔHM
3 :

{ΩM}, {SeqM}, FunM , ∗PM , sDSM , sDSM �≥m, sDSM �<m,

as well as the set {〈U, p〉 :U ∈ sDSM ∧ p ∈ P[U ]} and the relation � on sDSM .

Proof. All these sets have straightforward ΔHM
1 ({ΩM}) definitions, with ΩM ∈ HM

as the only parameter. To eliminate ΩM , it suffices to prove that {ΩM} ∈ ΔHM
3 .
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Note first of all that “ϑ is a cardinal (initial ordinal)” is a Π1 formula

ϑ ∈ Ord ∧ ∀α < ϑ ∀ f (f : α → ϑ =⇒ ran f �= ϑ).

On the other hand, ΩM is the largest cardinal in HM , hence it holds in HM that

ϑ = ΩM ⇐⇒ ∀κ (κ is a cardinal =⇒ κ ≤ ΩM ).

We conclude that {ΩM} ∈ ΠHM
2 ⊆ ΔHM

3 . Finally the conversion ΔHM
1 ({ΩM}) →

ΔHM
3 is routine. �

16. Complete sequences

The following major theorem was established in [34] (Theorem 6 in case Ω = ΩM ,
Ω⊕ = ΩM+1, sDSΩ = sDSM ), and we take it here without a proof.

Theorem 16.1 (in L). Let M ≥ 1. There is a continuous (that is, Uλ =
∨

γ<λ Uγ

for all limit ordinals λ < ΩM+1) �-increasing sequence {UM
γ }γ<ΩM+1

of systems

UM
γ ∈ sDSM , such that

(i) if n < ω then the “slice” {UM
γ �n}γ<ΩM+1

is ΔHM
n+4;

(ii) if m < ω then the “tail” {UM
γ �≥m}γ<ΩM+1

is (m + 3)-complete, in the

sense that for any Σm+3(HM ) set D ⊆ sDSM�≥m there is γ < ΩM+1 such

that the system UM
γ �≥m m-solves D, that is,

− either UM
γ �≥m ∈ D;

− or there is no system U ∈ D with UM
γ �≥m � U ;

(iii) there is a recursive sequence of parameterfree ∈-formulas χn(γ, x) such that
if γ < ΩM+1 and x ∈ HM then HM |= χn(γ, x) iff x = UM

γ �n. �

Recall that Σm+3(HM ) in (ii) means Σm+3 definability in HM with arbitrary
parameters in HM .

One of the difficulties in the proof of this theorem in [34] is that we have to
account for different levels of completeness for different slices of the construction.
This was handled via a diamond style lemma.7 By the way, according to Lemma
16.2, the key completeness property of the sequence {UM

γ }γ<ΩM+1
, as in (ii) of

Theorem 16.1, still holds, to some extent, in rather mild generic extensions of L.

Lemma 16.2 (Lemma 20 in [34] for Ω = ΩM ). Let M ≥ 1, and Q ∈ L be a forcing
notion with cardQ ≤ ΩM in L. Let a set F ⊆ Q be Q-generic over L.

Assume that m < ω, δ < ΩM+1, and a set D ∈ L[F ], D ⊆ sDSM �≥m, belongs to
Σm+3(HM [F ]) and is open in sDSM �≥m, so that any extension of a system U ∈ D

in sDSM�≥m belongs to D itself.
Then there is an ordinal γ, δ ≤ γ < ΩM+1, such that UM

γ �≥m m-solves D. �

We recall that HM = (HΩM+1)
L and HM [F ] = (HΩM+1)

L[F ] by Definition 11.1,
and ΩM+1 remains a cardinal in L[F ] by the choice of Q in Lemma 16.2.

7A similar construction was also applied in [37] to obtain a generic extension of L in which
every non-empty analytically definable set of the reals contains an analytically definable real, but
there are no analytically definable wellorderings of the reals.
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17. Basic forcing notions

We make the following arrangements on the basis of Theorem 16.1.

Definition 17.1 (in L). If M ≥ 1 then we fix a �-increasing continuous sequence
{UM

γ }γ<ΩM+1
of systems in sDSM , satisfying conditions (i), (ii), (iii) of Theo-

rem 16.1 for this M . We define:

• the limit system UM =
∨

γ<ΩM+1
UM

γ ,

• the forcing notion PM = P[UM ] — thus PM =
∏

n,i<ω PM (n, i) ∈ L is the

full L-product of sets PM (n, i) = P [UM (n, i)], n, i < ω,
• subforcings PM

γ = P[UM
γ ], γ < ΩM+1,

• restrictions PM�z (z ⊆ I), PM ��=〈n,i〉 etc. as in Subsection 13,

• the full L-product PΥ =
∏

M∈Υ PM (countable support),

• the subproducts PΥ
≥M =

∏
N∈Υ,N≥M PN , PΥ

<M =
∏

N∈Υ,N<M PN , and

then PΥ
≤M , PΥ

>M similarly.

Then PΥ can be further factorized as PΥ =
∏

M∈Υ;n,i<ω PM (n, i). �

Lemma 13.2 immediately implies some cardinal characteristics of these sets.

Corollary 17.2. Let M ≥ 1. It holds in L that card (PM ) = ΩM and

(i) the forcing notions PM and PΥ
≥M are ΩM−1-closed and ΩM−1-distributive,

therefore PM and PΥ
≥M do not adjoin new subsets of ΩM−1 to L;

(ii) the forcing notions PM , PΥ
≤M , and CΥ ×PΥ

≤M satisfy ΩM+1-CC, both in L
and in any generic extension of L where ΩM+1 remains a cardinal.

Proof. The cardinality claim and (i) follow from the corresponding claims of
Lemma 13.2. To prove (ii) note that CΥ×PΥ

≤M can be identified with CΥ×PΥ
<M ×

PM , where PM is ΩM+1-CC by Lemma 13.2 while CΥ × PΥ
<M has cardinality ΩM

in L. �

As for the definability properties, systems UM of Theorem 16.1 are not neces-
sarily parameterfree definable in the sets HM = (HΩM+1)

L, yet their slices are:

Corollary 17.3 (in L, by Definition 17.1 and (i), (iii) of Theorem 16.1). Let M ≥ 1.

(i) If n < ω then the slice set UM �n = {〈i, f〉 : i < ω∧f ∈ UM (n, i)} belongs to
ΣHM

∞ , moreover there is a recursive sequence of parameterfree ∈-formulas
ϑM
n (·, ·), n < ω, such that UM�n = {〈i, f〉 :HM |= ϑM

n (i, f)}.
(ii) It follows that each slice PM�n belongs to ΣHM

∞ , too, moreover there is a
recursive sequence of parameterfree ∈-formulas ΘM

n (·, ·), n < ω, such that
PM (n, i) = {p ∈ HM :HM |= ΘM

n (i, p)} for all n, i < ω.

(iii) Therefore if M < M ′ then sets PM ,UM belong to HM ′ and to Σ
HM′
∞ . �

18. Basic product model

Theorem 18.2 studies the structure of (CΥ × PΥ)-generic extensions of L.

Definition 18.1. Suppose that a pair 〈ζ, G〉 is (CΥ × PΥ)-generic over L. The
extension L[ζ, G] is the basic product model of this subsection title. We have, by
the product forcing theorem:

• ζ = 〈ζω+1, {ζM}M∈Υ〉 is CΥ-generic over L,

• G = {GM}M∈Υ is PΥ-generic over L[ζ], and
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• if M ∈ Υ then GM ⊆ PM is PM -generic over L[ζ, {GN}N∈Υ,N �=M ].

Following Subsection 14, if M ∈ Υ then GM can be viewed as an array
{GM (n, i)}n,i<ω, where each factor GM (n, i) = {p(n, i) : p ∈ GM} is a set PM (n, i)-
generic over L.

We define sets SGM
(n, i) =

⋃
p∈GM

Sp(n, i) ⊆ SeqM and a sequence
#»

SGM
=

{SGM
(n, i)}n,i<ω. Note that L[GM ] = L[SGM

] and L[GM (n, i)] = L[SGM
(n, i)] by

Lemma 14.1; thus L[G] = L[{GM (n, i)}M∈Υ;n,i<ω] = L[{SGM
(n, i)}M∈Υ;n,i<ω].

We further define GΥ
<M = {GN}N∈Υ,N<M , GΥ

≥M = {GN}N∈Υ,N≥M , and GΥ
>M ,

GΥ
≤M the same way. �

Theorem 18.2. Under the assumptions of Definition 18.1, let M ≥ 1. Then

(i) ΩM+1 is a cardinal in L[ζ, G] but Ω1 is a countable ordinal even in L[ζ];
(ii) any set X ∈ L[ζ, G], X ⊆ ΩM+1, bounded in ΩM+1, belongs to L[ζ, GΥ

≤M ];

(iii) ΩM+1 = ω
L[ζ,G]
M = ω

L[ζ]
M — recall that ΩM+1 = ωL

ω+M+1;

(iv) both the equality 2ΩM = ΩM+1 and GCH as a whole hold in L[ζ, G].

If moreover B ∈ L[ζ, GΥ
≤M ], B ⊆ Ord, and ζ ∈ L[B], then

(v) every set X ∈ L[B,GΥ
>M ], X ⊆ ΩM+1, bounded in ΩM+1, belongs to L[B],

and hence we have (HΩM+1)
L[B,GΥ

>M ] = (HΩM+1)
L[B];

(vi) ΩM+1 = ω
L[B,GΥ

>M ]

M = ω
L[B]
M ;

(vii) both the equality 2ΩM = ΩM+1 and GCH as a whole hold in L[B,GΥ
>M ].

Proof. To prove (i) and (ii) apply Lemma 9.1 for ϑ = ΩM , Ω = ΩM+1, Q =
CΥ × PΥ

≤M , P = PΥ
>M , so that L[ζ, G] = L[ζ, GΥ

≤M ][GΥ
>M ] is a (Q × P )-generic

extension of L. To make sure that Lemma 9.1 is applicable, note that P is ΩM -
closed in L and Q satisfies ΩM+1-CC in L by Corollary 17.2.

As M is arbitrary in this argument, it follows that all ΩM+1 are cardinals in
L[ζ, G].

Now Claim (iii) is a simple corollary.
To establish (iv), it suffices, by (ii), to prove 2ΩM = ΩM+1 for the model

L[ζ, GΥ
≤M ]. But L[ζ, GΥ

≤M ] is obtained essentially by adjoining countably many

subsets of the ordinal ΩM+1 = ω
L[ζ,GΥ

≤M ]

M to L, and this implies the result required.
(v) Note that the forcing notion P = PΥ

>M is ΩM -distributive in L[B], because

it is such in L[ζ, GΥ
≤M ], a bigger model, by Lemma 9.1 and Corollary 17.2(i).

To prove (vi), (vii) apply (iv) via L[ζ] ⊆ L[B] ⊆ L[B,GΥ
>M ] ⊆ L[ζ, G]. �

19. The key submodel

The following definitions introduce our model for Theorem 4.1; it will be a
submodel of the basic product model that include its collapse core L[ζ]. We’ll
freely use the notation introduced by Definition 10.4 with respect to the latter.

Recall that a set Υ ⊆ ω � {0}, Υ ∈ L, is fixed by Theorem 4.1.

Definition 19.1. Assume that a pair 〈ζ, G〉 is CΥ × PΥ-generic over L. Then ζ is

CΥ-generic, hence Definition 10.4 applies and sets wΥ
m[ζ] ⊆ ω×ω, wΥ

m[ζ] ∈ L[ζΥ
≤m]

are defined for m ≥ 1, as well as the sequence wΥ[ζ] = {wΥ
m[ζ]}m∈Υ. Moreover,

G = {GM}M∈Υ, where each set Gm = {Gm(n, i)}n,i<ω ⊆ Pm is Pm-generic, and
hence the restriction

Gm�wΥ
m[ζ] = {p�wΥ

m[ζ] : p ∈ Gm}
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is well-defined. With some abuse of notation, we define indexed sets

G�wΥ[ζ] = {Gm�wΥ
m[ζ]}m∈Υ,

G�wΥ
<M [ζ] = {Gm�wΥ

m[ζ]}m∈Υ∧m<M ,

G�wΥ
≤M [ζ] = {Gm�wΥ

m[ζ]}m∈Υ∧m≤M ,

and consider the models

L[ζΥ
≤M , GM�wΥ

M [ζ]] ⊆ L[ζ, G�wΥ
≤M [ζ]] ⊆ L[ζ, G�wΥ[ζ]].

�

We may note that L[ζ, G�wΥ[ζ]] is a submodel of L[ζ, G], generated by ζ and
those factors GM (n, i) of the product generic set G = {GM (n, i)}M∈Υ∧n,i<ω, which
satisfy 〈n, i〉 ∈ wΥ

M [ζ].
We claim that the model L[ζ, G�wΥ[ζ]] ⊆ L[ζ, G] satisfies Theorem 4.1.
The proof of the claim will go in the remainder essentially by means of three

successive reductions of L[ζ, G�wΥ[ζ]] to simpler models L[ζ, G�wΥ
≤M [ζ]] (Sub-

section 20), L[ζΥ
≤M , GM�wΥ

M [ζ]] (Subsection 22), and L[ζΥ
<M , G] (Subsection 24).

20. First reduction

Lemma 20.1 provides an essential reduction of L[ζ, G�wΥ[ζ]] to the submodel
L[ζ, G�wΥ

≤M [ζ]], based on rather standard forcing results by Theorem 18.2.

Lemma 20.1. Under the assumptions of Definition 19.1, let M ≥ 1. Then

(i) if a set X ∈ L[ζ, G�wΥ[ζ]], X ⊆ ΩM+1, is bounded in ΩM+1 then X belongs
to L[ζ, G�wΥ

≤M [ζ]], therefore

(HΩM+1)
L[ζ,G�wΥ[ζ]] = (HΩM+1)

L[ζ,G�wΥ
≤M [ζ]];

(ii) ΩM+1 = ω
L[ζ,G�wΥ[ζ]]
M = ω

L[ζ,G�wΥ
≤M [ζ]]

M ;
(iii) both 2ΩM = ΩM+1 and even GCH as a whole hold in L[ζ, G�wΥ[ζ]].

Proof. Apply Theorem 18.2(v),(vi),(vii) with B = 〈ζ, G�wΥ
≤M [ζ]〉. It is clear that

L[B] = L[ζ, G�wΥ
≤M [ζ]] ⊆ L[ζ, G�wΥ[ζ]] ⊆ L[B,GΥ

>M ]. �

Lemma 20.1 allows us to focus on Theorem 20.2.

Theorem 20.2. Assume that a pair 〈ζ, G〉 is (CΥ × PΥ)-generic over L, and
M ≥ 1. Then it holds in L[ζ, G�wΥ

≤M [ζ]], hence in L[ζ, G�wΥ[ζ]], that

(A) if M ∈ Υ then P(ω) ∩ L[ζΥ
<M ] ⊆ Σ

HΩM+1
∞ ;

(B) if M ∈ Υ then P(ω) ∩ L[ζΥ
<M ] ∈ Σ

HΩM+1
∞ ;

(C) if M ∈ Υ then P(ω) ∩Σ
HΩM+1
∞ ⊆ L[ζΥ

<MF ];

(D) but if M /∈ Υ then P(ω) ∩Σ
HΩM+1
∞ /∈ Σ

HΩM+1
∞ .

Remark 20.3. The “hence” claim of the theorem follows from Lemma 20.1(i) which
asserts that the set HΩM+1 is the same in both models. �

Remark 20.4. Theorem 20.2 implies Theorem 4.1. Indeed let M ∈ Υ. We have to
prove D1M ∈ D2M in L[ζ, G�wΥ[ζ]]. By Theorem 6.1, this is equivalent to

(6) ΣHΩM+1
∞ ∩ P(ω) ∈ ΣHΩM+1

∞ ,
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since ΩM+1 = ω
L[ζ,G�wΥ[ζ]]
M and GCH holds by Lemma 20.1. But (6) is an imme-

diate corollary of Theorem 20.2.
On the other hand, if M /∈ Υ then D1M /∈ D2M in L[ζ, G�wΥ[ζ]] follows from

Theorem 20.2(D) via Theorem 6.1. �
The proof of Theorem 20.2 follows in the remainder. Claims (A), (B) will be

established in Subsection 21, Claim (D) in Subsection 22, Claim (C) will be accom-
plished in Subsection 33, based on the substantial work in Sections V and VI.

21. Definability in subextensions

Here we prove Claims (A), (B) of Theorem 20.2.
Arguing under the assumptions and notation of Definition 17.1, we let formulas

ΓM
n (·, ·) (n < ω, M ≥ 1) be defined as follows:

ΓM
n (i, S) := i < ω∧S ⊆ SeqM∧∀ f ∈ FunM

(
f ∈ UM (n, i)⇐⇒ S doesn’t cover f

)
.

Theorem 21.1 shows that any real in L and even in some generic extensions of L
can be made parameterfree-definable in appropriate subextensions of PM -generic
extensions, basically by means of the formulas ΓM

n . This is Theorem 7 in [34] with

Ω = ΩM , Ω⊕ = ΩM+1, PΩ = PM , Y = B,

of which we only present here Claim (v), actually used below, and Claim (iv), which
shows how definability properties are obtained in suitable subextensions.

Theorem 21.1 (part of Theorem 7 in [34]). Assume that M ≥ 1, Q ∈ L is a
forcing notion, cardQ ≤ ΩM in L, a pair 〈W,GM 〉 is (Q × PM )-generic over L,
B ∈ L[W ], and z ∈ L[B], z ⊆ I = ω × ω. Then

(iv) it is true in L[B,GM�z] that z = {〈n, i〉 :∃S ⊆ SeqM ΓM
n (i, S)};

(v) if n < ω then the n-th slice (z)n = {i : 〈n, i〉 ∈ z} belongs to ΣT
∞, where

T = (HΩM+1)
L[B,GM �z].

Proof (outline). Regarding the proof of [34, Theorem 7], we may note that the im-
plication 〈n, i〉 ∈ z=⇒∃S ⊆ SeqM ΓM

n (i, S) in (iv) is a consequence of Lemma 14.1,
for take S = SGM

(n, i). The inverse implication was established in [34] on the basis
of the choice of the sequence {UM

γ }γ<ΩM+1
of systems in sDSM by Definition 17.1,

so that in particular condition (ii) of Theorem 16.1 is satisfied.
As for Claim (v), in follows from (iv) that the equality

(z)n = {i < ω : ∃S ⊆ SeqM ΓM
n (i, S)}

holds both in L[B,GM�z] and in T = (HΩM+1)
L[B,GM �z]. Now, using the formulas

ϑM
n as in Corollary 17.3(i), another recursive sequence of ∈-formulas τMn can be

defined with the help of Lemma 8.1, such that (z)n = {i < ω : τMn (i)} holds in T.
This immediately implies (v), and moreover, implies that if M ′ > M then z as

a whole belongs to ΣT′

∞, where T′ = (HΩM ′+1)
L[B,GM�z], because the truth in T is

uniformly expressible in a much bigger set T′. �

Now we demonstrate how Theorem 21.1 implies two first claims of Theorem 20.2.

Proof of Claims (A), (B) of Theorem 20.2. Let M ∈ Υ. Arguing under the as-
sumptions of Theorem 20.2, we show first of all how Theorem 21.1 will be applied.
We let Q = CΥ × PΥ

<M , so that Q × PM = CΥ × PΥ
≤M and cardQ ≤ ΩM by

Corollary 17.2. We accordingly let B = 〈ζ, G�wΥ
<M [ζ]〉 and W = 〈ζ, GΥ

<M 〉, so
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that B ∈ L[W ] and the pair 〈W,GM 〉 is (Q × PM )-generic over L by the product
forcing theorem. We finally let z = wΥ

M [ζ], so that z ∈ L[ζ] ⊆ L[B]. Thus general
assumptions of Theorem 21.1 are verified, and by the way

L[B,GM�z] = L[ζ, G�wΥ
≤M [ζ]] = L[ζ, {GN�wΥ

N [ζ]}N∈Υ,N≤M ].

Now to prove Claim (A) of Theorem 20.2, assume that x ∈ P(ω) ∩L[ζΥ
<M ]. Then

x = (wΥ
M [ζ])n = (z)n for some n by Lemma 10.5. Therefore x = (z)n ∈ Σ

HΩM+1
∞

in L[B,GM�z] = L[ζ, G�wΥ
≤M [ζ]] by Theorem 21.1(v).

To prove Claim (B) of Theorem 20.2, we note first of all that each set wΥ
n [ζ]

with n ∈ Υ, n < M , belongs to L[ζΥ
<M ], and hence to Σ

HΩM+1
∞ in L[ζ, G�wΥ

≤M [ζ]]

by Claim (A). It easily follows by construction that the string ζΥ
<M itself belongs

to Σ
HΩM+1
∞ in L[ζ, G�wΥ

≤M [ζ]]. This immediately implies Claim (B). �

22. Second reduction

This subsection contains another vital step in the proof of Claims (C) and (D)
of Theorem 20.2. This step provides a reduction of L[ζ, G�wΥ

≤M [ζ]] to the smaller

model L[ζΥ
≤M , GM�wΥ

M [ζ]] and to the smaller structure 〈P(ΩM );p,∈〉 (see Sub-
section 7) in that model.

Lemma 22.1. Assume that M ≥ 1, a pair 〈ζ, G〉 is (CΥ× PΥ)-generic over L,

T =
(
HΩM+1

)L[ζ,G�wΥ
≤M [ζ]]

, S =
(
HΩM+1

)L[ζΥ
≤M ,GM �wΥ

M [ζ]]
,

and a ∈ T, a ⊆ ω, a ∈ ΣT
∞. Then a ∈ S and a ∈ ΣS

∞(ζΥ
<M ), that is, a belongs to S

and a is ∈-definable in S with ζΥ
<M as the only parameter.

In addition, if M ∈ Υ, then a ∈ Σ
P(ΩM ),p
∞ in L[ζΥ

≤M , GM�wΥ
M [ζ]].

Recall that p in the upper index means that the defining formula can contain
occurrences of p(·, ·), where p is interpreted as p�(ΩM × ΩM ) (a bijection ΩM ×
ΩM

onto−→ ΩM , see Subsection 7).

Proof. By the product forcing theory the model L[ζ, G�wΥ
≤M [ζ]] is a Q-generic

extension of L[ζΥ
≤M , GM�wΥ

M [ζ]], where Q is the finite support product

(7) Q = Cω+1 ×
∏

n∈Υ,n>M

Cn︸ ︷︷ ︸
Q′

×
∏

n∈Υ,n<M

(Pn�wΥ
n [ζ])︸ ︷︷ ︸

P

∈ S.

The first factor Q′ here is order-isomorphic to Cω+1, so that L[ζ, G�wΥ
≤M [ζ]] is a

(Cω+1×P )-generic extension of L[ζΥ
<M ], and accordingly T is a (Cω+1×P )-generic

extension of S. Note that Cω+1 is a cone homogeneous forcing notion in the sense
of Definition 9.2 (in fact even fully homogeneous), and the second factor P is cone
homogeneous as well by Corollary 12.2.

Moreover each Pn, n < M , belongs to H = (HΩM+1)
L and is parameterfree ∈-

definable in H by Corollary 17.3(iii), and hence Pn ∈ S and Pn ∈ ΣS
∞ by Lemma 8.1.

Further, if n ∈ Υ and n < M then the set wΥ
n [ζ] ⊆ ω × ω belongs to L[ζΥ

<M ] by

Lemma 10.5, hence to S, and wΥ
n [ζ] is ∈-definable in S with ζΥ

<M ∈ S as the only

parameter. To conclude, P as a whole belongs to ΣS
∞(ζΥ

<M ), so obviously does
Cω+1, and both Cω+1, P are cone homogeneous by the above.
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It immediately follows by Lemma 9.3 that a ∈ ΣS
∞(ζΥ

≤N ), as required.
To prove the additional claim of the lemma, suppose that M ∈ Υ. Then we have

P(ω) ∩ L[ζΥ
<M ] ⊆ ΣS

∞ — this is essentially a clone of Claim (A) of Theorem 20.2
with the same proof as in Subsection 21 based on Theorem 21.1(v) with

Q = CΥ
≤M , B = W = ζΥ

<M , z = wΥ
M [ζ],

and we leave this to the reader. It follows that in fact P ∈ ΣS
∞.

To conclude, the sets Cω+1 and P belong to S, are parameterfree ∈-definable in
S, and are cone homogeneous by the above. Now Lemma 9.3 implies a ∈ ΣS

∞. To

get the final result a ∈ Σ
P(ΩM ),p
∞ in L[ζΥ

≤M , GM�wΥ
M [ζ]], apply Theorem 7.3. �

Proof of Claim (D) of Theorem 20.2. Suppose that M ≥ 1, M /∈ Υ. Let

T =
(
HΩM+1

)L[ζ,G�wΥ
≤M [ζ]]

, S =
(
HΩM+1

)L[ζΥ
≤M ,GM �wΥ

M [ζ]]
,

as above, but in this case L[ζΥ
≤M , GM�wΥ

M [ζ]] = L[ζΥ
<M ] and S =

(
HΩM+1

)L[ζΥ
<M ]

,

of course. We have to prove that P(ω) ∩ΣT
∞ /∈ ΣT

∞.
Suppose to the contrary that P(ω) ∩ ΣT

∞ ∈ ΣT
∞. We have P(ω) ∩ ΣT

∞ ⊆
ΣS

∞(ζΥ
<M ) by Lemma 22.1, therefore the set X =

(
P(ω) ∩ L[ζΥ

<M ]
)
�ΣT

∞ is non-

empty. Let �∗ be the canonical Gödel wellordering of L[ζΥ
<M ], definable in L[ζΥ

<M ]

with ζΥ
<M as the only parameter. Let x be the �∗-least element in X. Note that

the string ζΥ
<M belongs to T and to ΣT

∞ by Theorem 20.2(A). Therefore x belongs
to ΣT

∞ as well by the contrary assumption. �

23. Second main theorem

This subsection is devoted to Theorem 4.2, our second main result. The proof
follows more or less the same plan with some changes mutatis mutandis. In partic-
ular, the whole major part of of the proof of Theorem 4.1 presented in Sections V
and VI will not be involved in the proof of Theorem 4.2. The first change begins
with the definition of some key sets in Subsection 10.

Definition 23.1 (modification of Definition 10.4). We put Υ = ω�{0}, accordingly
CΥ = Cω+1 ×

∏
n≥1 Cn (finite-support product). �

Each generic set ζ ⊆ CΥ naturally adjoins a Cω+1-generic map ζω+1 : ω
onto−→ Ω1

and, for each n ≥ 1, a Cn-generic map ζn : ω
onto−→ ωL

n .

Definition 23.2 (modification of Definition 10.4). Let

(8) P(ω) ∩ L = {Aν : ν < ωL
1 }

be a canonical Gödel enumeration parameterfree definable in LωL
1
. Assume that a

set ζ ⊆ CΥ is CΥ-generic over L, hence ζ1 : ω
onto−→ ωL

1 is defined. If M ≥ 1 then put

wM [ζ] := {〈n, i〉 :n, i < ω ∧ i ∈ Aζ1(M)},

so (wM [ζ])n = Aζ1(M) for each n, and, by the genericity and (8),

P(ω) ∩ L = {Aζ1(M) :M ≥ 1} = {(wM [ζ])0 :M ≥ 1}.
�
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Remark 23.3. In the context of Definition 23.2, the sets wM [F ] are constructible,
unlike, generally speaking, the sets wΥ

M [ζ] in Definition 23.2. This implies essential
simplifications in the proof of Theorem 4.2. �

Following Definition 17.1, put PΥ =
∏

M≥1 PM (countable support), and define

PΥ
≥M =

∏
n≥M PM , PΥ

<M =
∏

1≤n<M PM , and PΥ
≤M , PΥ

>M similarly.

Following Definition 18.1, suppose that a pair 〈ζ, G〉 is (CΥ × PΥ)-generic over
L. With some abuse of notation, we let

G�w[ζ] = {Gm�wm[ζ]}m≥1 and G�w≤M [ζ] = {Gm�wm[F ]}1≤m≤M ,

and consider the models

L[ζ, G�w≤M [ζ]] ⊆ L[ζ, G�w[ζ]] ⊆ L[ζ, G].

The model L[ζ, G�w[ζ]] is our model for Theorem 4.2.
Lemma 23.4 provides a useful reduction similar to Lemma 20.1.

Lemma 23.4. Let a pair 〈ζ, G〉 be (CΥ × PΥ)-generic over L, and M ≥ 1. Then

(i) if a set X ∈ L[ζ, G�w[ζ]], X ⊆ ΩM+1, is bounded in ΩM+1 then X belongs
to L[ζ, G�w≤M [ζ]], thus

(HΩM+1)
L[ζ,G�w[ζ]] = (HΩM+1)

L[ζ,G�w≤M [ζ]];

(ii) ΩM+1 = ω
L[ζ,G�w[ζ]]
M = ω

L[ζ,G�w≤M [ζ]]
M ;

(iii) both exp (ΩM ) = ΩM+1 and GCH hold in L[ζ, G�w[ζ]]. �

Now we prove the following result pretty analogous to Theorem 20.2.

Theorem 23.5. Assume that a pair 〈ζ, G〉 is (CΥ×PΥ)-generic over L, and M ≥ 1.
Then it is true in L[ζ, G�w≤M [ζ]], and hence in L[ζ, G�w[ζ]], that

(A) the set Aζ1(M) (see Definition 23.2) belongs to Σ
HΩM+1
∞ ;

(B) P(ω) ∩Σ
HΩM+1
∞ ⊆ L.

Proof. (A) We follow the proof of Claim (A) of Theorem 20.2 in Subsection 21.
To apply Theorem 21.1, we let Q = CΥ × PΥ

<M , so that cardQ ≤ ΩM in L by

Corollary 17.2, and Q× PM = CΥ × PΥ
≤M . We accordingly let B = 〈ζ, G�w≤M [ζ]〉

and W = 〈ζ, GΥ
<M 〉, so that B ∈ L[W ] and the pair 〈W,GM 〉 is (Q× PM )-generic

over L by the product forcing theorem. We finally let z = wM [ζ], so that z ∈ L.
Thus general assumptions of Theorem 21.1 are verified, and we have L[B,GM�z] =
L[ζ, G�w≤M [ζ]].

Now to prove Claim (A) of Theorem 23.5, let x = Aζ1(M). Then x = (z)n, ∀n,
by construction. It follows that x ∈ Σ

HΩM+1
∞ in L[B,GM�z] = L[ζ, G�w≤M [ζ]] by

Theorem 21.1(v), as required.
(B) By the product forcing theory the model L[ζ, G�w≤M [ζ]] is a Q-generic

extension of L, where Q = CΥ ×P , and P =
∏

1≤n≤M (Pn�wn[ζ]). Here CΥ ∈ L is a
cone homogeneous forcing notion in the sense of Definition 9.2. The second factor
P is cone homogeneous as well by Corollary 12.2. Moreover each Pn belongs to L,
and each set wn[F ] ⊆ ω×ω belongs to L, too (see Remark 23.3). To conclude, P as
a whole belongs to L. So obviously does CΥ, and both CΥ, P are cone homogeneous
by the above. It follows then (see Lemma 9.3) that if a set a ⊆ ω is parameterfree
∈-definable in L[ζ, G�w≤M [ζ]] then a ∈ L. This ends the proof of Theorem 23.5. �
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Proof of Theorem 4.2. Assume that a pair 〈ζ, G〉 is (CΥ×PΥ)-generic over L. Prove
the equality D1 = L ∩ P(ω) in L[ζ, G�w[ζ]].

Let x ∈ L, x ⊆ ω. Then x = Aζ1(M) for some M ≥ 1 by the genericity. It

follows that x ∈ Σ
HΩM+1
∞ in L[ζ, G�w≤M [ζ]] — and hence in L[ζ, G�w[ζ]], by The-

orem 23.5(A). But ΩM+1 = ωM in L[ζ, G�w[ζ]], and GCH holds, by Lemma 23.4.
Therefore we have x ∈ D1M in L[ζ, G�w[ζ]] by Theorem 6.1.

Let conversely x ⊆ ω, x ∈ L[ζ, G�w[ζ]], and x ∈ D1 in L[ζ, G�w[ζ]]. Then

x ∈ D1M in L[ζ, G�w[ζ]] for some M ≥ 1, therefore x ∈ Σ
HΩM+1
∞ in L[ζ, G�w[ζ]]

by Theorem 6.1, as above. Then x ∈ L by Theorem 23.5(B). This completes the
proof of Theorem 4.2. �

Section V. Forcing approximation

Beginning here is a lengthy proof of Claim (C) of Theorem 20.2. Our plan
will be to establish the following somewhat unexpected result of Theorem 24.1. It
asserts that under suitable definability conditions reals in a (CΥ

<M × CM × PM )-

generic extension of L belong to an associated (CΥ
<M × PM )-generic extension,

eliminating the M -th forcing component CM . Thus we call it the elimination the-
orem.

24. Third reduction

Theorem 24.1 (elimination theorem). Assume that

(∗) M ≥ 1, a triple 〈s, θ,G〉 is (CΥ
<M × CM × PM )-generic over L, and w =

w[s, θ],8

and a ∈ L[s, θ,G�w], a ⊆ ω, a ∈ Σ
P(ΩM ),p
∞ in L[s, θ,G�w]. Then a ∈ L[s,G].

Remark 24.2. Theorem 24.1 implies Claim (C) of Theorem 20.2 — and hence
completes the proof of Theorem 20.2 as a whole because the other claims (A), (B),
(D) of Theorem 20.2 have been already established, see Subsections 21 and 22.

To prove the implication, assume, under the conditions of Theorem 20.2, that

a ⊆ ω, a ∈ L[ζ, G�wΥ
≤M [ζ]], and a ∈ Σ

HΩM+1
∞ in L[ζ, G�wΥ

≤M [ζ]]. Then, by

Lemma 22.1, a ∈ Σ
P(ΩM ),p
∞ holds in the submodel L[ζΥ

≤M , GM�wΥ
M [ζ]]. Let

(9) s = ζΥ
<M , θ = ζM , G = GM , w = w[s, θ].

Then w = wΥ
M [ζ] and the triple 〈s, θ,G〉 is (CΥ

<M × CM × PM )-generic over L by
the product forcing theorem. In addition, we have

L[ζΥ
≤M , GM�wΥ

M [ζ]] = L[ζΥ
<M , ζM , GM�wΥ

M [ζ]] = L[s, θ,G�w].

Therefore a ∈ L[s,G] by Theorem 24.1.
However L[s,G] is a (CΥ

<M×PM )-generic extension of L by (9), where the forcing

notion CΥ
<M =

∏
n<M Cn ∈ L satisfies cardCΥ

<M = ωL
M−1 in L (see Subsection 10)

whereas PM is ΩM−1-closed in L by Corollary 17.2. It follows by Lemma 9.1(ii)

that any real in L[s,G] belongs to the model L[s] = L[ζΥ
<M ], as required. �

To prove Theorem 24.1, we are going to define a forcing-like relation forc rather
analogous to approximate relations considered in our recent works [34,35], and also
in [30, 32, 33, 36] on the basis of forcing notions not of the almost-disjoint type.

8See Definition 10.4 on w[�s, θ].
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Then we exploit certain symmetries of objects related to forc. Generally these
arguments will go pretty similar to the proof of Theorem 9 in sections 5, 6 in [34].

25. Names and formulas

We argue under the assumptions and notation of (∗) of Theorem 24.1.
Assume that z ∈ L[s, θ], z ⊆ I = ω × ω. Then let Namz ∈ L[s, θ] be the set of

all sets τ ∈ L[s, θ], τ ⊆ (∗PM �z)× ΩM , with card τ ≤ ΩM in L[s, θ].
Note that ∗PM , a bigger forcing notion, is used instead of PM in this definition.

An advantage is that ∗PM is ∈-definable in HM = (HΩM+1)
L by Lemma 15.1.

If τ ∈ Namz and G ⊆ ∗PM�z then put τ [G] = {α < ΩM : ∃ p ∈ G (〈p, α〉 ∈ τ )}.

Lemma 25.1. P(ΩM ) ∩ L[s, θ,G�w] = {τ [G�w] : τ ∈ Namw}.

Proof. Let X ∈ P(ΩM ) ∩ L[s, θ,G�w]. By the product forcing theory, G�w is
(PM�w)-generic over L[s, θ]. Therefore, by a well-known property of generic ex-
tensions (see, e.g., [26]), there is a name t ∈ L[s, θ], t ⊆ (PM�w) × ΩM , such
that X = t[G�w]. To reduce t to a name τ with the same property, satisfying
card τ ≤ ΩM , apply Lemma 13.2. �

Now, arguing in L[s, θ], we introduce a language that will help us to study
analytic definability in the generic extensions considered.

Let L be the 2nd order language, with variables α, β, . . . , assumed to vary over
ordinals < ΩM , and separately X, Y , . . . , assumed to vary over the subsets of ΩM .
Atomic formulas of the following types are allowed:

α < β, α = β, α ∈ X, p(α, β) = ν (see Subsection 7 on p).

Only the connectives ∧ and ¬ and quantifiers ∃α and ∃X are allowed, the other
connectives and ∀ are treated as shortcuts, and, to reduce the number of cases, the
equality X = Y will be treated as a shortcut for ∀α(α ∈ X ⇐⇒ α ∈ Y ).

The complexity #(ϕ) of an L-formula ϕ is defined by induction so that

• #(ϕ) = 0 for all atomic formulas,
• #(ϕ ∧ ψ) = max{#(ϕ),#(ψ)},
• #(∃αϕ(α)) = #(ϕ(α)) and #(∃X ϕ(X)) = #(ϕ(X)),
• finally, #(¬ϕ) = #(ϕ) + 1.

For any n there is a true quantifier-free formula trn with #(trn) = n, namely

(10) trn :=

{
¬¬ . . .¬(0 = 0) (n negations), in case n = 2k;

¬¬ . . .¬(0 = 1) (n negations), in case n = 2k + 1.

If z ∈ L[s, θ], z ⊆ ω × ω, then let L(z) be the extension of L by:

− ordinals α < ΩM to substitute variables over ΩM ,
− names in Namz to substitute variables X, Y , . . . over P(ΩM ).

If G ⊆ ∗PM �z, then the valuation ϕ[G] of such a formula ϕ is defined by sub-
stitution of τ [G] for any name τ ∈ Namz that occurs in ϕ, and relativization of
each quantifier ∃α or ∃X to resp. ΩM , P(ΩM ). Thus ϕ[G] is a formula of L with
parameters in L[s, θ, G] ∩ (ΩM ∪ P(ΩM )) and quantifiers relativized as above, so
it can be ΩM -true or ΩM -false in L[s, θ, G] in the sense of Subsection 7.
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26. Forcing approximation

We still argue under the assumptions and notation of (∗) of Theorem 24.1.
Our next goal is to define, in L[s, θ], a forcing-style relation p forczU ϕ. In case

z = w and U = UM
γ , γ < ΩM+1, the relation forczU will be compatible with

the truth in the model L[s, θ,G�w] = L[s, θ][G�w], viewed as a (PM�w)-generic
extension of L[s, θ]. But, unlike the true forcing relation associated with PM�w,
the relation forczU will be invariant under certain transformations.

The definition goes on in L[s, θ] by induction on the complexity of ϕ.

(F1) When writing p forczU ϕ, it will always be assumed that U ∈ sDSM , z ∈
L[s, θ], z ⊆ ω × ω, p ∈ P[U ]�z, ϕ is a closed formula in L(z).

(F2) If U, p, z are as in (F1), and α, β, ν < ΩM , then: p forczU α < β iff in fact
α < β, and the same for the formulas α = β and p(α, β) = ν.

(F3) If U, p, z are as above, α < ΩM , Y ∈ Namz, then: p forc
z
U α ∈ Y iff there

exists a condition q ∈ P[U ]�z such that 〈q, α〉 ∈ Y and p � q.
(F4) If U, p, z are as above, then: p forczU (ϕ ∧ ψ) iff p forczU ϕ and p forczU ψ.
(F5) If U, p, z are as above, then p forczU ∃α ϕ(α) iff there is α < ΩM such that

p forczU ϕ(α).
(F6) If U, p, z are as above, then p forczU ∃X ϕ(X) iff there exists a name τ ∈

Namz such that p forczU ϕ(τ ).

We precede the last item (F7) with another definition. If n < ω then let sDSM [n]
be the set of all systems U ∈ sDSM such that U�<n = UM

γ �<n for some γ < ΩM+1.

(See Definition 17.1 on UM
γ .) Thus UM

γ ∈
⋂

n sDSM [n] for all γ, and

sDSM = sDSM [0] ⊇ sDSM [1] ⊇ sDSM [2] ⊇ . . . .

(F7) If U, p, z are as in (F1), ϕ is a closed L(z) formula, n = #(ϕ), then we
define p forczU ¬ϕ iff there is no system U ′ ∈ sDSM [n] extending U , and
no condition q ∈ P[U ′]�z, q � p, such that q forczU ′ ϕ.

Exercise 26.1. Assume that U, p, z are as in (F1), n < ω, and trn is defined by
(10). Prove using (F2) and (F7) that p forczU trn but ¬(p forczU ¬ trn). �

Lemma 26.2 (in L[s, θ]). Assume that U, p, z, ϕ satisfy (F1). Then:

(i) if p forczU ϕ, a system U ′ ∈ sDSM extends U , and q ∈ P[U ′]�z, q ≤ p, then
q forczU ′ ϕ.

(ii) if U ∈ sDSM [n], #(ϕ) ≤ n, and p forczU ϕ, then p forczU ¬ϕ fails.

Proof. The proof of (i) by straightforward induction is elementary. As for (ii), make
use of (F7). �

Now let’s evaluate the complexity of the relation forc. Recall that

HM = (HΩM+1)
L and HM [s, θ] = (HΩM+1)

L[�s,θ].

Lemma 26.3 (in L[s, θ]). Assume that ϕ(α, β, . . . , X, Y, . . . ) is a parameterfree

L-formula and n = #(ϕ). Then the following set is Σ
HM [�s,θ]
n+3 :

Forc(ϕ) = {〈z, U, p, α, β, . . . , τX , τY , . . . 〉 : U ∈ sDSM ∧ z ⊆ ω × ω

∧ p ∈ P[U ]�z ∧ α, β, · · · < ΩM ∧ τX , τY , · · · ∈ Namz

∧ p forczU ϕ(α, β, . . . , τX , τY , . . . ) }.
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Proof. The set sDSM is ΔHM
3 by Lemma 15.1, hence is Δ

HM [�s,θ]
3 as well by

Lemma 8.1. The relations p ∈ P[U ]�z and τ ∈ Namz, with arguments resp. p, U, z

and τ, z, are routinely checked to be Δ
HM [�s,θ]
3 , too. (Bounded quantifiers preserve

Δ
HM [�s,θ]
3 .) After this remark, prove the lemma by induction on the structure of ϕ.
The case of atomic formulas (F2) is clear: the pairing function p in (F2) is

ΔHM
1 by Lemma 7.1. The result for atomic formulas (F3) amounts to the formula

∃ q ∈ ∗PM�z (〈q, α〉 ∈ Y ∧ p � q), which is Σ
HM [�s,θ]
3 by the above. The step (F4)

amounts to the intersection of two sets, and hence is obvious. And so are steps

(F5) and (F6) (a ∃-quantification on the top of Σ
HM [�s,θ]
#(ϕ)+3).

To carry out the step (F7), note that sDSM [n] is ΣHM
n+3: indeed by Definition 17.1

the systems UM
γ satisfy condition (i) of Theorem 16.1. It follows that sDSM [n] is

Σ
HM [�s,θ]
n+3 as well by Lemma 8.1. Thus if Forc(ϕ) is Σ

HM [�s,θ]
n+3 then Forc(¬ϕ) is

Π
HM [�s,θ]
n+3 , therefore Σ

HM [�s,θ]
n+4 , as required. �

27. Consequences for the complete forcing notions

We continue to argue under the assumptions and notation of (∗) of Theorem 24.1.
Coming back to the sequence of systems UM

γ ∈ sDSM given by Definition 17.1, we

observe that every system UM
γ belongs to

⋂
n sDSM [n].

Let forczγ be forczUM
γ
, and let p forcz∞ ϕ mean: ∃ γ < ΩM+1 (p forc

z
γ ϕ).

Note that p forczγ ϕ implies p ∈ PM
γ �z, whereas p forcz∞ ϕ implies p ∈ PM�z.

Lemma 26.2 takes the following form:

Lemma 27.1 (in L[s, θ]). Assume that z ⊆ ω×ω, ϕ is a closed L(z) formula, and
p ∈ PM �z. Then:

(i) if p forczγ ϕ and γ ≤ η < ΩM+1, q ∈ PM
η �z, q � p, then q forczη ϕ, and

accordingly, if p forcz∞ ϕ and q ∈ PM �z, q � p, then q forcz∞ ϕ;
(ii) p forcz∞ ϕ and p forcz∞ ¬ϕ contradict each other. �

The following “completeness lemma” will be very important.

Lemma 27.2 (in L[s, θ]). If z ⊆ ω×ω, ϕ is a closed L(z) formula, p ∈ PM�z, then
there is a condition q ∈ PM �z, q � p, such that either q forcz∞ ϕ, or q forcz∞ ¬ϕ.

Proof. Let n = #(ϕ). There is an ordinal η < ΩM+1 such that p ∈ PM
η �z. (See

Definition 17.1 on forcing notions PM
γ .) Consider the set D of all systems U ′ ∈

sDSM �≥n such that there is a system U ∈ sDSM [n] that extends UM
η and satisfies

U�≥n = U ′, and also there is a condition q ∈ P[U ]�z, q � p, satisfying q forczU ϕ.
The set D belongs to Σn+3(H[s, θ]) (with UM

η , p as definability parameters) by
Lemma 26.3. Therefore by Lemma 16.2 there is an ordinal γ, η � γ < ΩM+1, such
that the system UM

γ �≥n n-solves D. We have two cases.

Case 1. UM
γ �≥n ∈ D. Then there exist: a system U ∈ sDSM [n] extending UM

η

and satisfying U�≥n = UM
γ �≥n, and a condition q ∈ P[U ]�z, q � p, with q forczU ϕ.

By definition there is an ordinal ϑ < ΩM+1 such that U�<n = UM
ϑ �<n. Now let

μ = max{γ, ϑ}. Then UM
μ extends U , hence q forczμ ϕ and q forcz∞ ϕ.

Case 2. There is no system U ∈ D that extends UM
γ �≥n. Prove that p forczγ ¬ϕ.

Suppose towards the contrary that this fails. Then, by (F7) in Subsection 26, there
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exists a system U ∈ sDSM [n] extending UM
γ , and a condition q ∈ P[U ], q ≤ p, such

that q forczU ϕ. By definition the system U ′ = U�≥n belongs to sDSM�≥n, and
moreover U witnesses that U ′ ∈ D. But this contradicts the Case 2 assumption. �

28. Truth lemma

We continue to argue under the assumptions and notation of (∗) of Theorem 24.1.
According to Theorem 28.1 (“the truth lemma”), the truth in the generic exten-

sions considered is connected usual way with the relation forc∞.

Theorem 28.1. Assume that ϕ is a L(s, θ)-formula. Then ϕ[G�w] is ΩM -true in
L[s, θ,G�w] iff there is a condition p ∈ G�w such that p forcw∞ ϕ.

Proof. We proceed by induction. Suppose that ϕ is an atomic formula α ∈ τ of type
(F3) of Subsection 26, where α < ΩM and τ ∈ Namw. (The case of formulas as in
(F2) is pretty elementary.) To prove the implication ⇐= , assume that p ∈ G�w and
p forcw∞ α ∈ τ . Then by definition ((F3)) in Subsection 26 there exists a condition
q ∈ PM�w satisfying p � q and 〈q, α〉 ∈ τ . There are conditions p′, q′ ∈ PM such
that p = p′�w and q = q′�w, but not necessarily p′ � q′. We only know that
p′(n, i) � q′(n, i) for all 〈n, i〉 ∈ w. Therefore w ⊆ Z = {〈n, i〉 : p′(n, i) � q′(n, i)}.
The set Z belongs to L since so do p′, q′ as elements of PM ∈ L (whereas about w
we only assert that w ∈ L[s, θ]). Therefore a condition q′′ ∈ PM can be defined by

q′′(n, i) =

{
q(n, i), in case 〈n, i〉 ∈ Z,

p(n, i), in case 〈n, i〉 /∈ Z,

and still q′′�w = q′�w and p′ � q′′. It follows that q′′ ∈ G by genericity, hence
q′′�w = q′�w ∈ G�w. Then α ∈ τ [G�w], i.e., (α ∈ τ )[G�w] is true, as required.

To prove the converse, assume that α ∈ τ [G�w]. There exists a condition p ∈
G�w such that 〈p, α〉 ∈ τ , and we have p forcw∞ α ∈ τ , as required.

The rather simple inductive steps (F4), (F5) of Subsection 26 are left for the
reader.

Let’s carry out the step (F6). Let ϕ be ∃X ψ(X). Suppose that p ∈ G�w and
p forcw∞ ϕ. By definition there is a name τ ∈ Namw such that p forcw∞ ψ(τ ). The
formula ψ(τ )[G�w] is then true in L[s, θ,G�w] by the inductive hypothesis. But
ψ(τ )[G�w] coincides with ψ[G�w](X), where X = τ [G�w] ∈ L[s, θ,G�w]. We
conclude that ∃X ψ(X)[G�w] is ΩM -true in L[s, θ,G�w], as required.

To prove the converse, assume that ϕ[G�w], that is, ∃X ψ(X)[G�w], is ΩM -
true in L[s, θ,G�w], hence there exists a set X ∈ P(ΩM )∩L[s, θ,G�w] such that
ψ[G�w](X) is ΩM -true. By Lemma 25.1, there is a name τ ∈ Namw with X =
τ [G�w]. Then ψ(τ )[G�w] is ΩM -true in L[s, θ,G�w]. The inductive hypothesis
implies that some p ∈ G�w satisfies p forcw∞ ψ(τ ), hence p forcw∞ ϕ, as required.

Finally, let’s carry out the step (F7), which is somewhat less trivial. Prove the
lemma for an L(w) formula ¬ϕ, assuming that the result holds for ϕ. If ¬ϕ[G�w]
is ΩM -false in L[s, θ,G�w] then ϕ[G�w] is ΩM -true. Thus by the inductive hy-
pothesis, there is a condition p ∈ G�w such that p forcw∞ ϕ. Then q forcw∞ ¬ϕ for
any q ∈ G�w is impossible by Lemma 27.1.

Conversely suppose that p forcw∞ ¬ϕ holds for no condition p ∈ G�w. Then by
Lemma 27.2 and the genericity there is a condition q ∈ G�w satisfying q forcw∞ ϕ.
It follows that ϕ[G�w] is ΩM -true by the inductive hypothesis, therefore ¬ϕ[G�w]
is ΩM -false. �
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Section VI. Invariance

The goal of this section is to prove Theorem 24.1, and thereby accomplish the
proof of Claim (C) of Theorem 20.2, and the proof of Theorem 4.1 (the first main
theorem) itself. The proof makes use of the relation forc introduced in Section V,
and exploits certain symmetries in forc, investigated in Subsection 32.

29. Hidden invariance

Theorem 24.1 belongs to a wide group of results on the structure of generic
models which assert that such-and-such elements of a given generic extension belong
to a smaller and/or better shaped subextension. One of possible methods to prove
such results is to exploit the homogeneity of the forcing notion considered, or in
different words, its invariance w.r.t. a sufficiently large system of order-preserving
transformations. In particular, for a straightforward proof of Theorem 30.1 (the
key technical step in the proof of Theorem 24.1) the invariance of the forcing notion
PM under permutations of indices in I = ω×ω would be naturally required — but
PM is definitely not invariant w.r.t. permutations.

On the other hand, the auxiliary forcing relation forc is invariant w.r.t. permu-
tations. Theorem 28.1 conveniently connects the relation forc with the truth in
PM -generic extensions by means of a forcing-style association. This principal as-
sociation was based on the M -completeness property (Theorem 16.1). Basically it
occurs that some transformations, that is, permutations, are hidden in construction
of PM , so that they do not act explicitly, but their influence is preserved and can
be recovered to some extent via the relation forc.

This method of hidden invariance, that is, invariance properties (of an auxiliary
forcing-type relation like forc) hidden in PM by a suitable generic-style construction
of PM , was introduced in Harrington’s notes [24] in a different terminology.

30. The invariance theorem

Let H be the group of all finite idempotent permutations of ω, that is, all bijections

h : ω
onto−→ ω sich that h = h−1 and the set |h| = {k :h(k) �= k} is finite. If n < ω

then the subgroup Hn consists of all h ∈ H satisfying h(k) = k for all k < n.
If h ∈ H, and z ⊆ ω × ω then put hz = {〈h(n), i〉 : 〈n, i〉 ∈ z}.
If g is a function defined on dom g ⊆ ω then define a function hg on the set

h[dom g] = {h(k) : k ∈ dom g} by (hg)(h(k)) = g(k), for all k ∈ dom g.
The following is the invariance theorem. Note that h does not act on p0!

Theorem 30.1 (in L[s, θ]). Under the assumptions of (∗) of Theorem 24.1, sup-
pose that ϕ is a closed parameter-free formula of L(w), n = #(ϕ), h ∈ Hn,

w′ = hw, and p0 ∈ PM . Then p0�w forcw∞ ¬ϕ iff p0�w′ forcw
′

∞ ¬ϕ.

A lengthy proof of Theorem 30.1 follows below in Subsection 31–33.
Now we show how the theorem works in the proof of Theorem 24.1.

Proof of Theorem 24.1 from Theorem 30.1. Arguing under the assumptions of
Theorem 24.1, consider an arbitrary set a ∈ L[s, θ,G�w], a ⊆ ω, such that

a ∈ Σ
P(ΩM ),p
∞ in L[s, θ,G�w]. Then it holds in L[s, θ,G�w] that

a = {j < ω :¬ϕ(j) is ΩM -true},
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where ϕ(·) is a parameter-free L-formula, hence, p-formula. Let n = #(ϕ). The
goal is to prove that a ∈ L[s,G]. This is based on Lemma 30.2.

Lemma 30.2. The set T = {〈p, j〉 : p ∈ PΩ ∧ p�w forcw∞ ¬ϕ(j)} belongs to L[s].

(Note that w does not belong to L[s]!)

Proof. We observe that, by Lemma 26.3, the set

K = {〈z, p, j〉 : p ∈ PΩ ∧ z ∈ L[s, θ] ∧ z ⊆ ω × ω ∧ j < ω ∧ p�z forcz∞ ¬ϕ(j)}

is definable in L[s, θ] by a formula with sets in L as parameters, say

K = {〈z, p, j〉 :χ(z, p, j, Y )} in L[s, θ],

with Y ∈ L as a sole parameter. Recall that θ : ω → ωL
M is CM -generic over L[s] by

(∗) of Theorem 24.1, and w = w[s, θ] = {〈k, j〉 : j ∈ Aθ(k)[s]}, as in Definition 10.4.

We let θ̆ ∈ L be a canonical CM -name for θ, and let � be the CM -forcing relation
over L[s], definable in L[s], as usual. We claim that

(11) χ(w, p, j, Y ) holds in L[s, θ] iff θ�n � χ(w[s, θ̆], p, j, Y ),

where n = #(ϕ) as above; θ�n belongs to CM , of course.
The direction ⇐= is obvious.
To establish =⇒ , assume that the right-hand side of (11) fails. There is a

condition e0 ∈ CM such that θ�n ⊆ e0 and e0 � ¬χ(w[s, θ̆], p, j, Y ). We note that

D = {e ∈ CM : θ�n ⊆ e ∧ ∃h ∈ Hn (|h| ⊆ dom e ∧ e0 ⊆ he)}

is a set open dense in CM over θ�n. Therefore, by the genericity of θ, there exists a
number k > n such that e = θ�k ∈ D. Accordingly, there is a permutation h ∈ Hn

satisfying |h| ⊆ k and e0 ⊆ he.
We put θ′ = hθ; this is still a CM -generic map ω → ωL

M , with L[θ′] = L[θ]
since h ∈ L, and we have e0 ⊆ he ⊂ θ′. It follows, by the choice of e0, that
χ(w[s, θ′], p, j, Y ) fails in L[s, θ′] = L[s, θ], and hence 〈w[s, θ′], p, j〉 /∈ K by the
choice of χ. However w[s, θ′] = h ·w[s, θ] = hw, thus we have 〈hw, p, j〉 /∈ K.

We conclude that p�hw forchw
∞ ¬ϕ(j) fails by the definition of K. Therefore

p�w forcw∞ ¬ϕ(j) fails as well by Theorem 30.1, so we have 〈w, p, j〉 /∈ K, and
hence χ(w, p, j, Y ) fails in L[s, θ′] = L[s, θ]. This completes the proof of (11).

And coming back to the lemma, (11) implies the equality

T = {〈p, j〉 : p ∈ PΩ ∧ j < ω ∧ θ�n � χ(w[s, θ̆], p, j, Y )}.

This implies T ∈ L[s] since � is definable in L[s]. Lemma 30.2 is established. �

It remains to notice that, by Theorem 28.1,

j ∈ a ⇐⇒ L[s, θ] |= ¬ϕ(j) is ΩM -true

⇐⇒ ∃ p ∈ G�w (p forcw∞ ¬ϕ(j))

⇐⇒ ∃ p ∈ G (p�w forcw∞ ¬ϕ(j)).

Therefore j ∈ a ⇐⇒ ∃ p ∈ G (〈p, j〉 ∈ T ). But T ∈ L[s] by Lemma 30.2.
We conclude that a ∈ L[s,G], as required. This completes the proof of Theo-

rem 24.1 from Theorem 30.1. �
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31. The invariance theorem: setup

We continue to argue under the assumptions and notation of (∗) of Theorem 24.1.

Proof of Theorem 30.1 (will be completed in Subsection 33). We fix p0,w=w[s, θ],
ϕ, n = #(ϕ), h ∈ Hn, ŵ = hw, as in Theorem 30.1.

Suppose to the contrary that p0�ŵ forcŵ∞ ¬ϕ but ¬ (p0�w forcw∞ ¬ϕ). There is

an ordinal γ < ΩM+1 with p0�ŵ forcŵγ ¬ϕ but ¬ (p0�w forcwγ ¬ϕ). Then there is:

(A) a system U1 ∈ sDSM [n] extending UM
γ , and a condition p1 ∈ P[U1], p1 �

p0, such that p1�w forcwU1 ϕ, but still p1�ŵ forcŵU1 ¬ϕ by Lemma 26.2.

Recall that any condition p ∈ ∗PM is a map p ∈ L, defined on ω × ω, and each
value p(k, i) = 〈Sp(n, i);Fp(k, i)〉 is a pair of a set Sp(k, i) ⊆ SeqM and Fp(k, i) ⊆
FunM , with card (Sp(k, i) ∪ Fp(k, i)) < ΩM strictly, in L. We define the support
‖p‖ =

⋃
k,i<ω ‖p‖ki, where ‖p‖ki = {s(0) : s ∈ Sp(k, i)} ∪ {f(0) : f ∈ Fp(k, i)}; then

‖p‖ ∈ L, ‖p‖ is a bounded subset of ΩM . We conclude that there exists:

(B) a bijection b ∈ L, b : ΩM
onto−→ ΩM with ‖p1‖ ∩ (b”‖p1‖) = ∅ and b = b−1.

Further, the system U1 ∈ sDSM [n] is small, hence the set J =
⋃

k,i<ω U1(k, i) ∈ L
satisfies card J ≤ ΩM in L. It follows that there is:

(C) a sequence {Bα}α<ΩM
∈ L of bijections Bα : ΩM

onto−→ ΩM , such that B0 = b,
Bα = Bα

−1, and if f, g ∈ J then f(α) �= Bα(g(α)) for some ordinal α < ΩM .

32. Transformation

In continuation of the proof of Theorem 30.1, we now define an automorphism
acting on several different domains in L. It is based on h, b, and Bα of Subsection 31
and its action will be denoted by ̂. Along the way we’ll formulate properties (D)–
(H) of the automorphism, a routine check of which is left to the reader.

We argue under the assumptions and notation of (∗) of Theorem 24.1.

If α ≤ ΩM and f : α → ΩM then f̂ : α → ΩM is defined by f̂(ν) = Bν(f(ν)) for

all ν < α. In particular, f̂(0) = B0(f(0)) = b(f(0)). This defines ŝ ∈ SeqM and

f̂ ∈ FunM for all s ∈ SeqM and f ∈ FunM .

(D) f �−→ f̂ is a bijection SeqM
onto−→ SeqM and FunM

onto−→ FunM , and if

f, g ∈ J =
⋃

k,i<ω U1(k, i) then f̂ �= g by (C).

If u ⊆ FunM then let û = {f̂ : f ∈ u}. If S ⊆ SeqM then let Ŝ = {ŝ : s ∈ S}.
If U is a system then define a system Û , such that

Û(k, i) = U(k, i), in case k < n;

Û(h(k), i) = Û(k, i) = {f̂ : f ∈ U(k, i)}, in case k ≥ n.

If p ∈ ∗PM then let p̂ ∈ ∗PM be defined so that

p̂(k, i) = p(k, i), in case k < n;

p̂(h(k), i) = 〈Ŝp(k, i); F̂p(k, i)〉, in case k ≥ n;

where Ŝp(k, i) = {ŝ : s ∈ Sp(k, i)} and F̂p(k, i) = {ŝ : s ∈ Fp(k, i)} by the above.
These are consistent definitions because h ∈ Hn in Theorem 30.1.

(E) We have Û�<n = U�<n for any system U . The map U �−→ Û is a bijection
of sDSM onto itself and sDSM [n′] onto itself for any n′ ≤ n.
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(F) We have p̂�<n = p�<n for any p ∈ ∗PM . The map p �−→ p̂ is a �-preserving

bijection of P[U ] onto P[Û ].

If in addition z ⊆ ω × ω (not necessarily z ∈ L), then if conditions p, q ∈ ∗PM

satisfy p�z = q�z, then easily p̂ � ẑ = q̂ � ẑ, where ẑ = h · z = {〈h(k), i〉 : 〈k, i〉 ∈ z}.
This allows us to define r̂ := p̂ � ẑ for every r ∈ ∗PM�z, where p ∈ ∗PM is any
condition satisfying r = p�z.

(G) If z ⊆ ω×ω then p �−→ p̂ is a �-preserving bijection ofP[U ]�z ontoP[Û ] � ẑ.
If z ⊆ ω × ω and τ ∈ Namz (Subsection 25) then let τ̂ = {〈p̂, x〉 : 〈p, x〉 ∈ τ}, and
if ϕ is a L(z)-formula then ϕ̂ is obtained by substituting τ̂ for each name τ in ϕ.

(H) If z ⊆ ω× ω, z ∈ L[s, θ], then the mapping τ �−→ τ̂ is a bijection of Namz

onto Namẑ and a bijection of L(z)-formulas onto L(ẑ)-formulas.

Remark 32.1. The action of ̂ is idempotent, so that e.g.
̂̂
f = f for any f ∈ FunM

etc. This is because we require that b−1 = b and B−1
α = Bα for all α < Ω.

The action of ̂ is constructible on SeqM , FunM , systems, ∗PM , since h, b, and
the sequence of maps Bα belong to L by (B), (C).

However if z ∈ L[s, θ] then the action of ̂ on ∗PM�z and names inNamz belongs
to L[s, θ], since the extra parameter z does not necessarily belong to L. �

It is not unusual that transformations of a forcing notion considered lead to this
or another invariance. Lemma 32.2 is exactly of this type.

Lemma 32.2 (in L[s, θ]). Assume that U ∈ sDSM , w = w[s, θ], n < ω, h ∈ Hn,
ŵ = hw, p ∈ P[U ]�w, and Φ is a closed formula of L(w), #(Φ) ≤ n + 1. Then

p forcwU Φ iff p̂ forcŵ
̂U
Φ̂.

Proof. We argue by induction on the structure of Φ. Routine cases of formulas
(F2) and steps (F4) and (F5) of Subsection 26 by means of (D)–(H) are left to
the reader. Thus we concentrate on atomic formulas of type (F3) and steps (F6)
and (F7) in Subsection 26. We take care of only one direction of the equivalence
of the lemma, as the other direction is entirely similar via the idempotency (see
Remark 32.1).

Formulas of type (F3). Let Φ be α ∈ τ , where α < ΩM and τ ∈ Namw.
Assume that p forcwU α ∈ τ . Then by definition there is a condition q ∈ P[U ]�w
such that p � q and 〈q, α〉 ∈ τ . Then q̂ and p̂ belong to P[Û ]�ŵ, p̂ � q̂, and

〈q̂, α〉 ∈ τ̂ . Thus we have p̂ forcŵ
̂U
α ∈ τ̂ , as required.

Step (F6). Let Φ := ∃X Ψ(X). Suppose that p forcwU Φ. By definition there

exists a name τ ∈ Namw such that p forcwU Ψ(τ ), Then we have p̂ forcŵ
̂U
Ψ̂(τ ) by

the inductive hypothesis. But Ψ̂(τ ) coincides with Ψ̂(τ̂), where τ̂ ∈ Namŵ by (H).

We conclude that p̂ forcŵ
̂U
∃X Ψ̂(X), that is, p̂ forcŵ

̂U
Φ̂, as required.

Step (F7). Prove the lemma for an L(w) formula Φ := ¬Ψ, assuming that the
result holds for Ψ itself. Note that #(Φ) � n+ 1, hence m = #(Ψ) � n. Suppose
that ¬ (p forcwU ¬Ψ). By definition there is a system U ′ ∈ sDSM [m], extending
U ′, and a condition q ∈ P[U ′]�w, q � p, such that q forcwU ′ Ψ. Then we have

q̂ forcŵ
̂U ′ Ψ̂ by the inductive hypothesis. However Û ′ belongs to sDSM , extends Û ,

and satisfies Û ′�<n = U ′�<n by (E), and even belongs to sDSM [m] by the choice
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of U ′, and in addition q̂ ∈ P[Û ′]�ŵ and q̂ � p̂ by (F). We conclude, by definition,

that ¬ (p̂ forcŵ
̂U
¬ Ψ̂) as well, as required.

�

33. Finalization

We continue to argue under the assumptions and notation of (∗) of Theorem 24.1.
The goal of this subsection is to accomplish the proof of Theorem 30.1 that was
started in Subsection 31. We return to objects U1, p1 introduced in (A), (B), (C)
of Subsection 31.

Let q1 = p1�w, so that q1 ∈ P[U1]�w and q1 forc
w
U1 ϕ by (A). We have

(12) Û1 ∈ sDSM [n] ∧ p̂1 ∈ P[Û1] ∧ q̂1 = p̂1�ŵ ∈ P[Û1]�ŵ ∧ q̂1 forc
ŵ
̂U1

ϕ

by Lemma 32.2. (Here ϕ, as a parameterfree formula, coincides with ϕ̂.) Let system

U be defined by U(k, i) = U1(k, i) ∪ Û1(k, i) for all k, i.

Lemma 33.1. The system U belongs to sDSM [n] and extends both U1 and Û1.
Conditions p1 and p̂1 belong to P[U ] and are compatible in P[U ].

Proof (Lemma). It follows by (D) (last claim) that U is a disjoint system. It follows

by (E) that U�<n = U1�<n = Û1�<n. Therefore U belongs to sDSM [n] because so
does U1.

To prove the compatibility, it suffices to check that if k, i < ω then either
p1(k, i) = p̂1(k, i) or ‖p1‖ki ∩ ‖p̂1‖ki = ∅. If k < n then we have the ‘either’

case because by definition p1�<n = p̂1�<n. Suppose that k ≥ n. Let k̂ = h−1(k);

thus still k̂ ≥ n (as h ∈ Hn), k = h(k̂), and p̂1(k, i) = 〈Ŝp(k̂, i); F̂p(k̂, i)〉. It fol-
lows that ‖p̂1‖ki is the B0-image, hence the b-image of the set ‖p1‖̂ki. However
‖p1‖̂ki ∪ ‖p1‖ki ⊆ ‖p1‖. We conclude that ‖p1‖ki ∩ ‖p̂1‖ki = ∅ by Claim (B) of
Subsection 31, as required. �

To finalize the proof of Theorem 30.1, let, by Lemma 33.1, r ∈ P[U ]�ŵ satisfy

both r � p1�ŵ and r � p̂1�ŵ = q̂1. However q̂1 forc
ŵ
̂U1

ϕ by (12). Then we have

r forcŵU ϕ by Lemma 33.1 and Lemma 26.2. On the other hand, p1�ŵ forcŵU1 ¬ϕ

by (A) of Subsection 31, therefore we have r forcŵU ¬ϕ. It remains to remind that
#(ϕ) = n and U ∈ sDSM [n] by Lemma 33.1 — and we get a contradiction still by
Lemma 26.2(ii). The contradiction completes the proof of Theorem 30.1. �

Theorem 30.1 just proved implies Theorem 24.1, see Subsection 30.
Theorem 24.1 ends the proof of Theorem 20.2 of Subsection 19, see Remark 24.2.
This finalizes the proof of Theorem 4.1, see Remark 20.4.

Section VII. Conclusions and discussion

In this study, the method of almost-disjoint forcing was employed to the problem
of getting a model of ZFC in which the Tarski sentence D1m ∈ D2m holds for all
m from a pre-selected constructible set Υ ⊆ ω, and fails for all m ≥ 1 not in Υ
(Theorem 4.1). It follows that Tarski’s problems (whether D1m ∈ D2m holds) not
only are independent of ZFC, but also independent from each other in a rather
strong sense. As the second main result, Theorem 4.2, a model is defined, in which
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the set D1 =
⋃

mD1m of all type-theoretically definable reals is equal to the set
L ∩ P(ω) of all constructible reals, and hence D1 ∈ D2.

The problem of getting a model for D1m ∈ D2m for different numbers m ≥ 1
appeared in Alfred Tarski’s article [51]. Its the particular case m = 1 (analytical
definability) the problem of getting models for D11 ∈ D21, or stronger, D11 =
L ∩ P(ω), was known in the early years of forcing, see e.g. problem 87 in Harvey
Friedman’s treatise One hundred and two problems in mathematical logic [14], and
problems 3110, 3111, 3112 in an early survey [47] by A.R.D. Mathias. As mentioned
in [14,47], the problem was solved by Leo Harrington, whose handwritten notes [24]
at least contain a sketch of a model in which P(ω) ∩ L = all Δ1

3 reals
From this study, it is concluded that the hidden invariance technique (as outlined

in Subsection 29) allows to solve the Tarski “D1m ∈ D2m” problem by providing
generic ZFC models as required by our main results (Theorem 4.1 and Theo-
rem 4.2). The hidden invariance technique has also been applied in our recent
papers [30, 32, 33] for the problem of getting a set theoretic structure of this or
another kind at a pre-fixed projective level. This is interesting in connection with
the following all-important open problem by S.D. Friedman, [15, P. 209] and [16, P.
602]:

Problem 1. Assuming only the consistency of an inaccessible cardinal, is it consis-
tent for each n that all Σ1

n sets of reals be Lebesgue Measurable and have the Baire
and Perfect Set properties, while there is a Δ1

n+1 wellordering of the reals?9 �
We finish with a couple of related questions.

Problem 2. If x ⊆ ω then let Dpm(x) be the set of all objects of type p, definable
by a formula with x as the only parameter, and all variables over types ≤ m.
(Compare to Definition 2.1.) One may be interested in getting a model for

(2.1) ∀x ⊆ ω (D1m(x) ∈ D2m(x), or stronger, D1m(x) = P(ω) ∩ L[x]).

This is somewhat similar to Problem 87′ in [14]: find a model of

(2.2) ZFC + “ for any reals x, y, we have: x ∈ L[y] =⇒ x is Δ1
3 in y”.

Problem (2.2) was known in the early years of forcing, see, e.g., problem 3111 in
[47] or (3) in [27, Section 6.1]. Problem (2.2) was positively solved by René David
in [10], where the question is attributed to Harrington. The proof in [10] makes use
of a tool now known as David’s trick, see S.D. Friedman [15, Chapters 6 and 8].

So far it is unknown whether the result of David [10] generalizes to higher pro-
jective classes Δ1

n, n ≥ 4, or Δ1
∞, whether it can be strengthened towards ⇐⇒

instead of =⇒ , and whether it can lead to even partial solution of (2.1). This is a
very interesting and perhaps difficult question. �
Problem 3. Coming back to Harrington’s sketch of a model for the sentence

(3.1) the set dn = P(ω) ∩Δ1
n of all Δ1

n reals is equal to P(ω) ∩ L,

for n = 3 in [24, pp. 2–4], it’s clear that, unlike D1m ∈ D2m, if (3.1) holds for some
n ≥ 3 then it definitely fails for any n′ �= n. But we can try to weaken (3.1) to just

(3.2) dn ∈ Π1
n,

9It will be no less interesting to prove the consistency only of BP for Σ1
n sets with the existence

of a Δ1
n+1 wellordering of the reals assuming only the consistency of ZFC. It is known that the

LM and Perfect Set properties do need an inaccessible cardinal though.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

8684 VLADIMIR KANOVEI AND VASSILY LYUBETSKY

and then ask whether there is a generic extension of L satisfying ∀n (dn ∈ Π1
n). It

is known that d1 ∈ Π1
1 �Σ1

1 , d2 ∈ Σ1
2 �Π1

2 , and if all reals are constructible then
dn ∈ Σ1

n �Π1
n for all n ≥ 3, so Π1

n looks rather suitable in (3.2). �
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