A weak dichotomy below \(E_1 \times E_3 \)

Vladimir Kanovei

Institute for the information transmission problems, Bolshoi Karetnyi per., 19, 127994 Moscow, Russia

A R T I C L E I N F O

Article history:
Received 2 August 2008
Received in revised form 12 March 2009
Accepted 13 March 2009

M S C:
03E15

K e y w o r d s:
Borel reducibility
\(E_1 \)
\(E_3 \)

A B S T R A C T

We prove that if \(E \) is an equivalence relation Borel reducible to \(E_1 \times E_3 \) then either \(E \) is Borel reducible to the equality of countable sets of reals or \(E_1 \) is Borel reducible to \(E \). The “either” case admits further strengthening.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let \(\mathbb{R} = 2^\mathbb{N} \). Recall that \(E_1 \) and \(E_3 \) are the equivalence relations defined on the set \(\mathbb{R}^\mathbb{N} \) as follows:

\[
\begin{align*}
xE_1 y \iff & \exists k_0 \forall k > k_0 \ (x(k) = y(k)); \\
x E_3 y \iff & \forall k \ (x(k)E_0 y(k));
\end{align*}
\]

where \(E_0 \) is an equivalence relation defined on \(\mathbb{R} \) so that

\[
a E_0 b \iff \exists n_0 \forall n > n_0 \ (a(n) = b(n)).
\]

The equivalence \(E_3 \) is often denoted as \((E_0)^\omega \).

Kechris and Louveau in [10] and Hjorth and Kechris in [3,4] proved that any Borel equivalence relation \(E \) satisfying \(E \prec_B E_1 \), resp., \(E \prec_B E_3 \), also satisfies the non-strict \(E \preceq_B E_0 \). Here \(\prec_B \) and \(\preceq_B \) are resp. strict and non-strict relations of Borel reducibility. Thus if \(E \) is an equivalence relation on a Borel set \(X^2 \) and \(F \) is an equivalence relation on a Borel set \(Y \) then \(E \preceq_B F \) means that there exists a Borel map \(\vartheta : X \to Y \) such that

\[
\begin{align*}
x \in E \Leftrightarrow & \vartheta(x) F \vartheta(x');
\end{align*}
\]

holds for all \(x, x' \in X \). Such a map \(\vartheta \) is called a (Borel) reduction of \(E \) to \(F \). If both \(E \preceq_B F \) and \(F \preceq_B E \) then they write \(E \equiv_B F \) (Borel bi-reducibility), while \(E \prec_B F \) (strict reducibility) means that \(E \preceq_B F \) but not \(F \preceq_B E \). See the cited papers [3,4] or e.g. [2,9] on various aspects of Borel reducibility in set theory and mathematics in general.

1 Partial financial support of RFFI (Grants 06-01-00608 and 07-01-00445) and MEC (Grant SAB 2006-0049) acknowledged.

2 We consider only Borel sets in Polish spaces.

E-mail address: kanovei@rambler.ru.

© 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.topol.2009.03.052
The above mentioned results give a complete description of the \(\leq^B \)-structure of Borel equivalence relations below \(E_1 \) and below \(E_2 \). It is then a natural step to investigate the \(\leq^B \)-structure below \(E_{13} \), where \(E_{13} = E_1 \times E_3 \) is the product of \(E_1 \) and \(E_3 \), that is, an equivalence on \(\mathbb{R}^N \times \mathbb{R}^N \) defined so that for any points \((x, \xi) \) and \((y, \eta) \) in \(\mathbb{R}^N \times \mathbb{R}^N \), \((x, \xi) \sim_{E_{13}} (y, \eta) \) if and only if \(x \in E_1 y \) and \(\xi, \eta \in E_3 \).

The intended result would be that the \(\leq^B \)-cone below \(E_{13} \) includes the cones determined separately by \(E_1 \) and \(E_3 \), together with the disjoint union of \(E_1 \) and \(E_3 \) (i.e., the union of \(E_1 \) and \(E_3 \) defined on two disjoint copies of \(\mathbb{R}^N \)), \(E_{13} \) itself, and nothing else. This is however a long shot. The following theorem, the main result of this note, can be considered as a small step in this direction.

Theorem 1. Suppose that \(E \) is a Borel equivalence relation and \(E \leq^B E_{13} \). Then either \(E \) is Borel reducible to \(T_2 \) or \(E_1 \leq^B E \).

Recall that the equivalence relation \(T_2 \), known as "the equality of countable sets of reals", is defined on \(\mathbb{R}^N \) so that \(x T_2 y \) iff \(\{x(n): n \in \mathbb{N}\} = \{y(n): n \in \mathbb{N}\} \). It is known that \(E_3 \not\leq^B T_2 \). Theorem 1 is reduced to the following:

Theorem 2. Suppose that \(P_0 \subseteq \mathbb{R}^N \times \mathbb{R}^N \) is a Borel set. Then either the equivalence \(E_{13} \mid P_0 \) is Borel reducible to \(T_2 \) or \(E_1 \leq^B E_{13} \mid P_0 \).

Indeed suppose that \(Z \) (a Borel set) is the domain of \(E \), and \(\vartheta: Z \to \mathbb{R}^N \times \mathbb{R}^N \) is a Borel reduction of \(E \) to \(E_{13} \). Let \(f: Z \to 2^N = \mathbb{R} \) be an arbitrary Borel injection. Define another reduction \(\vartheta': Z \to \mathbb{R}^N \times \mathbb{R}^N \) as follows. Suppose that \(z \in Z \) and \(\vartheta(z) = (x, \xi) \in \mathbb{R}^N \times \mathbb{R}^N \). Put \(\vartheta'(z) = (x', \xi) \), where \(x' \), still a point in \(\mathbb{R}^N \), is related to \(x \) so that \(x(n) = x(n) \) for all \(n \geq 1 \) but \(x'(0) = f(z) \). Then obviously \(\vartheta(z) \) and \(\vartheta'(z) \) are \(E_{13} \)-equivalent for all \(z \in Z \), and hence \(\vartheta' \) is a Borel reduction of \(E \) to \(E_{13} \). On the other hand, \(\vartheta' \) is an injection (because so is \(f \)). It follows that its full image \(P_0 = \{z \in Z: \vartheta'(z) \in P_0 \} \) is a Borel set in \(\mathbb{R}^N \times \mathbb{R}^N \), and \(E_{13} \mid P_0 \leq^B E_{13} \mid P_0 \).

The remainder of the paper contains the proof of Theorem 2. The partition in two cases is described in Section 3. Naturally assuming that \(P_0 \) is a lightface \(\Delta^1_2 \) set, Case 1 is essentially the case when for every element \(\{x, \xi\} \in E_0 \) (note that \(x, \xi \) are points in \(\mathbb{R}^N \)) and every \(n \) we have \(x(n) = F(x, n, \xi) \mid n, \xi \mid < k \) for some \(k \), where \(F \) is a \(\Delta^1_2 \) function \(E_3 \)-invariant w.r.t. the 3rd argument. It easily follows that then the first projection of the equivalence class \(\{x, \xi\} \mid E_1 \cap P_0 \) of every point \(\{x, \xi\} \in P_0 \) is at most countable, leading to the either option of Theorem 2 in Section 5.

The results of Theorems 1 and 2 in their either parts can hardly be viewed as satisfactory because one would expect it in the form: \(E \) is Borel reducible to \(E_3 \). Thus it is a challenging problem to replace \(T_2 \) by \(E_3 \) in the theorems. Attempts to improve the either option, so far rather unsuccessful, lead to the following:

Theorem 3. In the either case of Theorem 2 there exist a hyperfinite equivalence relation \(G \) on a Borel set \(P''_0 \subseteq \mathbb{R}^N \times \mathbb{R}^N \) such that \(E_{13} \mid P_0 \) is Borel reducible to the least equivalence relation \(F \) on \(P''_0 \) which includes \(G \) and satisfies \(\xi \in E_3 \eta \implies \langle x, \xi \rangle \sim_F \langle y, \eta \rangle \) for all \(\langle x, \xi \rangle \) and \(\langle y, \eta \rangle \) in \(P''_0 \).

The relation \(G \) here is induced by a countable group \(G \) of homeomorphisms of \(\mathbb{R}^N \times \mathbb{R}^N \) preserving the second component. (That is, if \(g \in G \) and \(g(x, \xi) = (y, \eta) \) then \(\eta = \xi \), but \(y \) generally speaking depends on both \(x \) and \(\xi \).) And \(G \) happens to be even a locally finite group in the sense that it is equal to the union of an increasing chain of its finite subgroups. Recall that \(E_3 \) is induced by the product group \(H = (\mathcal{P}(\mathbb{N}^N), \Delta^N_1) \) naturally acting in this case on the second factor in the product \(\mathbb{R}^N \times \mathbb{R}^N \). Regarding further details see Section 6.

Case 2 is treated in Sections 7 through 12. The embedding of \(E_3 \) in \(E_{13} \mid P_0 \) is obtained by approximately the same splitting construction as the one introduced in [10] (in the version closer to [7]).

2. Preliminaries: extension of “invariant” functions

If \(E \) is an equivalence relation on a set \(X \) then, as usual, \([x]_E = \{y \in X: x \sim y \} \) is the E-class of an element \(x \in X \), and \([Y]_E = \bigcup_{x \in Y} [x]_E \) is the E-saturation of a set \(Y \subseteq X \). A set \(Y \subseteq X \) is E-invariant if \(Y = [Y]_E \).

The following “invariant” Separation theorem will be used below.

Proposition 4. (5.1 in [1]) Assume that \(E \) is a \(\Delta^1_2 \) equivalence relation on a \(\Delta^1_3 \) set \(X \subseteq \mathbb{N}^N \). If \(A, C \subseteq X \) are \(\Sigma^1_1 \) sets and \([A]_E \cap [C]_E = \emptyset \) then there exists an E-invariant \(\Delta^1_2 \) set \(B \subseteq X \) such that \([A]_E \subseteq B \) and \([C]_E \cap B = \emptyset \).

Suppose that \(f \) is a map defined on a set \(Y \subseteq X \). Say that \(f \) is E-invariant if \(f(x) = f(y) \) for all \(x, y \in Y \) satisfying \(x \in E \).
Corollary 5. Assume that E is a Δ^1_1 equivalence relation on a Δ^1_1 set $A \subseteq \mathbb{N}^\mathbb{N}$, and $f : B \to \mathbb{N}^\mathbb{N}$ is an E-invariant Σ^1_1 function defined on a Σ^1_1 set $B \subseteq A$. Then there exist an E-invariant Δ^1_1 function $g : A \to \mathbb{N}^\mathbb{N}$ such that $f \leq g$.

Proof. It obviously suffices to define such a function on an E-invariant Δ^1_1 set Z such that $Y \subseteq Z \subseteq A$. (Then let g be just a constant on $A \setminus Z$.) The set

$$P = \{(a, x) \in A \times \mathbb{N}^\mathbb{N} : \forall b (b \in B \land a \in E b \implies x = f(b))\}$$

is Π^1_1 and $f \subseteq P$. Moreover P is F-invariant, where F is defined on $A \times \mathbb{N}^\mathbb{N}$ so that $\langle a, f(\alpha', y) \rangle$ if $a \in E \alpha'$ and $x = y$. Obviously $f \upharpoonright F \subseteq P$. Hence by Proposition 4 there exists an F-invariant Δ^1_1 set Q such that $f \subseteq Q \subseteq P$. Then

$$R = \{(a, x) \in Q : \forall y (y \neq x \implies \langle a, y \rangle \not\in Q)\}$$

is an F-invariant Π^1_1 set, and in fact a function, satisfying $f \subseteq R$. Applying Proposition 4 once again we end the proof. □

3. An important population of Σ^1_1 functions

We shall adopt a point of view where $\dim \mathbb{R}^\mathbb{N}$ is an Σ^1_1 function $\varphi : U \to \mathbb{R}$, defined on a Σ^1_1 set $U = \operatorname{dom} \varphi \subseteq \mathbb{R}^\mathbb{N} \times \mathbb{R}^\mathbb{N}$, and \equiv_k-invariant in the sense that if (y, ξ) and (y, η) belong to U and $\xi \equiv_k \eta$ then $\varphi(y, \xi) = \varphi(y, \eta)$. Let $T \Sigma^1_n$ denote the set of all Δ^1_1 functions $\psi \in T \Sigma^1_n$ with $\varphi \leq \psi$.

Lemma 7. If $\varphi \in T \Sigma^1_n$ then there is a Δ^1_1 function $\psi \in T \Sigma^1_n$ with $\varphi \leq \psi$.

Proof. Apply Corollary 5. □

Definition 8. Let us fix a suitable coding system $\{W^e\}_{e \in E}$ of all Δ^1_1 sets $W \subseteq \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ (in particular for partial Δ^1_1 functions $R \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$), where $E \subseteq \mathbb{N}$ is a Π^1_1 set, such that there exist a Σ^1_1 relation Σ and a Π^1_1 relation Π satisfying

$$\langle b, \xi, a \rangle \in W^e \iff \Sigma(e, b, a, \xi) \iff \Pi(e, b, a, \xi)$$

whenever $e \in E$ and $b, a \in \mathbb{R}$, $\xi \in \mathbb{R}^\mathbb{N}$.

Let us fix a Δ^1_1 sequence of homeomorphisms $H_n : \mathbb{R}^{onto} \to \mathbb{R}^\mathbb{N}$. Put

$$W^e_n = \{ \langle H_n(b), \xi, a \rangle : \langle b, \xi, a \rangle \in W^e \} \quad \text{for } e \in E,$n

$$T = \{ \langle e, k \rangle : e \in E \land W^e_n \text{ is a total and } \equiv_k \text{-invariant function} \}.$$}

Here the totality means that $\operatorname{dom} W^e_n = \mathbb{R} \times \mathbb{R}^\mathbb{N}$ while the invariance means that $W^e_n(b, \xi) = W^e_n(b, \eta)$ for all b, ξ, η satisfying $\xi \equiv_k \eta$.

Note that if $(e, k) \in T$ then, for any n, W^e_n is a function in $T \Sigma^1_n$, and conversely, every function in $T \Sigma^1_n$ has the form W^e_n for a suitable $e \in E$.

Proposition 9. T is a Π^1_1 set.
Proof. Standard evaluation based on the coding of Δ^1_1 sets. □

Corollary 10. The sets

$$S^k_n = \{ (x, \xi) \in \mathbb{R}_n^N \times \mathbb{R}_k^N :\exists \varphi \in \mathcal{T}_n^k \{ x(n) = \varphi(x|_{>n}, \xi) \} \}$$

$$ = \{ (x, \xi) \in \mathbb{R}_n^N \times \mathbb{R}_k^N :\exists \varphi \in \mathcal{T}_n^k \{ x(n) = \varphi(x|_{>n}, \xi) \} \}$$

belong to Π^1_1 uniformly on n, k. Therefore the set $S = \bigcup_m \bigcap_{n \geq m} \bigcup_k S^k_n$ also belongs to Π^1_1.

Proof. The equality of the two definitions follows from Lemma 7. The definability follows from Proposition 9 by standard evaluation.

Remark 14. Let φ be the constant 0: $\varphi(x|_{>n}, \xi) = 0$. For any $(x, \xi) \in P_0$ put $f_{\mu}(x, \xi) = 0_{\mu(x, \xi)}(x|_{>\mu(x, \xi)})$: that is, we replace by 0 all values $x(n)$ with $n < \mu(x, \xi)$. Then $P_0' = \{ (f_{\mu}(x, \xi), (x, \xi)) : (x, \xi) \in P_0 \}$ is a Σ^1_1 set.

Put $S' = \bigcap_n \bigcup_k S^k_n$ (a Π^1_1 set by Corollary 10).

Corollary 12. There is a Δ^1_1 set P_0'' such that $P_0'' \subseteq P_0' \subseteq S'$. The map $(x, \xi) \mapsto (f_{\mu}(x, \xi), (x, \xi))$ is a reduction of $E_{13} \upharpoonright P_0$ to $E_{13} \upharpoonright P_0''$.

Proof. Obviously P_0'' is a subset of the Π^1_1 set S'. It follows that there is a Δ^1_1 set P_0'' such that $P_0'' \subseteq P_0'' \subseteq S'$. To prove the second claim note that $f_{\mu}(x, \xi) E_{13} x$ for all $(x, \xi) \in P_0''$. □

Let us fix a Δ^1_1 set P_0'' as indicated. By Corollary 12 to accomplish Case 1 it suffices to get a Borel reduction of $E_{13} \upharpoonright P_0''$ to T_2.

Lemma 13. There exists a Δ^1_1 map $\mu : P_0 \to \mathbb{N}$ such that for any $(x, \xi) \in P_0$ we have $(x, \xi) \in \bigcap_{n \geq \mu(x, \xi)} \bigcup_k S^k_n$.

Proof. Apply Kreisel Selection to the set

$$\{ (x, \xi, \eta) \in P_0 \times \mathbb{N} : \forall n \geq m \exists k (x, \xi) \in S^k_n \}.$$ □

Let $0 = \mathbb{N}^N \in \mathbb{R} = 2^\mathbb{N}$ be the constant 0: $0(k) = 0, \forall k$. For any $(x, \xi) \in P_0$ put $f_{\mu}(x, \xi) = 0_{\mu(x, \xi)}(x|_{>\mu(x, \xi)})$: that is, we replace by 0 all values $x(n)$ with $n < \mu(x, \xi)$. Then $P_0' = \{ (f_{\mu}(x, \xi), (x, \xi)) : (x, \xi) \in P_0 \}$ is a Σ^1_1 set.

Remark 14. Recall that by definition every function $F \in \mathcal{T}_n^k$ is invariant in the sense that if (x, ξ) and (x, η) belong to $\mathbb{R}_n^N \times \mathbb{R}_k^N$, $x|_{<k} = \xi|_{<k}$, and $x E_3 \eta$, then $\varphi(x, \xi) = \varphi(x, \eta)$. This allows us to sometimes use the notation $F_k(x|_{>n}, \xi|_{<k}, \xi|_{>k})$, where $k = k_j$, instead of $F_k(x|_{>n}, \xi)$, with the understanding that $F_k(x|_{>n}, \xi|_{<k}, \xi|_{>k})$ is E_3-invariant in the 3rd argument.

In these terms, the final equality of the lemma can be re-written as $x(n) = F_k(x|_{>n}, \xi|_{<k}, \xi|_{>k})$, where $k = k_i$.

Proof of Lemma 13. By definition $P_0'' \subseteq S'$ means that for any $(x, \xi) \in P_0''$ and n there exists k such that $(x, \xi) \in S^k_n$. The formula $(x, \xi) \in S^k_n$ takes the form

$$\exists \varphi \in \mathcal{T}_n^k \{ x(n) = \varphi(x|_{>n}, \xi) \}.$$

and further the form $\exists (e, k) \in T \{ x(n) = W^e_n(x|_{>n}, \xi) \}$. It follows that the Π^1_1 set

$$Z = \{ (x, \xi, n) \in (P_0 \times \mathbb{N}) \times T : x(n) = W^e_n(x|_{>n}, \xi) \}$$
satisfies \(\text{dom} Z = P_0 \times N \). Therefore by Kreisel Selection there is a \(\Delta_1^1 \) map \(\varepsilon : P_0 \times N \to T \) such that \(x(n) = W_n^k(x|_{>n}, \xi) \) holds for any \((x, \xi) \in P_0 \) and \(n \), where \((e, k) = \varepsilon(x, \xi, n) \) for some \(k \).

The range \(R = \varepsilon(\varepsilon) \) of this function is a \(\Sigma_1^1 \) subset of the \(\Pi_1^1 \) set \(T \). We conclude that there is a \(\Delta_1^1 \) set \(B \) such that \(R \subseteq B \subseteq T \). And since \(T \subseteq N \times N \), it follows, by some known theorems of effective descriptive set theory, that the set \(\tilde{E} = \text{dom} B = \{ e : \exists \, k \in B \} \) is \(\Delta_1^1 \), and in addition there exists a \(\Delta_1^1 \) map \(K : \tilde{E} \to N \) such that \((e, K(e)) \in B \) (and \(e \in T \)) for all \(e \in \tilde{E} \).

And on the other hand it follows from the construction that
\[
\forall (x, \xi) \in P_0 \forall n \exists \varepsilon \in \tilde{E} \quad (x(n) = W_n^k(x|_{>n}, \xi)).
\]

Let us fix any \(\Delta_1^1 \) enumeration \(\{ e(i) \}_{i \in \mathbb{N}} \) of elements of \(\tilde{E} \). Put \(P_0^1 = W_{(i)}^k \). Then the last conclusion of the lemma follows from (3). Note that the functions \(P_0^1 \) are uniformly \(\Delta_1^1 \), \(P_0^1 \in \mathcal{P}_n^1 \) for some \(k \), in particular, for \(k = \kappa_i \), where \(\kappa_i = K(e(i)) \), and \(\{ \kappa_i \}_{i \in \mathbb{N}} \) is a \(\Delta_1^1 \) sequence as well. \(\square \)

Blanket Assumption 15. Below, we assume that the set \(P_0^\prime \) is chosen as above, that is, \(\Delta_1^1 \) and \(P_0^\prime \subseteq \mathcal{S}' \), while a system of functions \(F_0^1 \) and a sequence \(\{ \kappa_i \}_{i \in \mathbb{N}} \) of natural numbers are chosen accordingly to Lemma 13.

5. **Case 1: countability of projections of equivalence classes**

We prove here that in the assumption of Case 1 the equivalence \(E_{13} \parallel P_0^\prime \) is Borel reducible to \(T_2 \), the equality of countable sets of reals. The main ingredient of this result will be the countability of the sets
\[
C_x^\xi = \text{dom} \{ (x, \xi) \}_{E_{13}} \cap P_0^\prime = \{ y \in \mathbb{R}^N : y \in E_1 x \land \exists \eta \left(\xi \in E_3 \eta \land (y, \eta) \in P_0^\prime \right) \},
\]
where \((x, \xi) \in P_0^\prime \) — projections of \(E_{13} \)-classes of elements of the set \(P_0^\prime \).

Lemma 16. If \((x, \xi) \in P_0^\prime \) then \(C_x^\xi \subseteq [x]_{E_1} \) and \(C_x^\xi \) is at most countable.

Proof. That \(C_x^\xi \subseteq [x]_{E_1} \) is obvious. The proof of countability begins with several definitions. In fact we are going to organize elements of any set of the form \(C_x^\xi \) in a countable sequence.

Recall that \(\mathbb{R}^2 = 2^N \). If \(u \subseteq \mathbb{N} \) and \(b \in \mathbb{R} \) then define \(u \cdot a \) and \((u \cdot a)(j) = a(j) \) whenever \(j \notin u \), and \((u \cdot a)(j) = 1 - a(j) \) otherwise.

If \(f \subseteq \mathbb{N} \times \mathbb{N} \) and \(a \in \mathbb{R}^k \) then define \(f \cdot a \in \mathbb{R}^k \) so that \((f \cdot a)(j) = (f^* a)(j) \) for all \(j < k \), where \(f^* j = \{ m : \langle j, m \rangle \in f \} \).

Note that \(f^* a \) depends in this case only on the restricted set \(f \upharpoonright k = \{ (j, m) \in f : j < k \} \).

Put \(\Phi = \mathcal{P}_{\leq n}(\mathbb{N} \times \mathbb{N}) \) and \(D = \bigcup_n D_n \), where for every \(n \):
\[
D_n = \{ (a, \varphi) : a \in \mathbb{N}^n \land \varphi \in \Phi^n \land \forall j < n (\varphi(j) \subseteq \kappa_{a(j)} \times \mathbb{N}) \}.
\]
(The inclusion \(\Phi(j) \subseteq \kappa_{a(j)} \times \mathbb{N} \) here means that the set \(\varphi(j) \subseteq \mathbb{N} \times \mathbb{N} \) satisfies \(\varphi(j) = \varphi(j) \upharpoonright \kappa_{a(j)} \), that is, every pair \((k, l) \in \varphi(j) \) satisfies \(k < \kappa_{a(j)} \).

If \((a, \varphi) \in D_n \), and \((x, \xi) \in \mathbb{R}^N \times \mathbb{R}^N \) then we define \(y = r_x^\xi (a, \varphi) \in \mathbb{R}^N \) as follows: \(y = (b_0, b_1, \ldots, b_{n-1}) \upharpoonright (x|_{>n}) \), where the reals \(b_m \in \mathbb{R} \) (\(m < n \)) are defined by inverse induction so that
\[
b_m = F_m^{a(m)}((b_{m+1}, b_{m+2}, \ldots, b_{n-1}) \upharpoonright (x|_{>n}), \varphi(m), (\xi|_{<\kappa_{a(m)}}), (\xi|_{\geq \kappa_{a(m)}})).
\]
(4)

(See Remark 14 on notation. The element \(\eta = (\varphi(m) \cdot (\xi|_{<\kappa_{a(m)}}), (\xi|_{\geq \kappa_{a(m)}})) \) belongs to \(\mathbb{R}^N \) and satisfies \(\eta \in E_3 \xi \) because \(\varphi(m) \) is a finite set.)

Put \(r_x^\xi (A, \Lambda) = x \) (\(A \) is the empty sequence).

Note that by definition the function \(y \in r_x^\xi (a, \varphi) \) satisfies \(y|_{>n} = x|_{>n} \) provided \((a, \varphi) \in D_n \), thus in any case \(x \in E_1 \) \(r_x^\xi (a, \varphi) \). Thus \(r_x^\xi \), the trace of \((x, \xi) \), is a countable sequence, that is, a function defined on \(D = \bigcup_n D_n \), a countable set, and the set \(x \cap r_x^\xi = \{ r_x^\xi (a, \varphi) : (a, \varphi) \in D \} \) of all terms of this sequence is at most countable and satisfies \(x = r_x^\xi (\Lambda, \Lambda) \in x \cap r_x^\xi \subseteq [x]_{E_1} \).

Claim 17. Suppose that \((x, \xi) \in P_0^\prime \). Then \(C_x^\xi \subseteq \text{ran} r_x^\xi \) — and hence \(C_x^\xi \) is at most countable. More exactly if \(y \in C_x^\xi \) and \(y|_{>n} = x|_{>n} \) then there is a pair \((a, \varphi) \in D_n \) such that \(y = r_x^\xi (a, \varphi) \).

We prove the second, more exact part of the claim. By definition there is \(\eta \in \mathbb{R}^N \) such that \((y, \eta) \in P_0^\prime \) and \(\xi \in E_3 \eta \). Put \(b_m = y(m), \forall m \). Note that for every \(m < n \) there is a number \(a(m) \) such that
Proof. The “if” direction is rather easy. If \(x \mid \eta \leq n \), then obviously \(z \in \tau x \), that is, \(z = \tau x(b, \psi) \) for a pair \((b, \psi) \in D_m \) for some \(m \geq n \). Hence \(\tau x \subseteq \tau y \). If \(m < n \) then \(z = \tau x(b, \psi) = \tau x(a', \psi') \), where \(a' = b' \cdot (a \mid m) \) and \(\psi' = \psi \cdot (\eta \mid m) \). Then \(\tau x \subseteq \tau y \). The proof of the inverse inclusion \(\tau y \subseteq \tau x \) is similar.

Thus \(\tau x = \tau y \). It remains to prove \(\tau y \subseteq \tau x \) for all \(x, y, \eta \) such that \(\xi E_3 \eta \). Here we need another block of definitions.

Let \(H \) be the set of all \(m \in \mathbb{N} \times \mathbb{N} \) such that \(\delta = (m, j, m) \) is finite for all \(j \in \mathbb{N} \). For instance if \(\xi, \eta \in \mathbb{R}^\mathbb{N} \) satisfy \(\xi E_3 \eta \) then the set

\[
\delta_{xy} = \{ (j, m) : \xi(j) \neq \eta(j)(m) \}
\]

belongs to \(H \). The operation of symmetric difference \(\Delta \) converts \(H \) into a Polish group equal to the product group \(\langle \mathbb{Z}^\mathbb{N} \rangle : \mathbb{Z}^N \Delta \mathbb{N} \rangle \).

If \(n \in \mathbb{N} \), \((a, \psi) \in D_n \), and \(\delta \in \mathbb{Z}^\mathbb{N} \) then we define a sequence \(\psi' = H_0^\delta(\psi) \in \mathcal{D}^n \) so that \(\psi' = (\delta \mid \xi(a)(m)) \Delta \psi(m) \) for every \(m < n \). Then the pair \((a, H_0^\delta(\psi)) \) obviously still belongs to \(D_n \) and \(H_0^\delta(H_0^\delta(\psi)) = \psi \).

Coming back to a triple of \(y, \xi, \eta \in \mathbb{R}^\mathbb{N} \) such that \(\xi E_3 \eta \), let \(\delta = \delta_{xy} \). A routine verification shows that \(\tau y(a, \psi) = \tau y(a, H_0^\delta(\psi)) \) for all \((a, \psi) \in D_n \). It follows that \(\tau y \subseteq \tau x \), as required. \(\square \) (Claim and Lemma 16)

The next result reduces the equivalence relation \(E_3 \upharpoonright P_0'' \) to the equality of sets of the form \(\text{ran} \tau x \), that is essentially to the equivalence relation \(T_2 \) of “equality of countable sets of reals”.

Corollary 18. Suppose that \((x, \xi) \) and \((y, \eta) \) belong to \(P_0'' \). Then \((x, \xi) E_3 (y, \eta) \) holds if and only if \(\xi E_3 \eta \) and \(\text{ran} \tau x = \text{ran} \tau y \).

Proof. The “if” direction is rather easy. If \(\xi E_3 \eta \) and \(\text{ran} \tau y = \text{ran} \tau x \) then \(x \leq E_3 y \) because \(\text{ran} \tau y \subseteq \text{ran} \tau x \), and hence (see the proof of Claim 17) there exists a pair \((a, \psi) \in D_n \) such that \(y = \tau y(a, \psi) \).

Now let us establish \(\text{ran} \tau x = \text{ran} \tau y \) (with one and the same \(\xi \)). Suppose that \(z \in \text{ran} \tau x \), that is, \(z = \tau y(b, \psi) \) for a pair \((b, \psi) \in D_n \) for some \(m \). If \(m \neq n \) then obviously \(z = \tau y(b, \psi) = \tau x(b, \psi) \), and hence \((\xi \mid m) = \psi \mid m \) \(z \in \text{ran} \tau x \). If \(m = n \) then \(z = \tau y(b, \psi) = \tau x(b', \psi') \), where \(a' = b' \cdot (a \mid m) \) and \(\psi' = \psi \cdot (\eta \mid m) \), and once again \(z \in \text{ran} \tau x \). Thus \(\text{ran} \tau x = \text{ran} \tau y \). The proof of the inverse inclusion \(\text{ran} \tau y \subseteq \text{ran} \tau x \) is similar.

Thus \(\text{ran} \tau y = \text{ran} \tau x \) for all \(x, y, \eta \) such that \(\xi E_3 \eta \). Here we need another block of definitions.

Let \(H \) be the set of all \(m \in \mathbb{N} \times \mathbb{N} \) such that \(\delta = (m, j, m) \) is finite for all \(j \in \mathbb{N} \). For instance if \(\xi, \eta \in \mathbb{R}^\mathbb{N} \) satisfy \(\xi E_3 \eta \) then the set

\[
\delta_{xy} = \{ (j, m) : \xi(j)(m) \neq \eta(j)(m) \}
\]

belongs to \(H \). The operation of symmetric difference \(\Delta \) converts \(H \) into a Polish group equal to the product group \(\langle \mathbb{Z}^\mathbb{N} \rangle : \mathbb{Z}^N \Delta \mathbb{Z}^N \rangle \).

If \(n \in \mathbb{N} \), \((a, \psi) \in D_n \), and \(\delta \in \mathbb{Z}^\mathbb{N} \) then we define a sequence \(\psi' = H_0^\delta(\psi) \in \mathcal{D}^n \) so that \(\psi' = (\delta \mid \xi(a)(m)) \Delta \psi(m) \) for every \(m < n \). Then the pair \((a, H_0^\delta(\psi)) \) obviously still belongs to \(D_n \) and \(H_0^\delta(H_0^\delta(\psi)) = \psi \).

Coming back to a triple of \(y, \xi, \eta \in \mathbb{R}^\mathbb{N} \) such that \(\xi E_3 \eta \), let \(\delta = \delta_{xy} \). A routine verification shows that \(\tau y(a, \psi) = \tau y(a, H_0^\delta(\psi)) \) for all \((a, \psi) \in D_n \). It follows that \(\tau y \subseteq \tau x \), as required. \(\square \) (Case 1 of Theorem 2)
It satisfies \(P_0^\prime \subseteq \Pi \) by Claim 17. Suppose that pairs \(\langle a, \varphi \rangle, \langle b, \psi \rangle \) belong to \(D_n \) for the same \(n \), and \(\langle x, \xi \rangle \in \mathbb{R}^N \times \mathbb{R}^N \). Put \(G_{\varphi \psi}^y (x, \xi) = (y, \xi) \in \mathbb{R}^N \times \mathbb{R}^N \), where

\[
\begin{align*}
y &\begin{cases}
\tau_y^x (b, \psi) & \text{whenever } x = \tau_x^y (a, \varphi), \\
\tau_y^x (a, \varphi) & \text{whenever } x = \tau_x^y (b, \psi), \\
x & \text{whenever } \tau_y^x (a, \varphi) \neq x \neq \tau_y^x (b, \psi).
\end{cases}
\end{align*}
\]

In our assumptions, \(y_{|} \geq n = x_{|} \geq n \) and \(G_{\varphi \psi}^y \) is a homeomorphism of \(\mathbb{R}^N \times \mathbb{R}^N \) onto itself and of \(\Pi \) onto itself, and \(G_{\varphi \psi}^y = G_{\psi \varphi}^x \). In addition we have \(\tau \circ \tau = \tau \circ \tau \) whenever \((y, \xi) = a_{\varphi \psi} (x, \eta) \).

The group \(G \) of all superpositions of maps of the form \(G_{\varphi \psi}^y \), where \(\langle a, \varphi \rangle, \langle b, \psi \rangle \) belong to one and the same set \(D_n \), is a countable group of homeomorphisms of \(\mathbb{R}^N \times \mathbb{R}^N \). Consider the equivalence relation \(\Gamma \) induced by \(G \) on \(\Pi \). Thus \(\langle x, \xi \rangle \in \mathbb{R}^N \times \mathbb{R}^N \) iff there exists a homeomorphism \(g \in G \) such that \(g (x, \xi) = (y, \eta) \) (and then by definition \(\eta = \xi \)).

Now let us study relations between \(G \) and \(H \), the group introduced in the proof of Corollary 18. For any \(\delta \in \mathbb{H} \) define a homeomorphism \(H_\delta \) of \(\mathbb{R}^N \times \mathbb{R}^N \) so that \(H_\delta (x, \xi) = (x, \xi) \), where simply \(\eta = \delta \Delta \xi \) in the sense that

\[
\eta (m, j) = \begin{cases}
\xi (m, j) & \text{whenever } (m, j) \notin \delta, \\
1 - \xi (m, j) & \text{whenever } (m, j) \in \delta.
\end{cases}
\]

(Then obviously \(\delta = \delta \chi \)). If \(\gamma, \delta \in \mathbb{H} \) then the superposition \(H_\gamma \circ H_\delta = H_{\gamma \Delta \delta} \), where \(\Delta \) is the symmetric difference, as usual. Transformations of the form \(G_{\varphi \psi}^y \) do not commute with those of the form \(H_\delta \), yet there exists a convenient and easy to verify law of commutation:

Lemma 20. Suppose that \(n \in \mathbb{N} \) and pairs \(\langle a, \varphi \rangle, \langle b, \psi \rangle \) belong to \(D_n \), and \(\delta \in \mathbb{H} \). Then the superposition \(G_{\varphi \psi}^y \circ H_\delta \) coincides with \(H_\delta \circ G_{\psi \varphi}^y \), where \(\varphi' = H_\delta^a (\varphi) \) and \(\psi' = H_\delta^b (\psi) \).

It follows that the set \(S \) of all homeomorphisms \(s : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N \times \mathbb{R}^N \), of the form \(s = H_\delta \circ g_{\ell - 1} \circ g_{\ell - 2} \cdots \circ g_1 \circ g_0 \), where \(\ell \in \mathbb{N} \), \(\delta \in \mathbb{H} \), and each \(g_1 \) is a homeomorphism of \(\mathbb{R}^N \times \mathbb{R}^N \) of the form \(G_{\varphi \psi}^y \), and the pairs \(\langle a, \varphi \rangle, \langle b, \psi \rangle \) belong to one and the same set \(D_n \), \(n = n_1 \) (then \(g_{\ell - 1} \circ g_{\ell - 2} \cdots \circ g_1 \circ g_0 \in G \)), is a group under the superposition. For instance if \(g = G_{\varphi \psi}^y \) and \(g_1 \) belong to \(G \) and \((a, \varphi) \), \((b, \psi) \) belong to one and the same \(D_n \) then the superposition \(H_\delta \circ g \circ H_\beta \circ g_1 \) coincides with \(H_\delta \circ H_\beta \circ g' \circ g_1 = H_{\delta \Delta \beta} \circ (g' \circ g_1) \), where \(g' = G_{\psi \varphi}^y \) and \(\varphi' = H_\delta^b (\varphi) \), \(\psi' = H_\delta^b (\psi) \) as in Lemma 20.

Thus \(S \) is a more complicated product of \(G \) and \(H \), but on the other hand more elementary than the free product (of all formal superpositions of elements of both groups). The action of \(S \) on \(\mathbb{R}^N \times \mathbb{R}^N \) is defined as follows: if \(s \) is as above then \(s \cdot (x, \xi) = H_\delta (g_{\ell - 1} (g_{\ell - 2} (\cdots (g_1 (g_0 (x, \xi)) \cdots))) \). One can easily check that both the group \(S \) and the action are Polish. On the other hand, the induced orbit equivalence relation \(S \) is equal to the conjunction \(F \) of \(G \) and the equivalence relation \(E_3 \) acting on the 2nd factor of \(\mathbb{R}^N \times \mathbb{R}^N \), in the sense of Theorem 3 in the Introduction.

Moreover, we have \(\langle x, \xi \rangle \in E_3 (y, \eta) \) if and only if \(\langle x, \xi \rangle \in S \) for any \(\langle x, \xi \rangle, \langle y, \eta \rangle \in P_0^\prime \).

The final step is the next lemma. Its proof, not really obvious, see in [6].

Lemma 21. \(G \) is the union of an increasing sequence of finite subgroups, therefore the induced equivalence relation \(G \) is hyperfinite.

\[\square \text{ (Theorem 3)} \]

The arguments above reduce further study of Case 1 of Theorem 2 to properties of the group \(S \) and its Polish actions. This is an open topic, and maybe the local finiteness of \(G \) (by Lemma 21) can lead to more comprehensive results.

7. Case 2

Then the \(\Sigma_1^1 \) set \(R = P_0 \cap H \), where \(H = 2^N \times S \) is the chaotic domain, is non-empty. Our goal will be to prove that \(E_1 \subseteq E_3 \mid R \) in this case. The embedding \(\vartheta : \mathbb{R}^N \to \mathbb{R} \) will have the property that any two elements \(\langle x, \xi \rangle \) and \(\langle x', \xi' \rangle \) in the range \(\vartheta \subseteq \mathbb{R}^N \) satisfy \(x \subseteq \xi ' \neq \xi' \), so that the \(\xi' \)-component in the range of \(\vartheta \) is trivial. And as far as the \(x \)-component is concerned, the embedding will resemble the embedding defined in Case 1 of the proof of the 1st dichotomy theorem in [10] (see also [8, Ch. 8]).

Recall that sets \(S_0^m \) were defined in Corollary 10, and by definition

\[
\begin{align*}
\langle x, \xi \rangle \in H \quad \iff \quad & \forall m \exists n \geq m \forall k \left(\langle x, \xi \rangle \notin S_0^m \right) \\
\iff \forall m \exists n \geq m \forall k \varphi \in S_0^m \left(\langle x, \xi \rangle \notin S_0^m \right)
\end{align*}
\]

in Case 2. Prove a couple of related technical lemmas.
Lemma 22. Each set S^k_n is invariant in the following sense: if $(x, \xi) \in S^k_n$, $(y, \eta) \in \mathbb{R}^N \times \mathbb{R}^N$, $x|_\geq n = y|_\geq n$, and $\xi \vdash \eta$ then $(y, \eta) \in S^k_n$.

Proof. Otherwise there is a Δ^1_1 function $\varphi \in \mathcal{P}_n^k$ such that $y(n) = \varphi(y|_\geq n, \eta)$. Then $x(n) = \varphi(x|_\geq n, \eta)$ as well because $x|_\geq n = y|_\geq n$. We put

$$u_j = \langle \xi(j), \Delta \eta(j) = \{m: \xi(j)(m) \neq \eta(j)(m)\}\rangle$$

for every $j < k$, these are finite subsets of \mathbb{N}. If $a \subseteq 2^N$ and $u \subseteq \mathbb{N}$ then define $u \cdot a \in 2^N$ so that $(u \cdot a)(m) = a(m)$ for $m \notin u$, and $(u \cdot a)(m) = a(m)$ for $m \in u$. If $\xi \in \mathbb{R}^N$ then define $f(\xi) \in \mathbb{R}^N$ so that $f(\xi)(j) = u_j \cdot \xi(j)$ for $j < k$, and $f(\xi)(j) = \xi(j)$ for $j \geq k$.

Finally, put $\psi(z, \xi) = \varphi(z, f(\xi))$ for every $(z, \xi) \in \mathbb{R}^N \times \mathbb{R}^N$. The map ψ obviously belongs to \mathcal{P}_n^k together with φ. Moreover

$$\psi(\xi(n)) = \varphi(x|_\geq n, f(\eta)) = \psi(x|_\geq n, \xi)$$

because $f(\eta)|_\leq k = \xi|_\leq k$, and this contradicts to the choice of (x, ξ). □

The next simple lemma will allow us to split Σ^1_1 sets in $\mathbb{R}^N \times \mathbb{R}^N$.

Lemma 23. If $P \subseteq \mathbb{R}^N \times \mathbb{R}^N$ is a Σ^1_1 set and $P \notin S^k_n$ then there exist points (x, ξ) and (y, η) in P with

$$y|_\geq n = x|_\geq n, \quad \eta \vdash \xi, \quad \eta|_\leq k = \xi|_\leq k, \quad \text{but} \quad y(n) \neq x(n).$$

Proof. Otherwise $\psi = \{((y|_\geq n, \eta) \in y(n)): (y, \eta) \in P\}$ is a map in \mathcal{P}_n^k, and hence $P \subseteq S^k_n$, contradiction. □

8. Case 2: splitting system

We apply a splitting construction, developed in [5] for the study of “ill”founded Sacks iterations. Below, 2^N will typically denote the set of all dyadic sequences of length n, and $2^{<\omega} = \bigcup_n 2^n$ all finite dyadic sequences.

The construction involves a map $\varphi : \mathbb{N} \to \mathbb{N}$ assuming infinitely many values and each its value infinitely many times (but $\forall n \varphi$ may be a proper subset of \mathbb{N}), another map $\pi : \mathbb{N} \to \mathbb{N}$, and, for each $u \in 2^{<\omega}$, a non-empty Σ^1_1 subset $P_u \subseteq R \cap H$ which satisfies a quite long list of properties.

First of all, if φ is already defined at least on $0, n$ and $u \neq v \in 2^n$ then let $\nu_u[v, u] = \max \{\varphi(\ell): \ell < n \land u(\ell) \neq v(\ell)\}$. And put $\nu_u[u, u] = -1$ for any u.

Now we present the list of requirements $1^\circ-8^\circ$.

1°: if $\varphi(n) \notin \{\varphi(\ell): \ell < n\}$ then $\varphi(n) > \varphi(\ell)$ for each $\ell < n$;

2°: if $u \in 2^n$ then $P_u \cap (\bigcup_{n} S^k_u) = \emptyset$ for each $\ell < n$;

3°: every P_u is a non-empty Σ^1_1 subset of $R \cap H$;

4°: $P_{u|\ell} \subseteq P_u$ for all $u \in 2^{<\omega}$ and $i = 0, 1$.

Two further conditions are related rather to the sets $X_u = \text{dom} P_u$.

5°: if $u, v \in 2^n$ then $X_u|_{\nu_u[u, v]} = X_v|_{\nu_v[u, v]}$;

6°: if $u, v \in 2^n$ then $X_u|_{\nu_u[u, v]} \cap X_v|_{\nu_v[u, v]} = \emptyset$.

The content of the next condition is some sort of genericity in the sense of the Gandy–Harrington forcing in the space $\mathbb{R}^N \times \mathbb{R}^N$, that is, the forcing notion

$$\mathbb{P} = \{\text{all non-empty } \Sigma^1_1 \text{ subsets of } \mathbb{R}^N \times \mathbb{R}^N\}.$$

Let us fix a countable transitive model M of a sufficiently large fragment of ZFC.\footnote{For instance remove the Power Set axiom but add the axiom saying that for any set X there exists the set of all countable subsets of X.} For technical reasons, we assume that M is an elementary submodel of the universe w.r.t. all analytic formulas. Then simple relations between sets in \mathbb{P} in the universe, like $P = Q$ or $P \subseteq Q$, are adequately reflected as the same relations between their intersections $P \cap M, Q \cap M$ with the model M. In this sense \mathbb{P} is a forcing notion in M.

A set $D \subseteq \mathbb{P}$ is open dense iff, first, for any $P \in \mathbb{P}$ there is $Q \subseteq D, Q \subseteq P$, and given sets $S \subseteq Q \in \mathbb{R}$, if Q belongs to D then so does P. A set $D \subseteq \mathbb{P}$ is coded in M, iff the set $\{P \cap M: P \in D\}$ belongs to M. There exists at most countably many such sets because M is countable. Let us fix an enumeration (not in M) $\{D_n: n \in \mathbb{N}\}$ of all open dense sets $D \subseteq \mathbb{P}$ coded in M.
The next condition essentially asserts the \(P \)-genericity of each branch in the splitting construction over \(M \).

\[7^\circ: \text{for every } n, \text{ if } u \in 2^{n+1} \text{ then } P_u \in D_n. \]

Remark 24. It follows from \(7^\circ \) that for any \(a \in 2^N \) the sequence \(\{P_a\}_{a \in N} \) is generic enough for the intersection \(\bigcap_n P_a \neq \emptyset \) to consist of a single point, say \((g(a), \gamma(a)) \), and for the maps \(g, \gamma : 2^N \to \mathbb{R}^N \times \mathbb{R}^N \) to be continuous.

Note that \(g = 1 - 1\). Indeed if \(a \neq b \) belong to \(2^N \) then \(a(n) \neq b(n) \) for some \(n \), and hence \(\nu \psi(a \upharpoonright m, b \upharpoonright m) \geq \psi(n) \) for all \(m \geq n \). It follows by \(6^\circ \) that \(X_a \cap X_b = \emptyset \) for \(m > n \), therefore \(g(a) \neq g(b) \).

Our final requirement involves the \(\xi \)-parts of sets \(P_u \). We’ll need the following definition. Suppose that \((x, \xi) \) and \((y, \eta) \) belong to \(\mathbb{R}^N \times \mathbb{R}^N \), \(p \in \mathbb{N} \), and \(s \in \mathbb{N}^{<\omega} \), \(1hs = m \) (the length of \(s \)). Define \((x, \xi) \equiv_p (y, \eta) \) iff

\[\xi \in E_3 \eta, \quad x|_p = y|_p, \quad \text{and} \quad \xi(k) \Delta \eta(k) \subseteq s(k) \quad \text{for all } k < m = 1hs, \]

where \(\alpha \Delta \beta = \{ j : \alpha(j) \neq \beta(j) \} \) for \(\alpha, \beta \in 2^N \). If \(P, Q \subseteq \mathbb{R}^N \times \mathbb{R}^N \) are arbitrary sets then under the same circumstances \(P \equiv_p Q \) will mean that

\[\forall (x, \xi) \in P \exists (y, \eta) \in Q \ ((x, \xi) \equiv_p (y, \eta)) \quad \text{and vice versa}. \]

Obviously \(\equiv_1^p \) is an equivalence relation.

The following is the last condition:

\[8^\circ: \text{there exists a map } \pi : N \to N, \text{ such that } P_u \equiv_{\pi|_n}^\nu \nu \psi[u, v] \forall v \forall v \in 2^N \quad \text{and then} \quad X_u \cap \nu \psi[u, v] = X_v \cap \nu \psi[u, v] \quad \text{as in } 5^\circ. \]

9. Case 2: splitting system implies the reducibility

Here we prove that any system of sets \(P_u \) and \(X_u = \text{dom} P_u \) and maps \(\psi, \pi \) satisfying \(1^\circ - 8^\circ \) implies Borel reducibility of \(E_1 \) to \(E_{13} \mid R \). This completes Case 2. The construction of such a splitting system will follow in the remainder.

Let the maps \(g \) and \(\gamma \) be defined as in Remark 24. Put

\[W = \{ (g(a), \gamma(a)) : a \in 2^N \}. \]

Lemma 25. \(W \) is a closed set in \(\mathbb{R}^N \times \mathbb{R}^N \) and a function. Moreover if \((x, \xi) \) and \((y, \eta) \) belong to \(W \) then \(\xi \in E_3 \eta \).

Proof. \(W \) is closed as a continuous image of \(2^N \). That \(W \) is a function follows from the bijectivity of \(g \), see Remark 24. Finally any two \(\xi, \eta \) as indicated satisfy \(\xi(k) \Delta \eta(k) \subseteq \pi(k) \) for all \(k \) by \(8^\circ \). \(\square \)

Put \(X = \text{dom} W \). Thus \(W \) is a continuous map \(X \to \mathbb{R}^N \) by the lemma.

Corollary 26. There exists a Borel reduction of \(E_{1} \mid X \) to \(E_{13} \mid W \).

Proof. As \(W \) is a function, we can use the notation \(W(x) \) for \(x \in X = \text{dom} W \). Put \(f(x) = (x, W(x)) \). This is a Borel, even a continuous map \(X \to W \). It remains to establish the equivalence

\[x E_1 y \iff f(x) E_{13} f(y) \quad \text{for all } x, y \in X. \tag{6} \]

If \(x E_1 y \) then \(W(x) E_3 W(y) \) by Lemma 25, and hence easily \(f(x) E_{13} f(y) \). If \(x E_1 y \) fails then obviously \(f(x) E_{13} f(y) \) fails, too. \(\square \)

Thus to complete Case 2 it now suffices to define a Borel reduction of \(E_{1} \) to \(E_{1} \mid X \). To get such a reduction consider the set \(\Phi = r \times \text{dom} \psi \), and let \(\Phi = \{ p_m : m \in \mathbb{N} \} \) in the increasing order; that the set \(\Phi \subseteq \mathbb{N} \) is infinite follows from \(1^\circ \).

Suppose that \(n \in \mathbb{N} \). Then \(\psi(n) = p_m \) for some (unique) \(m \); we put \(\psi(n) = m \). Thus \(\psi : \mathbb{N}^{<\omega} \to \mathbb{N} \) and the preimage \(\psi^{-1}(m) = \psi^{-1}(p_m) \) is an infinite subset of \(N \) for any \(m \). Define a parallel system of sets \(Y_u \subseteq \mathbb{R}^N \), \(u \in 2^{<\omega} \), as follows. Put \(Y_0 = \mathbb{R}^N \). Suppose that \(Y_u \) has been defined, \(u \in 2^{<\omega} \). Put \(p = \psi(n) = p_{\psi(n)} \). Let \(K \) be the number of all indices \(\ell < n \) still satisfying \(\psi(\ell) = p \), perhaps \(K = 0 \). Put \(Y_u + 1 = \{ x \in Y_u : \psi(p(K - 1)) = \ell \} \) for \(i = 0, 1 \).

Each of \(Y_u \) is clearly a basic clopen set in \(\mathbb{R}^N \), and one easily verifies that conditions \(4^\circ - 6^\circ \) are satisfied for the sets \(Y_u \) and the map \(\psi \) (instead of \(\psi \) in \(5^\circ, 6^\circ \)), in particular

\[6^\circ: \text{if } u, v \in 2^N \text{ then } Y_u \upharpoonright \psi[u, v] = Y_v \upharpoonright \psi[u, v]; \]

\[7^\circ: \text{if } u, v \in 2^N \text{ then } Y_u \upharpoonright \psi[u, v] \cap Y_v \upharpoonright \psi[u, v] = \emptyset; \]

where \(\nu \psi[u, v] = \max \{ \psi(\ell) : \ell < u \land u(\ell) \neq v(\ell) \} \) (compare with \(\psi \) above).
It is clear that for any \(a \in 2^\mathbb{N} \) the intersection \(\bigcap u Y_\mathfrak{a}[n] = \{ f(a) \}\) is a singleton, and the map \(f \) is continuous and 1–1. (We can, of course, define \(f \) explicitly: \(f(a)(p)(K) = a(n) \), where \(n \in \mathbb{N} \) is chosen so that \(\psi(n) = p \) and there is exactly \(K \) numbers \(\ell < n \) with \(\psi(\ell) = p \).) Note finally that \(\{ f(a) : a \in 2^\mathbb{N} \} = \mathbb{R}^\mathbb{N} \) since by definition \(Y_{\mathfrak{a}+1} \cup Y_{\mathfrak{a}+0} = Y_{\mathfrak{a}} \) for all \(\mathfrak{a} \).

We conclude that the map \(\vartheta(x) = g(f^{-1}(x)) \) is a continuous map (in fact a homeomorphism in this case by compactness) \(\mathbb{R}^\mathbb{N} \xrightarrow{\vartheta} X = \text{dom} W \).

Lemma 27. The map \(\vartheta \) is a reduction of \(E_1 \) to \(E_1 \mid X \), and hence \(\vartheta \) witnesses \(E_1 \leq^B E_1 \mid X \) and \(E_1 \leq^B E_{13} \mid W \) by Corollary 26.

Proof. It suffices to check that the map \(\vartheta \) satisfies the following requirement: for each \(y, y' \in \mathbb{R}^\mathbb{N} \) and \(m \),

\[
y \mid \geq m = y' \mid \geq m \iff \vartheta(y) \mid \geq pm = \vartheta(y') \mid \geq pm. \tag{7}
\]

To prove (7) suppose that \(y = f(a) \) and \(x = g(a) = \vartheta(y) \), and similarly \(y' = f(a') \) and \(x' = g(a') = \vartheta(y') \), where \(a, a' \in 2^\mathbb{N} \). Suppose that \(y \mid \geq m = y' \mid \geq m \). We then have \(m > \nu(y)[n, a' \mid n] \) for any \(n \) by \(7^\circ \). It follows, by the definition of \(\psi \), that \(\nu \mid \geq m \) is continuous and 1–1. Hence, \(X_{a \mid n} \mid \geq pm = X_{a' \mid n} \mid \geq pm \) for any \(n \) by \(5^\circ \). Therefore \(x \mid \geq pm = x' \mid \geq pm \) by \(7^\circ \), that is, the right-hand side of (7). The inverse implication in (7) is proved similarly.

It follows that we can now focus on the construction of a system satisfying \(1^\circ – 8^\circ \). The construction follows in Section 12, after several preliminary lemmas in Sections 10 and 11.

10. Case 2: how to shrink a splitting system

Let us prove some results related to preservation of condition \(8^\circ \) under certain transformations of shrinking type. They will be applied in the construction of a splitting system satisfying conditions \(1^\circ – 8^\circ \) of Section 8.

Lemma 28. Suppose that \(n \in \mathbb{N} \), \(s \in \mathbb{N} \), and a system of \(\Sigma^1_1 \) sets \(\emptyset \neq P_u \subseteq \mathbb{R}^\mathbb{N} \times \mathbb{R}^\mathbb{N} \), \(u \in 2^n \), satisfies \(P_u \cong^s v_{w, u} P_\nu \) for all \(u, v \in 2^n \). Assume also that \(w_0 \in 2^n \), and \(\emptyset \neq Q \subseteq P_{w_0} \) is a \(\Sigma^1_1 \) set. Then the system of \(\Sigma^1_1 \) sets \(P'_u = \{ (x, \xi) \in P_u : \exists (z, \zeta) \in Q \langle (x, \xi) \cong^s v_{w, w_0} (z, \zeta) \rangle, \ u \in 2^n \}, \) still satisfies \(P'_u \cong^s v_{w, u} P'_\nu \) for all \(u, v \in 2^n \), and \(P'_{w_0} = Q \).

Proof. \(P'_{w_0} = Q \) holds because \(v_{w_0}[w_0, w_0] = -1 \). Let us verify \(8^\circ \). Suppose that \(u, v \in 2^n \). Each one of the three numbers \(v_{w_0}[u, v], v_{w_0}[v, w], v_{w_0}[u, v] \) is obviously not bigger than the largest of the two other numbers. This observation leads us to the following three cases.

Case a: \(v_{w_0}[u, w] = v_{w_0}[v, v] \geq v_{w_0}[u, v] \). Consider any \((x, \xi) \in P'_u \). Then by definition there exists \((z, \zeta) \in Q \) with \((x, \xi) \cong^s v_{w, w_0} (z, \zeta) \). Then, as \(P'_u \cong^s v_{w, w_0} P_\nu \) is assumed by the lemma, there is \((y, \eta) \in P_\nu \) such that \((y, \eta) \cong^s v_{w, w_0} (z, \zeta) \). Note that \((z, \zeta) \) witnesses \((y, \eta) \in P'_\nu \). On the other hand, \((x, \xi) \cong^s v_{w, w_0} (y, \eta) \) because \(v_{w_0}[u, w_0] = v_{w_0}[v, v] \geq v_{w_0}[w, w_0] \). Conversely, suppose that \((y, \eta) \in P'_\nu \). Then there is \((z, \zeta) \in Q \) such that \((y, \eta) \cong^s v_{w_0} (z, \zeta) \). Yet \(P_{w_0} \cong^s v_{w_0} P_u \), and hence there exists \((x, \xi) \in P'_u \) with \((x, \xi) \cong^s v_{w_0} (z, \zeta) \). Once again we conclude that \((x, \xi) \cong^s v_{w_0} (y, \eta) \).

Case b: \(v_{w_0}[v, w] = v_{w_0}[u, v] \geq v_{w_0}[u, w] \). Absolutely similar to Case a.

Case c: \(v_{w_0}[w, w_0] = v_{w_0}[v, v] \geq v_{w_0}[u, v] \). This is a symmetric case, thus it is enough to carry out only the direction \(P'_u \rightarrow P'_\nu \). Consider any \((x, \xi) \in P'_u \). As above there is \((z, \zeta) \in Q \) such that \((x, \xi) \cong^s v_{w_0} (z, \zeta) \). On the other hand, as \(P'_u \cong^s v_{w, w_0} P_\nu \), there exists a point \((y, \eta) \in P_\nu \) such that \((y, \eta) \cong^s v_{w, w_0} (x, \xi) \). Note that \((x, \xi) \) witnesses \((y, \eta) \in P'_\nu \); indeed by definition we have \((y, \eta) \cong^s v_{w_0} (x, \xi) \).

Corollary 29. Assume that \(n \in \mathbb{N} \), \(s \in \mathbb{N} \), and a system of \(\Sigma^1_1 \) sets \(\emptyset \neq P_u \subseteq \mathbb{R}^\mathbb{N} \times \mathbb{R}^\mathbb{N} \), \(u \in 2^n \), satisfies \(P_u \cong^s v_{w, u} P_\nu \) for all \(u, v \in 2^n \). Assume also that \(\emptyset \neq Q \subseteq P_{w_0} \) is defined for every \(w \in W \) so that still \(Q_w \cong^s v_{w, w_0} Q_\nu \) for all \(w, w' \in W \). Then the system of \(\Sigma^1_1 \) sets \(P'_u = \{ (x, \xi) \in P_u : \exists w \in W \exists (y, \eta) \in Q_w \langle (x, \xi) \cong^s v_{w} (y, \eta) \rangle \} \) still satisfies \(P'_u \cong^s v_{w, u} P'_\nu \) for all \(u, v \in 2^n \), and \(P'_{w_0} = Q_w \) for all \(w \in W \).

Proof. Apply the transformation of Lemma 28 consecutively for all \(w_0 \in W \) and the corresponding sets \(Q_{w_0} \). Note that these transformations do not change the sets \(Q_w \) with \(w \in W \) because \(Q_w \cong^s v_{w, w_0} Q_{w'} \) for all \(w, w' \in W \).
Remark 30. The sets P'_u in Corollary 29 can as well be defined by
\[P'_u = \{ (x, \xi) \in P_u : \exists \eta \in Q_w \ (x, \xi) \equiv^s_{v_p[u,w]} (y, \eta) \} \]
where, for each $u \in 2^n$, w_u is an element of W such that the number $v_p[u, w_u]$ is the least of all numbers of the form $v_p[u, w]$, $w \in W$. (If there exist several $w \in W$ with the minimal $v_p[u, w]$ then take the least of them.)

11. Case 2: how to split a splitting system

Here we consider a different question related to the construction of systems satisfying conditions 1°–8° of Section 8. Given a system of Σ^1_1 sets satisfying a 8°-like condition, how to shrink the sets so that 8° is preserved and in addition 6° holds. Let us begin with a basic technical question: given a pair of Σ^1_1 sets P, Q satisfying $P \equiv^s_p Q$, for some p, s, how to define a pair of smaller Σ^1_1 sets $P' \subseteq P$, $Q' \subseteq Q$, still satisfying the same condition, but as disjoint as it is compatible with this condition.

Recall that $\text{dom} P = \{ x : \exists \xi \ (x, \xi) \in P \}$ for $P \subseteq \mathbb{R}^N \times \mathbb{R}^N$.

Lemma 31. If $P, Q \subseteq \mathbb{R}^N \times \mathbb{R}^N$ are non-empty Σ^1_1 sets, $p, n, s \in \mathbb{N}^\omega$, $P \equiv^p_n Q$, and $(P \cup Q) \cap s_k = \emptyset$, where $k = 1, 2, \ldots, n$, then there exist non-empty Σ^1_1 sets $P' \subseteq P$, $Q' \subseteq Q$ such that $P' \equiv^p_n Q'$, but in addition $(\text{dom} P') \supseteq_p (\text{dom} Q')$.

Note that $P \equiv^p_n Q$ implies $(\text{dom} P)|_{>p} = (\text{dom} Q)|_{>p}$.

Proof. It follows from Lemma 23 that there exist points (x_0, ξ_0) and (x_1, ξ_1) in P such that $(x_0, \xi_0) \equiv^s_p (x_1, \xi_1)$ but $x_1(p) \neq x_0(p)$). Then there exists a number j such that, say, $x_1(p)(j) = 1 \neq x_0(p)(j)$. On the other hand, there exists $(y_0, \eta_0) \in Q$ such that $(x_i, \xi_i) \equiv^p_j (y_0, \eta_0)$ for $i = 0, 1$. Then $y_0(p)(j) \neq x_0(p)(j)$ for some $i = 0, 1$. Let say $y_0(p)(j) = 0 \neq x_0(p)(j)$ whenever $(x, \xi) \in P'$ and $(y, \eta) \in Q'$.

Corollary 32. Assume that $n \in \mathbb{N}$, $s \in \mathbb{N}^\omega$, and a system of Σ^1_1 sets $\emptyset \neq P_u \subseteq \mathbb{R}^N \times \mathbb{R}^N$, $u \in 2^n$, satisfies $P_u \equiv^s_{v_p[u,v]} P_v$ for all $u, v \in 2^n$. Then there exists a system of Σ^1_1 sets $\emptyset \neq P'_u \subseteq P_u$, $u \in 2^n$, such that $P'_u \equiv^s_{v_p[u,v]} P_v$, and in addition $(\text{dom} P'_u)|_{>v_p[u,v]} \cap (\text{dom} P_v)|_{>v_p[u,v]} = \emptyset$, for all $u \neq v \in 2^n$.

Proof. Consider any pair of $u_0 \neq v_0$ in 2^n. Apply Lemma 31 for the sets $P = P_{u_0}$ and $Q = P_{v_0}$ and $p = v_p[u_0, v_0]$. Let P' and Q' be the Σ^1_1 sets obtained, in particular $P' \equiv^s_{v_p[u_0, v_0]} Q'$ and $(\text{dom} P')|_{>v_p[u_0, v_0]} \cap (\text{dom} Q')|_{>v_p[u_0, v_0]} = \emptyset$. Then by Corollary 29 there is a system of Σ^1_1 sets $\emptyset \neq P'_u \subseteq P_u$ such that $P'_u \equiv^s_{v_p[u,v]} P_v'$ for all $u, v \in 2^n$, and $P_{u_0} = P'$, $P_{v_0} = Q'$, and hence $(\text{dom} P'_u)|_{>v_p[u,v_0]} \cap (\text{dom} P_{v_0}'|_{>v_p[u,v_0]} = \emptyset$.

Take any other pair of $u_1 \neq v_1$ in 2^n and transform the system of sets P'_u the same way. Iterate this construction sufficient (finite) number of steps.

12. Case 2: the construction of a splitting system

We continue the proof of Theorem 2 — Case 2. Recall that $R = P_0 \cap H$ is a Σ^1_1 set. By Lemma 27, it suffices to define functions φ and π and a system of Σ^1_1 sets $P_u \subseteq R$ together satisfying conditions 1°–8°. The construction of such a system will go on by induction on n. That is, at any step n the sets P_u with $u \in 2^n$, as well as the values of $\varphi(k)$ and $\pi(k)$ with $k < n$, will be defined.

For $n = 0$, we put $P_A = R$. ($A \in 2^0$ is the only sequence of length 0.)

Suppose that sets $P_u \subseteq R$ with $u \in 2^n$, and also all values $\varphi(\ell)$, $\ell < n$, and $\pi(k)$, $k < n$, have been defined and satisfy the applicable part of 1°–8°. The content of the inductive step $n \mapsto n + 1$ will consist in definition of $\varphi(n)$, $\pi(n)$, and sets P_u^{n+1} with u^{n+1} in 2^{n+1}, that is, $u \in 2^n$ (a dyadic sequence of length n) and $i = 0, 1$. This goes on in four steps A, B, C, D.
12.1. Step A: definition of $\varphi(n)$

Suppose that, in the order of increase,
\[
\{\varphi(\ell) : \ell < n\} = \{p_0 < \cdots < p_m\}.
\]
For $j \leq m$, let K_j be the number of all $\ell < n$ with $\varphi(\ell) = p_j$.

Case A: $K_j \geq m$ for all $j \leq m$. Then consider any $u_0 \in 2^n$ and an arbitrary point $\langle x_0, \xi_0 \rangle \in P_{u_0}$. Note that by (5) of Section 7 there is a number $p > \max_{\ell < n} \varphi(\ell)$ such that $(x_0, \xi_0) \notin \bigcup_{k} S_{\varphi(\ell)}^k$. Put $\varphi(n) = p$.

We claim that the sets $P_u' = P_u \setminus \bigcup_{k} S_{\varphi(n)}^k$ still satisfy condition 8° (and then 5° for $X'_u = \compl P_u'$). Indeed suppose that $u, v \in 2^n$ and $\langle x, \xi \rangle \in P_u'$. Then $\langle x, \xi \rangle \in P_u$, and hence there is a point $\langle y, \eta \rangle \in P_v$ such that $\langle x, \xi \rangle \equiv^\varphi[n]_{v[u,v]} \langle y, \eta \rangle$. It remains to show that $\langle y, \eta \rangle \notin \bigcup_{k} S_{\varphi(n)}^k$. Suppose towards the contrary that $\langle y, \eta \rangle \in S_{\varphi(n)}^k$ for some k. By definition $\varphi(n) > v[y, u, v]$, therefore $\langle x, \xi \rangle \in S_{\varphi(n)}^k$ by Lemma 22, contradiction.

Case B: If some numbers K_j are m then choose $\varphi(n)$ among p_j with the least K_j, and among them take the least one. Thus $\varphi(n) = \varphi(\ell)$ for some $\ell < n$. It follows that in this case $P_u \cap (\bigcup_{k} S_{\varphi(n)}^k) = \emptyset$ for all $u \in 2^n$ by the inductive assumption of 2°. Put $P_u' = P_u$.

Note that this manner of choice of $\varphi(n)$ implies $1^\circ, 2^\circ$ and also implies that φ takes infinitely many values and takes each its value infinitely many times. In addition, the construction given above proves:

Lemma 33. There exists a system of Σ^1_1 sets $\emptyset \neq P_u' \subseteq P_u$ satisfying 8° and $P_u' \cap (\bigcup_{k} S_{\varphi(n)}^k) = \emptyset$ for all $u \in 2^n$.

12.2. Step B: definition of $\pi(n)$

We work with the sets P_u' such as in Lemma 33. The next goal is to prove the following result:

Lemma 34. There exist a number $r \in \mathbb{N}$ and a system of Σ^1_1 sets $\emptyset \neq P_u'' \subseteq P_u'$ satisfying $P_u'' \equiv^\varphi[n]_{v[u,v]} P_v''$ for all $u, v \in 2^n$.

Proof. Let $2^n = \{u_j : j < K\}$ be an arbitrary enumeration of all dyadic sequences of length n; $K = 2^n$, of course. The method of proof will be to define, for any $k \leq K$, a number $r_k \in \mathbb{N}$ and a system of Σ^1_1 sets $\emptyset \neq Q^k_{u_j} \subseteq P_{u_j}$, $j < k$, by induction on k so that

\[
\langle x, \xi \rangle \equiv^\varphi[n]_{v[u_0,u_1]} Q^k_{u_j} \quad \text{for all } i < j < k.
\]

(Where $(\pi \upharpoonright n)^k$ is the extension of the finite sequence $\pi \upharpoonright n$ by r as the new rightmost term.)

After this is done, $r = r_K$ and the sets $P_u'' = Q^K_{v[u_0,u_1]}$ prove the lemma.

We begin with $k = 2$. Then $P_{u_0} \equiv^\varphi[n]_{v[u_0,u_1]} P_{u_1}$ by 8°, and hence there exist points $\langle x_0, \xi_0 \rangle \in P_{u_0}$, $\langle x_1, \xi_1 \rangle \in P_{u_1}$ such that $\langle x_0, \xi_0 \rangle \equiv^\varphi[n]_{v[u_0,u_1]} \langle x_1, \xi_1 \rangle$. Then $\xi_0 \equiv_1 \xi_1$, and so there is a number $r \in \mathbb{N}$ with $\xi_0(n) \Delta \xi_1(n) \subseteq r_2$. Note that for any $p \in \mathbb{N}$ and any points $\langle x, \xi \rangle, \langle y, \eta \rangle \in \mathbb{R}^n \times \mathbb{R}^n$, $\langle x, \xi \rangle \equiv^\varphi[n]_{v[u_0,u_1]} \langle y, \eta \rangle$ is equivalent to the conjunction

\[
\langle x, \xi \rangle \equiv^\varphi[n]_{v[u_0,u_1]} \langle y, \eta \rangle \wedge \xi(n) \Delta \eta(n) \subseteq r.
\]

It follows that the sets

\[
S_0 = \left\{ \langle x, \xi \rangle \in P_{u_0}' : \exists \langle y, \eta \rangle \in P_{u_1}' \left(\langle x, \xi \rangle \equiv^\varphi[n]_{v[u_0,u_1]} \langle y, \eta \rangle \right) \right\}
\]

and

\[
S_1 = \left\{ \langle y, \eta \rangle \in P_{u_1}' : \exists \langle x, \xi \rangle \in P_{u_0}' \left(\langle x, \xi \rangle \equiv^\varphi[n]_{v[u_0,u_1]} \langle y, \eta \rangle \right) \right\}
\]

are Σ^1_1 and non-empty (contain resp. (x_0, ξ_0) and (x_1, ξ_1)), and they obviously satisfy $S_0 \equiv^\varphi[n]_{v[u_0,u_1]} S_1$. Therefore by Corollary 29 there exists a system of Σ^1_1 sets $\emptyset \neq Q^2_{u_2} \subseteq P_{u_2}$, $u \in 2^n$, such that $Q^2_{u_0} = S_0$, $Q^2_{u_1} = S_1$, 8° still holds, and in addition $Q^2_{u_0} \equiv^\varphi[n]_{v[u_0,u_1]} Q^2_{u_1}$. Put $r_2 = r$.

Now let us carry out the step $k \mapsto k + 1$. Suppose that r_k and sets $Q^k_{u_j}$, $j < k$, satisfy \ast. Of all numbers $v[p_{u_j}, u_k]$, $j < k$, consider the least one. Let this be, say, $v[p_{u_j}, u_k]$, so that $j < k$ and $v[p_{u_j}, u_k] \leq v[p_{u_j}, u_j]$ for all $j < k$. As above there exists a number r and a pair of non-empty Σ^1_1 sets $S_k \subseteq Q^k_{u_k}$ and $S_k \subseteq Q^k_{u_k}$ such that $S_e \equiv^\varphi[n]_{v[u_k,u_j]} S_k$. We can assume that $r \geq r_k$. Put

\[
Q'_{u_j} = \left\{ \langle y, \eta \rangle \in S_{u_j} : \exists \langle x, \xi \rangle \in S_k \left(\langle x, \xi \rangle \equiv^\varphi[n]_{v[u_k,u_j]} \langle y, \eta \rangle \right) \right\}
\]
for all \(j < k \). The proof of Lemma 28 shows that \(Q'_{uk} \) are non-empty \(\Sigma_1 \) sets still satisfying (\(*) \) in the form of
\[
Q'_{uj} \equiv (\pi[n])^r_{\nu\phi} Q'_{uk} \text{ for } i < j < k \quad \text{since } r \geq r_j \text{ and obviously } Q'_{uj} = S_r.
\]
In addition, put \(Q'_{uk} = S_k \). Then still \(Q'_{uk} \equiv (\pi[n])^r_{\nu\phi} Q'_{uk} \) by the choice of \(S_r \) and \(S_k \). We claim that also
\[
Q'_{uj} \equiv (\pi[n])^r_{\nu\phi} Q'_{uk} \quad \text{for all } j < k.
\]
Indeed we have \(Q'_{uj} \equiv (\pi[n])^r_{\nu\phi} Q'_{uk} \) and \(Q'_{uj} \equiv (\pi[n])^r_{\nu\phi} Q'_{uk} \) by the above. It follows that \(Q'_{uj} \equiv (\pi[n])^r_{\nu\phi} Q'_{uk} \), where \(p = \max \{v_p[u_j, u_k], v_p[u_j, u_k] \} \). Thus it remains to show that \(p \leq v_p[u_j, u_k] \). That \(v_p[u_j, u_k] \leq v_p[u_j, u_k] \) holds by the choice of \(\ell \). Prove that \(v_p[u_j, u_k] \leq v_p[u_j, u_k] \). Indeed in any case
\[
v_p[u_j, u_k] \leq \max \{v_p[u_j, u_k], v_p[u_j, u_k] \}.
\]
But once again \(v_p[u_j, u_k] \leq v_p[u_j, u_k] \), so \(v_p[u_j, u_k] \leq v_p[u_j, u_k] \) as required.

Thus (8) is established. It follows that \(Q'_{uj} \equiv (\pi[n])^r_{\nu\phi} Q'_{uj} \) for all \(i < j \leq k \). We end the inductive step of the lemma by putting \(r_{k+1} = r \).

12.3. Step C: splitting to the next level

We work with the number \(r \) and sets \(P''_u \) such as in Lemma 34. Put \(\pi(n) = r \). (Recall that \(\phi(n) \) was defined at Step A.)

The next step is to split each one of the sets \(P''_u \) in order to define sets \(P''_{u^n} \) in \(2^{\aleph_0} \), of the next splitting level.

To begin with, put \(Q''_{u^n} = P''_u \) for all \(u \in 2^n \) and \(i = 0, 1 \). It is easy to verify that the system of sets \(Q''_{u^n} \), \(u^n \in 2^{\aleph_0} \), satisfies conditions 1° – 8° for the level \(n + 1 \), except for 7° and 6°. In particular, 2° was fixed at Step A, and 8° in the form that \(Q''_{u^n} \equiv (\pi[n])^r_{\nu\phi} Q''_{u^n} \) for all \(u^n \) and \(v^n \) in \(2^{\aleph_0} \) (and then 5° as well) at Step B – because \((\pi[n])^r_{\nu\phi} = \pi[n] \). Recall that by definition all sets involved have no common point with \(\bigcup_{n} S_{\phi(n)} \) by 2°. Therefore Corollary 32 is applicable. We conclude that there exists a system of non-empty \(\Sigma_1 \) sets \(W_{u^n} \subseteq Q''_{u^n} \), \(u^n \in 2^{\aleph_0} \), still satisfying 8°, and also satisfying 6°.

12.4. Step D: genericity

We have to further shrink the sets \(W_{u^n} \), \(u^n \in 2^{\aleph_0} \), obtained at Step C, in order to satisfy 7°, the last condition not yet fulfilled in the course of the construction. The goal is to define a new system of \(\Sigma_1 \) sets \(W_{u^n} \subseteq W_{u^n} \), \(u^n \in 2^{\aleph_0} \), such that still 8° holds, and in addition \(P''_{u^n} \subseteq D^n \) for all \(u^n \in 2^{\aleph_0} \), where \(D^n \) is the \(n \)-th open dense subset of \(P \) coded in \(M \).

Take any \(u^n \in 2^{\aleph_0} \). As \(D^n \) is a dense subset of \(P \), there exists a set \(W_0 \subseteq D^n \), therefore, a non-empty \(\Sigma_1 \) set, such that \(W_0 \subseteq W_{u^n} \). It follows from Lemma 28 that there exists a system of non-empty \(\Sigma_1 \) sets \(W_{u^n} \subseteq W_{u^n} \), \(u^n \in 2^{\aleph_0} \), still satisfying 8°, and such that \(W_{u^n} = W_0 \).

Now take any other \(i_1 \neq i_0 \) in \(2^{\aleph_0} \). The same construction yields a system of non-empty \(\Sigma_1 \) sets \(W_{u^n} \subseteq W_{u^n} \), \(u^n \in 2^{\aleph_0} \), still satisfying 8°, and such that \(W_{u^n} = W_1 \subseteq W_{u^n} \) is a set in \(D_n \).

Iterating this construction \(2^{\aleph_0} \) times, we obtain a system of sets \(P''_{u^n} \) satisfying 7° as well as all other conditions in the list 1° – 8°, as required.

\(\square \) (Construction and Case 2 of Theorem 2)

\(\square \) (Theorems 2 and 1)

Acknowledgements

The author is thankful to Alekos Kechris, Ben Miller, Simon Thomas, Jindrich Zapletal, Joan Bagaria, as well as to the anonymous referees, for valuable remarks and corrections and all other sort of help related to the content of this article. The author acknowledges partial financial support of RFFI (Grants 06-01-00608 and 07-01-00445) and MEC (Grant SAB 2006-0049). The author is grateful to several institutions for visiting opportunities during the course of writing this paper, especially to Universities of Barcelona and Bonn, Caltech, and University of Florida at Gainesville, and personally to A.S. Kechris, P. Koepke, W. Purkert, J. Zapletal, J. Bagaria.

References