УДК 519

7 .

MATEMATUKA

В. А. ЛЮБЕЦКИЙ

НЕКОТОРЫЕ СЛЕДСТВИЯ ГИПОТЕЗЫ О НЕСЧЕТНОСТИ МНОЖЕСТВА КОНСТРУКТИВНЫХ ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ

(Представлено академиком П. С. Новиковым 6 II 1968)

Приводимая теорема и ее доказательство излагаются здесь в рамках наивной теории множеств. Однако используемые рассуждения далеки от антиномий и могут быть формализованы. Они могут быть переизложены, например, в системе Цермело — Френкеля (см. (¹), обозначение ZF) или в системе Геделя (см. (³)). Используемые понятия определены в работах (²-4). Все теоремы, на которые ссылаемся, приведены в тех же работах.

T в о p е m а. Eсли множество конструктивных действительных чисел несчетно, то можно построить несчетное множество типа CA без совершенного подмножества; если существует совершенное множество положительной меры, все элементы которого суть конструктивные действительные числа, то можно построить неизмеримое множество типа B_2 .

Доказательство. Обозначим, как это часто делают (3,4), сужение геделевской функции $F(\alpha)$ (см. (3)) на множество всех счетных ординалов той же буквой $F(\alpha)$. В работе П. С. Новикова (4) по функции $F(\alpha)$ определяется некоторый класс функций, у которых область определениямножество всех счетных ординалов, а область значений — некоторые элементы одномерного беровского пространства. Каждая такая функция обозначается $F(\alpha)$, и значение $F(\alpha)$ называется изобразителем множества $F(\alpha)$. Методом, несущественно отличающимся от изложенного в работе (4), для любого множества E типа собственно CA можно построить в двумерном беровском пространстве (прямое произведение пространств x и y) множество θ со следующими свойствами: (1) θ есть множество типа A_r ; (2) $\theta \cdot p_y$ не более чем счетно; (3) если индекс решета, задающего E, совпадает в точках y_1 и y_2 , то $\operatorname{пр}_x \theta \cdot p_{y_1} = \operatorname{пр}_x \theta \cdot p_{y_2}$; (4) $\operatorname{пр}_y \theta \subseteq E$; (5) $\operatorname{пр}_x \theta \subseteq$ \subseteq [1, 2]; (6) пр_х θ совпадают с множеством всех изобразителей в отрезке [1, 2]. Обозначим пр_х θ через D. Униформизуем по теореме Кондо множество θ относительно x. Полученное множество обозначим θ' . Обозначим $\mathbf{np}_{v}\theta'$ через W. Множество W не содержит совершенного подмножества, ибо иначе таковое покрывалось бы счетным числом конституант множества E, а одна из этих конституант содержала несчетную часть W, прообраз этой части множества W относительно θ' был бы также несчетен, что про**тиворечит** свойству (3) множества θ .

Покажем, что множество D совпадает со всеми конструктивными действительными числами x, лежащими в отрезке [1,2] (что, в частности, докажет замечание 2). Пусть элемент x из отрезка [1,2] конструктивен и имеет разложение (см. (4)) $1x_1...x_{11}...$ Элемент c разложением $x_1...x_n$... также конструктивен, следовательно, есть значение геделевской функции на некотором счетном ординале a. Тогда F(a) = x. Действительно, состав F(a) есть $F(\beta_1)$..., где $F(\beta_1)$... $F(\beta_{11})$... суть изобразители элементов множества x. Элементы множества x суть пары натуральных чисел $\langle x_1 1 \rangle$... $\langle x_n n \rangle$... и их изобразители совпадают c их номерами $r(\langle x_1 1 \rangle)$... $r(\langle x_n n \rangle)$... Но единственный элемент c составом $\{r(\langle x_1 1 \rangle)$... $r(\langle x_n n \rangle)$... $\{c$ есть элемент $\{c$ разложением $\{c\}$... $\{c\}$... По свойству $\{c\}$. Пусть $\{c\}$ и имеет разложение $\{c\}$... $\{c\}$... $\{c\}$...

т. е. $F(\alpha) = x$. Состав x есть $\{r(\langle x_1 1 \rangle) \ldots r(\langle x_n n \rangle) \ldots \}$. Следовательно, множество $F(\alpha)$ состоит из пар $\langle x_1 1 \rangle \ldots \langle x_n n \rangle \ldots$, т. е. элемент $x_1 \ldots$ $\dots x_n \dots$ конструктивен, но тогда и элемент $1x_1 \dots x_n \dots$ конструктивен. W_3 свойства (2) множества θ вытекает, что W несчетно, если конструктивных действительных чисел несчетно.

Перейдем к доказательству второй части теоремы. Продолжим θ' с совершенного подмножества D положительной меры на весь отрезок [1, 2] с $\cos \mathbf{x}$ ранением типа множества θ' . Аналогично первой части настоящего доказательства можно показать, что продолжение $\bar{\theta}'$ есть неизмеримая функция. Следовательно, одно из ее лебеговских множеств есть неизмеримое B_2 . Доказательство окончено.

Замечание 1. Можно построить модель ZF, где одновременно: а) имеется несчетное CA-множество без совершенного ядра; б) имеется неконструктивное подмножество натурального ряда; в) нарушается равенство $2^{N_0} = N_1$; г) опровержима аксиома выбора. Это вытекает из работы

(5) и того, что теорему можно доказать и без аксиомы выбора.

Замечание 2. Из доказательства теоремы вытекает, что множество конструктивных действительных чисел имеет тип A_2 . Иное и более сложное доказательство этого факта дано в работе (6). Замечание 3. Можно построить модель ZF, где множество конструк-

тивных действительных чисел не есть множество типа A.

Замечание 4. Если множество конструктивных действительных чисел не меры нуль, то или множество конструктивных действительных чисел неизмеримо (и имеет тип A_2), или можно построить неизмеримое B_2 .

Московский государственный университет им. М. В. Ломоносова

Поступило 11 I 1968

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Френкель, И. Бар-Хилел, Основания теории множеств, М., 1966. ² Н. Н. Лузин, Лекции об аналитических множествах и их приложениях, М., 1953. ⁵ К. Гедель, УМН, 3, в. 1 (23), 138 (1948). ⁴ П. С. Новиков, Тр. Инст. им. В. А. Стеклова АН СССР, 38 (1951). ⁵ Р. J. Соhen, Set Theory and the Continuum Hypothesis, N. Y.— Amsterdam, 1966. ⁶ J. W. Adisson, Fund. Math., 46, 337 (1959).