УДК 510.223+510.227

В. Г. Кановей

Об упорядоченных структурах Хаусдорфа

Предлагается классификация проблем существования таких структур, как пределы, щели, башни, лестницы, в хаусдорфовых частично упорядоченных множествах бесконечных последовательностей, включая последовательности с вещественными членами и разные отношения частичного порядка.

Библиография: 27 наименований.

Ключевые слова: упорядоченные структуры Хаусдорфа, щели Хаусдорфа, башни, пределы.

Введение

Предположим, что $\langle P;\leqslant \rangle$ – какое-либо частично упорядоченное множество, область P которого состоит из вещественных функций, заданных на полупрямой $[0,+\infty)$, или из бесконечных последовательностей вещественных чисел, а сам порядок \leqslant соответствует следующему: $f\leqslant g$ означает, что функция (или последовательность) g растет быстрее, чем f. Ф. Хаусдорф назвал использование любой такой частично упорядоченной структуры $\langle P;\leqslant \rangle$ методом классификации функций либо последовательностей (Graduierungsmethod) по скорости возрастания. Примеры таких структур (мы их называем $xaycdop\phiosыmu$) приведены в \S 1.

История исследований таких упорядоченных структур восходит к работам П. Дюбуа Раймона (см. [1] и др.), которым следовали Дж. Адамар [2], Е. Борель [3], Г. Харди [4] и др. Ф. Хаусдорф предложил в [5], [6] иной подход к исследованию этих структур, основанный на поиске определенных линейно и даже вполне упорядоченных подструктур для данного частичного порядка. Эти подструктуры являются (обычно трансфинитными) возрастающими или убывающими последовательностями либо сводятся к таким последовательностям. К их числу относятся, в частности, лестницы, башни, пределы, щели, широко изучаемые в современной теории множеств и теоретико-множественной топологии (см., например, [7]–[10]). Эти подструктуры определяются далее в § 2.

Оказывается, что, кроме нескольких простых теорем несуществования, основанных на применении диагональной конструкции, а также довольно сложной теоремы существования (ω_1, ω_1^*)-щели, вопросы существования указанных

Работа выполнена при финансовой поддержке РФФИ (гранты № 06-01-00608, 07-01-00445).

подструктур в хаусдорфовых структурах приводят к неразрешимым проблемам. Например, на основе аксиом современной аксиоматической теории множеств **ZFC** невозможно ни доказать, ни опровергнуть утверждение о существовании (ω_1, ω^*) -щели, ω_1 -предела и т. д. Более подробно об этом сказано в § 6.

Однако не все такие проблемы являются независимыми друг от друга. Так, еще Φ . Ротбергером [11], [12] установлено, что для порядка эвентуального доминирования \leq^* (см. § 1) утверждение о существовании ω_1 -башни в $\mathbb{N}^\mathbb{N}$ равносильно утверждению о существовании (ω_1, ω^*)-щели в $2^\mathbb{N}$ и каждое из этих утверждений влечет существование ω_1 -предела в $2^\mathbb{N}$. (При этом каждая из этих трех гипотез существования неразрешима в **ZFC**.) Впоследствии были получены некоторые другие результаты о взаимной сводимости и эквивалентности этих проблем (см., например, [10], [13]), которые, однако, не исчерпали все многообразие задач даже для самого простого случая, связанного с кардиналом ω_1 . Действительно, для ω_1 нетривиальным является почти любое сочетание одной из трех областей $2^\mathbb{N} \subseteq \mathbb{N}^\mathbb{N} \subseteq \mathbb{R}^\mathbb{N}$, одного из четырех хаусдорфовых порядков, рассмотренных в § 1, и одного из четырех упомянутых типов подструктур (т. е. лестницы и пр.).

Целью настоящей работы является классификация этих проблем. Помимо хорошо изученных комбинаций областей $2^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}}$ и порядков \preccurlyeq , \leqslant *, мы рассматриваем более трудные задачи, связанные с областью $\mathbb{R}^{\mathbb{N}}$ последовательностей произвольных вещественных чисел и с мало исследованными порядками \preceq , \leqslant fro. Согласно нашему основному результату — теореме 5 из § 5 (доказательство см. в § 7) — для случая кардинала ω_1 все рассматриваемые задачи, кроме тех немногих, которые связаны со щелями и пределами для порядка \preceq , классифицируются по трем уже известным типам (лестницы, башни, т. е. щели и пределы). Для кардиналов $\kappa > \omega_1$ теорема 5 дает несколько менее определенные результаты.

Мы также рассмотрим в § 3 некоторые задачи, касающиеся связи рассматриваемых упорядоченных структур с их *континуальными* аналогами, т.е. такими структурами, которые состоят из непрерывных вещественных функций, заданных на $[0, +\infty)$, а не из бесконечных последовательностей.

§ 1. Хаусдорфовы упорядоченные структуры

Под нестрогим (частичным) порядком мы будем понимать любое транзитивное (т.е. $x\leqslant y$ и $y\leqslant z$ влечет $x\leqslant z$) и рефлексивное ($x\leqslant x$ для всех x) бинарное отношение \leqslant на некотором множестве X, называемом областью \leqslant . При этом не предполагается, что $x\leqslant y\wedge y\leqslant x$ влечет x=y. Также не предполагается линейность, т.е. не обязательно, чтобы любые два элемента $x,y\in X$ были сравнимы отношением \leqslant . (Такие отношения иногда называются npednopadkamu, или kasunopadkamu.) Имея такой порядок \leqslant , мы можем определить отношение эквивалентности $x\equiv y$, когда $x\leqslant y$ и $y\leqslant x$, а также строгий порядок $x\leqslant y$, когда $x\leqslant y$, но $y\nleq x$ на той же области. Обратно, если заданы отношение эквивалентности $x\equiv y$ 0 ($x\leqslant y$ 1) навариантный строгий порядок $x\leqslant y$ 2.

Областью следующих частично упорядоченных множеств является множество $\mathbb{R}^{\mathbb{N}}$ всех бесконечных последовательностей $a=\{a(n)\}_{n\in\mathbb{N}}$ вещественных чисел a(n). Ниже мы будем понимать элементы $a\in\mathbb{R}^{\mathbb{N}}$ как функции (из \mathbb{N} в \mathbb{R}), резервируя слово "последовательность" для трансфинитных последовательностей элементов из $\mathbb{R}^{\mathbb{N}}$. Рассматриваются также и подмножества $2^{\mathbb{N}}\subseteq\mathbb{N}^{\mathbb{N}}$ множества $\mathbb{R}^{\mathbb{N}}$; они состоят из бесконечных последовательностей, членами которых являются натуральные числа (для области $\mathbb{N}^{\mathbb{N}}$) и числа 0, 1 (для $\partial u a \partial u - u e c k o d$ области $2^{\mathbb{N}}$).

Определение порядка на $\mathbb{R}^{\mathbb{N}}$ через скорость роста, приведенное в [5]:

$$a\preccurlyeq b, \quad \text{если} \quad \exists \lim_{n\to\infty} \bigl(a(n)-b(n)\bigr)<+\infty,$$

отличается от определения порядка по скорости роста, данного ранее П. Дюбуа Раймоном для вещественных функций:

$$f \preccurlyeq g$$
, когда $\lim_{x \to +\infty} \frac{f(x)}{g(x)} < +\infty$,

однако логарифм последней дроби становится, очевидно, разностью логарифмов, а это индуцирует изоморфизм между вариантом последнего определения для $a \in \mathbb{R}^{\mathbb{N}}$ с положительными членами и первым определением. С другой стороны, определение через разность несколько более удобно технически, а потому более принято в современных исследованиях.

Простые примеры показывают, что предел в определении \leq может и не существовать, так что в $\mathbb{R}^{\mathbb{N}}$ имеются (\leq)-несравнимые элементы. Чтобы избавиться от возникающих при этом проблем, Ф. Хаусдорф предложил в [5] заменить предел верхним пределом (который всегда существует). Это приводит к модифицированному порядку по скорости роста:

$$a \le b$$
, если $\limsup_{n \to \infty} (a(n) - b(n)) < +\infty$.

Однако несравнимые элементы все же существуют, например константа 1 и функция $a \in \mathbb{R}^{\mathbb{N}}$, заданная равенствами a(n) = n для четных n и $a(n) = n^{-1}$ для нечетных. В сущности, невозможно разумно задать порядок на $\mathbb{R}^{\mathbb{N}}$, который бы сравнивал любую пару элементов $\mathbb{R}^{\mathbb{N}}$ и был минимально совместим $\mathbf{c} \leq (\mathbf{c}\mathbf{m})$. палее).

Следующий порядок на $\mathbb{R}^{\mathbb{N}}$ назван в [5] финальным (final Rangordnung):

$$a\leqslant_{\mathrm{fro}} b,$$
 если $\exists\, n_0\colon$ либо $a(n)< b(n)$ $\forall\, n\geqslant n_0,$ либо $a(n)=b(n)$ $\forall\, n\geqslant n_0.$

Легко видеть, что для $a \leq b$ необходимо и достаточно, чтобы $c+a \leq_{\rm fro} b$ было выполнено для каждой константы c. (Здесь c+a обозначает функцию a'(n)=a(n)+c.)

Порядок \leqslant^* , называемый *эвентуальным доминированием*, введен в [14]:

$$a\leqslant^* b$$
, если $\exists\, n_0\colon \quad \forall\, n\geqslant n_0 \quad (a(n)\leqslant b(n)).$

Определение 1. Хаусдорфовой упорядоченной структурой, для краткости ХУС, называется каждое частично упорядоченное множество вида $\langle D; \leqslant \rangle$, область D которого является одним из множеств $\mathbb{R}^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}}$, $2^{\mathbb{N}}$, а само отношение порядка \leqslant взято из списка \preccurlyeq , \trianglelefteq , \leqslant_{fro} , \leqslant^* , за исключением не представляющих интереса тривиальных структур $\langle 2^{\mathbb{N}}; \preccurlyeq \rangle$, $\langle 2^{\mathbb{N}}; \trianglelefteq \rangle$ и $\langle 2^{\mathbb{N}}; \leqslant_{\mathrm{fro}} \rangle$. Таким образом, всего имеется девять (нетривиальных) ХУС, из которых одна диадическая $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$, четыре ХУС могут быть названы структурами \mathbb{N} -типа (т. е. с множеством $\mathbb{N}^{\mathbb{N}}$ в качестве области), а оставшиеся четыре – структурами \mathbb{R} -типа (с множеством $\mathbb{R}^{\mathbb{N}}$ в качестве области).

Для каждого из этих четырех порядков \preccurlyeq , \leq , \leqslant _{fro}, \leqslant * мы естественным образом определяем (см. выше) соответственно отношение эквивалентности

$$\sim$$
, \bowtie , \equiv_{fro} , \equiv^* ,

а также соответственно строгий порядок

$$\prec$$
, \triangleleft , $<_{\text{fro}}$, $<^*$.

Например, $x \sim y$, когда $x \leq y$ и $y \leq x$, а $x \prec y$, когда $x \leq y$, но $y \nleq x$.

Заметим, что отношения порядка \leq_{fro} и \leq^* , отличные друг от друга, индуцируют одно и то же отношение эквивалентности $\equiv_{\text{fro}} = \equiv^*$, т. е.

$$a \equiv_{\mathrm{fro}} b \Leftrightarrow a \equiv^* b \Leftrightarrow a(n) = b(n)$$
 для всех, кроме конечного числа, n ,

но разные строгие отношения удовлетворяют соотношению $<_{\text{fro}} \subseteq <^*$.

§ 2. Щели, пределы, башни, лестницы

Здесь мы определим несколько важных типов линейно упорядоченных подструктур для ХУС. Зафиксируем частично упорядоченное множество $P=\langle P;\leqslant \rangle$, и пусть через < обозначен соответствующий строгий порядок. Пусть $\kappa,\,\lambda$ — пара кардиналов (мощностей), каждый из которых предполагается либо бесконечным и регулярным, либо конечным и равным 0 или 1. (Остальные конечные значения тривиально сводятся к этим двум в обсуждаемых вопросах.)

Введем следующие определения:

- 1) (κ, λ^*) -предщелью называется всякая пара из (<)-возрастающей последовательности $X = \{x_{\alpha}\}_{{\alpha}<\kappa}$ и (<)-убывающей последовательности $Y = \{y_{\beta}\}_{{\beta}<\lambda}$ элементов $x_{\alpha}, y_{\beta} \in P$ таких, что X < Y (т. е. $x_{\alpha} < y_{\beta}$ для всех ${\alpha} < \kappa, {\beta} < {\lambda}$);
- 2) о любом элементе $z \in P$, удовлетворяющем X < z < Y, говорят, что он заполняет предщель $\langle X, Y \rangle$, а если таких элементов z не существует, то данная (κ, λ^*) -предщель называется (κ, λ^*) -щелью¹;
- 3) κ -пределом называется $(\kappa, 1^*)$ -щель 2 , т. е. пара из (<)-возрастающей последовательности $\{x_\alpha\}_{\alpha<\kappa}$ и выделенного элемента $x\in P$, для которых $x_\alpha< x$

 $^{^1 {\}rm A}$ также часто и (κ, λ) -*щелью*, где второй кардинал λ обозначает порядковый тип убывающей последовательности.

 $^{^2}$ В большинстве рассматриваемых здесь случаев частично упорядоченные множества будут достаточно симметричны для того, чтобы существование $(\kappa, 1^*)$ -щелей было эквивалентно существованию $(1, \kappa^*)$ -щелей, и последний тип щелей будет называться *убывающим* пределом.

при любом α , и при этом нет другого элемента y такого, что $x_{\alpha} < y < x$ для любого α ; в этом случае удобно записывать $x = \lim_{\alpha \to \kappa} x_{\alpha}$;

- 4) κ -башней называется любая $(\kappa, 0^*)$ -щель, т.е. (<)-возрастающая κ -последовательность, неограниченная сверху³;
- 5) κ -лестницей называется всякая (<)-возрастающая последовательность $\{x_{\alpha}\}_{\alpha<\kappa}$ в P такая, что для каждого $x\in P$ мы имеем $x< x_{\alpha}$ для какого-то α .

Башни и лестницы относятся к более широким типам неограниченных и доминирующих множеств соответственно.

Неограниченными множествами называются те множества $X \subseteq P$, для которых не существуют элементы $x \in P$, удовлетворяющие $X \leqslant x$ (т. е. $x' \leqslant x$ для всех $x' \in X$).

Доминирующими множествами называются те множества $X\subseteq P$, для которых выполнено следующее: для каждого $x'\in P$ существует $x\in X$ такое, что $x'\leqslant x$.

Согласно введенной терминологии башней в структуре $P = \langle P; \leqslant \rangle$ будет любое вполне (<)-упорядоченное неограниченное множество, а лестницей – любое вполне (<)-упорядоченное доминирующее множество. Все доминирующие множества неограничены при условии, что не существует наибольших элементов.

§ 3. Континуальные структуры

Каждая из частично упорядоченных структур, определенных в §1 на области $\mathbb{R}^{\mathbb{N}}$ всех бесконечных последовательностей вещественных чисел, имеет очевидную континуальную модификацию, определенную на множестве C всех непрерывных функций⁴ $f \colon [0, +\infty) \to \mathbb{R}$. Можно рассматривать и более широкие семейства функций, например кусочно непрерывные, но ограниченные на каждом ограниченном интервале в $[0, +\infty)$.

Следующая теорема содержит несколько утверждений, связывающих дискретные и непрерывные структуры с отношениями \preccurlyeq , \leq , \leqslant _{fro}, \leqslant * в вопросах о существовании щелей и лестниц.

ТЕОРЕМА 2. Предположим, что \leqslant – одно из отношений порядка \preccurlyeq , \leq , \leqslant fro или \leqslant *, а κ – бесконечный регулярный кардинал. Тогда:

- (i) из существования κ -лестницы в $\langle \mathbb{R}^{\mathbb{N}}; \leqslant \rangle$ следует существование κ -лестницы в $\langle C; \leqslant \rangle$;
- (ii) обратно, из существования κ -лестницы в $\langle C; \leqslant \rangle$ следует существование κ -лестницы в $\langle \mathbb{R}^{\mathbb{N}}; \leqslant \rangle$.

Если дополнительно либо λ – бесконечный регулярный кардинал, либо $\lambda=0$, либо $\lambda=1$, и при этом \leqslant – одно из отношений \preccurlyeq , $\leqslant_{\rm fro}$, то мы имеем:

(iii) из существования (κ, λ^*) -щели в структуре $\langle \mathbb{R}^{\mathbb{N}}; \leqslant \rangle$ следует существование (κ, λ^*) -щели в $\langle C; \leqslant \rangle$.

 $^{^3}$ Также рассматриваются убывающие κ -последовательности, неограниченные снизу, – yбывающие башни.

⁴Таким образом, слово "континуальная" отражает здесь характер области определения функции, а не самой функции. На самом деле рассмотрение континуальных модификаций, скажем, для порядков \leq и \leq исторически предшествовало рассмотрению дискретных форм (т.е. тех, которые заданы на $\mathbb{R}^{\mathbb{N}}$). Последние стали систематически изучаться Φ . Хаусдорфом в работе [5].

Напомним, что $(\kappa, 0^*)$ -щели – это κ -башни, а $(\kappa, 1^*)$ -щели – это κ -пределы.

Доказательство. Для любой функции $f \colon [0, +\infty) \to \mathbb{R}$ через $f \upharpoonright \mathbb{N}$ обозначим последовательность $\{f(n)\}_{n \in \mathbb{N}}$ значений f на натуральных числах. До конца доказательства \leqslant может быть любым отношением порядка из списка $\{\preccurlyeq, \leq, \leqslant_{\mathrm{fro}}, \leqslant^*\}$.

- (i) Рассмотрим какую-нибудь лестницу $\{a_\xi\}_{\xi<\kappa}$ в $\langle\mathbb{R}^\mathbb{N};\leqslant\rangle$. Для каждого индекса ξ определим функцию $f_\xi\in C$ так, что $a_\xi=f_\xi\upharpoonright\mathbb{N}$ и f_ξ линейна на каждом из интервалов [n,n+1]. Понятно, что последовательность функций $\{f_\xi\}_{\xi<\kappa}$ (<)-возрастает вместе с исходной последовательностью $\{a_\xi\}_{\xi<\kappa}$, где < строгий порядок, определяемый из данного нестроевого порядка \leqslant . Чтобы проверить, что $\{f_\xi\}$ лестница, рассмотрим произвольную функцию $f\in C$. Благодаря непрерывности значение $a(n)=n\max_{0\leqslant x\leqslant n+1}f(x)$ конечно для каждого n, а потому мы имеем $a=\{a(n)\}_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$. Поскольку $a\leqslant a_\xi$ для какого-то ξ , имеем $f\leqslant f_\xi$.
- (ii) Теперь рассмотрим произвольную лестницу $\{f_\xi\}_{\xi<\kappa}$ в $\langle C;\leqslant\rangle$. Определим ограничение $a_\xi=f_\xi\upharpoonright\mathbb N$ для каждого ξ . Пусть $a\in\mathbb R^\mathbb N$. Найдется непрерывная функция $f\in C$ такая, что $a=f\upharpoonright\mathbb N$. Тогда $f\preccurlyeq f_\xi$ для какого-либо $\xi<\kappa$, а потому $a\preccurlyeq a_\xi$, что и требовалось доказать. Далее, последовательность $\{a_\xi\}_{\xi<\kappa}$, очевидно, (\leqslant)-возрастает, но не обязательно (<)-возрастает в случае, когда \leqslant отношение \preceq или \leqslant^* , поскольку в этом случае f< g не обязательно влечет $f\upharpoonright\mathbb N < g\upharpoonright\mathbb N$. Поэтому, удалив определенные члены, мы можем превратить последовательность $\{a_\xi\}$ в (<)-возрастающую, т. е. в лестницу, причем длиной не более κ . Однако эта лестница не может иметь длину строго меньше κ , поскольку в этом случае мы имели бы лестницу строго меньшей длины и в $\langle C;\leqslant\rangle$ по (i), что невозможно, поскольку лестниц разной (бесконечной регулярной) длины быть не может.
- (ііі) Рассмотрим произвольную (κ, λ^*) -щель $\langle \{a_\xi\}_{\xi<\kappa}, \{b_\eta\}_{\eta<\lambda} \rangle$ в структуре $\langle \mathbb{R}^\mathbb{N}; \leqslant \rangle$. Найдутся функции $f_\xi, g_\eta \in C$, линейные на каждом отрезке [n, n+1] и удовлетворяющие $a_\xi = f_\xi \upharpoonright \mathbb{N}$ и $b_\eta = g_\eta \upharpoonright \mathbb{N}$. Тогда мы имеем $f_\xi < f_{\xi'} < g_{\eta'} < g_\eta$ для всех $\xi < \xi' < \kappa$ и $\eta < \eta' < \lambda$. Проверим, что пара $\langle \{f_\xi\}_{\xi<\kappa}, \{g_\eta\}_{\eta<\lambda} \rangle$ является щелью. Предположим противное, т. е. найдется функция $h \in C$ такая, что $f_\xi < h < g_\eta$ для всех ξ, η . Тогда $c = h \upharpoonright \mathbb{N}$ удовлетворяет $a_\xi \leqslant c \leqslant b_\eta$ для всех ξ, η . Рассмотрим несколько случаев.

Если κ и λ – предельные ординаты, то $a_{\xi} < a_{\xi+1} \leqslant c \leqslant b_{\eta+1} < b_{\eta}$, а потому выполнены строгие неравенства $a_{\xi} < c < b_{\eta}$. Противоречие.

Если \leqslant – одно из отношений \preccurlyeq , $\leqslant_{\rm fro}$, то f < g, очевидно, влечет $f \upharpoonright \mathbb{N} < g \upharpoonright \mathbb{N}$, откуда также вытекает, что выполнены строгие неравенства $a_{\xi} < c < b_{\eta}$. Противоречие.

Наконец, если $\lambda=0$, т. е. $\{a_\xi\}_{\xi<\kappa}$ является башней, а мы хотим доказать то же и для последовательности $\{f_\xi\}$, то мы имеем $a_\xi\leqslant c$ (см. выше). Противоречие.

Теорема доказана.

Мы не знаем, верно ли обращение утверждения (ііі) теоремы 2. Чтобы продемонстрировать возникающие здесь трудности, рассмотрим произвольную (κ, λ^*) -щель $\langle \{f_\xi\}_{\xi<\kappa}, \{g_\eta\}_{\eta<\lambda} \rangle$ в $\langle C; \preccurlyeq \rangle$. Положим $a_\xi = f_\xi \upharpoonright \mathbb{N}$ и $b_\eta = g_\eta \upharpoonright \mathbb{N}$. Тогда $a_\xi \prec a_{\xi'} \prec b_{\eta'} \prec b_\eta$ для всех $\xi < \xi' < \kappa$ и $\eta < \eta' < \lambda$. Если теперь $c \in \mathbb{R}^\mathbb{N}$

удовлетворяет $a_{\xi} \preccurlyeq c \preccurlyeq b_{\eta}$ для всех ξ , η , то остается неясным, как определить функцию $h \in C$, удовлетворяющую равенству $c = h \upharpoonright \mathbb{N}$ и заполняющую щель $\langle \{f_{\xi}\}, \{g_{\eta}\} \rangle$.

Также остается неясным, имеет ли место (iii) для $\lambda=1$ (случай пределов) и порядка \leq , совпадающего с \leq или \leq *. В самом деле, пусть κ -предел $\langle \{a_\xi\}_{\xi<\kappa},b_0\rangle$ в структуре, скажем, $\langle \mathbb{R}^\mathbb{N}; \underline{\lhd} \rangle$ имеет следующее свойство: если ξ четно, то $a_\xi(n)=b_0(n)$ для четных n, но $a_\xi(n)< b_0(n)$ для нечетных n, и в этом случае $b_0(n)-a_\xi(n)\to +\infty$, а для нечетных ξ наоборот (четность и нечетность меняются местами). Тогда пара $\langle \{f_\xi\}_{\xi<\omega_1},g_0\rangle$, определенная, как в доказательстве утверждения (iii) теоремы 2, не обязательно будет κ -пределом в $\langle C;\underline{\lhd} \rangle$.

§ 4. Теорема Хаусдорфа о щели

Нетрудно проверить (и Ф. Хаусдорф сделал это в [5]), что (ω , ω *)-щели и ω -пределы не существуют в рассматриваемых структурах. Доказательство восходит к диагональной конструкции П. Дюбуа Раймона [1]. Например, допустим, что

$$a_0 <^* a_1 <^* a_2 <^* \dots <^* b_2 <^* b_1 <^* b_0, \qquad a_i, b_j \in \mathbb{N}^{\mathbb{N}}.$$

Существует последовательность натуральных чисел $n_0 < n_1 < \cdots$ такая, что $a_i(n) < b_j(n)$ для всех k и $i,j \leqslant k$ при условии, что $n_k \leqslant n < n_{k+1}$. Положим $c(n) = \max_{i \leqslant k} a_i(n)$ для всех n, удовлетворяющих неравенствам $n_k \leqslant n < n_{k+1}$. Тогда выполнено $a_n <^* c <^* b_n$ для всех n.

Следующая теорема более сложная. Мы дадим набросок ее доказательства для удобства читателя, так как на русском языке найти это доказательство трудно.

ТЕОРЕМА 3 (теорема Хаусдорфа о щели). (ω_1, ω_1^*) -щель существует в каждой из упорядоченных структур Хаусдорфа.

Результат конкретно для $\langle \mathbb{R}^{\mathbb{N}}; \leqslant_{\mathrm{fro}} \rangle$ появился в [6], а в варианте для диадической структуры $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$ — в [14], что и является стандартной ссылкой в современной литературе. Доказательства в [6] и [14] следуют одной и той же схеме, которая, с определенными модификациями, может быть применена и для всех остальных ХУС. Однако такое обобщение также может быть установлено и как формальное следствие тех редукции, которые мы выведем в § 7.

Доказательство теоремы 3 (набросок – для структуры $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$). Если $a,b \in 2^{\mathbb{N}}$ и $a \leqslant^* b$, то через (a;b) будем обозначать наименьшее число n_0 , для которого $n \geqslant n_0 \Rightarrow a(n) \leqslant b(n)$. Будем строить $(<^*)$ -возрастающую последовательность $A = \{a_\xi\}_{\xi < \omega_1}$ и $(<^*)$ -убывающую последовательность $B = \{b_\xi\}_{\xi < \omega_1}$ элементов $a_\xi, b_\xi \in 2^{\mathbb{N}}$, которые удовлетворяют неравенству $a_\eta <^* b_\xi$ для всех ξ, η (т. е. $\langle A, B \rangle$ образует предщель) и следующему ключевому требованию:

(*) для всех
$$n\in\mathbb{N}$$
 и $\xi<\omega_1$ множество $\{\eta<\xi\colon (a_\eta;b_\xi)=n\}$ конечно.

Условие (*) можно понимать в том смысле, что, хотя b_{ξ} и расположено строго (<*)-выше всех a_{η} , имеет место определенная (<*)-близость b_{ξ} к множеству $\{a_{\eta}\colon \eta<\xi\}$. Если такое построение выполнено, то пара $\langle A,B\rangle$ оказывается

искомой (ω_1, ω_1^*) -щелью. В самом деле, пусть, напротив, $c \in 2^{\mathbb{N}}$ и $a_{\xi} <^* c <^* b_{\xi}$ для всех ξ . Согласно нечетности ω_1 найдутся ординал ξ и число n такие, что $(a_{\eta}; c) = n$ для бесконечно многих $\eta < \xi$. Однако это, очевидно, противоречит условию (*), поскольку $c <^* b_{\xi}$.

Теперь рассмотрим индуктивную конструкцию членов последовательностей, удовлетворяющих условию (*). Непредельные шаги достаточно очевидны: если члены $a_{\xi} <^* b_{\xi}$ уже определены, то в качестве $a_{\xi+1}$ и $b_{\xi+1}$ берем любую пару $a,b \in 2^{\mathbb{N}}$, удовлетворяющую $a_{\xi} <^* a <^* b <^* b_{\xi}$. Предельные шаги требуют бо́льших усилий. Допустим, что $\lambda < \omega_1$ — предельный ординал и a_{ξ}, b_{ξ} уже определены для всех $\xi < \lambda$ так, что условие (*) выполнено. То же самое рассуждение, которое мы привели выше для доказательства несуществования (ω,ω^*) -щелей, позволяет определить $c \in 2^{\mathbb{N}}$ такое, чтобы $a_{\xi} <^* c <^* b_{\xi}$ для всех $\xi < \lambda$. Однако согласно индуктивному предположению (*) множество $\{\eta < \xi : (a_{\eta};c) = n\}$ конечно, каковы бы ни были число n и ординал $\xi < \lambda$. В этом случае другая версия того же самого рассуждения позволяет определить $b \in 2^{\mathbb{N}}$ такое, что $b <^* c$, при этом по-прежнему $a_{\xi} <^* b$ для всех $\xi < \lambda$, и, кроме того, для каждого n множество $\{\eta < \lambda : (a_{\eta};b) = n\}$ конечно. Положим $b_{\lambda} = b$, а в качестве a_{λ} возьмем любое $a \in 2^{\mathbb{N}}$, для которого $a_{\xi} <^* a <^* b$ при всех ξ .

§ 5. Главная проблема и основная теорема

Настоящая статья посвящена, главным образом, следующей общей проблеме, связанной с теми частичными порядками, которые названы XУС в §1.

Проблема 4 (главная проблема). Каковы структура, свойства и спектр кардиналов щелей, башен, пределов, лестниц для данного частично упорядоченного множества $P=\langle P;\leqslant \rangle$? Например, если κ,λ – регулярные кардиналы, имеет ли множество $P=(\kappa,\lambda^*)$ -щели или κ -лестницы?

Эта проблема включает ряд более специальных вопросов о существовании щелей (в том числе, пределов и башен), а также лестниц с определенными мощностными характеристиками. Например, для самого простого (но и наиболее интересного) случая $\kappa = \omega_1$ вопросы существования ω_1 -пределов, ω_1 -башен и (ω_1, ω^*)-щелей для различных ХУС рассматривались в самых первых работах Хаусдорфа, например в [6]. Ф. Хаусдорф рассматривал эти проблемы как связанные с континуум-гипотезой **CH** (т. е. с равенством $\mathfrak{c} = \aleph_1$), решение которой тогда еще не было известно. Помимо теоремы 3, главные результаты Хаусдорфа в отношении этих специальных вопросов в его ранних работах [5], [6] сводятся к следующему:

- (I) проблемы существования ω_1 -пределов, ω_1 -башен и (ω_1, ω^*)-щелей в структуре $\langle \mathbb{R}^{\mathbb{N}}; \leqslant_{\text{fro}} \rangle$ эквивалентны друг другу: из существования одного из упомянутых объектов следует существование двух других;
- (II) континуум-гипотеза **СН** влечет существование ω_1 -пределов, ω_1 -башен и (ω_1, ω^*) -щелей, а также ω_1 -лестниц в $\langle \mathbb{R}^{\mathbb{N}}; \leqslant_{\mathrm{fro}} \rangle$.

Дальнейшее изучение взаимосвязей между этими проблемами было предпринято Φ . Ротбергером в работах [11], [12], где доказано, что для частично упорядоченного множества $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$ существование (ω_1, ω^*) -щели равносильно

существованию ω_1 -башни и влечет существование ω_1 -предела. Для сравнения с результатом Хаусдорфа (I) полезно учитывать, что пределы имеют несколько различную природу в структуре $\langle \mathbb{R}^{\mathbb{N}}; \leqslant_{\text{fro}} \rangle$ и в диадической структуре $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$.

Примерно в то же время еще одна область применения тех же идей и конструкций была обнаружена Н. Н. Лузиным [15], [16]. Рассмотрим множество $\mathscr{P}(\mathbb{N}) = \{x \colon x \subseteq \mathbb{N}\}$ всех подмножеств натурального ряда \mathbb{N} , упорядоченное отношением почти включения: $x \subseteq^* y$, если разность $x \setminus y$ конечна. Структура $\langle \mathscr{P}(\mathbb{N}); \subseteq^* \rangle$, очевидно, изоморфна структуре $\langle 2^\mathbb{N}; \leqslant^* \rangle$. Н. Н. Лузин построил пару строго (\subset^*)-возрастающих последовательностей $\{x_\xi\}_{\xi < \omega_1}$ и $\{y_\xi\}_{\xi < \omega_1}$ множеств $x_\xi, y_\xi \subseteq \mathbb{N}$, ортогональных (т. е. все пересечения $x_\xi \cap y_\xi$ конечны), но неотделимых (т. е. нет такого множества z, что $x_\xi \subseteq^* z$, но $y_\xi \cap z$ конечно для каждого ξ), что равносильно существованию (ω_1, ω_1^*)-щели в $\langle 2^\mathbb{N}; \leqslant^* \rangle$. Им же были сформулированы проблемы существования ω_1 -пределов и (ω_1, ω^*)-щелей в $\langle \mathscr{P}(\mathbb{N}); \subseteq^* \rangle$ (в терминах существования пары отогональных, но неотделимых последовательностей, одна из которых имеет длину ω_1 , а другая – длину ω), названные впоследствии его именем (более подробно об этом см. [17]).

Другие результаты, полученные в этой области и связанные, в основном, с порядками \leq^* и \leq и областями $2^\mathbb{N}$ и $\mathbb{N}^\mathbb{N}$, а также их приложения в теории множеств и топологии представлены в [8]–[10], [18]. Некоторые метаматематические результаты о независимости приведены ниже в § 6.

Из следующей теоремы (нашего основного результата) вытекает, что для фиксированного кардинала $\kappa \geqslant \omega_1$ вопросы существования κ -лестниц, κ -башен, κ -пределов и (κ, ω^*) -щелей в хаусдорфовых структурах (см. определение 1) сводятся к гораздо более короткому списку проблем, за исключением вопросов существования щелей и пределов в (\leq)-структурах

$$\langle \mathbb{R}^{\mathbb{N}}; \underline{\triangleleft} \rangle, \qquad \langle \mathbb{N}^{\mathbb{N}}; \underline{\triangleleft} \rangle,$$
 (1)

природа которых остается до конца не выясненной. Для всех же остальных хаусдорфовых структур из определения 1, т.е. для

$$\langle \mathbb{R}^{\mathbb{N}}; \preccurlyeq \rangle, \quad \langle \mathbb{R}^{\mathbb{N}}; \leqslant_{\operatorname{fro}} \rangle, \quad \langle \mathbb{R}^{\mathbb{N}}; \leqslant^{*} \rangle, \quad \langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle, \quad \langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\operatorname{fro}} \rangle, \quad \langle \mathbb{N}^{\mathbb{N}}; \leqslant^{*} \rangle, \quad \langle 2^{\mathbb{N}}; \leqslant^{*} \rangle, \quad (2)$$

все эти вопросы в наиболее интересном случае $\kappa = \omega_1$ сводятся к трем действительно различным проблемам (см. ниже замечание 7).

Диаграммы, представленные на рис. 1 и рис. 2, демонстрирует содержание приведенной ниже основной теоремы. На этих диаграммах отношение $X \Rightarrow Y$ (в том числе с вертикальной стрелкой) означает, что из существования (κ, λ^*) -щели (или κ -предела) в структуре X следует существование такой

Рис. 1. Взаимоотношения XУС в гипотезе существования (κ, λ^*) -щели

92 В. Г. КАНОВЕЙ

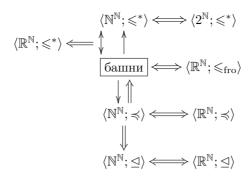


Рис. 2. Взаимоотношения XУС в гипотезе существования κ -предела

же щели (предела) в структуре Y, знак \Leftrightarrow понимается аналогично. На рис. 2 отношение $X \to Y$ означает, что из существования κ -предела в X следует существование κ' -предела в Y для какого-то регулярного кардинала $\kappa' \leqslant \kappa$, знак $\Leftarrow \uparrow$ понимается в смысле утверждения 4), (vi) теоремы 5, а блок башни обозначает утверждение о существовании κ -башен в не диадических структурах из списка (2).

ТЕОРЕМА 5 (основная теорема). Пусть $\kappa \geqslant \omega_1$ – регулярный кардинал.

- 1) Все ХУС из определения 1, кроме диадической структуры $\langle 2^{\mathbb{N}}; \leq^* \rangle$, эквивалентны друг другу по отношению к существованию к-лестниц⁵.
 - 2) Выполнены следующие утверждения:
- (i) все ХУС списка (2), кроме диадической структуры $\langle 2^{\mathbb{N}}; \leq^* \rangle$, эквивалентны друг другу по отношению к существованию к-башен;
- (ii) существование κ -башен в $\langle \mathbb{N}^{\mathbb{N}}; \underline{\lhd} \rangle$ следует из существования κ -башен в $\langle \mathbb{N}^{\mathbb{N}}; \underline{\prec} \rangle$ и влечет существование κ' -башен в $\langle \mathbb{N}^{\mathbb{N}}; \underline{\prec} \rangle$ для некоторого регулярного несчетного кардинала $\kappa' \leq \kappa$.
 - 3) Имеют место утверждения:
- (i) предположим, что $\lambda \geqslant \omega$ еще один регулярный кардинал; на рис. 1 представлены взаимоотношения хаусдорфовых структур между собой в гипотезе существования (κ, λ^*) -щели;
- (ii) если $\lambda = \omega$, то все вхождения импликации \Rightarrow на рис. 1, кроме, возможно, импликации $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle \Rightarrow \langle \mathbb{N}^{\mathbb{N}}; \preceq \rangle$, могут быть заменены на \Leftrightarrow , так что все семь XУС из (2) эквивалентны в вопросе существования (κ, ω^*) -щели;
- (iii) существование (κ, ω^*) -щели в любой XУС из (2) равносильно существованию κ -башни в любой из шести не диадических ХУС из (2).

 $^{^5}$ Вопросы существования лестниц и башен в диадической структуре $\langle 2^\mathbb{N}; \leqslant^* \rangle$ неинтересны, поскольку в ней нет ни лестниц, ни башен, длина которых – предельный ординал, и $2^\mathbb{N}$ имеет (\leqslant^*)-наибольшие элементы. Например, ими являются такие $a \in 2^\mathbb{N}$, что a(n) = 1 для почти всех (кроме конечного числа) n. Назовем любое такое a noчти константой 1. Даже если удалить из $2^\mathbb{N}$ почти константы 1, то никаких лестниц уже вообще не будет, а κ -башни хотя, возможно, и появятся, но будут в сущности идентичны κ -пределам в исходной структуре $\langle \mathbb{N}^\mathbb{N}; \leqslant^* \rangle$. Таким образом, безо всякого умаления общности структура $\langle 2^\mathbb{N}; \leqslant^* \rangle$ может быть удалена из рассмотрения вопросов, относящихся к башням и лестницам.

- 4) На рис. 2 представлены взаимоотношения хаусдорфовых структур между собой в гипотезе существования κ -предела, более точно, содержание диаграммы на рис. 2 сводится κ следующему:
 - (i) в структуре $\langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\text{fro}} \rangle$ нет κ -пределов;
- (ii) структура $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$ имеет κ -пределы, если и только если их имеет структура $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$;
- (iii) структура $\langle \mathbb{R}^{\mathbb{N}}; \leqslant_{\mathrm{fro}} \rangle$ имеет κ -пределы, если и только если структура $\langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\mathrm{fro}} \rangle$ имеет κ -башни;
- (iv) κ -пределы существуют в $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$, если и только если они существуют в $\langle \mathbb{R}^{\mathbb{N}}; \preccurlyeq \rangle$ и каждое из этих двух утверждений о существовании влечет существование κ -башен в $\langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\mathrm{fro}} \rangle$;
- (v) если структура $\langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\mathrm{fro}} \rangle$ имеет κ -башни, то структура $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$ имеет κ' -пределы для какого-нибудь кардинала $\kappa' \leqslant \kappa;$
- (vi) структура $\langle \mathbb{R}^{\mathbb{N}}; \leqslant^* \rangle$ имеет κ -пределы, если и только если либо структура $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$ имеет κ -пределы, либо структура $\langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\operatorname{fro}} \rangle$ имеет κ -башни;
- (vii) κ -пределы существуют в $\langle \mathbb{N}^{\mathbb{N}}; \leq \rangle$, если и только если они существуют в $\langle \mathbb{R}^{\mathbb{N}}; \leq \rangle$ и каждое из этих двух утверждений о существовании следует из существования κ -пределов в $\langle \mathbb{N}^{\mathbb{N}}; \leq \rangle$.
 - 5) Выполнены следующие утверждения:
- (i) существование κ -башни в любой не диадической ХУС из (2) вытекает из существования κ -лестницы, равносильно существованию (κ, ω^*) -щели и влечет существование κ' -предела в $\langle 2^{\mathbb{N}}; \leq^* \rangle$ для некоторого кардинала $\kappa' \leq \kappa$;
- (ii) если κ -башни существуют (в не диадических XУС), но κ -пределов в $\langle 2^{\mathbb{N}}; \leq^* \rangle$ нет, то существуют κ -лестницы.
- Замечание 6. В частном случае $\lambda = \omega$ теорема 5 сводит все проблемы существования κ -лестниц, κ -башен, κ -пределов и (κ, ω^*) -щелей в хаусдорфовых структурах из определения 1 к следующим группам из попарно эквивалентных (внутри каждой группы) проблем.
- А. Существование κ -предела в какой-то (или, что равносильно, в любой) из двух структур $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$ и $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$.
- В. Существование κ -башни в любой не диадической ХУС, существование (κ, ω^*) -щели в любой ХУС из (2), существование κ -предела в $\langle \mathbb{R}^{\mathbb{N}}; \leqslant_{\mathrm{fro}} \rangle$.
 - В'. Существование κ -предела в какой-то из структур $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$ и $\langle \mathbb{R}^{\mathbb{N}}; \preccurlyeq \rangle$.
 - С. Существование κ -лестницы в любой не диадической XУС.

Здесь же можно рассмотреть следующую проблему.

A'. Существование $\kappa\text{-предела в }\langle\mathbb{R}^{\mathbb{N}};\leqslant^*\rangle,$ что равносильно $A\vee B.$

Исключениями являются следующие проблемы.

- $\mathbf{A}^{\triangleleft}.$ Существование $\kappa\text{-предела в структурах }\langle\mathbb{R}^{\mathbb{N}}; \trianglelefteq\rangle$ и $\langle\mathbb{N}^{\mathbb{N}}; \trianglelefteq\rangle.$
- В $^{\triangleleft}$. Существование (κ, ω^*) -щели в структурах $\langle \mathbb{R}^{\mathbb{N}}; \underline{\triangleleft} \rangle$ и $\langle \mathbb{N}^{\mathbb{N}}; \underline{\triangleleft} \rangle$ и существование κ -предела в $\langle \mathbb{N}^{\mathbb{N}}; \underline{\leqslant}_{\mathrm{fro}} \rangle$, которое невозможно.

Отметим, что для любой из трех ХУС \mathbb{N} -типа из (2) существование (κ, λ^*) -щели влечет существование (λ, κ^*) -щели, поскольку это верно для структуры $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$ благодаря ее очевидной симметрии. (Для ХУС \mathbb{R} -типа наличие подходящей симметрии также достаточно очевидно.)

ЗАМЕЧАНИЕ 7. В наиболее интересном случае $\kappa = \omega_1$ рассмотренные взаимоотношения еще более упрощаются, поскольку тогда с необходимостью выполнено $\kappa' = \kappa$ в утверждении 5), (i) теоремы 5 (в самом деле, ω -пределов нет). Поэтому проблема В' присоединяется к В, следовательно, В влечет А. Отсюда следует, что проблема А', т.е. ω_1 -пределы в $\langle \mathbb{R}^\mathbb{N}; \leqslant^* \rangle$, также присоединяется к А. Наконец, С влечет В. Таким образом, мы имеем

$$A^{\triangleleft}$$
 B^{\triangleleft}
$$\uparrow \qquad \uparrow \qquad \qquad \uparrow$$

$$A \iff B \iff C - \text{случай } \kappa = \omega_1 \text{ и } \lambda = \omega.$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A' \qquad B'$$

$$(3)$$

Отметим, что проблемы из группы (I) принадлежат к типу В.

Если не рассматривать задачи A^{\triangleleft} и B^{\triangleleft} , то диаграмма на рис. 2 становится полной в том смысле, что ничего больше о взаимной сводимости исследуемых вопросов доказать нельзя (см. §6).

Природа задач A^{\triangleleft} и B^{\triangleleft} (κ -пределы и (κ, ω^*)-щели в \unlhd -структурах) остается до конца не исследованной, и это одна из интересных проблем в данной области. Например, хотелось бы доказать эквивалентности

$$A^{\triangleleft} \Leftrightarrow A, \qquad B^{\triangleleft} \Leftrightarrow B.$$

Главная трудность заключается в том, что соотношение $x \le y$ (где $x, y \in \mathbb{N}^{\mathbb{N}}$) по определению совместимо с тем, что на самом деле x(n) > y(n) для подавляющего большинства значений n. Поэтому не видно ни одного разумного способа превращения (\le)-щелей и (\le)-пределов в подобные структуры для других хаусдорфовых порядков.

ПРОБЛЕМА 8. Допускают ли импликации на рис. 1 усиление до эквивалентности в общем случае (т. е. когда не обязательно $\kappa = \omega_1$ и $\lambda = \omega$)? Например, было бы интересно доказать, что существование (κ, λ^*) -щели в $\langle \mathbb{R}^\mathbb{N}; \leqslant^* \rangle$ влечет существование такой же щели в $\langle \mathbb{N}^\mathbb{N}; \leqslant^* \rangle$. Каковы взаимоотношения между проблемами A', B', B в случае $\kappa > \omega_1$?

Доказательство теоремы 5 приводится в § 7.

§ 6. Некоторые метаматематические вопросы

Возвращаясь к диаграмме (3), рассмотрим следующий вопрос: является ли представленная ею классификация проблем существования ω_1 -лестниц, ω_1 -башен, ω_1 -пределов и (ω_1, ω^*)-щелей в хаусдорфовых структурах окончательной, т. е., например, нельзя ли усилить некоторые импликации до эквивалентностей? В отношении импликаций $A \Rightarrow A^{\triangleleft}$ и $B \Rightarrow B^{\triangleleft}$ этот вопрос все еще открыт. Для оставшейся части диаграммы (3) окончательный характер классификации был установлен серией исследований, которые мы здесь вкратце представим для удобства читателей.

Еще Ф. Хаусдорфом [5], [6] было установлено, что канторова континуум-гипотеза **СН**, т. е. $2^{\aleph_0} = \omega_1$, влечет С, а тогда и А, В, для $\kappa = \omega_1$. Однако статус и взаимоотношения этих проблем без предположения **CH** стали окончательно понятны только в 1970—1980 годы, когда при помощи метода вынуждения (форсинга) было установлено, что не имеется никаких иных связей между этими проблемами, которые могли бы быть доказаны в **ZFC**+ \neg **CH**, кроме двойной импликации $C\Rightarrow B\Rightarrow A$ и эквивалентностей $B\Leftrightarrow B'$ и $A\Leftrightarrow A'$, которые отмечены в замечании 7. Эти результаты собраны в следующей теореме.

ТЕОРЕМА 9. Каждое из следующих предложений совместимо с теорией $\mathbf{ZFC} + \neg \mathbf{CH}$:

- (i) проблемы C, B, A истинны для $\kappa = \omega_1$;
- (ii) проблема С ложна, но проблемы В, А истинны для $\kappa = \omega_1$;
- (iii) проблемы C, B ложны, но A истинно для $\kappa = \omega_1$;
- (iv) проблемы C, B, A ложны для $\kappa = \omega_1$.

Таким образом, при $\kappa = \omega_1$ проблемы A, B, C *неразрешимы* в теории **ZFC** + \neg **CH** и импликации С \Rightarrow B \Rightarrow A необратимы в этой теории.

Для обсуждения вопросов существования трансфинитных объектов современная теория множеств ассоциирует с каждым интересным типом таких объектов мощностной инвариант, т. е. кардинал κ (обычно в интервале $\omega_1 \leqslant \kappa \leqslant \mathfrak{c} = 2^{\aleph_0}$), равный наименьшей мощности объектов этого типа.

Среди достаточно обширного списка мощностных инвариантов (см. [7]) для нас представляют интерес следующие четыре кардинала:

- 1) \mathfrak{t} наименьший кардинал κ , для которого κ -пределы существуют в $2^{\mathbb{N}}$;
- 2) \mathfrak{b} наименьшая мощность (\leq^*)-неограниченного множества в $\mathbb{N}^{\mathbb{N}}$, или, что то же самое, наименьшая длина (\leq^*)-башни в $\mathbb{N}^{\mathbb{N}}$;
 - 3) \mathfrak{b}_6 наименьший кардинал κ , для которого в $2^{\mathbb{N}}$ существуют (κ,ω^*) -щели;
 - 4) \mathfrak{d} наименьший кардинал κ , для которого в $\mathbb{N}^{\mathbb{N}}$ существуют κ -лестницы.

Тогда $\omega_1 \leqslant \mathfrak{t} \leqslant \mathfrak{b} = \mathfrak{b}_6 \leqslant \mathfrak{d} \leqslant \mathfrak{c}$ согласно замечанию 7 (см. также [7, пп. 3.1, 3.3]). В этих обозначениях гипотезы A, B, C ($\kappa = \omega_1$) приобретают компактные формулировки в виде равенств $\mathfrak{t} = \omega_1$, $\mathfrak{b} = \omega_1$, $\mathfrak{d} = \omega_1$.

Теория мощностных инвариантов имеет один общий метод, позволяющий сделать все эти кардиналы в точности равными континууму $\mathfrak{c}=2^{\aleph_0}$, независимо от соотношения последнего с кардиналом ω_1 . Это *аксиома Мартина*, или **MA** (см. [9], [19], [20]). Известно, что аксиома **MA** совместна с **ZFC**+¬**CH** (отрицание континуум-гипотезы), поэтому любое следствие **MA** также совместно с ¬**CH**. В частности, поскольку аксиома **MA** влечет⁶ $\mathfrak{t}=\mathfrak{c}$, следовательно, она влечет несуществование ω_1 -пределов, (ω_1,ω^*) -щелей и ω_1 -лестниц. Это доказывает утверждение (iv) теоремы 9.

Совместность комбинаций $\omega_1 = \mathfrak{t} = \mathfrak{b} < \mathfrak{d} = \mathfrak{c}$ и $\omega_1 = \mathfrak{t} = \mathfrak{b} = \mathfrak{d} < \mathfrak{c}$ установлена в [22], [23], и это доказывает утверждения (i) и (ii) теоремы 9 (более современное доказательство см. в [24]).

Результат п. (iii) теоремы 9 был впервые получен в [25] (см. также теорему 5.3 в [7], содержащую совместность даже более сильной комбинации $\omega_1 = \mathfrak{t} < \mathfrak{b} = \mathfrak{d} = \mathfrak{c}$).

Мы завершим этот параграф формулировкой одной старой, но до сих пор нерешенной проблемы в этой области, первоначально сформулированной Хаусдорфом [5], а недавно "переоткрытой" Р. Соловеем [26].

⁶См., например, следствие 8 в [20], впервые доказанное, вероятно, еще в [21].

ПРОБЛЕМА 10. Существует ли (в данной хаусдорфовой структуре) максимальное линейно упорядоченное подмножество, не имеющее (ω_1, ω_1^*) -щелей? (Ср. с теоремой 3.)

Вряд ли можно сомневаться в том, что эта проблема имеет одно и то же решение для всех хаусдорфовых структур.

§ 7. Доказательство основной теоремы 5

В ходе доказательства основной теоремы κ является регулярным кардиналом, причем $\kappa \geqslant \omega_1$.

7.1. Башни и лестницы. Здесь доказываются утверждения 1) и 2) теоремы 5.

Для начала исключим $\mathbb{R}^{\mathbb{N}}$ -структуры.

ЛЕММА 11. Если \leqslant – один из хаусдорфовых порядков \preccurlyeq , \trianglelefteq , \leqslant fro, \leqslant *, то структуры $\langle \mathbb{N}^{\mathbb{N}}; \leqslant \rangle$ и $\langle \mathbb{R}^{\mathbb{N}}; \leqslant \rangle$ эквивалентны относительно существования κ -лестниц. То же верно и для κ -башен.

Доказательство. Прежде всего, любая лестница $\{a_{\xi}\}_{\xi<\kappa}$ в структуре $\langle \mathbb{N}^{\mathbb{N}};\leqslant \rangle$ остается лестницей в $\langle \mathbb{R}^{\mathbb{N}};\leqslant \rangle$. Например, для порядка \leqslant^* предположим противное, т. е. $x\in\mathbb{R}^{\mathbb{N}}$ не удовлетворяет $x\leqslant^*a_{\xi}$ ни при каком ξ . Определим $x'\in\mathbb{N}^{\mathbb{N}}$ так, что x'(n) – наименьшее натуральное число, превосходящее x(n) для каждого n. Понятно, что $x\leqslant^*a$, а потому $a\leqslant^*a_{\xi}$ не имеет места ни при каком ξ . Противоречие.

Обратно, предположим, что $\{x_\xi\}_{\xi<\kappa}$ является лестницей в $\langle \mathbb{R}^\mathbb{N};\leqslant\rangle$. Для каждого ξ , заменив отрицательные значения $x_\xi(n)$ нулями, а положительные значения – ближайшими сверху натуральными числами, получим $x'_\xi\in\mathbb{N}^\mathbb{N}$. Далее, по построению выполнено $x_\xi\leqslant x'_\xi$, а потому новая последовательность остается (\leqslant)-доминирующей. Наконец, последовательность $\{a_\xi\}_{\xi<\kappa}$ остается (\leqslant)-возрастающей, возможно, нестрого, а потому в силу регулярности κ из нее выделяется строго возрастающая подпоследовательность.

С достаточно очевидными изменениями обе части этого рассуждения сохраняют силу и для башен.

Итак, остается рассмотреть башни и лестницы в $(\mathbb{N}^{\mathbb{N}})$ -структурах

$$\langle \mathbb{N}^{\mathbb{N}}; \preceq \rangle$$
, $\langle \mathbb{N}^{\mathbb{N}}; \preceq \rangle$, $\langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\mathrm{fro}} \rangle$, $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$.

Заметим, что любая (\preccurlyeq)-башня $\{x_\xi\}_{\xi<\kappa}$ в $\mathbb{N}^\mathbb{N}$ (любой длины) является и (\leqslant_{fro})-башней. В самом деле, допустим, что $x\in\mathbb{N}^\mathbb{N}$ и $x_\xi\leqslant_{\mathrm{fro}}x$ для всех ξ . Тогда и $x_\xi\preccurlyeq x$ для всех ξ , поскольку из $x_\xi\leqslant_{\mathrm{fro}}x_{\xi+1}\preccurlyeq x$ следует $x_\xi\preccurlyeq x$. Противоречие. То же рассуждение показывает, что любая (\leqslant_{fro})-башня является (\leqslant^*)-башней, а любая (\preccurlyeq)-башня является (\preceq)-башней. Утверждение для лестниц доказывается аналогично.

Обратно, легко видеть, что отображение, которое преобразует каждое $x \in \mathbb{N}^{\mathbb{N}}$ в $x'(n) = \sum_{i=0}^n x(i)$, переводит любую (\leqslant *)-башню (или лестницу) $\{x_\xi\}_{\xi < \kappa}$ из элементов множества $\mathbb{N}^{\mathbb{N}}$ в (\preccurlyeq)-башню (соответственно, лестницу) $\{x'_\xi\}_{\xi < \kappa}$. В самом деле, для случая башен пусть, напротив, $x \in \mathbb{N}^{\mathbb{N}}$ и $x'_\xi \preccurlyeq x$ для всех ξ .

Однако по построению $x_\xi \preccurlyeq x_\xi'$ для всех ξ , откуда имеем $x_\xi \preccurlyeq x$, а потому и $x_\xi \leqslant^* x$ для любого ξ . Противоречие.

Осталось получить обратный результат для порядка \unlhd . Предположим, что $\{x_{\alpha}\}_{\alpha<\kappa}$ является κ -лестницей в $\langle\mathbb{N}^{\mathbb{N}};\unlhd\rangle$. Мы утверждаем, что тогда существует и κ -лестница в $\langle\mathbb{N}^{\mathbb{N}};\preceq\rangle$. В самом деле, по определению для каждого множества $X\subseteq\mathbb{N}^{\mathbb{N}}$ мощности card $X<\kappa$ существует функция $y\in\mathbb{N}^{\mathbb{N}}$, удовлетворяющая $x\preceq y$ для всех $x\in X$. (Поскольку $\{x_{\alpha}\}$ – лестница, имеется индекс $\alpha<\kappa$ такой, что $x\unlhd x_{\alpha}$ для всех $x\in X$. Положим $y=x_{\alpha}$.) Это позволяет нам определить (\prec) -возрастающую κ -последовательность $\{y_{\alpha}\}_{\alpha<\kappa}$ функций $y_{\alpha}\in\mathbb{N}^{\mathbb{N}}$ так, чтобы $x_{\alpha}\preceq y_{\alpha}$ для каждого α . Теперь ясно, что $\{y_{\alpha}\}$ есть κ -лестница в $\langle\mathbb{N}^{\mathbb{N}};\preceq\rangle$.

Для башен обратное утверждение выполняется в ослабленной форме, как в 2), (ii): если κ -башня $\{x_{\alpha}\}_{\alpha<\kappa}$ существует в $\langle \mathbb{N}^{\mathbb{N}}; \trianglelefteq \rangle$, то структура $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$ имеет κ' -башню для какого-то $\kappa' \leqslant \kappa$. В самом деле, $\{x_{\alpha}\}$ остается неограниченным семейством в $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$, но не обязательно (\prec)-возрастающим. Возьмем произвольную максимальную (\prec)-возрастающую последовательность $\{y_{\alpha}\}_{\alpha<\kappa'}$ такую, что $x_{\alpha} \preccurlyeq y_{\alpha}$ для всех $\alpha < \kappa'$. Понятно, что $\kappa' \leqslant \kappa$ (иначе последовательность $\{x_{\alpha}\}$ не была бы башней), а максимальность означает, что последовательность $\{y_{\alpha}\}$ неограничена, т. е. является башней в $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$.

7.2. Щели. Здесь доказывается утверждение 3), (i) теоремы 5. Доказательство включает несколько лемм разного уровня сложности. В них $\kappa \geqslant \omega_1$ – произвольный регулярный кардинал, как и в этой теореме. Для второго параметра λ в нескольких леммах, помимо любых значений $\lambda \geqslant \omega$, как в теореме 5, допускается значение $\lambda = 1$, чтобы включить в утверждение и случай пределов – это оговорено в преамбулах к леммам 12–16. Следующий результат получен Φ . Ротбергером [11], [12].

ЛЕММА 12 $(\lambda \geqslant \omega$ или $\lambda = 1)$. Структуры $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$ и $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$ эквивалентны в вопросе существования (κ, λ^*) -щелей.

Доказательство. С одной стороны, любая щель в $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$ остается щелью в $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$. В самом деле, если допустить, что $x \in \mathbb{N}^{\mathbb{N}}$ заполняет данную щель в $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$, то, заменив каждое значение $x(n) \neq 0$ значением 1, мы получим элемент $x \in 2^{\mathbb{N}}$, заполняющий ту же щель. Противоречие.

Обратно, всякая щель в $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$ преобразуется в щель в структуре $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$ с теми же длинами обеих последовательностей. Действительно, заменим любой элемент $a \in \mathbb{N}^{\mathbb{N}}$, встречающийся в данной щели, сначала множеством $X_a = \{\langle i,n \rangle \colon i < a(n)\} \subseteq \mathbb{N}^2$, затем образом $Y_a = \{f(i,n) \colon \langle i,n \rangle \in X_a\}$ этого множества при любой фиксированной биекции $f \colon \mathbb{N}^2 \xrightarrow{\mathrm{на}} \mathbb{N}$ и, наконец, характеристической функцией этого Y_a . Используя это построение, получим искомую щель в структуре $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$.

ЛЕММА 13 ($\lambda \geqslant \omega$ или $\lambda = 1$). Если \leqslant – любое из отношений \leqslant^* , \leqslant_{fro} , \preccurlyeq , \leq , то каждая (κ , λ^*)-щель в $\langle \mathbb{N}^{\mathbb{N}}; \leqslant \rangle$ остается щелью в $\langle \mathbb{R}^{\mathbb{N}}; \leqslant \rangle$.

Доказательство. В самом деле, рассмотрим, например, κ -предел, т.е. $(\kappa, 1^*)$ -щель $\langle \{a_\xi\}_{\xi<\kappa}, a\rangle$, в структуре $\langle \mathbb{N}^\mathbb{N}; \leqslant^* \rangle$. Пусть, напротив, некоторый элемент $x \in \mathbb{R}^\mathbb{N}$ заполняет эту щель, т.е. удовлетворяет строгим неравенствам

 $a_{\xi}<^*x<^*a$ для всех ξ . Не ограничивая общности, можно предполагать, что $0\leqslant x(n)< a(n)$ для любого n. Для каждого n через x'(n) обозначим наибольшее целое число, удовлетворяющее $x'(n)\leqslant x(n)$. Тогда $x'\in\mathbb{N}^{\mathbb{N}}, \ x'<^*a$ (так как $x'(n)\leqslant x(n)$ для любого n) и, очевидно, $a_{\xi}<^*x'$ для каждого ξ , поскольку все члены a_{ξ} принадлежат \mathbb{N} .

Для двух порядков имеет место следующий факт.

ЛЕММА 14 ($\lambda \geqslant \omega$ или $\lambda = 1$). Если \leqslant – любое из отношений \preccurlyeq , \leq , то структуры $\langle \mathbb{N}^{\mathbb{N}}; \leqslant \rangle$ и $\langle \mathbb{R}^{\mathbb{N}}; \leqslant \rangle$ эквивалентны в вопросе существования (κ, λ^*) -щелей.

Доказательство. Для перехода от $\langle \mathbb{R}^{\mathbb{N}}; \preccurlyeq \rangle$ к $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$ округляем члены имеющейся щели в $\mathbb{R}^{\mathbb{N}}$ до ближайших сверху натуральных чисел. Порядки \preccurlyeq и \preceq , очевидно, сохраняются при таком изменении. (Для порядков \leqslant^* , \leqslant_{fro} это рассуждение перестает быть верным.)

Следующая лемма выводит более "слабые" щели из более "сильных".

ЛЕММА 15 $(\lambda \geqslant \omega)$. Если D – одно из множеств $\mathbb{N}^{\mathbb{N}}$, $\mathbb{R}^{\mathbb{N}}$, то:

- (i) любая (κ, λ^*) -щель в структуре $\langle D; \preccurlyeq \rangle$ остается щелью в $\langle D; \trianglelefteq \rangle$;
- (ii) любая (κ, λ^*) -щель в $\langle D; \leqslant_{\text{fro}} \rangle$ остается щелью в $\langle D; \leqslant^* \rangle$;
- (iii) любая (κ, λ^*) -щель в структуре $\langle D; \preccurlyeq \rangle$ остается щелью в $\langle D; \leqslant_{\text{fro}} \rangle$.

ДОКАЗАТЕЛЬСТВО. (i) Пусть, напротив, пара $\langle \{a_\xi\}_{\xi<\kappa}, \{b_\eta\}_{\eta<\lambda} \rangle$ является (\preccurlyeq)-щелью в $\mathbb{N}^\mathbb{N}$, но $x\in\mathbb{N}^\mathbb{N}$ удовлетворяет $a_\xi\lhd x\lhd b_\eta$ для всех $\xi<\kappa$ и $\eta<\lambda$. Поскольку κ и λ – предельные ординаты, мы также имеем $a_{\xi+1}\lhd x\lhd b_{\eta+1}$. Однако $f\lhd g\prec h$ влечет $f\prec h$, откуда мы имеем $a_\xi\lhd x\lhd b_\eta$. Противоречие⁷.

Утверждения (ii) и (iii) доказываются аналогично.

Следующее утверждение замыкает цикл структур \mathbb{N} -типа с порядками \preccurlyeq , \leqslant_{fro} , \leqslant^* по отношению к вопросам существования щелей (кроме пределов и башен).

ЛЕММА 16 $(\lambda \geqslant \omega)$. Если структура $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$ имеет (κ, λ^*) -щель, то такая щель существует и в $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$.

Доказательство. Рассмотрим щель $\langle \{a_\xi\}_{\xi<\kappa}, \{b_\eta\}_{\eta<\lambda}\rangle$ в структуре $\langle 2^\mathbb{N}; \leqslant^*\rangle$. Для каждого $a\in 2^\mathbb{N}$ определим $\widetilde{a}\in \mathbb{N}^\mathbb{N}$ через $\widetilde{a}(n)=\sum_{i=0}^n 2^i a(i)$. Тогда последовательность $\{\widetilde{a}_\xi\}_{\xi<\kappa}$ (\prec)-возрастает, а последовательность $\{\widetilde{b}_\eta\}_{\eta<\lambda}$, соответственно, (\prec)-убывает и $\widetilde{a}_\xi\prec\widetilde{b}_\eta$ для всех ξ,η . Чтобы доказать, что они образуют (\preccurlyeq)-щель, предположим противное: $\widetilde{c}\in \mathbb{N}^\mathbb{N}$ и $\widetilde{a}_\xi\preccurlyeq\widetilde{c}\preccurlyeq\widetilde{b}_\eta$ для всех ξ,η . Определим $c\in 2^\mathbb{N}$ так, чтобы c(n)=1, если и только если $\widetilde{c}(n)\geqslant 2^n$. Нетрудно проверить, что тогда $a_\xi\leqslant^*c\leqslant^*b_\eta$ для всех ξ,η . Противоречие.

 $^{^7}$ Доказать (i) нельзя в случае пределов. Действительно, если пара $\langle \{a_\xi\}_{\xi<\kappa},b\rangle$ образует предел в $\langle \mathbb{N}^\mathbb{N}; \preccurlyeq \rangle$ и (в предположении противного) $a_\xi \lhd x \lhd b$, то мы все еще имеем $a_\xi \prec x$ для любого ξ , но вывод утверждения $x \prec b$ не удается получить.

7.3. Щели и башни. Здесь мы доказываем утверждения 3), (ii) (случай $\lambda = \omega$) и 3), (iii) теоремы 5. Согласно уже доказанному утверждению 3), (i) для вывода 3), (ii) достаточно проверить, что структуры $\langle \mathbb{R}^{\mathbb{N}}; \leqslant^* \rangle$ и $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$ эквивалентны по отношению к вопросу существования (κ, ω^*) -щели. Мы доказываем это таким образом, что одновременно получается и утверждение 3), (iii). Именно, план состоит в получении κ -башни в $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$ из наиболее "слабой" щели, а затем получить наиболее "сильную" щель из упомянутой башни. Этот план реализуется в следующих двух леммах, первоначально доказанных Хаусдорфом в [6] для щелей и башен структуры $\langle \mathbb{R}^{\mathbb{N}}; \leqslant_{\mathrm{fro}} \rangle$ (см. результаты (I) в §5), а затем Ротбергером [12] для щелей и башен структуры $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$. Здесь этот вопрос рассматривается в более общем контексте.

ЛЕММА 17. Если структура $\langle \mathbb{R}^{\mathbb{N}}; \leqslant^* \rangle$ имеет (κ, ω^*) -щель, то κ -башни существуют в структуре $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$, а тогда (см. n. 7.1) и в любой другой не диадидеской ХУС из (2), в частности в $\langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\mathrm{fro}} \rangle$.

Доказательство. Пусть $\langle \{a_{\xi}\}_{\xi<\kappa}, \{b_n\}_{n\in\mathbb{N}} \rangle$ является (κ,ω^*) -щелью в структуре $\langle \mathbb{R}^\mathbb{N}; \leqslant^* \rangle$. Можно предполагать, что $b_{n+1}(k) \leqslant b_n(k)$ для всех n, k. Если $a \in \mathbb{R}^\mathbb{N}$ удовлетворяет $a \leqslant^* b_n$ для любого n, то для каждого n через $\widetilde{a}(n)$ обозначим наименьшее натуральное число такое, что $a(k) \leqslant b_n(k)$ для всех $k \geqslant \widetilde{a}(n)$. Понятно, что последовательность $\{\widetilde{a}_{\xi}\}_{\xi<\kappa}$ является (\leqslant^*) -возрастающей. Поэтому достаточно проверить, что она неограничена в $\langle \mathbb{N}^\mathbb{N}; \leqslant^* \rangle$. (После чего остается взять любую строго $(<^*)$ -возрастающую конфинальную подпоследовательность.) Пусть, напротив, $c \in \mathbb{N}^\mathbb{N}$ удовлетворяет $\widetilde{a}_{\xi} \leqslant^* c$ для каждого $\xi < \kappa$.

Определим $k_{-1}=0$, а затем, по индукции, $k_n=\max\{c(n)+1,k_{n-1}\}$. Положим $a(k)=b_n(k)$ для всех k, удовлетворяющих $k_n\leqslant k< k_{n+1}$. (Отдельно полагаем $a(k)=b_0(k)$ для $k< k_0$.) В наших предположениях неравенство $a(k)\leqslant b_n(k)$ выполнено для всех $k\geqslant k_n$, а потому $a\leqslant^*b_n$ для любого n. Теперь остается доказать, что $a_\xi\leqslant^*a$ для всех ξ : в самом деле, в этом случае a заполняет исходную щель. Противоречие.

Напомним, что $\widetilde{a}_{\xi} \leqslant^* c$. Поэтому существует индекс N такой, что $\widetilde{a}_{\xi}(n) \leqslant c(n) \leqslant k_n$ для всех $n \geqslant N$. Рассмотрим любой полуинтервал вида $I_n = (k_n, k_{n+1}], \ n \geqslant N$. Тогда $a_{\xi}(k) \leqslant b_n(k) = a(k)$ для каждого $k \in I_n$, поскольку $\widetilde{a}_{\xi}(n) \leqslant k_n$. Таким образом, имеем $a_{\xi}(k) \leqslant a(k)$ для всех $k > k_N$. Следовательно, $a_{\xi} \leqslant^* a$, что и требовалось доказать.

ЛЕММА 18. Если κ -башня имеется в структуре $\langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\text{fro}} \rangle$, то (κ, ω^*) -щель существует в $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$.

Доказательство. Пусть $\{c_\xi\}_{\xi<\kappa}$ является $(\leqslant_{\rm fro})$ -башней в $\mathbb{N}^\mathbb{N}$. Можно предполагать, что каждое c_ξ как элемент $\mathbb{N}^\mathbb{N}$ есть строго возрастающая последовательность. (Иначе полагаем $c'_\xi(n)=n+\sum_{k\leqslant n}c_\xi(k)$.) Так что $c_\xi(n)\geqslant n$. Определим $a_\xi\in\mathbb{N}^\mathbb{N}$ для каждого ξ следующим образом: $a_\xi(k)=n$ всякий раз, когда $c_\xi(n)\leqslant k< c_\xi(n+1)$. Тем самым, a_ξ как отображение $\mathbb{N}\to\mathbb{N}$ является в каком-то смысле обратным к c_ξ . Ясно, что $a_\eta\leqslant^*a_\xi$ для всех $\xi<\eta<\kappa$. Мы утверждаем, что сверх того $a_\eta<^*a_\xi$ строго для всех $\xi<\eta<\kappa$. В самом деле, если $c_\xi(n)< c_\eta(n)$ (а это выполнено для бесконечно многих n, так как $c_\xi\leqslant^*c_\eta$), то по определению $n-1=a_\eta(c_\eta(n)-1)< a_\xi(c_\eta(n)-1)=n$.

Итак, $\{a_\xi\}_{\xi<\kappa}$ – строго (<*)-убывающая последовательность в $\mathbb{N}^{\mathbb{N}}$. Заметим также, что каждое a_ξ является возрастающей функцией (как отображение $\mathbb{N} \to \mathbb{N}$), возможно, нестрого возрастающей, а также неограниченной, т. е. $\mathbf{0} \prec a_\xi$, где $\mathbf{0} \in 2^{\mathbb{N}}$ обозначает константу 0, но $a_\xi(k) \leqslant k$ для всех k. Мы утверждаем, что

(*) нет элементов $a \in \mathbb{N}^{\mathbb{N}}$ таких, что $\mathbf{0} \prec a$ и $a \leqslant^* a_{\varepsilon}$ для всех ξ .

В самом деле, предположим противное, т. е. пусть $a\in\mathbb{N}^\mathbb{N}$ является контрпримером. Можно, не ограничивая общности, предполагать, что a – возрастающая функция (нестрого) и $a(n+1)\leqslant a(n)+1$ для любого n. Тогда существует единственная строго возрастающая функция $c\in\mathbb{N}^\mathbb{N}$ такая, что a(k)=n для всех k, удовлетворяющих $c(n)\leqslant k< c(n+1)$. Но тогда $a\leqslant^*a_\xi$ влечет $c_\xi\leqslant^*c$ для каждого ξ . Получили противоречие c выбором башни.

Отсюда следует, что при $b_n = \omega \times \{n\}$ (где n – константа) пара последовательностей $\langle \{b_n\}_{n\in\mathbb{N}}, \{a_\xi\}_{\xi<\kappa} \rangle$ становится (ω, ω_1^*) -щелью в $\langle \mathbb{N}^\mathbb{N}; \leqslant^* \rangle$. Чтобы теперь получить (ω_1, ω^*) -щель, положим $a'_\xi(k) = k - a_\xi(n)$ (напомним, что $a_\xi(k) \leqslant k$) и $b'_n(k) = \max\{0, k-n\}$ для всех ξ, k, n .

Этим завершается доказательство утверждения 3) теоремы 5.

7.4. Пределы. Начинаем доказательство утверждения 4) теоремы 5. Чтобы вывести 4), (i), т. е. отсутствие κ -пределов в структуре $\langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\mathrm{fro}} \rangle$, заметим, что для любого $a \in \mathbb{N}^{\mathbb{N}}$ имеется точный (\leqslant_{fro})-предшественник $a_{-} \in \mathbb{N}^{\mathbb{N}}$, заданный условием $a_{-}(n) = \max\{a(n) - 1, 0\}$ для любого n.

Далее, утверждение 4), (ii) вытекает из леммы 12.

Оставшиеся части утверждения 4) требуют некоторых усилий.

- 4), (ііі). Допустим, что $\{a_\xi\}_{\xi<\kappa}$ является башней в $\langle \mathbb{N}^\mathbb{N}; \leqslant_{\mathrm{fro}} \rangle$. Мы получаем предел $\langle 0,0,0,\ldots \rangle = \lim_{\xi\to\kappa} c_\xi$ в $\langle \mathbb{R}^\mathbb{N}; \leqslant_{\mathrm{fro}} \rangle$, где $c_\xi(n) = \frac{1}{a_\xi(n)}$. (По этой формуле для каждого ξ может случиться конечное число делений на 0, результат которых можно положить равным, к примеру, 1.) Обращение доказывается аналогично.
- 4), (iv). Эквивалентность вытекает из леммы 14. Построение башни аналогично построению в заключительной части доказательства леммы 18. Рассмотрим κ -предел $a = \lim_{\xi \to \kappa} a_{\xi}$ в структуре $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$, где $a_{\xi} \prec a_{\eta}$ для всех $\xi < \eta < \kappa$. Положим $b_n(k) = \max\{0, a(k) n\}$; тогда $\{b_n\}_{n \in \mathbb{N}}$ является (\leqslant_{fro})-убывающей последовательностью и пара $\langle \{a_{\xi}\}_{\xi < \kappa}, \{b_n\}_{n \in \mathbb{N}} \rangle$ образует (κ, ω^*)-щель в $\langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\text{fro}} \rangle$. Чтобы получить κ -башню в $\langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\text{fro}} \rangle$, используем лемму 17.
- 4), (v). Назовем башню $\{c_{\xi}\}_{{\xi}<\kappa}$ (в любой из хаусдорфовых структур) регулярной, если она удовлетворяет следующему условию:
- (**) для каждого $\xi < \kappa$ найдутся ординал η , $\xi < \eta < \kappa$, и число n_0 такие, что $c_\eta(n) \geqslant c_\xi(n+1)$ для всех $n \geqslant n_0$, другими словами, требуется, чтобы для любого ξ существовал ординал $\eta > \xi$ такой, что $c_\xi^+ \leqslant^* c_\eta$, где $c_\xi^+(n) = c_\xi(n+1)$ для любого n.

Регулярность в этом смысле вряд ли следует из определения башни. Соответственно, нам представляется, что в доказательстве [10, теорема 14, $2 \Rightarrow 3$] существования κ -пределов в $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$ из существования κ -башен для того же самого κ имеется пробел в ключевом утверждении 5 [10, с. 454]. С другой стороны, мы не имеем примера нерегулярной башни. Заметим также, что

регулярность выполняется в случае, когда $\{c_{\xi}\}$ является лестницей, так что κ -лестницы действительно порождают κ -пределы в $\langle \mathbb{N}^{\mathbb{N}}; \preceq \rangle$.

ЛЕММА 19. Если структура $\langle \mathbb{N}^{\mathbb{N}}; \leqslant_{\text{fro}} \rangle$ имеет κ -башни, то найдется регулярный кардинал $\kappa' < \kappa$ такой, что структура $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$ имеет κ' -пределы.

Доказательство. Согласно утверждению 2), (i) теоремы 5 найдется и κ -башня $\{c_\xi\}_{\xi<\kappa}$ в структуре $\langle\mathbb{N}^\mathbb{N};\preccurlyeq\rangle$. Тогда существует регулярная башня $\{c'_\xi\}_{\xi<\kappa'}$ в $\langle\mathbb{N}^\mathbb{N};\preccurlyeq\rangle$ длины $\kappa'\leqslant\kappa$, удовлетворяющая неравенству $c_\xi\preccurlyeq c'_\xi$ для всех $\xi<\kappa'$. (И даже более сильному условию $c'_{\xi+1}(n)\geqslant c'_\xi(n+1)$ для всех ξ и n. Определяем $c'_\xi\in\mathbb{N}^\mathbb{N}$ индукцией по ξ так, чтобы при переходе $\xi\mapsto\xi+1$ было $c_{\xi+1}\preccurlyeq c'_{\xi+1}$ и $c'_{\xi+1}(n)\geqslant c'_\xi(n+1)$ для всех n, а на предельных шагах $\lambda<\kappa$, если $\{c'_\xi\}_{\xi<\lambda}$ все еще не является башней в $\langle\mathbb{N}^\mathbb{N};\preccurlyeq\rangle$, берем произвольный элемент $c'_\lambda\in\mathbb{N}^\mathbb{N}$ такой, что $c_\lambda\preccurlyeq c'_\lambda$ и $c'_\xi\preccurlyeq c'_\lambda$ для каждого $\xi<\lambda$.)

Следуя доказательству леммы 18, определим $a_{\xi} \in \mathbb{N}^{\mathbb{N}}$ для $\xi < \kappa'$ исходя из построенной нами регулярной башни $\{c'_{\xi}\}_{\xi < \kappa'}$ в $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$. Тогда если $\xi < \eta < \kappa'$ и неравенство $c'_{\eta}(n) \geqslant c'_{\xi}(n+1)$ выполнено для всех $n \geqslant n_0$, то получаем $a_{\eta} <_{\text{fro}} a_{\xi}$ в лемме 18, а не только $a_{\eta} <^* a_{\xi}$, так что $\{a_{\xi}\}$ имеет конфинальную строго ($<_{\text{fro}}$)-убывающую подпоследовательность. Более того, предельные члены такой подпоследовательности образуют конфинальную и теперь уже (\prec)-убывающую последовательность. Следовательно, согласно (\ast) мы имеем κ' -предел в $\langle \mathbb{N}^{\mathbb{N}}; \preccurlyeq \rangle$.

4), (vi). Любой κ -предел в $\langle 2^{\mathbb{N}};\leqslant^* \rangle$ остается таковым в $\langle \mathbb{R}^{\mathbb{N}};\leqslant^* \rangle$ по лемме 13, а любая κ -башня в $\langle \mathbb{N}^{\mathbb{N}};\leqslant_{\mathrm{fro}} \rangle$ может быть превращена в κ -предел в $\langle \mathbb{R}^{\mathbb{N}};\leqslant^* \rangle$ следующим образом. Во-первых, преобразуем данную башню в κ -башню $\{a_{\xi}\}_{\xi<\kappa}$ в $\langle \mathbb{N}^{\mathbb{N}};\preccurlyeq \rangle$, состоящую только из возрастающих последовательностей $a_{\xi}\in \mathbb{N}^{\mathbb{N}}$. Потом, следуя доказательству утверждения 4), (iv), полагаем $c_{\xi}(n)=\frac{1}{a_{\xi}(n)}$. Мы утверждаем, что $\{c_{\xi}\}_{\xi<\kappa}$ является κ -пределом в $\langle \mathbb{R}^{\mathbb{N}};\leqslant^* \rangle$ (а не только в $\langle \mathbb{R}^{\mathbb{N}};\leqslant_{\mathrm{fro}} \rangle$, как в 4), (iv)) с предельным значением $\lim_{\xi\to\kappa}c_{\xi}=0$. Для доказательства предположим противное, т. е. $x\in \mathbb{R}^{\mathbb{N}}$ удовлетворяет $\mathbf{0}<^*x\leqslant^*c_{\xi}$ для всех ξ . Множество $D=\{k\colon x(k)\neq 0\}$ бесконечно, так как $\mathbf{0}<^*x$ строго; пусть $D=j_0< j_1< j_2<\cdots$. Положим $a(k)=\frac{1}{x(k)}$ для $k\in D$. Понятно, что $x\upharpoonright D\leqslant^*c_{\xi}\upharpoonright D$, и поэтому $a_{\xi}\upharpoonright D\leqslant^*a$ для каждого ξ . Теперь берем любую строго возрастающую последовательность $b\in \mathbb{N}^{\mathbb{N}}$, удовлетворяющую $b(k)\geqslant a(j_{n+1})$ всякий раз, когда $j_n\leqslant k< j_{n+1}$. Имеем $a_{\xi}\leqslant^*b$, поскольку a_{ξ} также возрастает. Поэтому трансфинитная последовательность $\{a_{\xi}\}_{\xi<\kappa}$ ограничена. Получили противоречие с тем, что она является башней.

Теперь докажем обратное. Рассмотрим произвольный (\leq^*)-предел $\{c_\xi\}_{\xi<\kappa}$ в $\mathbb{R}^\mathbb{N}$. Для простоты будем предполагать, что последовательность $\{c_\xi\}_{\xi<\kappa}$ является (\leq^*)-убывающей, ее предельное значение $\lim_{\xi\to\kappa}c_\xi$ есть $\mathbf{0}$ (константа 0), а все члены $c_\xi(n)$ неотрицательны. Положим $D_\xi=\{n\colon c_\xi(n)=0\}$, и пусть h_ξ – характеристическая функция множества D_ξ . Последовательность функций h_ξ (\leq^*)-возрастает, поэтому если мы выведем, что $\lim_{\xi\to\omega_1}h_\xi=\mathbf{1}$ (константа 1) в $\langle 2^\mathbb{N};\leq^*\rangle$, то этим доказательство будет завершено.

Допустим, что это не так, т.е. найдется $h \in 2^{\mathbb{N}}$ такое, что $h_{\xi} \leqslant^* h <^* \mathbf{1}$ для всех ξ . Тогда множество $D = \{n \colon h(n) = 1\}$ кобесконечно в \mathbb{N} и $D_{\xi} \subseteq^* D$ при любом ξ , поскольку $h_{\xi} \leqslant^* h$. Отсюда следует, что бесконечное множество

 $Z=\mathbb{N}\setminus D$ имеет конечное пересечение с каждым из множеств D_ξ . Это дает нам возможность определить $a_\xi(k)=\frac{1}{c_\xi(a)}$ для всех $k\in Z$ и ξ . (Для каждого ξ конечное число делений на 0 здесь можно обойти, как и выше.) Эта последовательность функций $a_\xi\colon Z\to\mathbb{N}$ является (\leqslant^*)-возрастающей (по крайней мере, нестрого), поскольку последовательность $\{c_\xi\}$ (\leqslant^*)-убывает. Сверх того, последовательность $\{a_\xi\}$ (\leqslant^*)-неограничена в семействе \mathbb{N}^Z всех функций $a\colon Z\to\mathbb{N}$, поскольку исходная последовательность $\{c_\xi\}$ является пределом (и остается таковым даже после ограничения всех членов на Z). Поэтому $\{a_\xi\}$ имеет строго ($<^*$)-возрастающую подпоследовательность. Итак, мы получили башню в $\langle Z; \leqslant^* \rangle$. Чтобы получить из нее башню в $\mathbb{N}^\mathbb{N}$, используем любую биекцию множества D на \mathbb{N} .

Отметим, что согласно 4), (vi) (\leq *)-пределы в $\mathbb{R}^{\mathbb{N}}$ состоят по меньшей мере из двух разных типов: те, которые гомологичны башням в $\mathbb{N}^{\mathbb{N}}$, и те, которые гомологичны (\leq *)-пределам в $2^{\mathbb{N}}$ (или в $\mathbb{N}^{\mathbb{N}}$, что эквивалентно).

4), (vii). Равносильность структур $\langle \mathbb{N}^{\mathbb{N}}; \preceq \rangle$ и $\langle \mathbb{R}^{\mathbb{N}}; \preceq \rangle$ в вопросе существования κ -пределов дается леммой 14. Далее, любой κ -предел в $\langle \mathbb{N}^{\mathbb{N}}; \preceq \rangle$ без труда преобразуется к убывающему пределу $\{x_{\xi}\}_{\xi<\omega_1}$ с предельным значением $\mathbf{0}$ (константа 0). Таким образом, $\mathbf{0} \prec x_{\eta} \prec x_{\xi}$ при $\xi < \eta < \kappa$, и не существует ни одного $x \in \mathbb{N}^{\mathbb{N}}$ такого, что $\mathbf{0} \prec x \prec x_{\xi}$ для всех ξ . Можно считать, что каждое x_{ξ} возрастает, т. е. $x_{\xi}(n) < x_{\xi}(n+1)$ для любого n, поскольку иначе мы могли бы заменить каждое x_{ξ} на x'_{ξ} , где $x'_{\xi}(n) = n + \sum_{k \leqslant n} x_{\xi}(k)$ для всех n. Мы утверждаем, что в этом случае последовательность $\{x_{\xi}\}_{\xi<\omega_1}$ является пределом и в $\langle \mathbb{N}^{\mathbb{N}}; \preceq \rangle$.

Предположим противное: $x \in \mathbb{N}^{\mathbb{N}}$ и $\mathbf{0} \lhd x \lhd x_{\xi}$ для всех $\xi < \kappa$. Тогда $x \prec x_{\xi}$ для всех ξ (см. доказательство леммы 15). Положим $y(n) = \max\{x(k) \colon k \leqslant n\}$, так что $y \in \mathbb{N}^{\mathbb{N}}$ – возрастающая (возможно, нестрого) функция, а потому выполнено не только $\mathbf{0} \lhd y$, но и $\mathbf{0} \prec y$. Остается проверить, что все еще $y \prec x_{\xi}$ для всех ξ : это дает искомое противоречие. В сущности вполне достаточно проверить, что $y \leqslant^* x_{\xi}$ для всех ξ .

Докажем, что $y\leqslant^* x_\xi$. Поскольку $x\prec x_\xi$, найдется n_0 такое, что $x(n)< x_\xi(n)$ для всех $n\geqslant n_0$. Далее, так как x_ξ — возрастающая функция, найдется $n_1\geqslant n_0$ такое, что $\max_{k< n_0} x(k)< x_\xi(n)$ для всех $n\geqslant n_1$. Таким образом, $x(k)< x_\xi(n)$ всякий раз, когда $n\geqslant n_1$ и $k\leqslant n$. Отсюда по построению следует, что $y(n)< x_\xi(n)$ для каждого $n\geqslant n_1$, что и требовалось доказать.

7.5. Щели и пределы. Доказательство последней части теоремы 5 основывается на следующей лемме (см. [12] для случая $\kappa = \omega_1$).

ЛЕММА 20. Если структура $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$ имеет κ -башню, то $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$ имеет κ' -предел для некоторого несчетного кардинала $\kappa' \leqslant \kappa$. В частности, поскольку ω -пределов не существует, из существования ω_1 -башни в $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$ следует существование ω_1 -предела в $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$. Дополнительно, если κ -пределов нет в $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$, то каждая κ -башня в структуре $\langle \mathbb{N}^{\mathbb{N}}; \leqslant^* \rangle$ является κ -лестницей.

ДОКАЗАТЕЛЬСТВО. Для каждого бесконечного $x\subseteq\mathbb{N}$ через φ_x обозначим (единственную) возрастающую биекцию $\mathbb{N}\stackrel{\mathrm{Ha}}{\to} x$. Пусть $\{f_\alpha\}_{\alpha<\kappa}$ является κ -башней в $\langle\mathbb{N}^\mathbb{N};\leqslant^*\rangle$. Можно предполагать, что все f_α являются строго возрастающими функциями. (Если это не так, то заменим f_α на $g_\alpha(k)=$

 $k+\sum_{n=0}^k f_{\alpha}(n)$.) Мы собираемся построить (\subset^*)-убывающую последовательность $\{x_{\alpha}\}_{\alpha<\kappa'}$ бесконечных множеств $x_{\alpha}\subseteq\mathbb{N}$ такую, что $f_{\alpha}\leqslant^*\varphi_{x_{\alpha}}$ для всех $\alpha<\kappa'$; ординал $\kappa'\leqslant\kappa$ будет определен в ходе конструкции.

Допустим, что $\lambda \leqslant \kappa$ и все множества x_{α} , $\alpha < \lambda$, уже определены.

Случай 1. Существует бесконечное множество $x\subseteq\mathbb{N}$ такое, что $x\subseteq^*x_\alpha$ для всех $\alpha<\lambda$. В этом случае $f_\alpha\leqslant^*\varphi_{x_\alpha}\leqslant^*\varphi_x$ для каждого α , поэтому $\lambda<\kappa$. Ясно, что существует бесконечное множество $y\subset^*x$, удовлетворяющее $f_\alpha\leqslant^*\varphi_y$. Положим $x_\lambda=y$.

Случай 2. Такое множество x не существует. Тогда последовательность $\{x_{\alpha}\}_{\alpha<\lambda}$ легко может быть преобразована в λ -предел в структуре $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$, так что можно взять $\kappa' = \lambda$.

Докажем теперь дополнительное утверждение леммы. Рассмотрим произвольную функцию $f \in \mathbb{N}^{\mathbb{N}}$ и предположим противное, т. е. что $f \nleq^* f_{\alpha}$ для некоторого $\alpha < \kappa$. Можно предполагать, что f строго возрастает вместе со всеми f_n . Тогда каждое множество $x_{\alpha} = \{n \colon f_{\alpha}(n) < f(n)\}$ бесконечно и мы имеем $x_{\beta} \subseteq^* x_{\alpha}$ всякий раз, когда $\alpha < \beta < \kappa$, поскольку $f_{\alpha} \leqslant^* f_{\beta}$. Мы утверждаем, что найдется бесконечное множество $x \subseteq \mathbb{N}$, удовлетворяющее $x \subseteq^* x_{\alpha}$ для всех α . В самом деле, если последовательность $\{x_{\alpha}\}_{\alpha < \kappa}$ содержит конфинальную строго убывающую подпоследовательность, то такое множество x существует, поскольку в противном случае подпоследовательность дала бы κ -предел в $\langle 2^{\mathbb{N}}; \leqslant^* \rangle$. Если же нет конфинальных строго убывающих подпоследовательностей, то для некоторого $\gamma < \kappa$ мы имеем $\forall \, \xi > \gamma (x_{\xi} \equiv^* x_{\gamma})$, и тогда $x = x_{\gamma}$ – искомое множество.

Итак, пусть x — такое множество. Тогда $f_{\alpha} \upharpoonright x \leqslant^* f \upharpoonright x$ (в том смысле, что множество $\{n \in x \colon f(n) < f_{\alpha}(n)\}$ конечно) для каждого α . Предполагая, что

$$x = \{0 = i_0 < i_1 < \dots < i_n < \dots \},\$$

определим $g(k)=f(i_{n+1})$ всякий раз, когда $i_n\leqslant k< i_{n+1}$. Тогда, поскольку f и все f_{α} возрастающие, мы имеем $f_{\alpha}\leqslant^* g$ для каждого α . Получили противоречие с предположением, что последовательность всех f_{α} – башня.

Теорема 5 полностью доказана.

Список литературы

- 1. P. du Bois-Reymond, "Sur la grandeur relative des infinis des fonctions", Ann. Mat. Pura Appl. (2), 4:1 (1870), 338–353.
- J. Hadamard, "Sur les caractères de convergence des séries a termes positifs et sur les fonctions indéfiniment croissantes", Acta Math., 18:1 (1894), 319–336.
- 3. É. Borel, Leçons sur la théorie des fonctions, Gauthier-Villars, Paris, 1898.
- G. H. Hardy, "A theorem concerning the infinite cardinal numbers", Q. J. Pure Appl. Math., 35 (1903), 87–94.
- 5. F. Hausdorff, "Untersuchungen über Ordnungstypen", Leipz. Ber., 59 (1907), 84–159.
- F. Hausdorff, "Die Graduierung nach dem Endverlauf", Leipzig Abh., 31 (1909), 297–334.
- E. K. van Douwen, "The integers and topology", Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, 111–167.

- 8. R. Frankiewicz, P. Zbierski, Hausdorff gaps and limits, Stud. Logic Found. Math., 132, North-Holland, Amsterdam, 1994.
- 9. В.И. Малыхин, "Топология и форсинг", *УМН*, **38**:1 (1983), 69–118; англ. пер.: V. I. Malykhin, "Topology and forcing", Russian Math. Surveys, 38:1 (1983), 77–136.
- 10. M. Scheepers, "Gaps in ω^{ω} ", Set theory of the reals (Bar-Ilan Univ., Ramat-Gan, Israel, 1991), Israel Math. Conf. Proc., 6, Amer. Math. Soc., Providence, RI, 1993, 439-561.
- 11. F. Rothberger, "Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C["], Proc. Cambridge Philos. Soc., 37 (1941), 109-126.
- 12. F. Rothberger, "On some problems of Hausdorff and of Sierpiński", Fund. Math., 35 (1948), 29-46.
- 13. M. Scheepers, "Cardinals of countable cofinality and eventual domination", Order, **11**:3 (1994), 221–235.
- 14. F. Hausdorff, "Summen von ℵ₁ Mengen", Fund. Math., **26** (1936), 241–255.
- 15. N. Lusin, "Sur les parties de la suite naturelle des nombres entiers", Докл. АН СССР, **40**:5 (1943), 175–178.
- 16. Н. Н. Лузин, "О частях натурального ряда", Изв. АН СССР. Сер. матем., 11:5 (1947), 403-410.
- 17. В. Г. Кановей, "Развитие дескриптивной теории множеств под влиянием трудов Н. Н. Лузина", УМН, **40**:3 (1985), 117–155; англ. пер.: V. G. Kanovei, "The development of the descriptive theory of sets under the influence of the work of Luzin", Russian Math. Surveys, 40:3 (1985), 135–180.
- 18. P. L. Dordal, "Towers in $[\omega]^{\omega}$ and ω^{ω} ", Ann. Pure Appl. Logic, **45**:3 (1989), 247–276.
- 19. K. Kunen, Set theory. An introduction to independence proofs, Stud. Logic Found. Math., 102, North-Holland, Amsterdam, 1980.
- 20. M. E. Rudin, "Martin's axiom", Handbook of mathematical logic, North-Holland, Amsterdam-New York-Oxford, 1977, 491-501.
- 21. D. A. Martin, R. M. Solovay, "Internal Cohen extensions", Ann. Math. Logic, 2:2 (1970), 143–178.
- 22. S. H. Hechler, "Independence results concerning a problem of N. Lusin", Math. Systems Theory, 4:3 (1970), 316–321.
- 23. S. H. Hechler, "On the existence of certain cofinal subsets of ω ", Axiomatic set theory, Proc. Sympos. Pure Math. (Univ. California, Los Angeles, CA, 1967), Amer. Math. Soc., Providence, RI, 1974, 155–173.
- 24. M. R. Burke, "A proof of Hechler's theorem on embedding ℵ₁-directed sets cofinally into $(\omega^{\omega}, <^*)$ ", Arch. Math. Logic, **36**:6 (1997), 399–403.
- 25. R. C. Solomon, "Families of sets and functions", Czechoslovak Math. J., 27:4 (1977), 556-559.
- 26. R. Solovay, "Introductory note to Gödel *1970a, *1970b, *1970c", Collected works. Vol. III. Unpublished essays and lectures, Clarendon Press, Oxford Univ. Press, New York, 1995, 405–420.
- 27. Н. Н. Лузин, Собрание сочинений, т. П. Дескриптивная теория множеств, Изд-во АН СССР, М., 1958.

B. Γ. Kahobeň (V. G. Kanovei) Институт проблем передачи информации им. А. А. Харкевича РАН

Поступило в редакцию

04.10.2007

E-mail: kanovei@mccme.ru