БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики и информатики

BELARUSIAN STATE UNIVERSITY Faculty of Applied Mathematics and Informatics

ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ

Материалы XI Международного научного конгресса по информатике (CSIST-2025)

Республика Беларусь Минск, 29-31 октября 2025 г.

В двух частях Часть 1

INFORMATION SYSTEMS AND TECHNOLOGIES

Proceedings of the XI International Scientific Congress on Computer Science (CSIST-2025)

> Republic of Belarus Minsk, October 29–31, 2025

> > In two parts
> > Part 1

Научное электронное издание

Минск, БГУ, 2025

ISBN 978-985-881-852-4 (ч. 1) ISBN 978-985-881-851-7 © БГУ, 2025

Редакционная коллегия: академик НАН Беларуси, доктор технических наук, профессор С. В. Абламейко (гл. ред.); доктор педагогических наук, профессор В. В. Казаченок (зам. гл. ред.); кандидат физико-математических-наук, доцент Н. М. Дмитрук; член-корреспондент НАН Беларуси, доктор технических наук, профессор А. В. Тузиков; доктор физико-математических наук, профессор А. Ю. Харин

Рецензенты: академик НАН Беларуси, доктор физико-математических наук, профессор Ю. С. Харин; член-корреспондент НАН Беларуси, доктор технических наук, профессор А. В. Тузиков; доктор физико-математических наук, профессор Н. А. Лиходед

Информационные системы и технологии = Information Systems and Technologies : материалы XI Междунар. науч. конгр. по информатике (CSIST-2025), Респ. Беларусь, Минск, 29–31 окт. 2025 г. В 2 ч. Ч. 1 / Белорус. гос. ун-т ; редкол.: С. В. Абламейко (гл. ред.) [и др]. – Минск : БГУ, 2025. – 1 электрон. опт. диск (CD-ROM). – Текст : электронный. – ISBN 978-985-881-852-4.

Представлены материалы международного научного конгресса, организованного Белорусским государственным университетом и Объединенным институтом проблем информатики НАН Беларуси.

Рассмотрены вопросы информационной и компьютерной безопасности, биоинформатики и приложений, интеллектуального и статистического анализа данных и принятия решений, оптимизации и надежности систем, параллельной и распределенной обработки данных.

Минимальные системные требования:

PC, Pentium 4 или выше; RAM 1 Гб; Windows XP/7/10; Adobe Acrobat. Оригинал-макет подготовлен в программе Microsoft Word

На русском и английском языках

В авторской редакции

Ответственный за выпуск С. В. Шолтанюк

Подписано к использованию 27.10.2025. Объем 10 МБ

Белорусский государственный университет. Управление редакционно-издательской работы. Пр. Независимости, 4, 220030, Минск. Телефон: (017) 259-72-40. e-mail: urir@bsu.by http://elib.bsu.by/

ПОИСК ПЕТЛИ В НЕСОВЕРШЕННОМ ПАЛИНДРОМЕ

Г. А. Хазиев, О. А. Зверков, Л. И. Рубанов, А. В. Селиверстов

Институт проблем передачи информации имени А. А. Харкевича РАН, Москва, Россия, <u>khaziev@iitp.ru</u>

Палиндромы часто встречаются при анализе нуклеотидных последовательностей. Вопрос автоматического обнаружения несовершенных палиндромов до сих пор остаётся открытым. Мы предлагаем алгоритм de_shapker выделения петли в несовершенном палиндроме. Авторы протестировали работу алгоритма на нескольких множествах высококонсервативных элементов (ВКЭ).

Ключевые слова: несовершенные палиндромы; шпильки; биоинформатика.

SEARCHING FOR THE LOOP IN IMPERFECT PALINDROME

G. A. Khaziev, O. A. Zverkov, L. I. Rubanov, A. V. Seliverstov

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute),

Moscow, Russia, khaziev@iitp.ru

Palindromes are often encountered in analysis of nucleotide sequences. The question of automatic detection of imperfect palindromes is still open. We propose the de_shapker algorithm for identifying a loop in an imperfect palindrome. The authors tested the algorithm on several sets of highly conserved elements (HCE).

Keywords: imperfect palindromes; hairpins; bioinformatics.

1. Введение

Последовательность нуклеотидов называется совершенным палиндромом, если она комплементарна сама себе. Последовательность, отличающаяся от совершенного палиндрома, называется несовершенным палиндромом. Ранее авторами были предложены квадратичный алгоритм palindrome_self_alignment поиска наименьшего редакционного расстояния между последовательностью x и совершенным палиндромом, который был получен конкатенацией префикса x и последовательности, комплементарной этому префиксу [1]. Также авторами была предложена функция

$$\operatorname{imp}(x) = \frac{\min \left\{ \operatorname{dist}(x, w \operatorname{c}(w) \mid x = wz \right\}}{\mid x \mid},$$

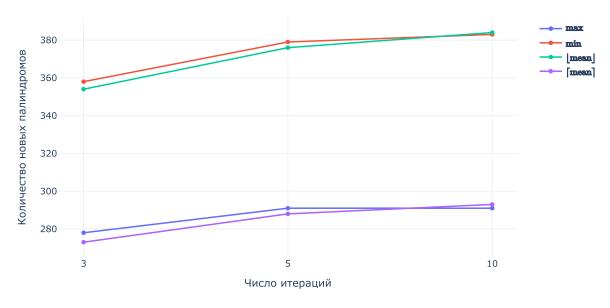
где dist(.) — редакционное расстояние, c(.) — комплементарная последовательность, а |.| — длина последовательности. Данная функция характеризует близость последовательности x к совершенному палиндрому. Чем ближе строка к совершенному палиндрому, тем ближе к нулю значение фунции imp(x). Сложность поиска близких к палиндрому последовательностей в молекулярной биологии состоит в наличие длинных подпоследовательностей внутри близких к палиндрому строк, нарушающих общую палиндромность. Для частичного решения данной проблемы, ранее авторами были предложены алгоритмы усечения, целью которых является выделение длинной подстроки x, более близкой к совершенному палиндрому, чем x [2].

2. Алгоритм удаления петли

Авторы предлагают алгоритм de shapker, целью которого является выделение подпоследовательности с более низким значением функции imp(x) с помощью нахождения некомплементарного себе участка внутри последовательности – петли. В отличие от алгоритмов усечения, которые находили подпоследовательность с более высоким значением imp(x) с помощью удаления нуклеотидов на краях последовательности, алгоритм de shapker удаляет участок внутри последовательности. Такой участок характерен для несовершенных палиндромов, встречающихся в биологических задачах. Алгоритм получает на вход строку x, значение imp given = = imp(x), матрицу H, вычисленную в алгоритме palindrome self alignment для строки x, число итераций алгоритма iteration counter, первоначальный размер окна window size, приращение к размеру окна между итерациями window delta, а также стратегию выбора координат начала петли strategy. Строка x записывается в строку result. Далее, для всех непрерывных подматриц матрицы H размера window size \times window size вычисляется l_1 норма по формуле

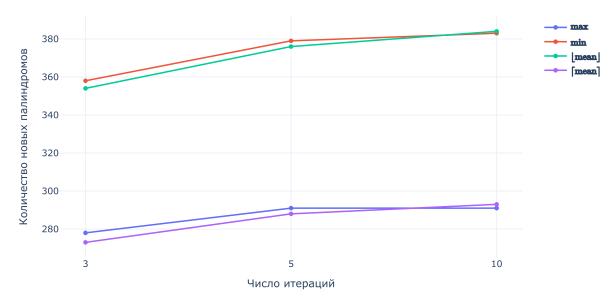
$$l_1(A) = \sum_{i=1}^{\text{window_size window_size}} \sum_{j=1}^{i=1} A_{ij},$$

где A — подматрица H. Из индексов (u, v) в матрице H левого верхнего элемента наименьшей по норме подматрицы выбирается индекс s начала найденного участка петли. За выбор индекса отвечает параметр strategy. Затем, в x удаляется участок начиная c s, заканчивая s + window size и


записывается в строку x_new . Для полученной строки вычисляется значение функции $imp(x_new)$. Если данное значение меньше, чем imp_given , то x_new записывается в строку result и начинается новая итерация, иначе, алгоритм завершает работу и возвращает строку result.

3. Результаты тестирования

В некодирующих областях геномов *Homo sapiens, Macaca fascicularis, Mus musculus, Sus scrofa* были выделены высококонсервативные элементы (ВКЭ), находящиеся на первой хромосоме человека с использованием модификации метода, описанного в [3].


Для двух множеств этих ВКЭ был проведён поиск палиндромов с использованием алгоритмов усечения. Затем, к каждой последовательности была применена функция de_shapker с четырьмя различными значениями параметра strategy: $\max(u,v)$, $\min(u,v)$, $\lfloor \max(u,v) \rfloor$, $\lceil \max(u,v) \rceil$. Кроме того, варьировались значения числа итераций: для каждой последовательности выполнялось до 3, 5 и 10 операций. Стартовый размер окна был равен 2, приращение window_delta также был равен 2. Последовательность x считалась близкой к палиндрому, если для одной из её подпоследовательностей x_s , полученной в результате анализа, выполнялось $\lim_{x \to \infty} (x_s) \le 0.2$.

В первом множестве из 5689 последовательностей - blk01-12.37.8 с помощью усечения был найден 471 палиндром. Количество палиндромов, найденных с помощью функции de_shapker, указано на рис. 1.

Puc. 1. Зависимость между числом итераций алгоритма de_shapker и количеством найденных палиндромов для множества blk01-12.37.8

Аналогичные эксперименты были проведены для множества blk01-10.39.8. В данном множестве содержится 5862 последовательности, в них с помощью усечения было найдено 475 палиндромов. Количество палиндромов, найденных с помощью функции de shapker, указано на рис. 2.

Puc. 2. Зависимость между числом итераций алгоритма de_shapker и количеством найденных палиндромов для множества blk01-10.39.8

Из рисунков выше можно сделать два основных вывода. Первый вывод заключается в том, что выбор в качестве параметра strategy функции, смещённую к меньшему из значений (u, v) приводит к большему числу обнаруженных палиндромов. Второй вывод состоит в том, что между 3 и 5 итерациями прирост числа палиндромов сильно больше, чем между 5 и 10, следовательно, при анализе большого количества последовательностей можно ограничиться значением iteration_counter=5 для экономии времени вычисления.

Кроме того, для найденных палиндромов было вычислен процент оставшейся строки после усечения и применения функции de_shapker (табл. 1–2). Из таблиц видно, что даже несмотря на небольшое уменьшение средней доли строки после усечения и удаления петли для каждой отдельной стратегии, в среднем, строки потеряли небольшую долю от своей длины. Таким образом, алгоритмы не выдают в результате анализа слишком короткие последовательности, близкие к палиндромам в силу своей длины, а позволяют определить те последовательности, которые действительно могут содержать длинные подпоследовательности, близкие к палиндромам.

Таблица 1 Средняя доля строки после усечения в blk01-12.37.8

strategy	3 итерации	5 итераций	10 итераций
min	81,6%	80,5%	80,5%
max	81,5%	80,5%	80,2%
[mean]	81,5%	80,5%	80%
[mean]	81,6%	80,5%	80%

Примечание. Средний процент от первоначальной строки, оставшийся в результате всех преобразований.

Таблица 2 Средняя доля строки после усечения в blk01-10.39.8

strategy	3 итерации	5 итераций	10 итераций
min	81,3%	80,2%	80%
max	81%	80,3%	80%
[mean]	81%	80,2%	79,9%
[mean]	81,2%	80,3%	80%

Примечание. Средний процент от первоначальной строки, оставшийся в результате всех преобразований.

4. Заключение

Рассмотренный алгоритм позволяет точнее определять близость строки к совершенному палиндрому. На экспериментальных данных, при выборе стратегии лучше всего себя показали функции минимума и округлённого вниз среднего.

Библиографические ссылки

- 1. Зверков О. А., Селиверстов А. В., Шиловский Γ . А. Выравнивание скрытого палиндрома // Математическая биология и биоинформатика. 2024. Т. 19. № 2. С. 427–438. DOI: 10.17537/2024.19.427.
- 2. *Khaziev G. A., Seliverstov A. V., Zverkov O. A.* Searching for an Imperfect Palindrome // Computer algebra: 6th International Conference Materials, Moscow, June 23–25, 2025 / eds.: A. A. Ryabenko, D. S. Kulyabov. Moscow: RUDN University, 2025. P. 62–65.
- 3. Новый алгоритм поиска несовершенных палиндромов в ДНК / Г. А. Хазиев [и др.] // МССМВ 2025 : Сборник тезисов 12-й Московской конференции по вычислительной молекулярной биологии (МССМВ). С. 621–624. URL: https://www.mccmb.info/ (дата обращения: 10.09.2025).