МАТЕМАТИЧЕСКИЕ ЗАМЕТКИ

т. 17, № 6 [1975], 939—946

УДК 517.11

О МАЖОРИРОВАНИИ НАЧАЛЬНЫХ СЕГМЕНТОВ СТЕПЕНЕЙ КОНСТРУКТИВНОСТИ

В. Г. Кановей

Пусть \mathfrak{M} — фиксированная счетная стандартная транзитивная модель ZF+V=L. Рассматривается структура Моd степеней конструктивности относительно \mathfrak{M} всех действительных чисел x таких, что \mathfrak{M} (x) — модель. Начальный сегмент $Q\subseteq$ Mod называется модельным, если некоторое расширение \mathfrak{M} с теми же ординалами содержит степени конструктивности действительных чисел из Q и только их (и является моделью ZFC). Доказывается теорема: Если Q — модельный начальный сегмент, то $\mathfrak{A}x$ $\mathfrak{L}y$ $\mathfrak{M}x \in \mathrm{Mod}$ \mathfrak{G}

 $[y \in Q \to y < x]] \& \forall z \exists y [z < x \to y \in Q \& \sim [y < z]]].$

Библ. 4 назв.

Введение. Пусть L — счетная стандартная транзитивная (с. с. т.) модель ZFC, $\mathfrak{M} \models V = L$. Для $x \subseteq \omega_0$ образуем L(x) — конструктивное замыкание $L \bigcup \{x\}$ по ординалам из L (см. [1]). Пусть $\mathrm{Mod}^0 = \{x \mid L(x) - \mathrm{мос}_{2}\}$ мосель $ZFC \& x \subseteq \omega_0\}$.

Введем на Mod^o порядок: $x \leqslant y \equiv x \in L(y)$, эквивалентность:

$$x \approx y \equiv x \leqslant y \& y \leqslant x.$$

Пусть Mod — факторизация; $[x] = \{y \mid y \approx x\}$; $[x] \leqslant [y] \equiv x \leqslant y$; $\operatorname{Mod} = \{[x] \mid x \in \operatorname{Mod}^{0}\}$.

Пусть Q — начальный сегмент Mod. Назовем Q модельным сегментом, если $\exists \mathfrak{M} \ [L \subseteq \mathfrak{M} \& \mathfrak{M} - \mathbf{c}. \mathbf{c}. \mathbf{t}.$ модель $ZFC \& \operatorname{On}^{\mathfrak{M}} = \operatorname{On}^{L} \& \operatorname{V} x \ [x \in \mathfrak{M} \& x \subseteq \omega_0 \to [x] \in Q]$ & $\operatorname{V} x \ [[x] \in Q \to x \in \mathfrak{M}]$].

Тривиально доказывается, что если Q — модельный начальный сегмент Mod, то он мажорируется некоторым $[x] \subseteq \text{Mod}$. В настоящей статье рассматривается вопрос наличия наименьшей мажоранты, а именно доказывается

ТЕОРЕМА А. Пусть Q — модельный начальный сегмент Mod. Тогда найдется такое $[x] \in Mod$, что $\forall y \ [[y] \in Q \rightarrow [y] \leqslant [x]] \& \forall z \exists y \ [[z] \leqslant [x] \& [z] \neq [x] \rightarrow [y] \in Q \& \sim [[y] \leqslant [z]]].$

Для доказательства этой теоремы доказывается вспомогательная теорема.

ТЕОРЕМА В. Пусть $\mathfrak{M}-c$. с. т. модель ZFC, имеющая вид L(X), где $X \subseteq \mathfrak{M}$, $X \subseteq \omega_1^{\mathfrak{M}}$. Тогда найдется такое $x \subseteq \omega_0$, что $\mathfrak{M}(x)$ — модель ZFC,

$$L(x) = \mathfrak{M}(x)$$
 u $\forall y [y \in (\mathfrak{M}(x) - \mathfrak{M}) \& y \subseteq \omega_0 \rightarrow x \in \mathfrak{M}(y)].$

Последняя теорема является, очевидно, усилением результата Сакса [2] о минимальных степенях (усиление касается $L(x) = \mathfrak{M}(x)$).

Покажем кратко, как из В следует А. Пусть Q — модельный начальный сегмент Mod. Значит, существует модель \mathfrak{N}^0 ,

$$\mathfrak{R}^{0} \models ZFC, \text{ On}^{L} = \text{On}^{\mathfrak{R}^{0}}, \text{ } \forall x \text{ } [x \in \mathfrak{R}^{0} \text{ & } x \subseteq \omega_{0} \rightarrow [x] \in Q],$$

$$\forall x \text{ } [[x] \in Q \rightarrow x \in \mathfrak{R}^{0}].$$

В силу $\mathfrak{N}^0 \models ZFC$ в \mathfrak{N}^0 найдется полное упорядочение $S(\omega_0) \cap \mathfrak{N}^0$ по типу $\exp^{\mathfrak{N}^0}(\omega_0)$ (обозначения: $S(u) = \{x \mid x \subseteq u\}$, $\exp(u) = \operatorname{card}(S(u))$ в предположении аксиомы выбора). Пусть $X = \{\langle x_\alpha, \alpha \rangle \mid \alpha \in \exp^{\mathfrak{N}^0}(\omega_0)\}$ — это полное упорядочение. Рассмотрим $\mathfrak{N} = L(X)$. Легко видеть, что $X \in \mathfrak{N}$, $\mathfrak{N} \models ZFC$, $\forall x [x \in \mathfrak{N} \cap S(\omega_0) \to [x] \in Q]$, $\forall x [[x] \in Q \to x \in \mathfrak{N}]$. Легко видеть также, что если расширить \mathfrak{N} генерической «склейкой» $\omega_1^{\mathfrak{N}}$ и $\exp^{\mathfrak{N}}(\omega_0)$ (взяв в качестве вынуждающих условий функции $f : D \to \exp^{\mathfrak{N}}(\omega_0)$, где D — произвольное счетное подмножество $\omega_1^{\mathfrak{N}}$ и, естественно, $f \in \mathfrak{N}$) до модели \mathfrak{N} , то \mathfrak{N} будет удовлетворять тем же свойствам, что и \mathfrak{N} , и дополнительно условию теоремы \mathfrak{B} . Ясно, что если $x \subseteq \omega_0$ таково, как в теореме \mathfrak{B} , то [x] будет искомым теоремы \mathfrak{A} . Поэтому рассмотрим \mathfrak{B} .

Если \mathfrak{M} удовлетворяет условиям теоремы B, то в \mathfrak{M} легко подобрать множество $X = \{\langle \alpha, x_{\alpha}^{\varepsilon} \rangle \mid \alpha \in \omega_{1}^{\mathfrak{M}} \}$ такое, что $\forall \alpha [\alpha \in \omega_{1}^{\mathfrak{M}} \rightarrow x_{\alpha} \subseteq \omega_{0}], \quad \mathfrak{M} = L(X), \forall \alpha [\alpha \in \omega_{1}^{\mathfrak{M}} \rightarrow \alpha \text{ счетно } B \ L(x_{\alpha})] \text{ и } \forall \alpha [\alpha \in \omega_{1}^{\mathfrak{M}} \rightarrow \{\langle \beta, x_{\beta} \rangle \mid \beta \in \alpha\} \in L(x_{\alpha})].$ Считаем, также, что

 $\forall x [x \in \mathfrak{M} \cap S(\omega_0) \to \mathfrak{M} \neq L(x)],$ так как иначе теорему можно было бы доказать методом [2], выбрав перфектно-генерическое относительно $\mathfrak{M} = L(x), a \subseteq \omega_0$ так, что $\forall n \ [n \in x \equiv 2n \in a]$. В этом случае, очевидно, можно предполагать

$$\forall \alpha \ [\alpha \in \omega_1^{\mathfrak{M}} \to x_{\alpha} \notin L \ (\{\langle \beta, x_{\beta} \rangle \mid \beta \in \alpha\})].$$

Hа протяжении §§ 1—5 предполагается, что $\mathfrak{M} = L(X)$ удовлетворяет вышеперечисленным условиям.

§ 1. Основные обозначения.

- 1.1. Пусть для $\lambda \in \omega_1^{\mathfrak{M}} \mathfrak{M}_{\lambda} = \mathfrak{M} (\{\langle \alpha, x_{\alpha} \rangle | \alpha \in \lambda \}), \leqslant (\lambda)$ —ка-№ д. Семейство полный порядок на нонический $\{\leqslant(\lambda)\mid\lambda\in\omega_1^\mathfrak{M}\}$ можно выбрать так, что $\lambda\leqslant\mu o\leqslant(\lambda)$ совпадает на \mathfrak{M}_{λ} с индуцированным \ll (µ). Пусть $\theta_{\lambda} = \exp \mathfrak{M}_{\lambda} (\omega_{0})$. Считаем, что $\leqslant (\lambda)$ упорядочивает $\mathfrak{M}_{\lambda} \cap S(\omega_0)$ по типу θ_{λ} . Определим для $x \in \mathfrak{M}_{\lambda} N_{\lambda}(x)$ номер x в смысле $\leqslant (\lambda)$ и для $x \in \mathfrak{M}_{\omega_1}$ $\lambda(x) = \inf \{\lambda \mid x \in \mathcal{M}_{\omega_2}\}$ $\in \mathfrak{M}_{\lambda}$.
- 1.2. Пусть F_x какая-то эффективная кодировка замкнутых подмножеств $S(\omega_0)$ действительными числами, причем ϕ — код ϕ и ω_0 — код S (ω_0). Будем писать $x\leqslant_F y\equiv F_y\subseteq F_x,\quad x\leqslant_{FB}y\equiv F_y\subseteq F_x\ \&\ F_y$ нигде не плотно в $F_x;\ x\wedge y-$ код $F_x\cap F_y;\ x\vee y-$ код $F_x\vee F_y;\ l\ (x)$ — длина наименьшего сегмента в $S\ (\omega_0)$, целиком содержащего F_x .

Если $f\colon K {\:\longrightarrow\:} S \, (\omega_0),$ то $\bigwedge_{i \in K} f \, (i)$ будем обозначать код $\bigcap_{i\in K}F_{f(i)}$ и $\bigvee_{i\in K}f(i)$ — код $\bigcup_{i\in K}\overset{\iota=\kappa}{F_{f(i)}}$ (если это множество замкнуто).

1.3. Пусть $Z \subseteq S$ (ω_0) $\cap \mathfrak{M}$. Назовем Z λ -полуоднородным, если $\forall x \forall \mu \exists y \ [x \in Z \& \mu \in \lambda \to \lambda \ (y) \geqslant \mu \& y \geqslant_{FB} x$

& $y \subset Z$ & F_x — совершенно]. Пусть $Y \subseteq S(\omega_0) \cap \mathfrak{M}_{\lambda}$ λ -полуоднородно. Семейство $S = \{\langle i, m, S_m^i \rangle \mid m \in \omega_0 \& i \in 2\}$ называется λY -семейством, если

- (i) $\forall m \forall i [S_m^i \subseteq Y]$;
- (ii) $\forall m \forall i \forall x \forall y \ [x \in S_m^i \& y \in Y \& y \geqslant_F x \rightarrow y \in S_m^i];$
- (iii) $\forall m \forall x \forall i \forall y \ [x \in S_m^i \& y \in S_m^i \to x \setminus y \in S_m^i]$:
- (iv) $\forall m \forall x \exists i \exists y [x \in Y \to y \geqslant_{FB} x \& y \in S_m^i];$

- (v) $\forall m \ [S_m^0 \cap S_m^1 = \phi];$
- (vi) $\forall x \forall y \exists m \exists u \exists v [x \in Y \& y \in Y \rightarrow u \geqslant_{FB} x \& v \geqslant$ $\geqslant_{FB} y \& u \in S_m^0 \& v \in S_m^1$].

- § 2. Непредельный случай. 2.1. Пусть $Y \subseteq S(\omega_0) \cap \mathfrak{M}_{\lambda+1}$ ($\lambda+1$)-полуоднородно, $S \in \mathfrak{M}_{\lambda+1} - (\lambda+1)Z$ -семейство, $z \in Y$. Определим на $S(\omega_0)$ функцию $H_{\lambda+1,S,z}(x)=y$ так:
- (i) если $x \notin F_z$, считаем у неопределенным, иначе, полагаем $z_0 = z$;

$$\geqslant_{FB}z_0 \& l(u) + l(t) \leqslant (1/2)l(z_0) \& \exists m \ [t \in S_m^0 \& u \in S_m^1]\},$$

$$\langle \overline{t}, \overline{u} \rangle = \min_{\leqslant (\lambda+1)} \left\{ \langle t, u \rangle \mid t \wedge u = \phi \& t \vee u \geqslant \right\}_{FBZ_0} \& l(u) + l(t) \leqslant$$

$$\leq (1/2) l(z_0) \& \exists m [t \in S_m^0 \& u \in S_m^1] \& x \in F_u \cup F_t \};$$

- (iii) если $\langle \overline{t}, \ \overline{u} \rangle$ или $\langle \overline{t}, \ \overline{u} \rangle$ неопределенны, считаем y неопределенным. Иначе, при $\langle \overline{t}, \overline{u} \rangle = \langle \overline{\overline{t}}, \overline{\overline{u}} \rangle$ считаем $0 \subseteq y$, а при $\langle \overline{t}, \overline{u} \rangle \neq \langle \overline{t}, \overline{u} \rangle - 0 \not \in y$. Полагаем $z_1 = \overline{\overline{u}}$ или $z_1 = \overline{t}$ в зависимости от $x \in F_{\overline{t}}$ или $x \in F_{\overline{t}}$;
- (iv) переходим к (ii) с заменой z_0 на z_1 и распознаем $1 \subseteq y$ и т. д.

 $\mathfrak{M}_{\lambda+2} \models \exists x \forall y \ [x \subseteq \omega_0 \& F_x - coeepwehho \& [y \in F_x \rightarrow \omega_0]$ $\rightarrow H_{\lambda+1, S, z}(y) = x_{\lambda+1}$]].

Доказательство проводим в $\mathfrak{M}_{\lambda+2}$. Пусть $E=2^{\langle \omega_{\bullet} \rangle}$, для $t \in E$ пусть h(t)=D(t) — область определения t; $h(t) \in \omega_0$. Пусть $\phi \in E$, $h(\phi) = 0; (0) \in E, (1) \in E, h((0)) = h((1)) = 1.$

Пусть для $u, t \in E$ $ut \in E$ таково, что

$$h(ut) = h(u) + h(t); \quad k < h(u) \to ut(k) = u(k);$$

 $k < h(t) \to ut(h(u) + k) = t(k).$

Определим $u \leqslant t$, если $\exists v [v \in E \& uv = t]$. Пусть $f: E \to Y$ — такая функция, что

(i)
$$s \leqslant t \rightarrow f(s) \leqslant_{FB} f(t)$$
, $l(f(s)) \leqslant 1/2^{h(s)}$, $f(\phi) = z$;

(ii)
$$f(s\langle 0\rangle) \wedge f(s\langle 1\rangle) = \phi$$
;

(iii) если $h(s) \in x_{\lambda+1}$, то $\langle f(s\langle 0\rangle), f(s\langle 1\rangle) \rangle =$ = min $\{\langle t, u \rangle \mid F_t$ и F_u — совершенные & $(t \lor u) \geqslant$ **≪** (λ+1)

 $\geqslant_{FB} f(s) \& \exists m \ [t \in S_m^0 \& u \in S_m^1] \& l(u) + l(t) \leqslant$ $\leq (1/2)l(f(s)) = \langle \overline{t}, \overline{u} \rangle;$

(iv) если $h(s) \notin x_{\lambda+1}$, то $\langle f(s\langle 0\rangle), f(s\langle 1\rangle) \rangle =$

 $= \min \{\langle t, u \rangle \mid t \bigvee u \geqslant_{FB} f(s) \& \exists m [t \in S_m^0 \& u \in$

 $\in S_m^1$] & F_t и F_u — совершенные & $(t \lor u) \land (\bar{t} \lor \bar{u}) =$ $= \phi \& l(u) + l'(t) \leqslant (1/2) l(f(s)) \}.$

 \mathbf{P} ассмотрим x =

 $\bigwedge_{n\in\omega_0}\bigvee_{h(s)=n}f(s)$. Легко видеть, что F_{x} — совершенно (доказательство аналогично [3]), а равенство $H_{\lambda+1, S, z}$ $(y) = x_{\lambda+1}$ для всякого $y \in F_x$ следует из определения F_x и функции H.

 Φ ункцию f такого рода легко можно построить, учитывая полуоднородность Y и свойства S.

Лемма доказана.

Отметим, что в силу свойств $X = \{\langle \alpha, x_{\alpha} \rangle \mid \alpha \in \omega_{1}^{\mathfrak{M}} \}$ построенное x не может лежать в $\mathfrak{M}_{\lambda+1}$, так как, взяв в $\mathfrak{M}_{\lambda+1}$ какое-то $y \in F_x$, мы могли бы построить $x_{\lambda+1} =$ $=H_{\lambda+1,S,z}$ (у) в $\mathfrak{M}_{\lambda+1}$, чего нельзя сделать в силу $x_{\lambda+1} \not \subset \mathfrak{M}_{\lambda+1}$.

Наименьшее в смысле \leqslant ($\lambda+2$) x, построенное способом 2.2, будем обозначать $x = W(\lambda + 1, S, z)$.

§ 3. Предельный случай.

3.1. Пусть λ предельный, $Y \subseteq S(\omega_0) \cap \mathfrak{M}_{\lambda}$ λ -полуоднородно, $S \subseteq \mathfrak{M}_{\lambda} - \lambda Y$ -семейство, $z \subseteq Y$.

Определим $H_{\lambda, S, z}$ (x) аналогично 2.1 (только min **≪**(λ+1) меняется на min).

ЛЕММА 3.2. Пусть $\lambda \in \omega_1^{\mathfrak{M}}$ пределен, Z, Y, S, z как в 3.1. Тогда $\mathfrak{M}_{\lambda+1} \models \exists x \ \forall y \ \forall \mu \ [x \sqsubseteq \omega_0 \ \& F_x - coeepwen-$ & $[y \in F_x \to H_{\lambda, S, z}](y) = x_{\lambda}] \& [\mu < \tilde{\lambda} \to \exists x' [x' \in X]$ $\in \mathfrak{M}_{\lambda} \& \lambda(x') \geqslant \mu \& x \geqslant_{FB} x'$]]].

Доказательство (в $\mathfrak{M}_{\lambda+1}$). Для доказательства достаточно построить функцию $f: E \to Y$, удовлетворяющую 2.2, (i) — (iv) (с заменой min на min) и допол-**≪**(λ+1)

нительному требованию:

(v)найдется возрастающая функция $\mu \colon \omega_0 \to \lambda$ такая, **THO** sup $\mu(n) = \lambda$ If $\forall s \ [s \in E \to \lambda \ (f(s)) \geqslant \mu(h(s))]$. $n \in \hat{\omega}_0$

Требование (v) нужно для обеспечения дополнительного требования к x.

Как и в 2.2., считаем лемму доказанной.

Пусть $x = W(\lambda, S, z)$ — наименьшее в смысле $\leqslant (\lambda + 1)$ $x \in \mathfrak{M}_{\lambda+1}$, которое может быть построено как в лемме 3.2.

Опять отметим $x \notin \mathfrak{M}_{\lambda+1}$.

3.3. Можно считать, что если $S_1 \neq S_2$, $z_1 \neq z_2$, то $F_{W(\lambda,S_1,z_1)} \cap F_{W(\lambda,S_2,z_2)} = \phi$ (при любом $\lambda \in \omega_1$).

§ 4. Приступим к доказательству теоремы В.

Построим в \mathfrak{M} семейство множеств $\{Z_{\alpha} \mid \alpha \in \omega_{1}^{\mathfrak{M}}\}$, удовлетворяющее таким свойствам:

(i) $Z_{\alpha} \subseteq S$ (ω_0), $Z_{\alpha} \in \mathfrak{M}_{\alpha}$ α -полуоднородно;

(ii) $Z_{\alpha} \equiv Z_{\alpha+1}, Z_{\alpha+1} - Z_{\alpha} \neq \phi;$

(iii) $\alpha < \beta \& x \in Z_{\beta} \& \tilde{\lambda}(x) = \beta \rightarrow \exists y \ [y \in Z_{\alpha} \& x \geqslant$

 $\gg_{FB} y \ \hat{x} \ \lambda \ (y) = \alpha$];

- (iv) если Z_{λ} построено, то полагаем $\overline{Z}_{\lambda} = \{W(\lambda,$ S, z) | $_{\overline{A}}Y[Y \equiv Z_{\lambda}^* \lambda$ -полуоднородно, & $Y \in \mathfrak{M}_{\lambda}$ & $S - \lambda Y$ -семейство $x \in Y$] у и $Z_{\lambda+1} = Z_{\lambda} \cup \{y \mid F_y - \text{совершенно } \& \exists x [x \in Y]\}$ \in $ar{Z}_{\lambda}$ $\stackrel{\cdot}{\ }$ $y\geqslant_{F}x$] & $y\in\mathfrak{M}_{\lambda+1}$ }; где $Z_{\lambda}^{*}=Z_{\lambda}$ при предельном λ и $Z_{\lambda}^* = Z_{\lambda} - Z_{\beta}$ при $\lambda = \beta + 1$.
- (v) $\alpha < \beta < \omega_1^{\mathfrak{M}} \& x \in Z_{\alpha} \rightarrow \exists y \ [y \in Z_{\beta} \& \lambda(y) = \beta \&$ $y \gg_{FB} x$];

 \geqslant $_{FB}x_{1}$, (vi) Для предельных λ $Z_{\lambda} = \bigcup_{lpha \in \lambda} Z_{lpha}$;

(vii) $Z_0=\mathfrak{M}_0\cap S$ (ω_0) $=\stackrel{\longleftarrow}{L}\stackrel{\frown}{\cap} S$ (ω_0). Легко видеть, что пункты (vii), (vi), (iv) определяют построение Z_{α} , причем все остальные пункты будут соблюдаться (что следует из лемм 2.2, 3.2 и определения $W(\lambda, S, z)$.

Также очевидно, что $\{\langle Z_{\alpha},\alpha\rangle\mid\alpha\in\lambda\}\in\mathfrak{M}_{\lambda}.$ ложим $P = \bigcup Z_{\alpha}$.

§ 5. Свойства Р как множества вынуждающих условий.

5.1. Пусть $G \subseteq P - \mathfrak{M}$ -генерический фильтр на P.Очевидно, что G однозначно определяет действительное число $a=a_G=\bigcap_{x\in G}F_x$ и определяется им: $G=G_a=$ $= \{x \mid x \in P \& a \in F_x\}.$

Пусть $G \subseteq P$ — \mathfrak{M} -генерический фильтр на P.

ЛЕММА 5.2.

$$\{\langle \alpha, x_{\alpha} \rangle \mid \alpha \in \omega_1^{\mathfrak{M}} \} \subset L(a_G).$$

Доказательство. Покажем, что $x_0 \in L$ (a_G) . В самом деле, $Z_0 \in L$ и $a_G \in F_x$ для некоторого $x \in \overline{Z}_0$ (это следует из 4.1 (iii), (iv), (v) и (vii)). Значит, $x_0 = H_{0Sz}(a_G)$ для некоторых $S, z \in \mathfrak{M}_0$, т. е. $S, z \in L$. Значит, H_{0Sz} определима в L и $x_0 \in L$ (a_G) .

Пусть мы уже доказали

$$\{\langle \alpha, x_{\alpha} \rangle \mid \alpha \in \lambda\} \subset L (a_G).$$

Тогда таким же способом строим $x_{\lambda} = H_{\lambda Sz}(a_G)$ и имеем $x_{\lambda} \in L(a_G)$.

Ясно, что таким образом по a_G и L мы эффективно восстановим все x_α (ведь и Z_α строились эффективно). Лемма доказана.

ЛЕММА 5.3. Для некоторого \mathfrak{M} -генерического $G \subseteq P$, a_G минимально над \mathfrak{M} .

Доказательство. Пусть (в \mathfrak{M}) $c \in V^{(P)}$ и $p \in P$, причем

$$d \Vdash (c \rightleftharpoons \check{\omega}_0 \& c \not\rightleftharpoons \mathfrak{M} \& a_G \not\rightleftharpoons \mathfrak{M} (c)).$$

Ясно, что можно считать $p=\omega_0$ (код $S(\omega_0)$). Образуем

$$S_m^0 = \{ p \mid p \in P \& p \mid \vdash \langle \check{m} \notin c \rangle \}$$

и

$$S_m^1 = \{ p \mid p \in P \& p \mid \vdash \langle \check{m} \in c \rangle \}.$$

Легко видеть, что $S = \{\langle i, m, S_m^i \rangle \mid m \in \omega_0 \& i \in 2\}$ удовлетворяет 1.3 (i)—(vi) с заменой Y на P.

В силу нашего требования к \mathfrak{M} ясно, что $S \in \mathfrak{M}_{\omega_1} = \mathfrak{M}$, Значит, методом Сколема — Левенгейма можно построить такой предельный $\lambda \in \omega_1^{\mathfrak{M}}$ и такое $Y \subseteq Z_{\lambda}$, что $Y \in \mathfrak{M}_{\lambda}$, Y λ -полуоднородно; $S_m^i(\lambda) = \{p \mid p \in S_m^i \cap \mathfrak{M}_{\lambda}\} \in \mathfrak{M}_{\lambda}$; $S(\lambda) = \{\langle i, m, S_m^i(\lambda) \rangle \mid m \in \omega_0 \& i \in \mathbb{Z}\} - \lambda Y$ -семейство. Рассмотрим $x = W(\lambda, S(\lambda), \omega_0) \in \mathfrak{M}_{\lambda+1} \cap P$. Как в [3] или [2], нетрудно доказать, что $x \parallel - \langle a_G \in L(c, x, S(\lambda)) \rangle$, т. е. $x \parallel - \langle a_G \in \mathfrak{M}(c) \rangle$, что противоречит предположению. Лемма доказана.

Из леммы 5.2 и 5.3 немедленно следует теорема В. Теорема B и некоторые подобные опубликованы в [4].

Московский государственный университет им. М. В. Ломоносова

Поступило 15.I.1974

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

[1] I e n s e n R. B., Modelle der Mengenlehre, Lectures Notes in

math., 37, Berlin, Springer — Verlag, 1967.

[2] Sacks G. E., Forcing with perfect closed sets, Proc. Symp in Pure Math., 13, № 1 (1971), 331—357.

[3] Iensen R. B., Definable set of minimal degree, Math. Logik

and Found. of Set Theory, North — Holl, Amst., 1968, 122—128. [4] Кановей В. Г., Определимость с помощью степеней конструктивности, Третья Всесоюзная конференция по математической логике, Новосибирск, Изд-во СО АН СССР 1974, 92-94.