

Общероссийский математический портал

В. Г. Кановей, В. А. Любецкий, Об эффективной σ -ограниченности и σ -компактности в модели Соловея, $Mamem.\ заметки,\ 2015,\ том\ 98,\ выпуск\ 2,\ 247–257$

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 37.145.1.69

11 сентября 2015 г., 08:21:54

Математические заметки

Том 98 выпуск 2 август 2015

УДК 510.225

Об эффективной σ -ограниченности и σ -компактности в модели Соловея

В. Г. Кановей, В. А. Любецкий

Доказаны две дихотомические теоремы об эффективных свойствах σ -ограниченности и σ -компактности ординально определимых точечных множеств в модели Соловея.

Библиография: 19 названий. DOI: 10.4213/mzm10415

1. Введение. Эффективная дескриптивная теория множеств возникла в середине XX в. как набор технических средств и методов для уточнения и упрощения построений и рассуждений классической дескриптивной теории множеств, а также — в меньшей степени — как механизм использования некоторых теорем теории рекурсии для задач дескриптивной теории множеств. Однако вскоре выяснилось, что эффективная дескриптивная теория множеств сама приводит к задачам, не имеющим прямых аналогов в классической дескриптивной теории, в частности, задачам, связанным с эффективностью тех или иных свойств рассматриваемых множеств.

К этой категории относятся и следующие две теоремы (см. заметку [1], а также книгу [2; §§ 10.6 и 10.7] и статьи [3] и [4]) об эффективных вариантах σ -ограниченности и σ -компактности множеств бэровского пространства $\mathcal{N}=\omega^{\omega}$.

ТЕОРЕМА 1. Если $A \subseteq \mathcal{N}$ является множеством класса Σ_1^1 , то выполнено одно и только одно из следующих двух утверждений:

- (I) множество A Δ_1^1 -эффективно σ -ограничено, m.e. найдется такая Δ_1^1 -последовательность $\{T_n\}_{n\in\omega}$ компактных деревьев $T_n\subseteq\omega^{<\omega}$, что $A\subseteq\bigcup_n[T_n]$;
- (II) существует суперсовершенное \mathbf{P} множество $Y\subseteq A$.

ТЕОРЕМА 2. Если $A \subseteq \mathcal{N}$ является множеством класса Δ_1^1 , то выполнено одно и только одно из следующих двух утверждений:

- (I) множество A Δ_1^1 -эффективно σ -компактно, m.e. найдется такая Δ_1^1 -последовательность $\{T_n\}_{n\in\omega}$ компактных деревьев $T_n\subseteq\omega^{<\omega}$, что $A=\bigcup_n [T_n];$
- (II) существует множество $Y \subseteq A$, гомеоморфное всему пространству \mathcal{N} и относительно замкнутое в A.

Исследование В. Г. Кановея выполнено за счет гранта РФФИ (13-01-00006). Исследование В. А. Любецкого выполнено за счет гранта Российского научного фонда (14-50-00150).

 $^{^1}$ Множество X бэровского пространства $\mathcal N$ σ -ограничено, если его можно накрыть σ -компактным множеством в $\mathcal N$.

Эффективность утверждений существования в этих двух теоремах состоит в том, что последовательности компактных деревьев в пунктах (I) принадлежат эффективному классу Δ^1_1 . Неэффективный (более грубый) результат, соответствующий теореме 1, состоит в том, что любое Σ^1_1 -множество $A\subseteq \mathcal{N}$ либо накрывается σ -компактным множеством, либо же содержит суперсовершенное подмножество; это установлено в [5]. Аналогичный неэффективный результат, соответствующий теореме 2, получен в старой работе Гуревича [6].

Все эти упомянутые результаты относятся к типу $\partial uxomomuveckux$ теорем, классифицирующих точечные множества на "малые" (тип (I) в обеих теоремах) и "большие" (тип (II)) с точки зрения того или иного критерия. Такие теоремы вызывают большой интерес в современной дескриптивной теории множеств, см., например, книги [7]–[9]. При этом тип "малых" множеств характеризуется тем или иным структурным свойством точечных множеств, а тип "больших" множеств – просто наличием подмножества, являющегося каноническим контрпримером к рассматриваемому свойству "малости", как, например, пространство Бэра $\mathcal{N}=\omega^\omega$ может рассматриваться как канонический пример не σ -компактного множества. К этому же классу дихотомических теорем относятся и главные результаты настоящей заметки – теоремы 3 и 4 ниже.

В нашей последующей работе [10] установлено, что теорема 2 не имеет места для случая, когда множество A принадлежит более широкому классу Σ_1^1 (как в теореме 1), но для Σ_1^1 -множеств имеется несколько более слабый результат. Там же получено далеко идущее обобщение теоремы 1, в котором свойство σ -ограниченности в части (I) теоремы ослаблено до свойства $\{\mathsf{F}_1,\ldots,\mathsf{F}_n\}$ - σ -ограниченности, где $\mathsf{F}_1,\ldots,\mathsf{F}_n$ – заданные отношения эквивалентности класса Δ_1^1 , а $\{\mathsf{F}_1,\ldots,\mathsf{F}_n\}$ - σ -ограниченность означает накрытие σ -ограниченным множеством и объединением счетного числа классов эквивалентности отношений $\mathsf{F}_1,\ldots,\mathsf{F}_n$. Соответственно, условие (II) усиливается требованием, что суперсовершенное множество является попарно F_i -неэквивалентным для каждого $i=1,\ldots,n$.

Доказательства тех результатов, о которых шла речь выше, весьма специфичны именно для первого проективного уровня, и они не допускают обобщения на более высокие уровни проективной иерархии (например, для случая множеств A в классах Σ_2^1 и Δ_2^1) — где, как показано в [10], и соответствующие прямые обобщения самих теорем неверны. Правильные обобщения теоремы 1 для Σ_2^1 -множеств получены в [3], а в более сложном варианте с классами эквивалентности — в [10]; по необходимости, они требуют несчетных объединений в пункте (I).

Как обычно, для третьего и более высоких уровней проективной иерархии результаты, подобные теоремам 1 и 2, невозможны. В этом случае принято решать возникающие задачи в контексте совместимости того или иного предложения с аксиомами Цермело-Френкеля **ZFC** или, что в принципе эквивалентно, исследовать положение дел в конкретных моделях теории **ZFC**. Среди последних особое место занимает модель Леви-Соловея, впервые использованная в [11] для доказательства непротиворечивости гипотезы измеримости всех проективных и даже всех вещественно-ординально определимых (класс **ROD**) множеств вещественных чисел; см. об этом в нашей книге [12; гл. 13].

В настоящей заметке доказывается, что в модели Леви–Соловея теоремы 1 и 2 допускают естественные обобщения, справедливые для множеств A весьма широкого (но все еще достаточно эффективного) класса OD *ординально определимых*

точечных множеств, куда естественным образом включаются все классы $\Sigma_n^1, \Pi_n^1, \Delta_n^1$ эффективной проективной иерархии. Главные результаты таковы:

ТЕОРЕМА 3 (в модели Соловея). Если $A \subseteq \mathcal{N}$ – множество класса OD, то выполнено одно и только одно из следующих утверждений:

(I) множество A OD-эффективно σ -ограничено ε том смысле, что существует OD-последовательность $\{T_\xi\}_{\xi<\omega_1^{\mathbf{L}}}$ компактных деревьев $T_\xi\subseteq\omega^{<\omega}$, для которой

$$A \subseteq \bigcup_{\xi < \omega_1^{\mathbf{L}}} [T_{\xi}];$$

(II) существует суперсовершенное OD множество $Y \subseteq A$.

ТЕОРЕМА 4 (в модели Соловея). Если $A \subseteq \mathcal{N}$ – множество класса OD, то выполнено одно и только одно из следующих утверждений:

(I) множество A OD-эффективно σ -компактно в том смысле, что существует OD-последовательность $\{T_\xi\}_{\xi<\omega_1^{\mathbf{L}}}$ компактных деревьев $T_\xi\subseteq\omega^{<\omega}$, для которой

$$A = \bigcup_{\xi < \omega_1^{\mathbf{L}}} [T_{\xi}];$$

(II) существует OD-множество $Y\subseteq A$, гомеоморфное всему пространству $\mathcal N$ и относительно замкнутое в A.

Заметим, что в модели Соловея ординал $\omega_1^{\mathbf{L}}$ (т.е. первый несчетный кардинал конструктивного универсума \mathbf{L}) счетен в универсуме всех множеств – см. лемму 7 ниже, а потому объединения в пунктах (I) обеих теорем счетны, хотя и не индексированы (и не могут быть индексированы с сохранением ординальной определимости, см. замечание 16) прямо натуральными числами.

Отметим также, что теоремы 3 и 4 содержат условие эффективности на уровне OD также и в своих пунктах (II) – в отличие от теорем 1 и 2, где эффективности на рассматриваемых уровнях Δ_1^1 и Σ_1^1 в пунктах (II) достичь не удается.

Доказательства теорем 3 и 4 приведены в пп. 6 и 7, после технического введения в п. 3 и обзора свойств модели Леви–Соловея в пп. 4 и 5.

2. Замечание. Теоремы 3 и 4 опираются на свойства модели Соловея и не обязательно верны в других моделях теории множеств **ZFC**.

Например, в конструктивной модели Гёделя L (класс всех конструктивных множеств) любое вообще OD множество $X \subseteq \mathcal{N}$ удовлетворяет требованиям (I) обеих теорем, а потому строгая дихотомия уже невозможна.

C другой стороны, имеются и модели, где не все точечные множества из OD удовлетворяют дизъюнкции (I) \vee (II) (в смысле одной – любой – из теорем). Именно, известны модели теории **ZFC**, в которых

- (a) континуум-гипотеза неверна, т.е. $\omega_1 < 2^{\aleph_0}$, и
- (b) существует полное упорядочение \prec пространства $\mathcal N$ из OD, точнее, даже из одного из проективных классов $\Delta^1_n,$
- см. статьи [13], [14]. Определенная модификация конструкции из [13] приводит к модели, в которой дополнительно выполняется следующее:
 - (c) $\omega_1^{\mathbf{L}} < \omega_1$.

Теперь, проводя в этой модели известное построение *множества Бернитейна* — т.е. такого $A\subseteq\mathcal{N}$, что ни A, ни дополнительное множество $A'=\mathcal{N}\setminus A$ не содержат совершенных подмножеств — в котором абстрактная аксиома выбора заменяется в нужных местах выбором \prec -наименьшей точки (где \prec — полное упорядочение из условия (b)), мы получаем ОD-множество Бернштейна A. Это множество не может включать несчетных борелевских подмножеств по теореме Александрова—Хаусдорфа, так что для него не выполнены свойства (II) обеих теорем. Но и свойства (I) также не могут быть выполнены. В самом деле, если A удовлетворяет условию (I) теоремы 3 (это слабейшее из двух свойств), то согласно (c) A есть множество первой категории в \mathcal{N} , а тогда дополнительное множество $A'=\mathcal{N}\setminus A$ заведомо включает совершенное подмножество, и мы имеем противоречие с выбором A.

Интересная нерешенная задача состоит в построении модели с таким же контрпримером, но при условии, что $\omega_1^{\mathbf{L}} = \omega_1$.

3. Техническое введение. Мы используем стандартные обозначения Σ_1^1 , Π_1^1 , Δ_1^1 для эффективных проективных классов в бэровском пространстве \mathcal{N} , а также Σ_1^1 , Π_1^1 , Δ_1^1 для соответствующих неэффективных классов, см. [2], [7], [12], [15], [16].

Через $\omega^{<\omega}$ обозначим множество всех кортежей (конечных последовательностей) натуральных чисел, включая пустой кортеж Λ . Если $u,v\in\omega^{<\omega}$ то $\ln u-\partial nuna\ u,$ а $u\subset v$ означает, что v-cобственное продолжение кортежа u. Если $s\in\omega^{<\omega}$ и $n\in\omega$, то $s^{\wedge}n$ есть кортеж, полученный добавлением члена n к s справа. Пусть

$$\mathcal{N}_s = \{x \in \mathcal{N} \mid s \subset x\}$$
 (бэровский интервал в $\mathcal{N} = \omega^{\omega}$)

для $s \in \omega^{<\omega}$. Если множество $X \subseteq \mathcal{N}$ содержит по крайней мере две точки, то существует наибольший кортеж $s = s_X$, для которого $X \subseteq \mathcal{N}_s$. В этом случае, пусть diam $X = 1/(1 + \ln s)$, но diam X = 0, если X содержит не более одной точки.

Множество $T\subseteq \omega^{<\omega}$ называется depesom, если $u\in T$ выполнено всякий раз, когда $u^{\wedge}n\in T$ для хотя бы одного n. Элементы $u\in T$ дерева T называются его eepuunamu. Вершина $u\in T$ называется konueso, если нет ни одного такого n, что $k^{\wedge}n\in T$. Любое непустое дерево содержит пустой кортеж $k^{\wedge}n$. Вершина $k^{\wedge}n\in T$ является $k^{\wedge}n\in T$ веть и $k^{\wedge}n\in T$ и $k^{\wedge}n\in T$ и $k^{\wedge}n\in T$ веть и $k^{\wedge}n\in T$ и $k^{\wedge}n\in T$ называется $k^{\wedge}n\in T$ и $k^{\wedge}n\in T$ веть и $k^{\wedge}n\in T$ на $k^{$

Дерево $T\subseteq \omega^{<\omega}$ без концевых вершин называется компактным, если оно имеет конечные ветвления, т.е. если $u\in \operatorname{bran} T$, то $u^{\wedge}n\in T$ выполнено лишь для конечно многих n. В этом случае, множество

$$[T] = \{x \in \mathcal{N} \mid \forall \, m \, \, (x \restriction m \in T)\}$$

пространства $\mathcal N$ компактно. Обратно, если $X\subseteq \mathcal N$ компактно, то множество

$$T=\mathrm{tree}(X)=\{x\upharpoonright n\mid x\in X\wedge n\in\omega\}$$

является компактным деревом и X = [T].

Дерево $T\subseteq \omega^{<\omega}$ без концевых вершин называется совершенным, если для каждой вершины $u\in T$ имеется точка ветвления $v\in$ bran T, для которой $u\subset v$. В этом случае множество [T] совершенно. Совершенное дерево T называется суперсовершенным, если для каждой точки ветвления $u\in$ bran T существует бесконечно много чисел n,

для которых $u^{\wedge}n \in T$. В этом случае множество [T] суперсовершенно. Обратно, если $X \subseteq \mathcal{N}$ — совершенное множество, то и дерево $\mathrm{tree}(X)$ совершенно, а для любого суперсовершенного множества $X \subseteq \mathcal{N}$ найдется суперсовершенное дерево $T \subseteq \mathrm{tree}(X)$. Напомним, что множество $X \subseteq \mathcal{N}$ называется:

- совершенным, если оно не имеет изолированных точек;
- суперсовершенным, если оно не имеет непустых открыто-замкнутых σ -ком-пактных подмножеств.
- **4. О модели Соловея.** Доказательства наших главных результатов теорем **3** и **4** приводятся ниже, а в этом пункте мы изложим те свойства модели Соловея, которые будут нужны в доказательствах теорем.

Прежде всего, под моделью Соловея мы имеем в виду ту модель аксиом **ZFC**, построенную в [11], в которой все проективные множества вещественных чисел измеримы по Лебегу, а не другую, более узкую модель из [11], в которой выполнены только аксиомы **ZF** + DC (т.е. полная аксиома выбора заменена аксиомой зависимого выбора DC), но уже все вообще множества вещественных чисел измеримы. Об этих моделях см. подробнее в книге [12; гл. 13] и статье [17; § 4].

Определение 5. Пусть Ω — произвольный ординал. Через Ω -SM обозначим конъюнкцию следующих трех гипотез (A), (B), (C):

- (A) $\Omega = \omega_1$;
- (В) в классе ${\bf L}$ (гёделев универсум конструктивных множеств) истинно, что Ω строго недостижимый кардинал;
- (C) теоретико-множественный универсум V есть генерическое расширение класса L в смысле свертывающего форсинга $\mathscr{P}=\mathrm{Coll}(\omega,<\Omega)$, как в [12; § 13.6]. Таким образом, Ω -SM есть гипотеза о том, что универсум V является моделью Соловея над исходной моделью L и с ключевым кардиналом Ω .

Определение 6. Класс OD есть класс всех ординально определимых множеств. Другими словами, множество X принадлежит OD, если его можно определить формулой языка теории **ZFC**, содержащей лишь ординалы в роли параметров. 2

ЛЕММА 7. В предположении Ω -SM выполнены следующие утверждения:

- (i) если X счетное OD-множество, то существуют ординал $\lambda < \Omega$ и взаимно однозначное OD-отображение $f \colon \lambda \xrightarrow{\text{на}} X;$
- (ii) $ecnu \ \xi < \Omega \ u \ a \in \mathcal{N}, \ mo \ \omega_{\xi}^{\mathbf{L}[a]} < \Omega; \ s \ частности, \ \omega_{\xi}^{\mathbf{L}} < \Omega;$
- (iii) если $X \subseteq Y \in \mathbf{L}$, то $X \in \mathbf{L}$, если и только если $X \in \mathrm{OD}$.

Доказательство. (i) Используем каноническое OD-отображение $F: \operatorname{Ord} \xrightarrow{\operatorname{ha}} \operatorname{OD}$ (см. утверждение 1 в [18; гл. 14]). Тогда отношения $F(\xi) \in X$ и $F(\xi) = F(\eta)$ (с аргументами ξ, η) также принадлежат OD. Далее очевидно.

(ii) и (iii) См. леммы 13.6.5, 13.6.7 книги [12].

Следующая лемма выражает ключевые свойства модели Соловея.

ЛЕММА 8. B предположении Ω -SM выполнены следующие утверждения:

(i) если $\lambda < \Omega$ и $f : \omega \xrightarrow{\text{на}} \lambda$, то универсум является \mathscr{P} -генерическим расширением класса $\mathbf{L}[f]$;

²О некоторых деталях в связи с этим определением см. [12; § 3.5] и [18; гл. 14].

(ii) если $\varphi(x)$ – любая \in -формула, то найдется \in -формула $\overline{\varphi}(\lambda,x)$, для которой для любых $\lambda < \Omega$ и функции $f \colon \omega \xrightarrow{\text{на}} \lambda$ выполнена эквивалентность

$$\varphi(f) \iff \mathsf{BL}[f] \ \mathit{ucmuhho} \ \overline{\varphi}(\lambda, f).$$

Доказательство. (i) Для случая $\lambda = \omega$, т.е. когда $f \in \mathcal{N}$ (даже не требуя выполнения $\operatorname{ran} f = \omega$) результат содержится в лемме 13.6.6 книги [12]. Чтобы свести случай произвольного λ к этому частному случаю, сопоставим каждой функции $f \colon \omega \xrightarrow{\operatorname{ha}} \lambda$ точку $f' \in \mathcal{N}$ следующим условием: если $n = 2^m \cdot 3^k \in \omega$ и f(k) < f(m), то f'(n) = 1, а иначе f'(n) = 0. Тогда $\mathbf{L}[f'] = \mathbf{L}[f]$, и результат для f получается из результата для f'.

(ii) Лемма 13.6.7 (A) книги [12] для $w=\varnothing$ содержит результат для случая $\lambda=\omega$: формула $\overline{\varphi}(\lambda,f)$ выражает вынуждение $\varphi(f)$ над $\mathbf{L}[f]$. Общий случай получается тем же преобразованием, что и для утверждения (i).

Важность утверждения (ii) леммы 8 состоит в том, что она сводит истинность формулы $\varphi(f)$ в модели Соловея к истинности некоторой другой формулы $\overline{\varphi}(f)$ в классе $\mathbf{L}[f]$ всех множеств, конструктивных относительно f. Эта редукция будет использована в следующем пункте.

5. Форсинг ОД-множествами в модели Соловея.

Определение 9 (в предположении Ω -SM). Через $\mathbf P$ обозначим множество всех непустых OD-множеств $Y\subseteq \mathcal N$. Множество $\mathbf P$ рассматривается как форсинг, поэтому его элементы будут называться (вынуждающими) "условиями" — и при этом меньшие по включению множества из $\mathbf P$ считаются более сильными "условиями". Множество "условий" $W\subseteq \mathbf P$ называется:

- *плотным*, когда для каждого $Y \in \mathbf{P}$ существует "условие" $Z \in W, Z \subseteq Y$;
- Р-генерическим, когда выполнены следующие утверждения:
 - 1) если $X, Y \in W$, то $X \cap Y \in W$, и
 - 2) если множество $D \subseteq \mathbf{P}$ принадлежит OD и плотно, то $W \cap D \neq \emptyset$.

ПРЕДЛОЖЕНИЕ 10. В предположении Ω -SM, если множество $G \subseteq \mathbf{P}$ является \mathbf{P} -генерическим, то пересечение $\bigcap G$ содержит единственную точку.

Доказательство. См. лемму 14 в статье [19].

Множество ${\bf P}$ несчетно, а потому существование ${\bf P}$ -генерических множеств прямо не следует из гипотезы Ω -SM. Однако к счастью множество ${\bf P}$ оказывается, в определенном смысле, *локально счетным*.

Определение 11 (в предположении Ω -SM). Назовем множество $X \in \mathrm{OD}$ регулярным, если OD-часть $\mathscr{P}^{\mathrm{OD}}(X) = \mathscr{P}(X) \cap \mathrm{OD}$ его множества-степени $\mathscr{P}(X)$ не более чем счетна. Через \mathbf{P}^* обозначим множество всех регулярных $X \in \mathbf{P}$.

Например, в предположении Ω -SM множество $X = \mathcal{N} \cap \mathrm{OD} = \mathcal{N} \cap \mathbf{L}$ всех OD-точек бэровского пространства принадлежит \mathbf{P}^* . В самом деле,

$$\mathscr{P}^{\mathrm{O}D}(X) = \mathscr{P}(X) \cap \mathrm{OD} = \mathscr{P}(X) \cap \mathbf{L},$$

и поэтому $\mathscr{P}^{\mathrm{O}D}(X)$ допускает OD-биекцию на ординал $\omega_2^{\mathbf{L}}$, а мы знаем, что $\omega_2^{\mathbf{L}}<\Omega$ по лемме 7 (ii).

Напомним, что для $\lambda \in \mathrm{Ord}\ \mathrm{Coll}(\omega,\lambda) = \lambda^{<\omega}$ есть форсинг для свертки ординала λ . Он состоит из всех (конечных) кортежей ординалов $\alpha < \lambda$ и порождает генерическую функцию $f \colon \omega \xrightarrow{\mathrm{Ha}} \lambda$; см. книгу [12; § 9.7].

ЛЕММА 12. В предположении Ω -SM, если $\lambda < \Omega$, то множество Coh_{λ} всех функций $f \in \lambda^{\omega}$, $\mathrm{Coll}(\omega, \lambda)$ -генерических над \mathbf{L} , является регулярным.

Доказательство. Прежде всего, $\mathrm{Coh}_{\lambda} \in \mathbf{P}$ по очевидным соображениям. Далее, рассмотрим произвольное множество $Y \subseteq \mathrm{Coh}_{\lambda}, \ Y = \{f \in \mathrm{Coh}_{\lambda} \mid \varphi(f)\} \in \mathrm{OD}, \ \mathrm{rge}$ формула φ содержит лишь ординалы в роли параметров. Тогда по лемме 8 (ii)

$$Y = \{ f \in \mathrm{Coh}_{\lambda} \mid \mathtt{B} \ \mathbf{L}[f] \ \mathsf{истинно} \ \overline{\varphi}(f) \}$$

для некоторой другой формулы $\overline{\varphi}(f)$ с ординалами в роли параметров. Значит,

$$Y = \operatorname{Coh}_{\lambda} \cap \bigcup_{p \in S} \{ f \in \lambda^{\omega} \mid p \subset f \},$$

где S состоит из всех "условий" $p \in \operatorname{Coll}(\omega, \lambda)$, вынуждающих формулу $\overline{\varphi}(\dot{f})$, а \dot{f} – имя $\operatorname{Coll}(\omega, \lambda)$ -генерического элемента. Но семейство $\mathscr S$ всех таких множеств S принадлежит $\mathbf L$ (поскольку форсинг над $\mathbf L$ выразим в $\mathbf L$) и имеет мощность $\aleph_{\lambda+1}^{\mathbf L}$ в $\mathbf L$. Следовательно, опять согласно лемме $\mathbf 7$ (ii) $\mathscr S$ счетно в предположении Ω -SM. Однако, по предыдущему каждое множество $Y\subseteq \operatorname{Coh}, Y\in \operatorname{OD}$ однозначно определяется подходящим $S\in\mathscr S$.

ЛЕММА 13 ([19]; в предположении Ω -SM). Множество \mathbf{P}^* плотно в \mathbf{P} , т.е. для всякого $X \in \mathbf{P}$ существует такое "условие" $Y \in \mathbf{P}^*$, что $Y \subseteq X$.

Доказательство. Возьмем любое "условие" $X \in \mathbf{P}$. По определению $X \neq \varnothing$; рассмотрим произвольную точку $x \in X$. В предположении Ω -SM согласно лемме 13.6.5 книги [12] x принадлежит определенному подклассу $\mathbf{L}[\mathscr{G}_{\leqslant \lambda}]$ всей модели Соловея, где $\lambda < \omega_1 = \Omega$, причем этот подкласс сам является $\mathrm{Coll}(\omega, \lambda)$ -генерическим расширением \mathbf{L} , т.е. $\mathbf{L}[\mathscr{G}_{\leqslant \lambda}] = \mathbf{L}[f]$, где $f \in \mathrm{Coh}_{\lambda}$ (см. доказательство леммы 13.6.5 в [12]). Отсюда следует, что существует OD отображение $H : \lambda^{\omega} \to \mathcal{N}$, для которых выполнено x = H(f). Множество

$$P = \{ f' \in \mathrm{Coh}_{\lambda} \mid H(f') \in X \}$$

также принадлежит OD и непусто (содержит f), и то же самое верно для его образа $Y = \{H(f') \mid f' \in P\} \subseteq X$ (содержит x). Наконец, множество Coh_{λ} регулярно по лемме 12, откуда вытекает регулярность и множества Y, т.е. $Y \in \mathbf{P}^*$.

6. Доказательство теоремы об эффективной σ -ограниченности. В этом пункте дается доказательство теоремы 3.

Мы рассуждаем в модели Соловея, т.е. предполагая Ω-SM.

ЛЕММА 14. Условия (I) u (II) теоремы 3 несовместимы.

Доказательство. В модели Соловея множество $S = \bigcup_{\xi < \omega_1^L} [T_\xi]$ в (I) есть счетное объединение компактных множеств; следовательно, оно σ -компактно. Значит, если $Y \subseteq A$ — суперсовершенное множество, как в (II), то оно накрыто σ -компактным множеством, что невозможно.

Теперь рассмотрим произвольное OD множество $A \subseteq \mathcal{N}$. Через U обозначим объединение всех множеств вида [T], где $T \subseteq \omega^{<\omega}$ является компактным деревом из OD. Множества U и $A' = A \setminus U$, очевидно, принадлежат OD.

ЛЕММА 15. В условиях теоремы 3, если множество $\emptyset \neq Y \subseteq A'$ принадлежит OD, то его топологическое замыкание \overline{Y} в \mathcal{N} некомпактно.

Доказательство. Если замыкание \overline{Y} компактно, то дерево $T=\mathrm{tree}(Y)$ также компактно и принадлежит OD, а потому $Y\subseteq \overline{Y}=[T]\subseteq U$, что противоречит предположению $Y\subseteq A'$.

Мы имеем два случая.

Случай 1: $A' = \emptyset$, т.е. $A \subseteq U$. Покажем, что тогда выполнено условие (I) теоремы 3. На самом деле достаточно заметить, что в предположении Ω -SM точки пространства $\mathcal N$ из класса OD – это то же самое, что конструктивные точки (из L), а потому существует OD-перечисление всех OD деревьев ординалами $\xi < \omega_1^{\mathbf L}$.

Случай 2: множество $A' = A \setminus U$ непусто. Согласно лемме 13 найдется "условие" $A'' \subseteq A', A'' \in \mathbf{P}^*$. Тогда множество $P = \mathcal{P}^{\mathrm{OD}}(A'') = \mathcal{P}(A'') \cap \mathrm{OD}$ не более чем счетно. По лемме 7 имеются ординал $\lambda < \Omega$ и OD отображение $f \colon \lambda \xrightarrow{\mathrm{na}} P$. Но множество $\mathcal{P}^{\mathrm{OD}}(\lambda)$ счетно, следовательно, счетным будет и $\mathcal{P}^{\mathrm{OD}}(P)$ (ввиду наличия отображения f). Фиксируем произвольное перечисление $\{\mathscr{D}_n\}_{n\in\omega}$ всех OD множеств $\mathscr{D} \subset P = \mathcal{P}^{\mathrm{OD}}(A'')$, плотных в \mathbf{P}^* ниже A''^3 .

Мы утверждаем, что существует система "условий" $Y_s \in \mathbf{P}^*$, $Y_s \subseteq A''$, индексированных кортежами $s \in \omega^{<\omega}$, удовлетворяющая таким требованиям:

- (1) если $s \in \omega^{<\omega}$ и $i \in \omega$, то $Y_{s^{\wedge}i} \subseteq Y_s$;
- (2) diam $Y_s \leq 2^{-\ln s}$;
- (3) если $s \in \omega^{<\omega}$ и $k \neq n$, то $Y_{s^{\wedge}k} \cap Y_{s^{\wedge}n} = \emptyset$ и, более того, "условия" $Y_{s^{\wedge}k}$ допускают покрытие попарно непересекающимися (открыто-замкнутыми) бэровскими интервалами $J_{s^{\wedge}k}$;
- (4) если $s \in \omega^{<\omega}$, то $Y_s \in \mathcal{D}_{\ln s}$, где множества \mathcal{D}_n определены как выше;
- (5) если $s \in \omega^{<\omega}$ и $x_k \in Y_{s^{\wedge}k}$ для всех $k \in \omega$, то последовательность точек x_k не имеет сходящихся подпоследовательностей в \mathcal{N} .

Для построения начального "условия" Y_{Λ} заметим, что из-за плотности \mathcal{D}_0 найдется "условие" $Z \subseteq A''$ из \mathcal{D}_0 . Чтобы выполнить (2), возьмем в роли Y_{Λ} пересечение Z с подходящим бэровским интервалом достаточно малого диаметра. Затем для удовлетворения (4) сужаем полученное "условие" еще раз; при этом используется плотность множества \mathcal{D}_0 .

Теперь, рассуждая индукцией по длине кортежей, предположим, что $s \in \omega^{<\omega}$ и "условие" $Y_s \in \mathbf{P}^*$, $Y_s \subseteq A''$, уже построено. Согласно лемме 15 существует такой кортеж $\tau \in \operatorname{tree}(Y_s)$, что множество

$$K_s = \{k \in \omega \mid \tau^{\wedge}k \in \operatorname{tree}(Y_s)\}$$

бесконечно. Это позволяет определить последовательность из попарно различных точек $y_k \in Y_s, k \in \omega$, не имеющую ни одной сходящейся подпоследовательности. Накрываем эти точки бэровскими интервалами U_k , достаточно малыми для того,

³Множество $\mathscr{D} \subseteq P = \mathcal{P}^{\mathrm{OD}}(A'')$ плотно в \mathbf{P}^* ниже A'', если пополненное множество $\mathscr{D}^+ = \mathscr{D} \cup \{Y \in \mathbf{P}^* \mid Y \cap Y'' = \varnothing\}$ плотно в \mathbf{P}^* в смысле определения 9. В этом случае \mathscr{D}^+ плотно и в \mathbf{P} согласно лемме 13.

чтобы требование (5) было выполнено для OD-множеств $Y_{s^{\wedge}i} = Y_s \cap U_i$, а затем сужаем эти множества, чтобы удовлетворить (2) и (4); при этом в отношении (4) используем плотность множеств \mathcal{D}_n . Это завершает индуктивный шаг построения "условий" Y_s .

По завершении конструкции заметим, что для любой точки $a \in \mathcal{N}$ пересечение $\bigcap_m Y_{a \mid m}$ также содержит единственную точку согласно предложению 10, поскольку условие (4) обеспечивает требуемую генеричность множества

$$\{Y_{a \upharpoonright m} \mid m \in \omega\}.$$

Пусть $\bigcap_m Y_{a \upharpoonright m} = \{f(a)\}$. Отображение

$$f : \mathcal{N} \xrightarrow{\text{\tiny HA}} Y = \{ f(a) \mid a \in \mathcal{N} \}$$

по достаточно очевидным соображениям является гомеоморфизмом.

Проверим, что множество Y замкнуто в \mathcal{N} . Рассмотрим произвольную последовательность точек $a_n \in \mathcal{N}$ и предположим, что соответствующая последовательность точек $y_n = f(a_n) \in Y$ сходится к $y \in \mathcal{N}$; требуется доказать, что $y \in Y$.

Докажем, что последовательность $\{a_n\}_{n\in\omega}$ содержит сходящуюся подпоследовательность. В самом деле, иначе последовательность $\{a_n\}_{n\in\omega}$ не может быть накрыта компактным множеством. Отсюда следует, что существуют кортеж $u\in\omega^{<\omega}$, бесконечное множество $K\subseteq\omega$ и для каждого $k\in K$ число n(k), для которых $u^\wedge k\subset a_{n(k)}$. Но тогда по построению $y_{n(k)}\in Y_{u^\wedge k}$. Поэтому последовательность $\{y_{n(k)}\}_{k\in\omega}$ расходится по (5), противоречие.

Итак, последовательность $\{a_n\}_{n\in\omega}$ содержит подпоследовательность $b_k=a_{n(k)}$, сходящуюся к некоторой точке $b\in\mathcal{N}$. Тогда последовательность $z_k=f(b_k)$ (подпоследовательность последовательности $\{y_n\}_{n\in\omega}$) сходится к точке $z=f(b)\in Y$, что и требовалось.

Замкнутость множества Y этим доказана, что и завершает вывод требования (II) теоремы 3 для множества A.

Замечание 16. Требование (I) доказанной теоремы 3 не может быть усилено до следующего вида: существует такая OD-последовательность $\{T_n\}_{n\in\omega}$ компактных деревьев $T_n\subseteq\omega^{<\omega}$, что $A\subseteq\bigcup_n[T_n]$. В роли контрпримера возьмем $A=\mathcal{N}\cap\mathbf{L}$ (все конструктивные точки в \mathcal{N}). Это счетное множество в модели Соловея, допускающее OD-биекцию на ординал $\omega_1^{\mathbf{L}}$. Значит, требование (I) теоремы 3 выполнено (а (II) не выполнено), но существование последовательности компактных деревьев $\{T_n\}_{n\in\omega}$ в классе OD (следовательно, конструктивной), как легко видеть, невозможно.

7. Доказательство теоремы об эффективной σ -компактности. Здесь доказывается теорема 4. Мы рассуждаем в модели Соловея, т.е. предполагая Ω -SM.

ЛЕММА 17. Условия (I) u (II) теоремы 4 несовместимы.

Доказательство. Как и в доказательстве леммы 14 выше, множество $A = \bigcup_{\xi < \omega_1^{\mathbf{L}}} [T_{\xi}]$ в (I) σ -компактно, а потому оно не может содержать относительно замкнутых подмножеств, гомеоморфных бэровскому пространству.

Теперь рассмотрим произвольное OD-множество $A \subseteq \mathcal{N}$. Через U обозначим объединение всех множеств вида [T], где $T \subseteq \omega^{<\omega}$ является компактным деревом из OD и $[T] \subseteq A$. Множество U и дополнительное к A множество $A' = A \setminus U$, очевидно, принадлежат OD.

По уже доказанной теореме 3 можно, не ограничивая общности, предполагать, что множество A σ -ограничено (т.е. накрывается σ -компактным множеством), а потому каждое замкнутое множество $F \subseteq A$ также σ -компактно.

ЛЕММА 18. Если $\varnothing \neq F \subseteq A'$ – непустое OD множество, то $\overline{F} \not\subseteq A$.

Доказательство. Пусть, напротив, $\overline{F} \subseteq A$. Согласно не ограничивающему общности предположению выше множество \overline{F} σ -компактно, т.е. $\overline{F} = \bigcup_n F_n$, где все множества F_n компактны. Понятно, что найдется такой бэровский интервал \mathcal{N}_s , что множество $X = \mathcal{N}_s \cap \overline{F}$ непусто и $X \subseteq F_n$ для какого-то n. Тогда $X \subseteq A$ есть непустое компактное OD-множество. Поэтому по определению $X \subseteq U$ и $A' \cap X = \emptyset$. Другими словами, $\mathcal{N}_s \cap \overline{F} \cap A' = \emptyset$. Отсюда вытекает, что $\mathcal{N}_s \cap F = \emptyset$ (так как $F \subseteq A'$), а это противоречит соотношению $X = \mathcal{N}_s \cap \overline{F} \neq \emptyset$.

Случай 1: $A' = \emptyset$, т.е. A = U. Отсюда следует условие (I) теоремы.

Cлучай 2: $A' \neq \emptyset$. Как и в доказательстве теоремы 3, возьмем произвольное множество $A'' \subseteq A', A'' \in \mathbf{P}^*$, и зафиксируем перечисление $\{\mathscr{D}_n\}_{n \in \omega}$ всех OD-множеств $\mathscr{D}\subseteq P=\mathcal{P}^{\mathrm{OD}}(A'')$, плотных в \mathbf{P}^* ниже A''. Чтобы получить множество $Y\subseteq A''$, относительно замкнутое в A и гомеоморфное пространству \mathcal{N} , мы используем систему "условий" $Y_s \in \mathbf{P}^*, Y_s \subseteq A''$, удовлетворяющих требованиям (1)–(4) п. 6 и следующему требованию вместо (5):

(5') если $s \in \omega^{<\omega}$, то существует такая точка $y_s \in \overline{Y_s} \setminus A$, что любая последовательность точек $x_k \in Y_{s^{\wedge}k}, k \in \omega$, сходится к y_s .

Построение аналогично соответствующему построению п. 6. Именно, допустим, что $s \in \omega^{<\omega}$ и "условие" $Y_s \subseteq A''$ уже построено. Тогда его замыкание $\overline{Y_s}$ удовлетворяет $\overline{Y_s} \not\subseteq A$ по лемме 18. Тогда существует последовательность попарно различных точек $x_n \in Y_s$, сходящаяся к точке $y_s \in \overline{Y_s} \setminus A$. Пусть U_n – некоторый бэровский интервал, содержащий x_n и имеющий диаметр меньше, чем 1/3 от наименьшего расстояния от x_n до точек x_k , $k \neq n$. Положим $Y_{s \wedge n} = Y_s \cap U_n$ для каждого n и сузим множества $Y_{s^{\wedge}n}$ с целью обеспечить требования (2) и (4). Этим индуктивный шаг построения закончен.

Имея эту систему множеств Y_s , мы получаем (см. п. 6) такой гомеоморфизм

$$f: \mathcal{N} \xrightarrow{\text{Ha}} Y = \operatorname{ran} f = \{f(a) \mid a \in \mathcal{N}\} \subseteq A'',$$

что равенство $\bigcap_m Y_{a \upharpoonright m} = \{f(a)\}$ выполнено для всех точек $a \in \mathcal{N}$.

Остается проверить, что множество Y относительно замкнуто в A.

Рассмотрим такую последовательность точек $a_n \in \mathcal{N}$, что соответствующая последовательность их образов $y_n = f(a_n) \in Y$ сходится к точке $y \in \mathcal{N}$; требуется доказать, что $y \in Y$ или $y \notin A$. Если последовательность $\{a_n\}$ содержит подпоследовательность, сходящуюся к некоторой точке $b \in \mathcal{N}$, то, как и в доказательстве теоремы 3, последовательность $\{y_n\}$ сходится к точке $f(b) \in Y$. Если же $\{a_n\}$ не имеет сходящихся подпоследовательностей, то существуют кортеж $s \in \omega^{<\omega}$, бесконечное множество $K \subseteq \omega$ и для каждого $k \in K$ число n(k) такие, что $s^{\wedge}k \subset a_{n(k)}$. Но тогда $y_{n(k)} \in Y_{s^{\wedge}k}$ по построению. Следовательно, подпоследовательность $\{y_{n(k)}\}_{k \in \omega}$ сходится к точке $y_s \notin A$ по (5'), что и требовалось.

СПИСОК ПИТИРОВАННОЙ ЛИТЕРАТУРЫ

- [1] В. Г. Кановей, В. А. Любецкий, "Об эффективной компактности и сигма-компактности", *Матем. заметки*, **91**:6 (2012), 840–852.
- [2] В. Г. Кановей, В. А. Любецкий, Современная теория множеств: борелевские и проективные множества, МЦНМО, М., 2010.
- [3] A. S. Kechris, "On a notion of smallness for subsets of the Baire space", Trans. Amer. Math. Soc., 229 (1977), 191–207.
- [4] A. Louveau, J. Saint Raymond, "Borel classes and closed games: Wadge-type and Hurewicz-type results", *Trans. Amer. Math. Soc.*, **304** (1987), 431–467.
- [5] J. Saint Raymond, "Approximation des sous-ensembles analytiques par l'interior", C. R. Acad. Sci. Paris Sér. A, 281 (1975), 85–87.
- [6] W. Hurewicz, "Relativ perfekte Teile von Punktmengen und Mengen (A)", Fundam. Math., 12 (1928), 78–109.
- [7] V. Kanovei, Borel Equivalence Relations. Structure and Classification, Univ. Lecture Ser., 44, Amer. Math. Soc., Providence, RI, 2008.
- [8] Su Gao, Invariant Descriptive Set Theory, Pure Appl. Math. (Boca Raton), 293, CRC Press, Boca Raton, FL, 2009.
- [9] V. Kanovei, M. Sabok, J. Zapletal, Canonical Ramsey Theory on Polish Spaces, Cambridge Tracts in Math., 202, Cambridge Univ. Press, Cambridge, 2013.
- [10] V. Kanovei, V. Lyubetsky, "On effective σ -boundedness and σ -compactness", $MLQ~Math.~Log.~Q.,~\mathbf{59}$:3 (2013), 147–166.
- [11] R. M. Solovay, "A model of set theory in which every set of reals is Lebesgue measurable", Ann. of Math. (2), 92 (1970), 1–56.
- [12] В. Г. Кановей, В. А. Любецкий, Современная теория множеств: абсолютно неразрешимые классические проблемы, МЦНМО, М., 2013.
- [13] L. Harrington, "Long projective wellorderings", Ann. Math. Logic, 12:1 (1977), 1–24.
- [14] В. Г. Кановей, "О дескриптивных формах счетной аксиомы выбора", Исследования по неклассическим логикам и теории множеств, Наука, М., 1979, 3–136.
- [15] В. Г. Кановей, В. А. Любецкий, "О некоторых классических проблемах дескриптивной теории множеств", УМН, **58**:5 (2003), 3–88.
- [16] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math., 156, Springer-Verlag, New York, 1995.
- [17] В. Г. Кановей, "Проективная иерархия Лузина: современное состояние теории", Справочная книга по математической логике. Часть П. Теория множеств, Наука, М., 1982, 273–364.
- [18] Т. Йех, Теория множеств и метод форсинга, Мир, М., 1973.
- [19] V. Kanovei, "An Ulm-type classification theorem for equivalence relations in Solovay model", J. Symbolic Logic, 62:4 (1997), 1333–1351.

В. Г. Кановей

Поступило 27.09.2013

Институт проблем передачи информации им. А. А. Харкевича РАН, г. Москва;

Исправленный вариант 03.03.2015

им. А. А. Ааркевича I АП, Г. Москва, Московский государственный университет путей сообщения (МИИТ)

E-mail: kanovei@iitp.ru

В. А. Любецкий

4

Институт проблем передачи информации им. А.А. Харкевича РАН, г. Москва *E-mail*: lyubetsk@iitp.ru