Математические заметки

Том 105 выпуск 5 май 2019

УДК 510.225+510.223

Определимые элементы определимых борелевских множеств

В. Г. Кановей, В. А. Любецкий

Доказано, что в генерических расширениях по Саксу, Коэну, Соловею любое ординально определимое борелевское множество вещественных чисел обязательно содержит ординально определимый элемент. Ранее результат был известен только для счетных множеств.

Библиография: 19 названий.

Ключевые слова: определимые элементы, борелевские множества, форсинг Коэна, форсинг Соловея.

DOI: https://doi.org/10.4213/mzm12001

1. Введение. К проблеме выбора определимого элемента. Вопрос определимости математических объектов оказался в центре внимания дискуссий по основаниям математики в связи с аксиомой выбора Цермело и ее роли в построении полного упорядочения континуума и в других подобных рассуждениях. Так, в статье [1], излагающей дискуссию между Адамаром, Борелем, Бэром и Лебегом по вопросам оснований математики, подчеркнуто, что чистое доказательство существования элемента в данном множестве, и прямое определение (эффективное построение) такого элемента — это разные математические результаты, из которых второй не следует из первого. В частности, Лебег в своей части [1] указал на трудности в вопросе эффективного выбора, т.е. выбора определимого элемента в определимом же множестве¹.

В ходе последовавшего развития теории множеств, в особенности $\partial e c \kappa p u n m u e h o u$ теории множеств, было установлено (П. С. Новиков и Лузин [2]), что эффективный выбор возможен для множеств вещественной прямой второго проективного класса. Точнее, в современной терминологии, каждое непустое Σ_2^1 -множество вещественной прямой $\mathbb R$ содержит точку класса Δ_2^1 , следовательно, эффективно определимую. (Теорема 2.6 и следствие 2.7 ниже.)

Для более высоких уровней проективной иерархии 2 , т.е. начиная с Π_2^1 , никаких подобных теорем доказать нельзя. Точнее говоря, имеются только гипотезы, верные в одних предположениях, совместимых с аксиомами **ZFC**, но неверные в других предположениях, также совместимых с аксиомами **ZFC**.

Работа выполнена при финансовой поддержке фондов РФФИ 17-01-00705 (В. Г. Кановей) и РНФ 18-29-13037 (В. А. Любецкий).

 $^{^1}$ Ainsi je vois déjà une difficulté dans ceci "dans un M' déterminé je puis choisir un m' déterminé", в оригинале [1]. Thus I already see a difficulty with the assertion that "in a determinate M' I can choose a determinate m'", в английском переводе статьи [1] в книге [3], Appendix 1.

²О классах Σ_n^1 , Π_n^1 , Δ_n^1 эффективной проективной иерархии см. [4; гл. 6] или [5; гл. 1].

Замечание 1.1. Под вещественными числами (reals) в современных работах по теории множеств понимаются как элементы собственно вещественной прямой, так и точки бэровского пространства ω^{ω} или канторова дисконтинуума $2^{\omega} \subseteq \omega^{\omega}$. В этом смысле следует понимать и $\mathbb R$ в этом разделе. Точное понимание зависит от контекста, но все сказанное здесь в равной степени относится к 2^{ω} , ω^{ω} , или собственно вещественной прямой, в силу наличия определимых взаимно однозначных соответствий между всеми тремя областями.

Так, с одной стороны, аксиома конструктивности $\mathbf{V} = \mathbf{L}$ Гёделя, совместимая с \mathbf{ZFC} , влечет существование полного упорядочения $\leqslant_{\mathbf{L}}$ всей вещественной прямой $\mathbb R$ по типу ω_1 , являющегося Δ_2^1 -отношением, что позволяет выбирать в любом множестве $X \subseteq \mathbb R$ просто $\leqslant_{\mathbf{L}}$ -наименьший элемент. Аккуратная оценка определимости показывает, что, в предположении $\mathbf{V} = \mathbf{L}$, если $n \geqslant 3$, то каждое Σ_n^1 -множество $\varnothing \neq X \subseteq \mathbb R$ содержит Δ_n^1 -точку $x \in X$.

С другой стороны, известны модели теории множеств **ZFC**, в которых существуют непустые Π_2^1 -множества $X\subseteq\mathbb{R}$, не содержащие ни одной точки класса Δ_n^1 для какого-либо n, и вообще ни одной ординально-определимой точки³, так что эффективный выбор точки из такого множества X невозможен не только в контексте проективной иерархии, но и вообще в самом широком смысле. В модели Соловел [6] и ряде других моделей, таким множеством является Π_2^1 -множество $\omega^\omega \setminus \mathbf{L}$ всех неконструктивных точек, которое заведомо несчетно. Эта категория моделей характеризуется тем, что для их построения используются достаточно однородные форсинги – т.е. такие, которые имеют достаточно богатые системы порядковых автоморфизмов.

В то же время, недавно авторами [7], [8] построены и модели, в которых имеются счетные Π_2^1 -множества без определимых элементов — они как раз связаны с неоднородными форсингами, имеющими бедные системы порядковых автоморфизмов, к примеру, только рациональные сдвиги. Напротив, в некоторых моделях первой, форсинг-однородной категории, как удалось выяснить в [9], любое счетное **ОD**-множество $\varnothing \neq X \subseteq \mathbb{R}$ имеет **ОD** элементы. Следующая теорема распространяет последний результат со счетных на произвольные борелевские множества.

ТЕОРЕМА 1.2. Пусть L[a] является одним из трех следующих генерических расширений конструктивного универсума множеств L:

- (A) расширение одной генерической по Коэну точкой $a \in \mathbb{R}$;
- (B) расширение одной случайной по Соловею точкой $a \in \mathbb{R}$;
- (C) расширение одной генерической по Саксу точкой $a \in \mathbb{R}$.

Тогда в $\mathbf{L}[a]$ истинно, что если $\varnothing \neq X \subseteq \mathbb{R}$ есть борелевское \mathbf{OD} множество то X содержит \mathbf{OD} элементы.

Об этих генерических расширениях см., например, в статьях [10]-[12].

2. Выбор элемента в множествах классов Σ_1^1 и Σ_2^1 . Для удобства читателя, мы предварим доказательство теоремы 1.2 кратким обзором результатов об эффективном выборе точек в множествах первых уровней проективной иерархии. В этом обзоре мы даем ссылки на авторитетную книгу Московакиса [13], а для русскоязычного читателя также на книги [4] и [14]. С доказательством теоремы 1.2 материал этого раздела не связан.

³Класс **ОD** *ординально определимых множеств*, или просто **OD**-множеств, состоит из всех множеств, определимых теоретико-множественными формулами, которые могут включать ординалы в роли параметров. Классы Σ_n^1 , Π_n^1 , Δ_n^1 являются, разумеется, подмножествами в **OD**.

Говоря о Σ_1^1 -множествах общего вида, следующие два результата показывают, что выбор Δ_1^1 -точки, вообще говоря, невозможен даже в Π_1^0 -множествах, но всегда можно выбрать точку, лишь немного более сложную чем Δ_1^1 . Заметим, что для классификации точек $x \in \omega^\omega$ односторонние классы Σ_n^1 , Π_n^1 сводятся к Δ_1^1 благодаря эквивалентности

$$x(k) = n \iff \forall n' \neq n \quad (x(k) \neq n').$$

ТЕОРЕМА 2.1 (теорема Клини о базисе, [13; 4Е.8], [14; 7.11]). Существует такое Σ_1^1 множество натуральных чисел $U \subseteq \omega$, что каждое Σ_1^1 -множество $\varnothing \neq X \subseteq \omega^\omega$ содержит точку, рекурсивную относительно U.

ПРИМЕРЫ 2.2 (Клини, см. [13; 4D.14] или [4; 9.2.4]). Ко-счетное множество X всех точек $x \in \omega^{\omega}$, не принадлежащих Δ^1_1 , имеет класс Σ^1_1 и очевидно не содержит ни одной Δ^1_1 -точки. Рассмотрим любое Π^0_1 -множество $P \subseteq \omega^{\omega} \times \omega^{\omega}$, проектирующееся в X, т.е.

$$x \in X \iff \exists y P(x, y).$$

Тогда множество P также не содержит ни одной Δ_1^1 -точки $\langle x,y \rangle$. Следовательно, существует и Π_1^0 -множество $Q \subseteq \omega^\omega$, которое не содержит ни одной Δ_1^1 -точки – именно, Q есть образ P при любом рекурсивном гомеоморфизме $\omega^\omega \times \omega^\omega$ на ω^ω .

Примеры 2.3. Пример Σ_1^1 -множества $X\subseteq\omega^\omega$ из 2.2, не содержащего ни одной Δ_1^1 -точки, можно усилить требованием компактности. Для этого рассмотрим пару непересекающихся и Δ_1^1 -неотделимых Π_1^1 -множеств $U,V\subseteq\omega$ (см. [13; 4В.12] или [4; 8.1.3]) и соответствующее непустое компактное Σ_1^1 -множество

$$X = \{x \in 2^{\omega} : \forall n \in U (x(n) = 0) \land \forall n \in V (x(n) = 1)\}.$$

Множество X не содержит ни одной Δ_1^1 -точки $x_0 \in X$, ибо имея такую точку, мы отделили бы U от V Δ_1^1 -множеством $S = \{n : x_0(n) = 0\}$.

ТЕОРЕМА 2.4 ([13; 4F.11 и 4F.15], [4; 10.6.4]). Если Δ_1^1 -множество $\varnothing \neq X \subseteq \omega^\omega$ хотя бы σ -компактно, то оно содержит Δ_1^1 -точку $x \in X$.

Более простое доказательство для компактного случая состоит в том, что сначала для данного компактного Δ^1_1 -множества $X\subseteq\omega^\omega$ подбирается Δ^1_1 -дерево $T\subseteq\omega^{<\omega}$, определяющее X в том смысле, что

$$X = [T] = \{ x \in \omega^{\omega} : \forall \, m \, (x \upharpoonright m \in T) \},$$

а затем, используя лемму Кёнига (T имеет конечные ветвления), доказывается, что лексикографически самая левая точка $x_{\text{лев}} \in X$ имеет класс Δ^1 .

Теорема 2.4 верна для счетных множеств X ибо они σ -компактны, но в этом случае согласно следующей теореме результат распространяется и на Σ_1^1 -множества, чего нет для σ -компактных и даже компактных Σ_1^1 -множеств согласно примеру 2.3.

ТЕОРЕМА 2.5 ([13; 4F.5], [4; 10.4.1]). Если Σ_1^1 -множество $X \subseteq \omega^{\omega}$ не более чем счетно, то оно состоит только из Δ_1^1 -точек.

Подобные теоремы известны также для больших (в смысле меры или категории) Δ_1^1 -множеств, но о них мы здесь не будем говорить, ограничившись ссылкой на книгу Московакиса [13; 4F.19 и далее] и нашу книгу [4; разделы 11.4 и 11.5].

Теорема 2.5 доказывается при помощи *топологии* Γ анди-Харрингтона, базой которой служат непустые Σ_1^1 -множества. Эта топология вообще широко применяется в доказательстве дихотомических теорем, см., к примеру, [15].

Для множеств более сложных, чем Σ_1^1 , имеется следующий фундаментальный результат, известный как теорема Новикова–Кондо–Аддисона. Она установлена Кондо [16] для проективного класса Π_1^1 на основе метода П.С. Новикова, опубликованного в [2], а результат для эффективного класса Π_1^1 выделен Аддисоном [17].

ТЕОРЕМА 2.6 ([13; 4Е.4], [4; 8.4.1]). Каждое Π_1^1 -множество $P \subseteq \omega^\omega \times \omega^\omega$ может быть униформизовано множеством класса Π_1^1 . Каждое Π_1^1 -множество $P \subseteq \omega^\omega \times \omega^\omega$ может быть униформизовано множеством класса Π_1^1 .

Следствие 2.7. Каждое Π_1^1 -множество $\varnothing \neq X \subseteq \omega^\omega$ содержит Π_1^1 -синглет $\{x\} \subseteq X$; тогда $x \in \Delta_2^1$. Каждое Σ_2^1 -множество $\varnothing \neq X \subseteq \omega^\omega$ содержит Δ_2^1 -точку $x \in X$.

3. Борелевские коды. В теореме 1.2 мы ссылаемся на стандартную кодировку борелевских множеств, как в [18] или [4; раздел 9.5], согласно которой множество борелевских кодов **ВК** содержит все пары $c = \langle T_c, f_c \rangle$, где $T_c \subseteq \omega^{<\omega}$ — непустое фундированное дерево, $f_c \colon \omega^{<\omega} \to \omega^{<\omega}$ — произвольная функция, а $\omega^{<\omega}$ — множество всех кортежей (конечных последовательностей) натуральных чисел, содержащее и пустую последовательность Λ .

Если $c \in \mathbf{BK}$, то каждому кортежу $s \in T_c$ сопоставляется борелевское множество $\mathbf{B}_c(s) \subseteq \omega^\omega$, так что если $s \in \max T_c$ (т.е. s – концевая вершина), то

$$\mathbf{B}_c(s) = [F(s)] = \{ x \in \omega^\omega : f_c(s) \subset x \},\$$

а если $s \notin \max T_c$, то

$$\mathbf{B}_c(s) = \omega^{\omega} \setminus \bigcup_{s ^{\smallfrown} k \in T_c} \mathbf{B}_c(s ^{\smallfrown} k).$$

Наконец, полагаем $\mathbf{B}_c = \mathbf{B}_c(\Lambda)$ – борелевское множество в ω^{ω} с кодом $c \in \mathbf{BK}$. Для каждого ординала $\xi < \omega_1$ через \mathbf{BK}_{ξ} обозначается множество всех таких кодов $c \in \mathbf{BK}$, что T_c есть дерево высоты ξ .

Основные свойства этой кодировки состоят в следующем:

- (1) множество кодов $\mathbf{B}\mathbf{K}$ является Π_1^1 -множеством в польском пространстве $\mathbb{B} = \mathscr{P}(\omega^{<\omega}) \times (\omega^{<\omega})^{(\omega^{<\omega})}$, а каждое $\mathbf{B}\mathbf{K}_{\xi}$ борелевское множество в \mathbb{B} ;
- (2) если $c \in \mathbf{BK}_{\xi}$, то множество $\mathbf{B}_{c} \subseteq \omega^{\omega}$ является борелевским множеством класса $\mathbf{\Pi}_{\xi}^{0}$;
- (3) обратно, если $X \subseteq \omega^{\omega}$ множество класса Π_{ξ}^{0} , то найдется такой код $c \in \mathbf{BK}_{\xi}$, что $X = \mathbf{B}_{c}$;
- (4) следующие множества в польском пространстве $\mathbb{B} \times \omega^{\omega}$ принадлежат Π^1_1 :

$$W = \{ \langle c, x \rangle : c \in \mathbf{BK} \land x \in \mathbf{B}_c \} \qquad \text{if} \qquad W' = \{ \langle c, x \rangle : c \in \mathbf{BK} \land x \in \omega^{\omega} \setminus \mathbf{B}_c \}.$$

См. об этом например в [19; раздел 5.7] или [5; 2.9].

Эта кодировка естественным образом распространяется и на борелевские множества пространства $\omega^{\omega} \times \omega^{\omega}$. Именно, прежде всего, если $x \in 2^{<\omega}$, то пусть

$$F(x) = \langle y, z \rangle,$$

где y(n) = x(2n) и z(n) = x(2n+1) для всех n, так что F – гомеоморфизм пространства ω^{ω} на $\omega^{\omega} \times \omega^{\omega}$. Теперь мы положим $\mathbf{B}_{c}^{(2)} = \{F(x) : x \in \mathbf{B}_{c}\}$; это борелевское множество в $\omega^{\omega} \times \omega^{\omega}$ с кодом $c \in \mathbf{BK}$.

Кодировка также распространяется и на борелевские функции. Положим $\mathbf{BF} = \mathbf{BK}^{\omega \times \omega}$, и если $c \in \mathbf{BF}$ (т.е. c – функция из $\omega^2 = \omega \times \omega$ в \mathbf{BK}), то функция $\boldsymbol{\vartheta}_c$: $\omega^\omega \to \omega^\omega$ определается условием: $\boldsymbol{\vartheta}_c(x)(n) = k$, если либо k = 0 и $x \notin \bigcup_{\ell \geqslant 1} \mathbf{B}_{c(n,\ell)}$, либо $k \geqslant 1$ и $x \in \mathbf{B}_{c(n,k)} \setminus \bigcup_{1 \leqslant \ell < k} \mathbf{B}_{c(n,\ell)}$. Утверждения, подобные (1)–(4), верны и для кодировки функций; так что

- (5) **BF** есть Π_1^1 -множество в польском пространстве $\mathbb{B}^{\omega \times \omega}$;
- (6) следующие множества в пространстве $\mathbb{B}^{\omega \times \omega} \times \omega^{\omega} \times \omega^{\omega}$ принадлежат Π_1^1 :

$$\Phi = \{ \langle c, x, y \rangle : c \in \mathbf{BF} \land x, y \in \omega^{\omega} \land y = \vartheta_c(x) \},$$

$$\Phi' = \{ \langle c, x, y \rangle : c \in \mathbf{BF} \land x, y \in \omega^{\omega} \land y \neq \vartheta_c(x) \}.$$

Чтобы допустить борелевские коды в качестве значений кодированных функций, мы зафиксируем рекурсивный гомеоморфизм $K \colon \omega^{\omega} \xrightarrow{\operatorname{ha}} \mathbb{B}$, и если $c \in \mathbf{BF}$ и $x \in \omega^{\omega}$, то пусть $\kappa_c(x) = K(\vartheta_c(x))$, т.е. $\kappa_c(x) \in \mathbb{B}$ (но не обязательно $\kappa_c(x) \in \mathbf{BK}!$).

Замечание 3.1. Утверждение (4) можно понимать в том смысле, что соотношение $x \in \mathbf{B}_c$ выражается как Π^1_1 -формулой $\langle c, x \rangle \in W$, так и Σ^1_1 -формулой $\langle c, x \rangle \notin W'$ – при условии, что $c \in \mathbf{BK}$ (иначе формулы неэквивалентны). Более сложное соотношение $y \in \mathbf{B}_{\kappa_c(x)}$ можно выразить формулами

$$\psi(c,x,y) := \exists h(\langle c,x,h\rangle \notin \Phi' \land \langle K(h),y\rangle \notin W')$$
 (тип Σ_1^1);
$$\psi'(c,x,y) := \forall h(\langle c,x,h\rangle \notin \Phi' \Longrightarrow \langle K(h),y\rangle \in W)$$
 (тип Π_1^1);

так что мы имеем

$$y \in \mathbf{B}_{\kappa_c(x)} \iff \psi(c, x, y) \iff \psi'(c, x, y)$$

всякий раз, когда $c \in \mathbf{BF}$ и $\kappa_c(x) \in \mathbf{BK}$.

4. Решение для расширения генерического по Коэну. Здесь мы доказываем теорему 1.2 в части (A), т.е. для коэновских расширений. Коэновский форсинг $\mathbf{Coh} = 2^{<\omega}$ состоит из всех диадических кортежей, т.е. конечных последовательностей чисел 0, 1. Если $s,t \in 2^{<\omega}$, то $s \subseteq t$ означает, что t продолжает кортеж s, а $s \subset t$ означает собственное продолжение. Если $t \in 2^{<\omega}$ и i = 0, 1, то $t \cap i$ обозначает продолжение t членом i справа. Если $s \in 2^{<\omega}$, то $\mathrm{lh}(s)$ есть длина кортежа s.

Если $u \in \mathbf{Coh}$, то множество $I_u = \{a \in 2^\omega : u \subset a\}$, т.е. канторов интервал в 2^ω , открыто-замкнуто в канторовом пространстве 2^ω .

ТЕОРЕМА 4.1. Если $a_0 \in 2^{\omega}$ — генерическая по Коэну точка над универсумом множеств V, то в $V[a_0]$ истинно, что если $\varnothing \neq X \subseteq 2^{\omega}$ есть борелевское множество, определимое теоретико-множественной формулой с параметрами из V, то X имеет точку из V.

Замечание 4.2. Под универсумом множеств V в теореме может пониматься как фиксированная (например, счетная) транзитивная модель теории \mathbf{ZFC} , так и действительно теоретико-множественный универсум всех множеств. Во втором случае генерические расширения, как, например, $\mathbf{V}[a_0]$ в теореме, понимаются как булевозначные расширения универсума \mathbf{V} .

Из теоремы 4.1 немедленно следует теорема 1.2 в части (A): достаточно положить $\mathbf{V} = \mathbf{L}$ и воспользоваться тем, что всегда $\mathbf{L} \subseteq \mathbf{OD}$.

Доказательство (теорема 4.1). Найдется формула $\varphi(x)$ с множествами из исходного универсума \mathbf{V} в роли параметров, и код $p \in \mathbf{BK} \cap \mathbf{V}[a_0]$, для которых $X = \mathbf{B}_p = \{x \in 2^\omega : \varphi(x)\}$ в $\mathbf{V}[a_0]$. Мы предполагаем противное: $X \cap \mathbf{V} = \varnothing$, т.е. множество X не содержит ни одной точки из исходного универсума \mathbf{V} .

Коэновские расширения удовлетворяют требованию борелевского чтения имен, согласно которому найдется код $c \in \mathbf{BF} \cap \mathbf{V}$, удовлетворяющий $p = \kappa_c(a_0)$. (См., например, [11; теорема 2.4(iii)].) Таким образом, в расширении $\mathbf{V}[a_0]$ истинно, что борелевское множество $\mathbf{B}_{\kappa_c(a_0)}$ тождественно множеству $X = \{x \in 2^\omega : \varphi(x)\}$, где формула φ содержит параметры только из \mathbf{V} , и соответственно мы имеем

$$\mathbf{B}_{\kappa_c(a_0)} \cap \mathbf{V} = \emptyset.$$

Тогда найдется такое коэновское условие (т.е. кортеж) $u \in 2^{<\omega}$, **Coh**-вынуждающее, над **V**, что $\kappa_c(\mathbf{\check{a}}) \in \mathbf{BK}$, $\mathbf{B}_{\kappa_c(\mathbf{\check{a}})} = \{x : \varphi(x)\} \neq \varnothing$, и $\mathbf{B}_{\kappa_c(\mathbf{\check{a}})} \cap \mathbf{V} = \varnothing$. Здесь $\mathbf{\check{a}}$ – имя для генерической по Коэну точки.

ЛЕММА 4.3. В универсуме **V** истинно, что $Y = \{x \in I_u : \kappa_c(x) \in \mathbf{BK}\}$ является ко-тощим множеством в I_u .

Доказательство. Множество Y принадлежит Π_1^1 вместе с множеством \mathbf{BK} поскольку является борелевским прообразом последнего посредством функции κ_c . Значит, Y имеет свойство Бэра. Поэтому, если оно не ко-тощее в I_u , то имеется такой кортеж $v \in \mathbf{Coh}$, продолжающий u, что $Y \cap I_v$ – наоборот, тощее множество. Значит, оно накрывается тощим \mathbf{F}_{σ} -множеством $F \subseteq I_v$. Дополнительное же \mathbf{G}_{δ} -множество $G = I_v \setminus F$ тогда ко-тощее в I_v , и мы имеем $\kappa_c(x) \notin \mathbf{BK}$ для всех $x \in G$. Фиксируем какой-нибудь код $g \in \mathbf{BK} \cap \mathbf{V}$ для G, так что в \mathbf{V} истинно $\forall x \in \mathbf{B}_g$ ($\kappa_c(x) \notin \mathbf{BK}$).

Но это предложение выражается Π_2^1 -формулой, именно, формулой

$$\forall x \forall y (\langle g, x \rangle \in W \land \langle c, x, y \rangle \in \Phi \implies K(y) \notin \mathbf{BK}),$$

где подформулы $\langle g, x \rangle \in W$ и $\langle c, x, y \rangle \in \Phi$ типа Π_1^1 выражают соответственно отношения $x \in \mathbf{B}_g$ и $y = \vartheta_c(x)$ согласно утверждениям (4) и (6) из раздела 3. Таким образом, по теореме абсолютности Шенфилда указанное предложение истинно и в любом генерическом расширении вида $\mathbf{V}[a]$, где $a \in I_v$ – произвольная генерическая по Коэну точка над \mathbf{V} . Но как известно генерические по Коэну точки не принадлежат тощим борелевским множествам с кодами из исходной модели, см. например теорему 11.3.3 в [19] для идеала тощих множеств. Таким образом, $a \in \mathbf{B}_g$ в $\mathbf{V}[a]$, и, следовательно, $\kappa_c(a) \notin \mathbf{BK}$. Мы имеем противоречие, поскольку $u \subseteq v \subset a$, а кортеж u вынуждает $\kappa_c(\mathbf{a}) \in \mathbf{BK}$.

Рассуждая в универсуме **V**, мы заключаем, по лемме, что имеется такое ко-тощее \mathbf{G}_{δ} -множество $D\subseteq I_u$, что $\kappa_c(x)\in\mathbf{BK}$ для всех $x\in D$. Теперь рассмотрим борелевское множество $P=\{\langle x,y\rangle:x\in D\land y\in\mathbf{B}_{\kappa_c(x)}\}$ и отношение эквивалентности $x\mathsf{E}x'$, когда $x,x'\in D$ и $P_x=P_{x'}$, на множестве D. (Как обычно, мы определяем сечение $P_x=\{y:\langle x,y\rangle\in P\}$.)

ЛЕММА 4.4. Е есть Π_1^1 -отношение.

Доказательство. Равенство $P_x = P_{x'}$ выражается Π_1^1 -формулой

$$\forall y((\neg \psi'(c,x,y) \Longrightarrow \psi(c,x',y)) \land (\neg \psi'(c,x',y) \Longrightarrow \psi(c,x,y)))$$

(см. замечание 3.1) при условии, что $c \in \mathbf{BF}$ и точки $\kappa_c(x)$, $\kappa_c(x')$ принадлежат \mathbf{BK} , которое здесь выполнено при $x, x' \in D$.

Как Π_1^1 -подмножество произведения $I_u \times I_u$, Е имеет свойство Бэра.

Случай 1: (в V истинно, что) все Е-классы эквивалентности суть тощие множества на I_u . Тогда Π^1_1 -множество $H=\{\langle x,x'\rangle\in D: \mathbf{B}_{\kappa_c(x)}=\mathbf{B}_{\kappa_c(x')}\}$ тощее в $I_u\times I_u$ по теореме Улама–Куратовского, и H можно накрыть некоторым также тощим борелевским множеством $H'=\mathbf{B}_d^{(2)},\,H\subseteq H'\subseteq I_u\times I_u$, с кодом d.

Теперь мы используем метод, введенный в [9]. Фиксируем, продолжая рассуждать в \mathbf{V} , счетную транзитивную модель \mathfrak{M} достаточно большого фрагмента \mathbf{ZFC} , содержащую коды c, d и являющуюся элементарной подмоделью универсума относительно всех аналитических формул.

ЛЕММА 4.5. Существуют точки $a, b \in I_u$, генерические по Коэну над \mathbf{V} и такие, что $\mathbf{V}[a] = \mathbf{V}[b]$, и в то же время пара $\langle a, b \rangle$ является генерической по Коэну над моделью \mathfrak{M} .

Доказательство. Обозначим через $+_2$ операцию покомпонентного сложения по модулю 2 для бесконечных последовательностей. Выберем в универсуме \mathbf{V} точку $z \in Z$, генерическую по Коэну над \mathfrak{M} и удовлетворяющую z(k)=0 для всех $k < m = \mathrm{lh}(u)$. Возьмем точку $a \in I_u$, генерическую над \mathbf{V} , а следовательно, и над $\mathfrak{M}[z]$. Пара $\langle a,z \rangle$ генерическая по Коэну над $\mathfrak{M}[a]$. Значит, по теореме о произведении форсингов, точка z будет генерической над $\mathfrak{M}[a]$. Но тогда и точка $b=z+_2a$ генерическая по Коэну над $\mathfrak{M}[a]$ по той же теореме, поскольку $a \in \mathfrak{M}[a]$. Отсюда, по той же причине, пара $\langle a,b \rangle$ генерическая над \mathfrak{M} . При этом $a,b \in I_u$ по построению. Однако точка $b=z+_2a$ генерическая по Коэну и над \mathbf{V} поскольку таковой является a и в то же время $z \in \mathbf{V}$, и при этом $\mathbf{V}[a] = \mathbf{V}[b]$.

Напомним, что генерические по Коэну точки, равно как и пары точек, не принадлежат тощим борелевским множествам с кодами в исходной модели по упоминавшейся теореме 11.3.3 в [19]. В частности, $\langle a,b\rangle\notin H'$, а тогда и $\notin H$, так что мы имеем $\mathbf{B}_{\kappa_c(a)}\neq \mathbf{B}_{\kappa_c(b)}$.

Замечание 4.6. В этом рассуждении использована абсолютность формулы

$$\forall \langle x, x' \rangle (\langle x, x' \rangle \in \mathbf{B}_d^{(2)} \implies \mathbf{B}_{\kappa_c(x)} \neq \mathbf{B}_{\kappa_c(x')})$$

по Шенфилду, для вывода которой соотношение $\langle x, x' \rangle \in \mathbf{B}_d^{(2)}$ выражается через посредство множества W из (4) раздела 3, а соотношение $\mathbf{B}_{\kappa_c(x)} \neq \mathbf{B}_{\kappa_c(x')}$ выражается Σ_1^1 -формулой, являющейся отрицанием той Π_1^1 -формулы, которая использована выше в доказательстве леммы 4.4. Таким образом, получается Π_2^1 -формула, к которой теорема Шенфилда применима.

В то же время по построению генерические точки a, b принадлежат множеству I_u . Отсюда по выбору u следует, что одно и то же множество $\{x:\varphi(x)\}$ тождественно, в расширении $\mathbf{V}[a]=\mathbf{V}[b]$, как множеству $\mathbf{B}_{\kappa_c(a)}$ так и множеству $\mathbf{B}_{\kappa_c(b)}$, так что

 ${\bf B}_{\kappa_c(a)}={\bf B}_{\kappa_c(b)}$. Но мы видели, что ${\bf B}_{\kappa_c(a)} \neq {\bf B}_{\kappa_c(b)}$. Противоречие показывает, что случай 1 невозможен.

Cлучай 2: (в V истинно, что) один из Е-классов эквивалентности образует ко-тощее множество на некотором множестве вида I_v , где $v \in \mathbf{Coh}, u \subseteq v$. Тогда некоторое борелевское множество $U = \mathbf{B}_f \subseteq I_v \cap D, \ f \in \mathbf{BK}$, является ко-тощим внутри канторова интервала I_v , и все точки $x \in U$ попарно Е-эквивалентны. Другими словами, найдется такое борелевское множество $B = \mathbf{B}_e \subseteq 2^\omega$, $e \in \mathbf{BK}$ в V, что $\mathbf{B}_{\kappa_c(x)} = B \ \forall \, x \in U = \mathbf{B}_f$.

Теперь рассмотрим произвольную точку $a \in I_v$, генерическую по Коэну над V, и, рассуждая в V[a], воспользуемся тем, что генерическая по Коэну точка обязана принадлежать ко-тощему на соответствующем бэровском интервале I_v борелевскому множеству $U = \mathbf{B}_f$; см. доказательство леммы 4.3. Отсюда по теореме абсолютности Шенфилда, как и выше, мы выводим, что $\mathbf{B}_{\kappa_c(a)} = B = \mathbf{B}_e$, где e – борелевский код в данном универсуме V.

Однако по построению $a \in I_v \subseteq I_u$, откуда по выбору u в начале доказательства теоремы множество $\mathbf{B}_{\kappa_c(a)} = \mathbf{B}_e$ непусто. Опять по теореме абсолютности, множество \mathbf{B}_e непусто и в \mathbf{V} (так как код e принадлежит \mathbf{V}), т.е. содержит некоторую точку $x \in \mathbf{V}$. Таким образом, $x \in \mathbf{B}_{\kappa_c(a)} \cap \mathbf{V}$ в $\mathbf{V}[a]$, что и дает заключительное противоречие с выбором u, поскольку $a \in I_u$.

5. Решение для расширения случайного по Соловею. Здесь мы доказываем теорему 1.2 в части (В), т.е. для расширений, случайных по Соловею. Доказательство во многом повторяет ход рассуждений в доказательстве теоремы 4.1 выше, поэтому мы опустим некоторые общие детали, например, связанные с абсолютностью, но подчеркнем некоторые различия.

Множество $T\subseteq 2^{<\omega}$ называется *деревом*, если для любых кортежей $s\subset t$ в $2^{<\omega}$ из $t\in T$ следует $s\in T$. Случайный по Соловею форсинг **Rand** состоит из всех всех таких деревьев $T\subseteq 2^{<\omega}$, без концевых вершин и изолированных ветвей, что множество

$$[T] = \{x \in 2^\omega : \forall \, n \, (x \restriction n \in T)\}$$

имеет положительную меру $\mu([T]) > 0$, в смысле обычной вероятностной меры μ на 2^{ω} . В отличие от коэнова форсинга **Coh**, форсинг **Rand** зависит от выбора исходной модели, так что "точка случайная (по Соловею) над моделью \mathfrak{M} " означает "(**Rand** $\cap \mathfrak{M}$)-генерическая над \mathfrak{M} ", и это равносильно тому, что точка не принадлежит ни одному борелевскому множеству \mathbf{B}_c μ -меры $\mathbf{0}$ с кодом $\mathbf{c} \in \mathbf{BK} \cap \mathfrak{M}$.

Другое отличие от коэнова форсинга состоит в том, что случайная пара точек **не** является (**Rand** × **Rand**)-генерической парой. Понятие случайной пары связано с форсингом замкнутыми множествами в $2^{\omega} \times 2^{\omega}$ (или порождающими их деревьями), которые имеют строго положительную меру в смысле произведения мер $\mu \times \mu$ на $2^{\omega} \times 2^{\omega}$. Для нас будет важна следующая известная (см., к примеру, [11]) характеризация случайных пар.

ПРЕДЛОЖЕНИЕ 5.1. Пусть \mathfrak{M} – транзитивная модель достаточно большой подтеории в **ZFC**, и пусть $a, b \in 2^{\omega}$. Тогда следующие четыре утверждения равносильны:

- (1) пара $\langle a,b\rangle$ является случайной над \mathfrak{M} ;
- (2) $\langle a,b\rangle$ не принадлежит никакому борелевскому множеству $\mathbf{B}_c^{(2)}$ ($\boldsymbol{\mu} \times \boldsymbol{\mu}$)-меры 0 с кодом $c \in \mathbf{BK} \cap \mathfrak{M}$;

- (3) а случайна над \mathfrak{M} и b случайна над $\mathfrak{M}[a]$;
- (4) b случайна над \mathfrak{M} u а случайна над $\mathfrak{M}[b]$.

ТЕОРЕМА 5.2. Пусть $a_0 \in 2^{\omega}$ — случайная по Соловею точка над универсумом множеств V. Тогда в $V[a_0]$ истинно, что если $\varnothing \neq X \subseteq 2^{\omega}$ есть борелевское множество, определимое теоретико-множественной формулой с параметрами из V, то X имеет точку из V.

Как и выше, из этой теоремы немедленно следует теорема 1.2 в части (В).

Доказательство. Найдется формула $\varphi(x)$ с множествами из исходной модели \mathbf{V} в роли параметров и код $p \in \mathbf{BK} \cap \mathbf{V}[a_0]$, для которых $X = \mathbf{B}_p = \{x \in 2^\omega : \varphi(x)\}$ в $\mathbf{V}[a_0]$. Предполагаем противное: $X \cap \mathbf{V} = \emptyset$.

Подобно коэновским, случайные по Соловею расширения удовлетворяют требованию борелевского чтения имен, так что найдется код $c \in \mathbf{BF} \cap \mathbf{V}$, для которого $p = \kappa_c(a_0)$. Таким образом, в расширении $\mathbf{V}[a_0]$ борелевское множество $\mathbf{B}_{\kappa_c(a_0)}$ тождественно \mathbf{OD} -множеству $X = \{x \in 2^\omega : \varphi(x)\}$, и тогда $\mathbf{B}_{\kappa_c(a_0)} \cap \mathbf{V} = \varnothing$. Найдется дерево $T \in \mathbf{Rand} \cap \mathbf{V}$, \mathbf{Rand} -вынуждающее над \mathbf{V} , что

$$\kappa_c(\check{\mathbf{a}}) \in \mathbf{BK}, \qquad \mathbf{B}_{\kappa_c(\check{\mathbf{a}})} = \{x : \varphi(x)\} \neq \varnothing, \qquad \mathbf{B}_{\kappa_c(\check{\mathbf{a}})} \cap \mathbf{V} = \varnothing.$$

Множество $[T]=\{x\in 2^\omega: \forall\, m\,(x\restriction m\in T)\}$ замкнуто и $\boldsymbol{\mu}([T])=M>0.$

ЛЕММА 5.3. В универсуме **V** истинно, что $Y = \{x \in [T] : \kappa_c(x) \in \mathbf{BK}\}$ удовлетворяет $\mu(Y) = M$.

Доказательство. Мы следуем доказательству леммы 4.3. Множество Y принадлежит Π_1^1 ; следовательно, оно измеримо. Поэтому, если $\mu(Y) < M$, имеется дерево $U \in \mathbf{Rand} \cap \mathbf{V}$, удовлетворяющее $U \subseteq T \setminus Y$ и $\mu([U]) > 0$. Тогда в \mathbf{V} истинно предложение $\forall x \in [U] (\kappa_c(x) \notin \mathbf{BK})$. Но это предложение выражается Π_2^1 -формулой, так что по теореме абсолютности Шенфилда оно истинно и в генерическом расширении вида $\mathbf{V}[a]$, где $a \in [U]$ – произвольная генерическая по Коэну точка над \mathbf{V} . Таким образом, $\kappa_c(a) \notin \mathbf{BK}$. Мы имеем противоречие, поскольку $a \in [U] \subseteq [T]$, а T вынуждает $\kappa_c(\breve{\mathbf{a}}) \in \mathbf{BK}$.

Pассуждая в универсуме V, мы заключаем, по лемме, что имеется такое дерево $S \in \mathbf{Rand}$, что $[S] \subseteq Y$, так что $\kappa_c(x) \in \mathbf{BK}$ для всех $x \in [S]$. Теперь рассмотрим борелевское множество

$$P = \{ \langle x, y \rangle : x \in [S] \land y \in \mathbf{B}_{\kappa_c(x)} \}$$

и Π_1^1 -отношение эквивалентности $x \to x'$, когда $x, x' \in [S]$ и $P_x = P_{x'}$ на множестве [S], где $P_x = \{y : \langle x, y \rangle \in P\}$. Как Π_1^1 -подмножество произведения $[S] \times [S]$, E ($\mu \times \mu$)-измеримо. Следовательно, либо все E-классы имеют μ -меру 0 на множестве [S], либо же один из E-классов имеет ненулевую меру на [S]. Мы рассмотрим эти два случая по отдельности.

Cлучай 1: (в **V** истинно, что) все **E**-классы имеют μ -меру 0 на множестве [S], а значит Π^1_1 -множество

$$H = \{\langle x, x' \rangle \in [S] \times [S] : \mathbf{B}_{\kappa_c(x)} = \mathbf{B}_{\kappa_c(x')}\}$$

имеет $(\boldsymbol{\mu} \times \boldsymbol{\mu})$ -меру 0 по теореме Фубини, и H можно накрыть борелевским множеством $H' = \mathbf{B}_d^{(2)}$, $H \subseteq H' \subseteq I_v \times I_v$, с кодом d, также $(\boldsymbol{\mu} \times \boldsymbol{\mu})$ -меры 0.

Фиксируем, продолжая рассуждать в V, счетную транзитивную модель \mathfrak{M} достаточно большого фрагмента **ZFC**, содержащую коды c, d и деревья T, S, и являющуюся элементарной подмоделью универсума относительно всех аналитических формул (чтобы не заботиться специально об абсолютности).

ЛЕММА 5.4 (лемма 3.3 в [9]). Существуют точки $a, b \in [S]$, случайные по Соловею над \mathbf{V} и такие, что $\mathbf{V}[a] = \mathbf{V}[b]$, и в то же время пара $\langle a, b \rangle$ является случайной над моделью \mathfrak{M} .

Доказательство. Здесь более сложное рассуждение, чем в доказательстве леммы 4.5. Рассмотрим множество

$$P = \{ \langle x, x +_2 y \rangle : x, y \in [S] \}.$$

Если $x \in [S]$, то сечение $P_x = \{z : \langle x, z \rangle \in P\}$ имеет ту же меру, что и множество [S], поскольку $P_x = \{x +_2 y : y \in [S]\}$. Поэтому по теореме Фубини, P имеет ту же $(\boldsymbol{\mu} \times \boldsymbol{\mu})$ -меру, что и множество $[S] \times [S]$, т.е. ненулевую, откуда опять по теореме Фубини проекция $Z = \{z \in 2^\omega : \boldsymbol{\mu}(P^z) > 0\}$ также удовлетворяет $\boldsymbol{\mu}(Z) > 0$.

Возьмем, в универсуме V, любую точку $z \in Z$, случайную над \mathfrak{M} . В этом случае $\mu(P^z)>0$; значит, существует точка $a\in P^z$, случайная над V, а тогда и над $\mathfrak{M}[z]$. Пара же точек $\langle a,z\rangle$ является случайной над \mathfrak{M} и принадлежит множеству P. Значит, по предположению 5.1, точка z будет случайной над $\mathfrak{M}[a]$. Но тогда и точка $b=z+_2a$ будет очевидно случайной над $\mathfrak{M}[a]$, поскольку $a\in \mathfrak{M}[a]$. Отсюда, по предположению 5.1, пара $\langle a,b\rangle$ случайная над \mathfrak{M} . При этом $a,b\in [S]$ по построению. Наконец, точка $b=z+_2a$ является случайной над V поскольку таковой является a, и в то же время $z\in V$, и при этом очевидно V[a]=V[b].

Следуя доказательству леммы 4.4, мы заключаем, что $\langle a,b\rangle \notin H'$ вследствие случайности этой пары над \mathfrak{M} , а тогда и $\notin H$, так что $\mathbf{B}_{\kappa_{\sigma}(a)} \neq \mathbf{B}_{\kappa_{\sigma}(b)}$.

В то же время по построению генерические точки a, b принадлежат множеству $[S] \subseteq [T]$. Отсюда по выбору T следует, что одно и то же множество $\{x: \varphi(x)\}$ тождественно, в расширении $\mathbf{V}[a] = \mathbf{V}[b]$, как множеству $\mathbf{B}_{\kappa_c(a)}$, так и множеству $\mathbf{B}_{\kappa_c(b)}$, так что $\mathbf{B}_{\kappa_c(a)} = \mathbf{B}_{\kappa_c(b)}$. Но мы видели, что $\mathbf{B}_{\kappa_c(a)} \neq \mathbf{B}_{\kappa_c(b)}$. Противоречие показывает, что случай 1 невозможен.

Случай 2: (в V истинно, что) один из Е-классов имеет положительную μ -меру на [S]. Тогда имеется такое дерево $Q \in \mathbf{Rand}$, что $Q \subseteq S$ и все точки $x \in [Q]$ попарно Е-эквивалентны. Другими словами, найдется такое борелевское множество $B = \mathbf{B}_e \subseteq 2^\omega$, $e \in \mathbf{BK}$ в V, что $\mathbf{B}_{\mathbf{K}_c(x)} = B$ для всех $x \in [Q]$.

Теперь берем любую точку $a \in [Q]$, случайную по Соловею над V. По теореме абсолютности Шенфилда мы выводим, что $\mathbf{B}_{\kappa_c(a)} = B = \mathbf{B}_e$. Окончание доказательства такое же, как и окончание доказательства теоремы 4.1.

6. Решение для саксовского расширения. Здесь доказывается теорема 1.2 в части (С), т.е. для саксовских расширений. Напомним, что форсинг Сакса есть множество **PT** всех вообще совершенных деревьев $\emptyset \neq T \subseteq 2^{<\omega}$. Другими словами, дерево $T \subseteq 2^{<\omega}$ принадлежит **PT**, когда оно не имеет концевых вершин и изолированных ветвей. Например, полное дерево $2^{<\omega}$ принадлежит **PT** и $[2^{<\omega}] = 2^{\omega}$.

ТЕОРЕМА 6.1. Пусть $a_0 \in 2^{\omega}$ является саксовской, т.е. **РТ**-генерический точкой над универсумом множеств **V**. В модели **V** $[a_0]$ истинно, что если $\varnothing \neq X \subseteq 2^{\omega}$ есть борелевское **ОD** множество, то X имеет точку из **V**.

Эта теорема влечет теорему 1.2 в части (С).

Доказательство. Как и в начале доказательств теорем 4.1 и 5.2, предположение противного приводит нас к формуле $\varphi(x)$ с ординалами в роли параметров, коду $c \in \mathbf{BF} \cap \mathbf{V}$, и дереву $T \in \mathbf{PT} \cap \mathbf{V}$, которое \mathbf{PT} -вынуждает над \mathbf{V} , что

$$\kappa_c(\check{\mathbf{a}}) \in \mathbf{BK}, \quad \mathbf{B}_{\kappa_c(\check{\mathbf{a}})} = \{x : \varphi(x)\} \neq \varnothing, \quad \mathbf{B}_{\kappa_c(\check{\mathbf{a}})} \cap \mathbf{V} = \varnothing.$$

Рассуждаем в универсуме V. Рассмотрим борелевское множество

$$P = \{ \langle x, y \rangle : x \in [T] \land y \in \mathbf{B}_{\kappa_c(x)} \}$$

и отношение эквивалентности $x \to x'$, когда $x, x' \in [T]$ и $P_x = P_{x'}, P_x = \{y : \langle x, y \rangle \in P\}$. Понятно, что E есть Π^1_1 -отношение. Следовательно, по теореме Сильвера (см. [5; 10.1.1] или [4; 12.1.1]), найдется такое дерево $U \in \mathbf{PT}$, что $U \subseteq T$ и либо [U] состоит из попарно E-эквивалентных точек либо [U] состоит из попарно E-неэквивалентных точек. Соответственно, мы имеем два случая.

Cлучай 1: (в **V** истинно, что) [U] состоит из попарно **E**-неэквивалентных точек, т.е. $\mathbf{B}_{\kappa_c(x)} \neq \mathbf{B}_{\kappa_c(x')}$ для всех пар точек $x \neq x'$ из [U]. Фиксируем, рассуждая в **V**, любой гомеоморфизм $h \colon [U] \xrightarrow{\mathrm{Ha}} [U]$, удовлетворяющий $h(x) \neq x$ для всех $x \in [U]$, и пусть $d \in \mathbf{BF} \cap \mathbf{V}$ и $h = \vartheta_d \upharpoonright [U]$. Тогда в **V** истинно:

$$\forall x \in [U] (\mathbf{B}_{\kappa_c(x)} \neq \mathbf{B}_{\kappa_c(\vartheta_d(x))}).$$

Теперь берем любую точку $a \in 2^{\omega}$, генерическую по Саксу над универсумом множеств V. Pассуждаем в генерическом расширении V[a]. Формула, говорящая, что отображение $\vartheta_d \upharpoonright [U]$ является гомеоморфизмом множества [U] на себя, причем $\mathbf{B}_{\kappa_c(x)} \neq \mathbf{B}_{\kappa_c(\vartheta_d(x))}$ для всех $x \in [U]$, истинна в V, и в то же время абсолютна по теореме Шенфилда. Следовательно, она истинна и в V[G], так что мы имеем $b = \vartheta_d(a) \in [U]$ и $\mathbf{B}_{\kappa_c(a)} \neq \mathbf{B}_{\kappa_c(b)}$.

Однако точка $b = \vartheta_d(a)$ является **РТ**-генерической над **V** вместе с a, поскольку $\vartheta_d \upharpoonright [U]$ – гомеоморфизм множества [U] с "кодом" $d \in \mathbf{V}$, а форсинг Сакса **РТ** инвариантен относительно таких гомеоморфизмов. При этом $b \in \mathbf{V}[a]$ и $a = \vartheta_d^{-1}(b) \in \mathbf{V}[b]$, так что $\mathbf{V}[a] = \mathbf{V}[a']$ – одна и та же модель. Отсюда по выбору [T] и вследствие $U \subseteq T$ следует, что в $\mathbf{V}[a] = \mathbf{V}[b]$ истинно:

$$\forall x \in 2^{\omega}(\varphi(x) \iff x \in \mathbf{B}_{\kappa_{\sigma}(a)} \iff x \in \mathbf{B}_{\kappa_{\sigma}(b)}).$$

Следовательно, $\mathbf{B}_{\kappa_c(a)} = \mathbf{B}_{\kappa_c(b)}$, что противоречит выведенному выше. Противоречие показывает, что на самом деле случай 1 невозможен.

Случай 2: (в **V** истинно, что) [U] состоит из попарно **E**-эквивалентных точек. Тогда сущестует такой код $e \in \mathbf{BK} \cap \mathbf{V}$, что $\mathbf{B}_{\kappa_c(x)} = \mathbf{B}_e$ для всех $x \in [U]$. Берем любую точку $a \in [Q]$, случайную по Саксу над **V**, и завершаем доказательство тем же противоречием, как и в конце доказательства теоремы 4.1.

Авторы признательны анонимному рецензенту за ценные замечания, позволившие дополнить и улучшить изложение.

СПИСОК ШИТИРОВАННОЙ ЛИТЕРАТУРЫ

- [1] J. Hadamard, "Cinq lettres sur la théorie des ensembles", Bull. Soc. Math. France, 33 (1905), 261–273.
- [2] N. Lusin, P. Novikoff, "Choix effectif d'un point dans un complémentaire analytique arbitraire, donné par un crible", Fund. Math., 25 (1935), 559–560.
- [3] G. H. Moore, Zermelo's Axiom of Choice. Its Origins, Development and Influence., Springer-Verlag, New York, 1982.
- [4] В. Г. Кановей, В. А. Любецкий, Современная теория множеств: борелевские и проективные множества, МЦНМО, М., 2010.
- [5] V. Kanovei, Borel Equivalence Relations. Structure and Classification, Amer. Math. Soc., Providence, RI, 2008.
- [6] R. M. Solovay, "A model of set-theory in which every set of reals is Lebesgue measurable", *Ann. of Math.* (2), **92** (1970), 1–56.
- [7] V. Kanovei, V. Lyubetsky, "A definable E₀-class containing no definable elements", Arch. Math. Logic, **54**:5-6 (2015), 711–723.
- [8] В. Г. Кановей, В. А. Любецкий, "Определимое счетное множество, не содержащее определимых элементов", *Матем. заметки*, **102**:3 (2017), 369–382.
- [9] V. Kanovei, V. Lyubetsky, "Countable OD sets of reals belong to the ground model", *Arch. Math. Logic*, **57**:3-4 (2018), 285–298.
- [10] В. Г. Кановей, В. А. Любецкий, "О некоторых классических проблемах дескриптивной теории множеств", *УМН*, **58**:5 (353) (2003), 3–88.
- [11] В. Г. Кановей, В. А. Любецкий, "О множестве конструктивных вещественных чисел", Геометрическая топология и теория множеств, Тр. МИАН, **247**, Наука, МАИК «Наука/Интерпериодика», М., 2004, 95–128.
- [12] V. Kanovei, "Non-Glimm-Effros equivalence relations at second projective level", Fund. Math., 154:1 (1997), 1–35.
- [13] Y. N. Moschovakis, Descriptive Set Theory, North-Holland Publ., Amsterdam, 1980.
- [14] Дж. Шенфилд, Математическая логика, Наука, М., 1975.
- [15] V. Kanovei, "When a partial Borel order is linearizable", Fund. Math., 155:3 (1998), 301–309.
- [16] M. Kondô, "L'uniformisation des complémentaires analytiques", *Proc. Imp. Acad.*, **13**:8 (1937), 287–291.
- [17] J. W. Addison, "Separation principles in the hierarchies of classical and effective descriptive set theory", Fund. Math., 46 (1959), 123–135.
- [18] J. Stern, "On Lusin's restricted continuum problem", Ann. of Math. (2), 120:1 (1984), 7–37.
- [19] В. Г. Кановей, В. А. Любецкий, Современная теория множеств: абсолютно неразрешимые классические проблемы, МЦНМО, М., 2013.

В. Г. Кановей

Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, г. Москва

 $E ext{-}mail:$ kanovei@iitp.ru

Поступило 16.03.2018 После переработки 09.09.2018

Принято к публикации 12.09.2018

В. А. Любецкий

Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, г. Москва

E-mail: lyubetsk@iitp.ru