
Picking an Imperfect Palindrome

Georgii A. Khaziev, Oleg A. Zverkov and Alexandr V. Seliverstov

Abstract. Automatic search of sequences, that are close to perfect palin-
dromes remains an open problem. We discuss an algorithm de_shapker which
decreases the value of imp function by cutting non-complement subsequence.
Described algorithm allows picking non-palindromic sequences, that are close
to palindromes.

Introduction

In computational biology nucleotide sequence is defined as sequence over four-
letter alphabet {A, C, G, T}. The involution c : {A, C, G, T}n → {A, C, G, T}n is called
reverse complement and defined as follows

c(A) = T

c(T) = A

c(G) = C

c(C) = G

c(xy) = c(y)c(x)

(1)

A sequence x is called perfect palindrome if x = c(x). A sequence is called imperfect
palindrome otherwise. But automatic picking of imperfect palindromes, that are
close to perfect ones remains an open problem. This problem is close to repeats
detection problem, described at [1, 2].

In previous works we proposed an algorithm palindrome_self_alignment,
that gets sequence x as an input and finds such partition x = wz that edit distance
between x and wc(w) is minimal [3]. Also, we introduced function

imp(x) =
min{dist(x,wc(w))|x = wz}

|x|
. (2)

The closer value of imp(x) to 0, the closer x to being a perfect palindrome.
But nucleotide sequences that can be found in real biological data can be far from

2 Georgii A. Khaziev, Oleg A. Zverkov and Alexandr V. Seliverstov

perfect palindrome by itself, but have long subsequences, that are close to per-
fect palindromes. To allocate such subsequences we introduced algorithms called
trimmers [4]. The main idea behind those algorithms is finding potential non-
complement parts – termini, that are located on the ends of the sequence. So even
if imp(x) value is greater than given threshold, after which x is considered close to
palindrome, after trimming a substring of x could be found with the value lower,
than threshold.

1. Deleting loop

After trimming of x, resulted sequence can still contain a non-complement sub-
string inside, negatively affecting value of imp function. This substring is called
loop, and plays a vital role in formation of secondary structure of sequence x. To
delete this substring we propose the de_shapker algorithm. It takes as an input a
string x, a floating point value imp_given, which equals imp(x), matrix H of val-
ues of function h(j, k) from palindrome_self_alignment(x) algorithm, integers
iteration_counter, window_delta and window_size, and a Python function
strategy.

Let xresult = x. On each iteration de_shapker algorithm computes l1 norms
of all continuous submatrices S ∈ Rwindow_size×window_size of H defined as

l1(S) =

window_size∑
i=1

window_size∑
i=j

(S)ij (3)

After that, the submatrix Smin with minimal norm is chosen. Then, the index i of
the beginning of potential loop in x is computed as i = strategy(u, v), where u and
v are coordinates of top-left element of Smin in H. We recommend to choose as a
strategy a function biased towards minimal value between u and v (e.g. min(u, v)
or ⌊mean(u, v)⌋) as they tend to capture loops more precisely. Subsequently, xb

is computed as x with cutted symbols from i to i + window_size positions. If
imp(xb) < imp_given, then xresult will be overwritten with xb, and imp_given

will be overwritten with imp(xb). Next, the window_size is increased by windowδ
and the next iteration starts. If imp(xb) ≥ imp_given, then algorithm returns
xresult.After all iterations, algorithm returns xresult.

To minimize computation time, every l1 norm on new iteration can be com-
puted from l1 norms from previous iteration by adding necessary rows and columns.

Theorem 1.

imp(de_shapker(x, . . .)) ≤ imp(x) (4)

Proof. This is true, because on each iteration algorithm only saves new substring of
x if imp is decreased. Otherwise, de_shapker returns last substring with decreased
imp value. □

Picking an Imperfect Palindrome 3

Conclusion
Discussed algorithm could be useful for picking sequences, that are not close to
perfect palindromes by themself, but have long subsequences that are.

2. Funding
The research was carried out within the state assignment of Ministry of Science
and Higher Education of the Russian Federation for IITP RAS.

References
[1] Zhao X.X., Wang Z.X., Tang D. et al. The expectation and the variance of the

weights of de Bruijn sequences, Des. Codes Cryptogr. 2025. https://doi.org/10.
1007/s10623-025-01729-2

[2] Nazipova N.N. Application of suffix arrays to detect repeats in genomic sequences,
Mathematical Biology and Bioinformatics, 2025. V. 20 I. 2. P. 348-362. https://doi.
org/10.17537/2025.20.348

[3] Zverkov O., Seliverstov A., Shilovsky G. Alignment of a Hidden Palindrome, Math-
ematical biology and bioinformatics. 2024. V.19. I.2. P. 427-438. https://doi.org/
10.17537/2024.19.427

[4] Khaziev G.A., Seliverstov A.V., Zverkov O.A. Searching for an imperfect palindrome,
Computer algebra: 6th International Conference Materials, Moscow, Russia, June
23–25 2025, RUDN University, 2025, P. 62–65.

Georgii A. Khaziev
Institute for Information Transmission Problems of the Russian Academy of Sciences
(Kharkevich Institute)
Moscow, Russia
e-mail: khaziev@iitp.ru

Oleg A. Zverkov
Institute for Information Transmission Problems of the Russian Academy of Sciences
(Kharkevich Institute)
Moscow, Russia
e-mail: zverkov@iitp.ru

Alexandr V. Seliverstov
Institute for Information Transmission Problems of the Russian Academy of Sciences
(Kharkevich Institute)
Moscow, Russia
e-mail: slvstv@iitp.ru

