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Abstract. We consider the generic-case complexity of the Gröbner basis of a
zero-dimensional ideal in the ring of multivariate polynomials over a �eld. The
ideal is generated by some linear functions as well as all univariate polynomials
x2
k − xk. The generic rank of an auxiliary matrix is also estimated.

Introduction

We assume three possible answers: the input may not only be accepted or rejected,
but also an explicit noti�cation of uncertainty of the choice is possible. In any case,
the answer must be obtained in a �nite time and without errors, and if an easily
veri�able condition is met, then the noti�cation of uncertainty can be issued only
for a small fraction of inputs among all inputs of a given size. Such algorithms are
called generic [1] or errorless heuristics.

Our algorithm can be considered as method to compute the Gröbner basis of
a zero-dimensional ideal in the ring of multivariate polynomials over a �eld K. The
ideal is generated by all univariate polynomials x2

k−xk and some linear functions.
On the Macaulay matrix de�nition as well as the Gröbner basis computation

refer to [2, 3, 4, 5, 6]. In fact, we consider a submatrix of the Macaulay matrix.

Results

Let us consider a system of m linear equations in n variables: α11x1 + · · ·+ α1nxn + α10 = 0
· · ·

αm1x1 + · · ·+ αmnxn + αm0 = 0
.

Multiplying each linear equation by each of the variables and taking into account
the equalities x2

k = xk, which are satis�ed with {0, 1}-solutions, we obtain mn new
equations of the second degree. In the general case, a new linearly independent
linear equation can be derived from resulting quadratic equations.



2 Alexandr Seliverstov

Discarding the terms depending only on one variable, we obtain a set of mn
bilinear forms, the coe�cients of which form a matrix denoted by W . The rows
correspond to the bilinear forms, and the columns correspond to monomials of the
form xjxk for j < k.

For n = 3 and m = 1, the 3× 3 matrix

W =

 α12 α13 0
α11 0 α13

0 α11 α12


is degenerate over a �eld of characteristic char(K) = 2 because

det(W ) = −2α11α12α13.

Next, for n = 5 and m = 2, the 10 × 10 matrix W is degenerate over any
�eld because rank(W ) ≤ 9.

For n = 7 and m = 3, the 21× 21 matrix W is also degenerate over any �eld
because rank(W ) ≤ 18. (The rank is computed with Maple.)

Theorem 1. Let the matrix W be computed for m linear equations in n variables

over a purely transcendental extension of the �eld K, where all coe�cients αij

are algebraically independent of each other. The rank of the matrix satis�es the

inequality

rank(W ) ≥ mn− m(m+ 1)

2
.

Hypothesis 1. If the matrix W be computed for two linear equations in n ≥ 2
variables, then the rank of the matrix satis�es the inequality rank(W ) ≤ 2n− 1.

For 2 ≤ n ≤ 9, the hypothesis has been con�rmed using Maple.

Theorem 2. Let us assume Hypothesis 1 holds. If the matrix W be computed for

m linear equations in n ≥ 2 variables, then the rank of the matrix satis�es the

inequality rank(W ) ≤ mn−m+ 1.

Hypothesis 2. If the matrix W be computed for m linear equations in n variables

and the inequality n ≥ 2m + 1 holds, then the rank of the matrix satis�es the

inequality

rank(W ) ≤ mn− m(m− 1)

2
.

Theorem 3. If mn > rank(W ) and the free terms αi0 are uniformly and indepen-

dently distributed on the set S ⊂ K of cardinality ⌈1/ε⌉, then there is no new linear

equation with the probability not exceeding ε. Otherwise, the new linear equation

can be found using O(n6) algebraic operations over the �eld K.
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Conclusion

So, for almost all systems of linear equations, if the number of equations is su�-
ciently large, then one can easily either �nd a {0, 1}-solution, or prove that there is
no such solution. The method is not applicable when the system has many {0, 1}-
solutions. Thus, we have a polynomial upper bound on the generic-case complexity,
but not in the worst case.
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