 |
- Fig. 1. RNA triplex upstream gene hisG in E. coli
- Fig. 2. LEU1-pseudoknot upstream gene leuA in D. shibae
- Fig. 3. LEU-regulation of gene leuA in M. bovis
- Fig. 4. Classic attenuation regulation a) pheST operon in α-proteobacteria, b) pheA gene in β-proteobacteria
- Fig. 5. Classic attenuation regulation of genes pheA and pheS in y-proteobacteria
- Fig. 6. Phylogenetic tree of the regulatory regions of genes pheA and pheS in y-proteobacteria
- Fig. 7. Classic attenuation regulation a) thrA gene in α-proteobacteria, b) thrA and thrS genes in δ-proteobacteria
- Fig. 8. Classic attenuation regulation of gene thrA in γ-proteobacteria
- Fig. 9. Classic attenuation regulation of gene thrS in β-proteobacteria
- Fig. 10. Phylogenetic tree of the gene thrS paralogs in δ-proteobacteria
- Fig. 11. Phylogenetic tree of the regulatory regions of gene thrS paralogs in δ-proteobacteria
- Fig. 12. Classic attenuation regulation a) trpE, trpS, trpBE, trpBA operons in actinobacteria; b) trpB gene in Bacillales (Firmicutes)
- Fig. 13. Phylogenetic tree of the regulatory regions of genes trpE and trpS in actinobacteria
- Fig. 14. Classic attenuation regulation of gene trpE in α-proteobacteria
- Fig. 15. Classic attenuation regulation of gene trpE in β-proteobacteria
- Fig. 16. Classic attenuation regulation of gene trpE in γ-proteobacteria
- Fig. 17. Classic attenuation regulation a) gene trpE in Bacteroidetes; b) gene trpE in Thermotogae
- Fig. 18. Classic attenuation regulation of gene trpS in δ-proteobacteria
- Fig. 19. Classic attenuation regulation of gene hisS in a) α-proteobacteria, b) Thermotogae
- Fig. 20. Classic attenuation regulation of gene hisG in γ-proteobacteria
- Fig. 21. Classic attenuation regulation of gene hisZ in Firmicutes
- Fig. 22. Classic attenuation regulation of gene hisG in Bacteroidetes
- Fig. 23. Classic attenuation regulation of gene lysQ in Firmicutes
- Fig. 24. Classic attenuation regulation of genes ilvB and ilvI in actinobacteria
- Fig. 25. Classic attenuation regulation of genes ilvB and ilvI in α-proteobacteria
- Fig. 26. Classic attenuation regulation of gene ilvB in a-b) β-proteobacteria, c) δ-proteobacteria
- Fig. 27. Classic attenuation regulation of genes ilvA, ilvB, ilvC, ilvG in γ-proteobacteria
- Fig. 28. Phylogenetic tree of the regulatory regions of genes ilvA, ilvB, ilvC, ilvG in γ-proteobacteria
- Fig. 29. Probability of the ilvB gene termination in δ-proteobacteria
- Fig. 30. Classic attenuation regulation of gene ilvD in a) actinobacteria, b) Chloroflexi, c) Bacteroidetes, Chlorobi
- Fig. 31. Classic attenuation regulation of gene ilvD in Firmicutes
- Fig. 32. Probability of the ilvD operon termination in Staphylococcus and Listeria
- Fig. 33. Classic attenuation regulation of gene leuA in a) α-proteobacteria, b) β-proteobacteria, c) δ-proteobacteria
- Fig. 34. Classic attenuation regulation of gene leuA in γ-proteobacteria
- Fig. 35. LEU-regulation of gene leuA in actinobacteria
- Fig. 36. LEU-regulation of gene leuA in α-proteobacteria
- Fig. 37. LEU-regulation of gene leuA in β-proteobacteria
- Table 1. Putative attenuation regulation in bacteria
- Table 2. Bacteria with predicted attenuation regulation
|