04/04/25
02:01:38

Лаборатория математических методов и моделей в биоинформатике
Института проблем передачи информации им. А.А. Харкевича
Российской академии наук

Публикации сотрудника Владимир Григорьевич Кановей

Идентификаторы автора:
ORCID: 0000-0001-7415-9784
WoS ResearcherID: AAX-2015-2020
Scopus Author ID: 7004031461
eLIBRARY AuthorID: 11539 (+)
  1. В.Г. Кановей. О проблеме сингулярных кардиналов. Математические заметки, 1973, том 13, № 5, стр. 717–724, Mi: mzm7176, PDF
    Англоязычное издание:
    V.G. Kanovei. Singular cardinals. Mathematical Notes, 1973, Vol. 13, No. 5, P. 429–433, DOI: 10.1007/BF01147473, eLIBRARY: 30993090, PDF
  2. В.Г. Кановей. О степенях конструктивности и дескриптивных свойствах множества действительных чисел в исходной модели и в ее расширениях. Доклады Академии наук СССР, 1974, том 216, № 4, стр. 728–729, Mi: dan38331
  3. В.Г. Кановей. О мажорировании начальных сегментов степеней конструктивности. Математические заметки, 1975, том 17, № 6, стр. 939–946, Mi: mzm7614, PDF
    Англоязычное издание:
    V.G. Kanovei. On initial segments of degrees of constructibility. Mathematical Notes, 1975, Vol. 17, No. 6, P. 563–567, DOI: 10.1007/BF01442704, eLIBRARY: 30980640, PDF
  4. В.Г. Кановей. О независимости некоторых предложений дескриптивной теории множеств и арифметики второго порядка. Доклады Академии наук СССР, 1975, том 223, № 3, стр. 552–554, Mi: dan39167
  5. V.G. Kanovei. The independence of some propositions of descriptive set theory and second order arithmetic. Soviet Mathematics, 1975, Vol. 16, No. 4, P. 937
  6. В.Г. Кановей. Доказательство одной теоремы Лузина. Математические заметки, 1978, том 23, вып. 1, стр. 61–66, Mi: mzm8119, PDF
    Англоязычное издание:
    V.G. Kanovei. Proof of a theorem of Lusin. Mathematical Notes, 1978, Vol. 23, No. 1, P. 35–37, DOI: 10.1007/BF01104883, eLIBRARY: 30914597, PDF
  7. В.Г. Кановей. О непустоте классов в аксиоматической теории множеств. Известия АН СССР. Серия математическая, 1978, том 42, № 3, стр. 550–579, Mi: im1779, PDF
    Англоязычное издание:
    V.G. Kanovei. On the nonemptiness of classes in axiomatic set theory. Mathematics of the USSR-Izvestiya, 1978, Vol. 12, No. 3, P. 507–535, DOI: 10.1070/IM1978v012n03ABEH001997, PDF
  8. В.Г. Кановей. О существенности параметров и сложности основной формулы в схеме аксиом свертки в арифметике второго порядка. Доклады Академии наук СССР, 1978, том 243, № 6, стр. 1384–1386, Mi: dan42219
  9. В.Г. Кановей. Об одном следствии аксиомы Мартина. Математические заметки, 1979, том 26, вып. 1, стр. 113–121, Mi: mzm8384, PDF
    Англоязычное издание:
    V.G. Kanovei. A consequence of the Martin axiom. Mathematical Notes, 1979, Vol. 26, No. 1, P. 549–553, DOI: 10.1007/BF01140280, WOS: A1979JP38000014, eLIBRARY: 30845336, PDF
  10. В.Г. Кановей. Множество всех аналитически определимых множеств натуральных чисел может быть аналитически определимым. Известия АН СССР. Серия математическая, 1979, том 43, № 6, стр. 1259–1293, Mi: im1755, PDF
    Англоязычное издание:
    V.G. Kanovei. The set of all analytically definable sets of natural numbers can be defined analytically. Mathematics of the USSR-Izvestiya, 1980, Vol. 15, No. 3, P. 469–500, DOI: 10.1070/IM1980v015n03ABEH001258, WOS: A1980LF66600003, PDF
  11. В.Г. Кановей. О некоторых проблемах дескриптивной теории множеств и о связи конструктивности и определимости. Доклады Академии наук СССР, 1980, том 253, № 4, стр. 800–803, Mi: dan43771
  12. В.Г. Кановей. О несчетных последовательностях множеств, даваемых операцией решета. Доклады Академии наук СССР, 1981, том 257, № 4, стр. 808–812, Mi: dan44352
  13. В.Г. Кановей, А.В. Островский. О неборелевских F-множествах. Доклады Академии наук СССР, 1981, том 260, № 5, стр. 1061–1064, Mi: dan44783
  14. В.Г. Кановей. Теории Цермело без аксиомы степени и Цермело–Френкеля без аксиомы степени равнонепротиворечивы. Математические заметки, 1981, том 30, вып. 3, стр. 407–419, Mi: mzm6204, PDF
    Англоязычное издание:
    V.G. Kanovei. Theory of Zermelo without power set axiom and the theory of Zermelo-Frenkel without power set axiom are relatively consistent. Mathematical Notes, 1981, Vol. 30, No. 3, P. 695–702, DOI: 10.1007/BF01141627, WOS: A1981NS56600009, eLIBRARY: 30916105, PDF
  15. В.Г. Кановей. К проблемам Н. Н. Лузина о вложимости и расщеплении проективных множеств. Математические заметки, 1982, том 32, вып. 1, стр. 23–39, Mi: mzm6055, PDF
    Англоязычное издание:
    V.G. Kanovei. N. N. Luzin's problems on imbeddability and decomposability of projective sets. Mathematical Notes, 1982, Vol. 32, No. 1, P. 490–499, DOI: 10.1007/BF01137222, WOS: A1982QH39500004, eLIBRARY: 30868299, PDF
  16. В.Г. Кановей. Обобщение одной теоремы П. С. Новикова о сечениях борелевских множеств. Математические заметки, 1983, том 33, вып. 2, стр. 289–292, Mi: mzm5681, PDF
    Англоязычное издание:
    V.G. Kanovei. Generalization of P.S. Novikov's theorem on cross sections of Borel sets. Mathematical Notes, 1983, Vol. 33, No. 2, P. 144–146, DOI: 10.1007/BF01160381, WOS: A1983RH48600033, eLIBRARY: 30864984, PDF
  17. В.Г. Кановей. Ответ на вопрос Н. Н. Лузина об отделимости CA-кривых. Математические заметки, 1983, том 33, вып. 3, стр. 435–437, Mi: mzm10095, PDF
    Англоязычное издание:
    V.G. Kanovei. An answer to Luzin's question about the separability of CA-curves. Mathematical Notes, 1983, Vol. 33, No. 3, P. 223–224, DOI: 10.1007/BF01686331, eLIBRARY: 30989994, PDF
  18. V.G. Kanovei. Structure of constituents of Π11-sets. Siberian Mathematical Journal, 1983, Vol. 24, No. 2, P. 198–215, DOI: 10.1007/BF00968736, PDF
  19. В.А. Успенский, В.Г. Кановей. Проблемы Лузина о конституантах и их судьба. Вестник Московского университета. Серия 1. Математика. Механика, 1983, № 6, стр. 73–87, Mi: vmumm3550
  20. В.Г. Кановей. Аксиома выбора и аксиома детерминированности. серия «Проблемы науки и технического прогресса», М.: Наука, 1984, 63 cтр.
  21. В.Г. Кановей. Неразрешимые и разрешимые свойства конституант. Математический сборник, 1984, том 124(166), № 4(8), стр. 505–535, Mi: sm2064, PDF
    Англоязычное издание:
    V.G. Kanovei. Undecidable and decidable properties of constituents. Mathematics of the USSR-Sbornik, 1985, Vol. 52, No. 2, P. 491–519, DOI: 10.1070/SM1985v052n02ABEH002902, PDF
  22. В.Г. Кановей. К проблеме существования неборелевских AF-множеств. Математические заметки, 1985, том 37, № 2, стр. 274–283, Mi: mzm5305, PDF
    Англоязычное издание:
    V.G. Kanovei. Problem of the existence of nonBorel AF-sets. Mathematical Notes, 1985, Vol. 37, No. 2, P. 156–161, DOI: 10.1007/BF01156763, WOS: A1985ASP9700032, eLIBRARY: 30832215, PDF
  23. В.Г. Кановей. Аксиома детерминированности и современное развитие дескриптивной теории множеств. Итоги науки и техники. Серия Алгебра. Топология. Геометрия, том 23, 1985, стр. 3–50, Mi: inta109, PDF
    Англоязычное издание:
    V.G. Kanovei. The axiom of determinacy and the modern development of descriptive set theory. Journal of Mathematical Sciences, 1988, Vol. 40, No. 3, P. 257–287, DOI: 10.1007/BF01092890, PDF
  24. В.Г. Кановей. Развитие дескриптивной теории множеств под влиянием трудов Н. Н. Лузина. Успехи математических наук, 1985, том 40, вып. 3(243), стр. 117–155, Mi: rm2649, PDF
    Англоязычное издание:
    V.G. Kanovei. The development of the descriptive theory of sets under the influence of the work of Luzin. Russian Mathematical Surveys, 1985, Vol. 40, No. 3, P. 135–180, DOI: 10.1070/RM1985v040n03ABEH003591, WOS: A1985A935700007, eLIBRARY: 31101833, PDF
  25. В.Г. Кановей. К проблемам Н. Н. Лузина о существовании CA-множеств, не имеющих совершенных подмножеств. Математические заметки, 1987, том 41, № 5, стр. 750–757, Mi: mzm4915, PDF
    Англоязычное издание:
    V.G. Kanovei. N. N. Luzin's problems on the existence of CA-sets without perfect subsets. Mathematical Notes, May-Jun 1987, Vol. 41, No. 5, P. 422–426, DOI: 10.1007/BF01159870, WOS: A1987L530400014, eLIBRARY: 31113310, PDF
  26. В.Г. Кановей. О корректности эйлерова метода разложения синуса в бесконечное произведение. Успехи математических наук, 1988, том 43, вып. 4(262), стр. 57–81, Mi: rm1834, PDF
    Англоязычное издание:
    V.G. Kanovei. The correctness of Euler's method for the factorization of the sine function into an infinite product. Russian Mathematical Surveys, 1988, Vol. 43, No. 4, P. 65–94, DOI: 10.1070/RM1988v043n04ABEH001868, WOS: A1988AJ76600003, eLIBRARY: 30811497, PDF
  27. В.Г. Кановей. Идеи А. Н. Колмогорова в теории операций над множествами. Успехи математических наук, 1988, том 43, вып. 6(264), стр. 93–128, Mi: rm2048, PDF
    Англоязычное издание:
    V.G. Kanovei. Kolmogorov's ideas in the theory of operations on sets. Russian Mathematical Surveys, 1988, Vol. 43, No. 6, P. 111–155, DOI: 10.1070/RM1988v043n06ABEH001995, WOS: A1988AT50000006, eLIBRARY: 31124056, PDF
  28. В.Н. Гришин, В.Г. Кановей. О работах по дескриптивной теории множеств, выполненных в МИАНе. Труды Математического института им. В.А. Стеклова, 1988, том 182, стр. 224–244, Mi: tm1926, PDF
    Англоязычное издание:
    V.N. Grishin, V.G. Kanovei. Work on descriptive set theory carried out at the V. A. Steklov Institute of Mathematics. Proceedings of the Steklov Institute of Mathematics, 1990, Vol. 182, P. 245–265
  29. В.А. Успенский, В.Г. Кановей. Вклад М. Я. Суслина в теоретико-множественную математику. Вестник Московского университета. Серия 1. Математика. Механика, 1988, № 5, стр. 22–30, Mi: vmumm2967
  30. В.Г. Кановей. Первый Всесоюзный семинар по нестандартному анализу. Успехи математических наук, 1989, том 44, вып. 3(267), стр. 201, Mi: rm2600, PDF
  31. В.Г. Кановей. Математические чтения памяти М. Я. Суслина. Успехи математических наук, 1990, том 45, вып. 2(272), стр. 231, Mi: rm4734, PDF
  32. В.Г. Кановей. О мощности множества классов эквивалентности Витали. Математические заметки, 1991, том 49, № 4, стр. 55–62, Mi: mzm2934, PDF
    Англоязычное издание:
    V.G. Kanovei. Cardinality of the set of Vitali equivalence classes. Mathematical Notes, Mar-Apr 1991, Vol. 49, No. 4, P. 370–374, DOI: 10.1007/BF01158211, WOS: A1991HA41800031, eLIBRARY: 30854307, PDF
  33. В.Г. Кановей. Неразрешимые гипотезы в теории внутренних множеств Эдварда Нельсона. Успехи математических наук, 1991, том 46, вып. 6(282), стр. 3–50, Mi: rm4674, PDF
    Англоязычное издание:
    V.G. Kanovei. Undecidable hypotheses in Edward Nelson's internal set theory. Russian Mathematical Surveys, Nov-Dec 1991, Vol. 46, No. 6, P. 1–54, DOI: 10.1070/RM1991v046n06ABEH002870, WOS: A1991JR13500001, eLIBRARY: 31100972, PDF
  34. В.Г. Кановей. О принципе продолжения в теории внутренних множеств. Сибирский математический журнал, 1992, том 33, № 6, стр. 66–78, Mi: smj1717
    Англоязычное издание:
    V.G. Kanovei. On the extension principle in internal set theory. Siberian Mathematical Journal, Nov–Oct 1992, Vol. 33, No. 6, P. 999–1010, DOI: 10.1007/BF00971023, WOS: A1992KM97400007, PDF
  35. В.Г. Кановей. Вторые математические чтения памяти М. Я. Суслина. Успехи математических наук, 1992, том 47, вып. 3(285), стр. 197–198, Mi: rm4537, PDF
  36. V.G. Kanovei. A course on foundations of nonstandard analysis. (With a preface by. M. Reeken), IPM Lecture Notes Series, Vol. 1, IPM, Tehran, Iran, 1994, 149 pages, i
  37. V.G. Kanovei, M. Reeken. Internal approach to external sets and universes. Part 1 Bounded set theory. Studia Logica, 1995, Vol. 55, No. 2, P. 229–257, DOI: 10.1007/BF01061236, eLIBRARY: 30846597, PDF
  38. V.G. Kanovei, M. Reeken. Internal approach to external sets and universes. Part 2 External universes over the universe of bounded set theory. Studia Logica, 1995, Vol. 55, No. 3, P. 347–376, DOI: 10.1007/BF01057803, eLIBRARY: 31114831, PDF
  39. V.G. Kanovei, M. Reeken. Summation of divergent series from the nonstandard point of view. Real Analysis Exchange, 1995, Vol. 21, No. 2, P. 473–497, eLIBRARY: 31002425
  40. В.Г. Кановей. Топологии, порожденные эффективно суслинскими множествами, и их приложения в дескриптивной теории множеств. Успехи математических наук, 1996, том 51, вып. 3(309), стр. 17–52, DOI: 10.4213/rm968, Mi: rm968, PDF
    Англоязычное издание:
    V.G. Kanovei. Topologies generated by effectively Suslin sets, and their applications in descriptive set theory. Russian Mathematical Surveys, 1996, Vol. 51, No. 3, P. 385–417, DOI: 10.1070/RM1996v051n03ABEH002907, WOS: A1996WC01100002, Scopus: 2-s2.0-0030504741, PDF
  41. V.G. Kanovei. On external Scott algebras in nonstandard models of Peano arithmetic. Journal of Symbolic Logic, Jun 1996, Vol. 61, Iss. 2, P. 586–607, DOI: 10.2307/2275677, WOS: A1996UU95100012, eLIBRARY: 13230633, PDF
  42. V.G. Kanovei, M. Reeken. Internal approach to external sets and universes. Part 3 Partially saturated universes. Studia Logica, 1996, Vol. 56, No. 3, P. 293–322, DOI: 10.1007/BF00372770, eLIBRARY: 31271066, PDF
  43. V.G. Kanovei, M. Reeken. Loeb measure from the point of view of a coin flipping game. Mathematical Logic Quarterly, 1996, Vol. 42, Iss. 1, P. 19–26, eLIBRARY: 13247198
  44. V.G. Kanovei. An Ulm-type classification theorem for equivalence relations in Solovay model. Journal of Symbolic Logic, Dec 1997, Vol. 62, Iss. 4, P. 1333–1351, DOI: 10.2307/2275646, WOS: 000071541100021, eLIBRARY: 20949072, PDF
  45. V.G. Kanovei, M. Reeken. Isomorphism property in nonstandard extensions of the ZFC universe. Annals of Pure and Applied Logic, 1997, Vol. 88, No. 1, P. 1–25, eLIBRARY: 13267869
  46. V.G. Kanovei. Non-Glimm-Effros equivalence relations at second projective level. Fundamenta mathematicae, 1997, Vol. 154, Iss. 1, P. 1–35, eLIBRARY: 13252699
  47. V.G. Kanovei. Two dichotomy theorems on colourability of non-analytic graphs. Fundamenta mathematicae, 1997, Vol. 154, Iss. 2, P. 183–201, eLIBRARY: 13254718
  48. V.G. Kanovei. On a spector ultrapower for the Solovay model. Mathematical Logic Quarterly, 1997, Vol. 43, Iss. 3, P. 389–395, eLIBRARY: 13252900
  49. В.Г. Кановей, И. Заплетал. Пирамидальная структура степеней конструктивности. Математические заметки, 1998, том 63, № 4, стр. 632–635, DOI: 10.4213/mzm1325, Mi: mzm1325, PDF
    Англоязычное издание:
    V.G. Kanovei, J. Zapletal. Pyramidal structure of constructibility degrees. Mathematical Notes, 1998, Vol. 63, No. 4, P. 556–559, DOI: 10.1007/BF02311261, WOS: 000075783100040, eLIBRARY: 20943130, PDF
  50. V.G. Kanovei, M. Reeken. Elementary extensions of external classes in a nonstandard universe. Studia Logica, 1998, Vol. 60, No. 2, P. 253–273, DOI: 10.1023/A:1005064032270, eLIBRARY: 18253636, PDF
  51. V.G. Kanovei. When a partial borel order is linearizable. Fundamenta mathematicae, 1998, Vol. 155, Iss. 3, P. 301–309, eLIBRARY: 13305014
  52. V.G. Kanovei. Ulm classification of analytic equivalence relations in generic universes. Mathematical Logic Quarterly, 1998, Vol. 44, Iss. 3, P. 287–303, DOI: 10.1002/malq.19980440302, eLIBRARY: 13292534, PDF
  53. V.G. Kanovei. On non-wellfounded iterations of the perfect set forcing. Journal of Symbolic Logic, Jun 1999, Vol. 64, Iss. 2, P. 551–574, DOI: 10.2307/2586484, WOS: 000080957200010, eLIBRARY: 13313996, PDF
  54. V. Kanovei, M. Reeken. Special model axiom in nonstandard set theory. Mathematical Logic Quarterly, 1999, Vol. 45, Iss. 3, P. 371–384, eLIBRARY: 13313998
  55. В.Г. Кановей, М. Реекен. Расширение стандартных моделей ZFC до моделей нестандартной теории множеств Нельсона IST. Математические заметки, 1999, том 66, № 2, стр. 202–210, DOI: 10.4213/mzm1157, Mi: mzm1157, PDF
    Англоязычное издание:
    V.G. Kanovei, M. Reeken. Extension of standard models of ZFC to models of Nelson’s nonstandard set theory IST. Mathematical Notes, 1999, Vol. 66, No. 2, P. 160–166, DOI: 10.1007/BF02674872, WOS: 000084461100022, eLIBRARY: 20938564, PDF
  56. V.G. Kanovei. Linearization of definable order relations. Annals of Pure and Applied Logic, Mar 2000, Vol. 102, No. 1–2, P. 69–100, DOI: 10.1016/S0168-0072(99)00013-5, WOS: 000084782400003, eLIBRARY: 193490, eLIBRARY: 13339255, PDF
  57. V.G. Kanovei, M. Reeken. A nonstandard set theory in the ∈-language. Archive for Mathematical Logic, Aug 2000, Vol. 39, No. 6, P. 403–416, DOI: 10.1007/s001530050155, WOS: 000089083700002, eLIBRARY: 13340666, PDF
  58. V.G. Kanovei, M. Reeken. Extending standard models of ZFC to models of nonstandard set theories. Studia Logica, 2000, Vol. 64, No. 1, P. 37–59, DOI: 10.1023/A:1005286212737, eLIBRARY: 20898243, PDF
  59. V.G. Kanovei, M. Reeken. New Radon–Nikodym ideals. Mathematika, Dec 2000, Vol. 47, Iss. 1-2, P. 219–227, DOI: 10.1112/S0025579300015837, WOS: 000177538900018, eLIBRARY: 13358709, PDF
  60. V.G. Kanovei, M. Reeken. On Baire measurable homomorphisms of quotients of the additive group of the reals. Mathematical Logic Quarterly, Aug 2000, Vol. 46, Iss. 3, P. 377–384, DOI: 10.1002/1521-3870(200008)46:3<377::AID-MALQ377>3.0.CO;2-9, WOS: 000088718400005, PDF
  61. В.Г. Кановей, М. Реекен. Проблема Улама об устойчивости приближенных гомоморфизмов. Труды Математического института им. В.А. Стеклова, 2000, том 231, стр. 249–283, Mi: tm518, PDF
    Англоязычное издание:
    V.G. Kanovei, M. Reeken. On Ulam's problem of stability of non-exact homomorphisms. Proceedings of the Steklov Institute of Mathematics, 2000, Vol. 231, P. 238–270
  62. V.G. Kanovei. A version of the Jensen–Johnsbraten coding at arbitrary level n3. Archive for Mathematical Logic, 2001, Vol. 40, No. 8, P. 615–628, DOI: 10.1007/s001530100087, WOS: 000173031500004, eLIBRARY: 13376049, PDF
  63. В.Г. Кановей. Нестандартная теория множеств в ∈-языке. Математические заметки, 2001, том 70, № 1, стр. 46–50, DOI: 10.4213/mzm717, Mi: mzm717, PDF
    Англоязычное издание:
    V.G. Kanovei. Nonstandard set theory in ∈-language. Mathematical Notes, Jul–Aug 2001, Vol. 70, No. 1-2, P. 42–45, DOI: 10.1023/A:1010265716574, WOS: 000171684100006, eLIBRARY: 20865624, PDF
  64. J.R.P. Christensen, V.G. Kanovei, M. Reeken. On Borel orderable groups. Topology and Its Applications, Feb 14 2001, Vol. 109, Iss. 3, P. 285–299, DOI: 10.1016/S0166-8641(99)00164-9, WOS: 000166392200002, eLIBRARY: 519309, PDF
  65. V.G. Kanovei, M. Reeken. Borel and countably determined reducibility in nonstandard domain. Eprint, arXiv:math/0202290 [math.LO], Feb 27 2002, 34 pp., i, PDF
  66. V.G. Kanovei, M. Reeken. Some new results on Borel irreducibility of equivalence relations. Eprint, arXiv:math/0203102 [math.LO], Mar 11 2002, 27 pp., i, PDF
  67. В.Г. Кановей, В.А. Любецкий. О некоторых классических проблемах дескриптивной теории множеств. Успехи математических наук, 2003, том 58, вып. 5(353), стр. 3–88, DOI: 10.4213/rm666, Mi: rm666, PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. On some classical problems of descriptive set theory. Russian Mathematical Surveys, Sep–Oct 2003, Vol. 58, Iss. 5, P. 839–927, DOI: 10.1070/RM2003v058n05ABEH000666, WOS: 000189179400001, Scopus: 2-s2.0-1542291397, eLIBRARY: 13417662, PDF
  68. В.Г. Кановей, М. Реекен. Некоторые новые результаты о борелевской несводимости отношений эквивалентности. Известия Российской академии наук. Серия математическая, 2003, том 67, № 1, стр. 59–82, DOI: 10.4213/im418, Mi: im418, PDF
    Англоязычное издание:
    V.G. Kanovei, M. Reeken. Some new results on Borel irreducibility of equivalence relations. Izvestiya: Mathematics, Jan–Feb 2003, Vol. 67, No. 1, P. 55–76, DOI: 10.1070/IM2003v067n01ABEH000418, WOS: 000185513200004, Scopus: 2-s2.0-33748479303, eLIBRARY: 13964943, PDF
  69. V.G. Kanovei, M. Reeken. A theorem on ROD-hypersmooth equivalence relations in the Solovay model. Mathematical Logic Quarterly, May 2003, Vol. 49, Iss. 3, P. 299–304, DOI: 10.1002/malq.200310030, WOS: 000182874700009, Scopus: 2-s2.0-0038577122, eLIBRARY: 13441354, PDF
  70. V.G. Kanovei, M. Reeken. Borel and countably determined reducibility in nonstandard domain. Monatshefte fur Mathematik, Nov 2003, Vol. 140, No. 3, P. 197–231, DOI: 10.1007/s00605-003-0004-y, WOS: 000186540700002, Scopus: 2-s2.0-0345448075, eLIBRARY: 13419940, PDF
  71. B. Durand, V.G. Kanovei, V.A. Uspensky, N.K. Vereshchagin. Do stronger definitions of randomness exist?. Theoretical Computer Science, Jan 2003, Vol. 290, No. 3, P. 1987–1996, DOI: 10.1016/S0304-3975(02)00040-3, WOS: 000179441900034, Scopus: 2-s2.0-85009174425, eLIBRARY: 29473063, PDF
  72. В.Г. Кановей, В.А. Любецкий. Классические проблемы дескриптивной теории множеств. Труды 4-й международной Смирновской конференции, М.: РАН, 2003, стр. 32–34
  73. В.Г. Кановей, В.А. Любецкий. О существовании регулярного неопределимого множества вещественных чисел. Труды конференции «Колмогоров и современная математика (100 лет Колмогорову)», Москва, 2003, стр. 690
  74. V.G. Kanovei, S. Shelah. A definable nonstandard model of the reals. Eprint, arXiv:math/0311165 [math.LO], Nov 11 2003, i, PDF
  75. V.G. Kanovei, S. Shelah. A definable nonstandard model of the reals. Journal of Symbolic Logic, Mar 2004, Vol. 69, No. 1, P. 159–164, DOI: 10.2178/jsl/1080938834, WOS: 000220185200015, Scopus: 2-s2.0-1842579323, eLIBRARY: 13453427, PDF
  76. В.Г. Кановей, В.А. Любецкий. О множестве конструктивных вещественных чисел. Труды Математического института им. В.А. Стеклова, 2004, том 247, стр. 95–128, Mi: tm12, PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. On the set of constructible reals. Proceedings of the Steklov Institute of Mathematics, 2004, Vol. 247, P. 83–114
  77. V.G. Kanovei, M. Reeken. Borel irreducibility between two large families of Borel equivalence relations. In: Logic Colloquium ’99, Lecture Notes in Logic, 17, ASL, Cambridge University Press, 2004, P. 100–110, DOI: 10.1017/9781316755921.009, PDF
  78. V.G. Kanovei, M. Reeken, S. Shelah. Fully saturated extensions of the standard universe. Abstracts of the International Conference “Logic, Algebra and Geometry”, St.Petersburg, Russia, June 1–7 2004, P. 16–17, i
  79. V.G. Kanovei, M. Reeken, S. Shelah. Fully saturated extensions of the standard universe. Abstracts of the International Congress “Nonstandard Models of Arithmetic and Analysis” (M.ARI.AN. 2004), Pisa, Italy, June 25–26 2004, P. 1, i, PDF
  80. V.G. Kanovei, M. Reeken, S. Shelah. Fully saturated extensions of the standard universe. Timetable and abstracts, Logic Colloquium 2004, Abstracts of the ASL European Summer Meeting “Logic Colloquium 2004”, Torino, Italy, July 25–31 2004, P. 116, i, PDF
  81. V.G. Kanovei, M. Reeken. Nonstandard analysis, axiomatically. Series: Springer Monographs in Mathematics, 2004, XVI+408 pages, ISBN: 978-3-540-22243-9, i
  82. В.Г. Кановей, В.А. Любецкий. О совершенных подмножествах инвариантных CA-множеств. Математические заметки, 2005, том 77, № 3, стр. 334–338, DOI: 10.4213/mzm2496, eLIBRARY: 9150075, Mi: mzm2496, PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. Perfect subsets of invariant CA-sets. Mathematical Notes, Mar–Apr 2005, Vol. 77, No. 3-4, P. 307–310, DOI: 10.1007/s11006-005-0031-1, WOS: 000228965300002, Scopus: 2-s2.0-20244383975, eLIBRARY: 13497341, PDF
  83. В.Г. Кановей, В.А. Успенский. Об эквивалентности двух форм континуум-гипотезы. Вестник Московского университета. Серия 1. Математика. Механика, 2005, № 3, стр. 62–64, eLIBRARY: 9133206
  84. V.G. Kanovei, V.A. Lyubetsky. A cofinal family of equivalence relations generated by Borel ideals. Abstracts of the A.S.L. European Summer Meeting “Logic Colloquium '05”, Athens, Greece, July 28 – August 3 2005, P. 83, i
  85. V.G. Kanovei, M. Reeken. Effective cardinals in the nonstandard universe. Eprint, arXiv:math/0512054 [math.LO], Dec 2 2005, i, PDF
  86. В.Г. Кановей, В.А. Любецкий. Конфинальное семейство отношений эквивалентности и порождающих их борелевских идеалов. Труды Математического института им. В.А. Стеклова, 2006, том 252, стр. 94–113, Mi: tm65, PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. A cofinal family of equivalence relations and Borel ideals generating them. Proceedings of the Steklov Institute of Mathematics, 2006, Vol. 252, No. 1, P. 85–103, DOI: 10.1134/S008154380601010X, Scopus: 2-s2.0-33746072961, eLIBRARY: 13527855, PDF
  87. В.Г. Кановей, В.А. Успенский. О единственности нестандартных расширений. Вестник Московского университета. Серия 1. Математика. Механика, 2006, № 5, стр. 3–10, eLIBRARY: 9297010
    Англоязычное издание:
    V.G. Kanovei, V.A. Uspensky. Uniqueness of nonstandard extensions. Moscow University Mathematics Bulletin, 2006, Vol. 61, No. 5, P. 3–10, eLIBRARY: 9297010
  88. V.G. Kanovei, M. Reeken. Effective cardinals in the nonstandard universe. Proceedings of the 9th Asian Logic Conference “Mathematical Logic in Asia”, Novosibirsk, Russia, August 16–19 2005, World Scientific Publishers, 2006, P. 113–144, DOI: 10.1142/9789812772749_0009, WOS: 000244679700009
  89. V.G. Kanovei. Varia. Ideals and equivalence relations. Eprint, arXiv:math/0603506 [math.LO], Mar 21 2006, i, PDF
  90. V.G. Kanovei. Varia: Ideals and equivalence relations, beta-version. Eprint, arXiv:math/0610988 [math.LO], Oct 31 2006, i, PDF
  91. В.Г. Кановей, В.А. Любецкий. Современная теория множеств: начала дескриптивной динамики. М.: Наука, 2007, 231 стр., монография, ISBN: 978-5-02-035577-4, eLIBRARY: 19454570, i
  92. В.Г. Кановей, В.А. Любецкий. Проблемы теоретико-множественного нестандартного анализа. Успехи математических наук, 2007, том 62, вып. 1(373), стр. 51–122, DOI: 10.4213/rm5588, eLIBRARY: 25787361, Mi: rm5588, PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetskii. Problems of set-theoretic non-standard analysis. Russian Mathematical Surveys, Jan–Feb 2007, Vol. 62, Iss. 1, P. 45–111, DOI: 10.1070/RM2007v062n01ABEH004381, WOS: 000247727000002, Scopus: 2-s2.0-34547325348, eLIBRARY: 13533917, PDF
  93. В.Г. Кановей, В.А. Любецкий, М. Реекен. О сводимости монадических отношений эквивалентности. Математические заметки, 2007, том 81, вып. 6, стр. 842–854, DOI: 10.4213/mzm3735, eLIBRARY: 9511609, Mi: mzm3735, PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetskii, M. Reeken. Reducibility of monadic equivalence relations. Mathematical Notes, May–Jun 2007, Vol. 81, Iss. 5-6, P. 757–766, DOI: 10.1134/S0001434607050239, WOS: 000247942500023, Scopus: 2-s2.0-34547245457, eLIBRARY: 13539883, PDF
  94. В.Г. Кановей, В.А. Любецкий. Борелевская сводимость как аддитивное свойство областей. Препринты ПОМИ РАН, 2007, № 1, стр. 305–314, eLIBRARY: 9574343, PDF
  95. В.Г. Кановей, В.А. Любецкий. Борелевская сводимость сохраняется при счетном дизъюнктном объединении борелевских множеств. Препринт Петербургского отделения Математического института РАН, 2007, i
  96. V.G. Kanovei. A weak dichotomy below 𝖤1×𝖤3. Eprint, arXiv:0707.2706 [math.LO], Jul 18 2007, i, PDF
  97. В.Г. Кановей, В.А. Любецкий. Борелевская сводимость как аддитивное свойство областей. Записки научных семинаров Санкт-Петербургского отделения математического института им. В.А. Стеклова РАН, 2008, том 358, № 11, стр. 189–198.
    eLIBRARY: 13622783, EDN: LMCULX, Mi: znsl2151, PDF
  98. K.Yu. Gorbunov, V.G. Kanovei, V.A. Lyubetsky. Inferring optimal scenario of gene evolution along a species tree. Abstracts of The Sixth International Conference on Bioinformatics of Genome Regulation and Structure (BGRS'2008), Novosibirsk, Russia, June 22–28 2008, P. 90, i, PDF
  99. Sy-D. Friedman, V.G. Kanovei, V.A. Lyubetsky. On ROD reducibility of equivalence relations in Solovay model. Proceedings of the International Conference “Methods of Logic in Mathematics V”, Saint-Petersburg, Russia, June 1–7 2008, P. 6
  100. V.G. Kanovei. Borel equivalence relations: structure and classification. University Lectures series of the AMS, 2008, Vol. 44, 240 pages, ISBN: 978-0-8218-4453-3, i
  101. В.Г. Кановей, Т. Линтон, В.А. Успенский. Игровой подход к мере Лебега. Математический сборник, 2008, том 199, № 11, стр. 21–44.
    DOI: 10.4213/sm3948, eLIBRARY: 20425500, EDN: REZGJN, Mi: sm3948, PDF
    Англоязычное издание:
    V.G. Kanovei, T. Linton, V.A. Uspensky. Lebesgue measure and gambling. Sbornik: Mathematics, Nov–Dec 2008, Vol. 199, No. 11, P. 1597–1619.
    DOI: 10.1070/SM2008v199n11ABEH003974, WOS: 000264258100002, Scopus: 2-s2.0-66149111433, eLIBRARY: 13570983, EDN: LKZIEV, PDF
  102. Sy-D. Friedman, V.G. Kanovei. Some natural equivalence relations in the Solovay model. Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 2008, Vol. 78, No. 1, P. 91–98.
    DOI: 10.1007/s12188-008-0003-y, WOS: 000260634600006, Scopus: 2-s2.0-55549138029, eLIBRARY: 13572446, EDN: KHHYGJ, PDF
  103. V.G. Kanovei, W. Purkert. Mengenlehre — Historische Einfuhrung. In: Gesammelte Werke, Band III Mengenlehre (1927, 1935) Deskriptive Mengenlehre und Topologie, 2008, Teil I, P. 1–40.
    DOI: 10.1007/978-3-540-76807-4_1, PDF
  104. V.G. Kanovei, V.A. Lyubetsky. Reasonable non--Radon--Nikodym ideals. Eprint, arXiv:0806.4760 [math.LO], Jun 29 2008, i, PDF
  105. V.G. Kanovei, V.A. Lyubetsky. Reasonable non-Radon–Nikodym ideals. Topology and Its Applications, Feb 15 2009, Vol. 156, Iss. 5, P. 911–914.
    DOI: 10.1016/j.topol.2008.11.008, WOS: 000264470400008, Scopus: 2-s2.0-60249084018, eLIBRARY: 13598368, EDN: LLOXHN, i, PDF
  106. V.G. Kanovei, V.A. Lyubetsky. Borel reducibility as an additive property of domains. Journal of Mathematical Sciences, 2009, Vol. 158, No. 5, P. 708–712.
    DOI: 10.1007/s10958-009-9406-2, Scopus: 2-s2.0-67349232744, eLIBRARY: 13608054, EDN: LLUKOX, PDF
  107. V.G. Kanovei, V.A. Lyubetsky, M. Reeken. Nonstandard class and superset theories. Logic and Mathematics, Department of Mathematics, The University of York, August 3–7 2009, P. 21
  108. В.Г. Кановей. Об упорядоченных структурах Хаусдорфа. Известия Российской академии наук. Серия математическая, 2009, том 73, № 5, стр. 83–104.
    DOI: 10.4213/im2730, eLIBRARY: 20358695, EDN: RDNGDH, Mi: im2730, PDF
    Англоязычное издание:
    V.G. Kanovei. On Hausdorff ordered structures. Izvestiya: Mathematics, 2009, Vol. 73, No. 5, P. 939–958.
    DOI: 10.1070/IM2009v073n05ABEH002469, WOS: 000272485400004, Scopus: 2-s2.0-71449123358, eLIBRARY: 15307004, EDN: MWZAZF, PDF
  109. В.Г. Кановей, В.А. Любецкий. Современная теория множеств: борелевские и проективные множества. М.: МЦНМО, 2010, 320 стр., монография.
    ⓘ ISBN: 978-5-94057-683-9, eLIBRARY: 19462694, EDN: QJXLRN, PDF
  110. V.G. Kanovei, V.A. Lyubetsky. Julius Koenig sets as higher infinity. Abstracts of the International Workshop “Infinite and Infinitesimal in Mathematics, Computing and Natural Sciences”, Grand Hotel San Michele, Cetraro, Italy, May 17–21 2010, University of Calabria, Italy, 2010, P. 27, i, PDF
  111. V.G. Kanovei. A weak dichotomy below 𝖤1×𝖤3. Topology and Its Applications, Jun 1 2010, Vol. 157, Iss. 8, P. 1465–1478.
    DOI: 10.1016/j.topol.2009.03.052, WOS: 000277677500021, Scopus: 2-s2.0-77951627267, eLIBRARY: 23961208, EDN: UEIXTF, i, PDF
  112. J. Bagaria, V.G. Kanovei. On coding uncountable sets by reals. Mathematical Logic Quarterly, Aug 2010, Vol. 56, Iss. 4, P. 409–424.
    DOI: 10.1002/malq.200910056, WOS: 000280910700007, Scopus: 2-s2.0-77956922968, eLIBRARY: 15325718, EDN: LPVSQF, i, PDF
  113. V.G. Kanovei. Linear ROD subsets of Borel partial orders are countably cofinal in the Solovay model. Eprint, arXiv:1004.5542 [math.LO], Apr 30 / Jun 5 2010, i, PDF
  114. V.G. Kanovei. Linear ROD subsets of Borel partial orders are countably cofinal in Solovay's model. Eprint, arXiv:1005.5534 [math.LO], May 30 / Jun 5 2010, i, PDF
  115. V.G. Kanovei. On automorphisms behind the Gitik -- Koepke model for violation of the Singular Cardinals Hypothesis w/o large cardinals. Eprint, arXiv:1008.3471 [math.LO], Aug 20 2010, 20 pages, i, PDF
  116. В.Г. Кановей, В.А. Любецкий. Эффективная минимальная кодировка несчетных множеств. Сибирский математический журнал, 2011, том 52, № 5, стр. 1074–1086.
    eLIBRARY: 16557035, EDN: NYIGOJ, Mi: smj2259, PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. An effective minimal encoding of uncountable sets. Siberian Mathematical Journal, Sep 2011, Vol. 52, No. 5, P. 854–863.
    DOI: 10.1134/S0037446611050107, WOS: 000298650500010, Scopus: 2-s2.0-80155151863, eLIBRARY: 18011619, EDN: PEDWBT, PDF
  117. V.G. Kanovei, V.A. Lyubetsky. On the infinitary pantachie of Du Bois Reymond. Proceedings of the International Mathematical Conference “50 Years Of IITP”, Moscow, Russia, July 25–29 2011, 7 pp., i, PDF
  118. V.G. Kanovei. On effective compactness and sigma-compactness. Eprint, arXiv:1103.1060 [math.LO], Mar 5 2011, i, PDF
  119. V.G. Kanovei. On effective sigma-boundedness and sigma-compactness. Eprint, arXiv:1110.0919 [math.LO], Oct 5 2011, i, PDF
  120. В.Г. Кановей, В.А. Любецкий. Об эффективной компактности и сигма-компактности. Математические заметки, 2012, том 91, вып. 6, стр. 840–852.
    DOI: 10.4213/mzm8544, eLIBRARY: 20731550, EDN: RLRJTB, Mi: mzm8544, PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. Effective compactness and sigma-compactness. Mathematical Notes, May 2012, Vol. 91, Iss. 6, P. 789–799.
    DOI: 10.1134/S0001434612050252, WOS: 000305984400025, Scopus: 2-s2.0-84864194710, eLIBRARY: 24952888, EDN: VABDOP, PDF
  121. V.G. Kanovei, V.A. Lyubetsky. An infinity which depends on the axiom of choice. Applied Mathematics and Computation, Apr 15 2012, Vol. 218, Iss. 16, P. 8196–8202.
    DOI: 10.1016/j.amc.2011.05.003, WOS: 000302267700020, Scopus: 2-s2.0-84859431986, eLIBRARY: 23962434, EDN: UEJPWT, PDF
  122. V.G. Kanovei, M.G. Katz, T. Mormann. Tools, objects, and chimeras: Connes on the role of hyperreals in mathematics. Eprint, arXiv:1211.0244 [math.FA], Nov 1 2012, 52 pp., i, PDF
  123. В.Г. Кановей, В.А. Любецкий. Современная теория множеств: абсолютно неразрешимые классические проблемы. М.: МЦНМО, 2013, 380 стр., монография, ISBN: 978-5-4439-0097-1, i
  124. V.G. Kanovei, V.A. Lyubetsky. On effective σ-boundedness and σ-compactness. Mathematical Logic Quarterly, May 2013, Vol. 59, Iss. 3, P. 147–166.
    DOI: 10.1002/malq.201200001, WOS: 000318790100005, Scopus: 2-s2.0-84877641044, eLIBRARY: 20427977, EDN: RFARAF, PDF
  125. V. Kanovei, M. Sabok, J. Zapletal. Canonical Ramsey theory on Polish spaces. Cambridge Tracts in Mathematics, Iss. 202, Cambridge University Press, 2013, viii+269 pp.
    ⓘ ISBN: 978-1-107-02685-8, 978-1-139-20866-6, DOI: 10.1017/CBO9781139208666, WOS: 000325694000012
  126. V.G. Kanovei, M.G. Katz, T. Mormann. Tools, objects, and chimeras: Connes on the Role of Hyperreals in Mathematics. Foundations of Science, Jun 2013, Vol. 18, Iss. 2, P. 259–296.
    DOI: 10.1007/s10699-012-9316-5, WOS: 000319436600003, Scopus: 2-s2.0-84878366305, eLIBRARY: 20436177, EDN: RFFIIB, PDF
  127. U. Felgner, V. Kanovei, P. Koepke, W. Purkert, editors. Felix Hausdorff, Gesammelte Werke, Band Ia: Allgemeine Mengenlehre. Berlin: Springer, 2013, xxvi+538 pp., ISBN: 978-3-642-25598-4
  128. V.G. Kanovei, P. Koepke. Gaps in partially ordered sets and related problems. Commentary to [H 1909a] and [H 1936b], In: Felix Hausdorff, Gesammelte Werke, Band Ia: Allgemeine Mengenlehre, Berlin: Springer, 2013, P. 367–405, ISBN: 978-3-642-25598-4, file
  129. V.G. Kanovei. Kommentar zu [H 1909a], Die Graduierung nach dem Endverlauf. In: Felix Hausdorff, Gesammelte Werke, Band Ia: Allgemeine Mengenlehre, Berlin: Springer, 2013, P. 336–346, ISBN: 978-3-642-25598-4, file
  130. V.G. Kanovei. Kommentar zu [H 1936b], Summen von $aleph_1$ Mengen. In: Felix Hausdorff, Gesammelte Werke, Band Ia: Allgemeine Mengenlehre, Berlin: Springer, 2013, P. 364–366, ISBN: 978-3-642-25598-4, file
  131. J. Bair, P. Blaszczyk, R. Ely, V. Henry, V.G. Kanovei, K.U. Katz, M.G. Katz, S.S. Kutateladze, T. McGaffey, D.M. Schaps, D. Sherry, S. Shnider. Is mathematical history written by the victors?. Notices of the American Mathematical Society, Aug 2013, Vol. 60, No. 7, P. 886–904.
    eLIBRARY: 20439744, EDN: PMOKTZ, i, PDF
  132. V.G. Kanovei. Nonstandard analysis on surreal numbers. Proceedings of the international conference NUMTA 2013, Pellegrini Editore, Kosenza, Italy, 2013, P. 83
  133. V.G. Kanovei. Surreal numbers from the point of view of nonstandard analysis. Sy David Friedman's 60th-Birthday Conference, Vienna, Austria, July 2013
  134. J. Bair, P. Blaszczyk, R. Ely, V. Henry, V.G. Kanovei, K.U. Katz, M.G. Katz, S.S. Kutateladze, T. McGaffey, D.M. Schaps, D. Sherry, S. Shnider. Is mathematical history written by the victors?. Eprint, arXiv:1306.5973 [math.HO], Jun 25 2013, 41 pp., i, PDF
  135. V.G. Kanovei. On countable cofinality of definable chains in Borel partial orders. Eprint, arXiv:1312.2064 [math.LO], Dec 7 2013, i, PDF
  136. T. Bascelli, E. Bottazzi, F.S. Herzberg, V.G. Kanovei, K.U. Katz, M.G. Katz, T. Nowik, D. Sherry, S. Shnider. Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow. Notices of the American Mathematical Society, Sep 2014, Vol. 61, No. 8, P. 848–864.
    DOI: 10.1090/noti1149, eLIBRARY: 24048032, EDN: UGGIDB. 🪙RFBR 13-01-00006. PDF
  137. V.G. Kanovei. On the automorphisms behind the Gitik – Koepke model. In: Infinity, Computability and Metamathematics, Festschrift celebrating the 60th birthdays of Peter Koepke and Philip Welch, Stefan Geschke, Benedikt Loewe, and Philipp Schlicht, eds, April 17 2014, College publications, London, 2014, Vol. 23, P. 229–253, i
  138. V.G. Kanovei. A generalization of Solovay's Σ-construction. Eprint, arXiv:1402.0961 [math.LO], Feb 5 2014, i, PDF
  139. V.G. Kanovei. A generalization of Solovay's Σ-construction with application to intermediate models. Eprint, arXiv:1403.5757 [math.LO], Mar 23 2014, i, PDF
  140. T. Bascelli, E. Bottazzi, F.S. Herzberg, V.G. Kanovei, K.U. Katz, M.G. Katz, T. Nowik, D. Sherry, S. Shnider. Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow. Eprint, arXiv:1407.0233 [math.HO], Jul 1 2014, 35 pp., i, PDF
  141. V.G. Kanovei. A generalization of Solovay's Σ-construction with application to intermediate models. Eprint, arXiv:1407.0929 [math.LO], 3/4 Jul 2014, 12 pp., i, PDF
  142. V.G. Kanovei, V.A. Lyubetsky. Linearization of partial quasi-orderings in the Solovay model revisited. Eprint, arXiv:1408.1202 [math.LO], Aug 6 2014, i, PDF
  143. V.G. Kanovei, V.A. Lyubetsky. A countable definable set of reals containing no definable elements. Eprint, arXiv:1408.3901v1 [math.LO], Aug 18 2014, i, PDF
  144. V.G. Kanovei, V.A. Lyubetsky. A definable 𝖤0-class containing no definable elements. Eprint, arXiv:1408.6642 [math.LO], Aug 28 2014, i, PDF
  145. V.G. Kanovei, V.A. Lyubetsky. Counterexamples to countable-section Π21 uniformization and Π31 separation. Eprint, arXiv:1410.2537 [math.LO], 9/16 Oct 2014, i, PDF
  146. V.G. Kanovei, V.A. Lyubetsky. On countable cofinality and decomposition of definable thin orderings. Eprint, arXiv:1412.0195 [math.LO], Nov 30 2014, i, PDF
  147. V.G. Kanovei, V.A. Lyubetsky. Grossone approach to Hutton and Euler transforms. Applied Mathematics and Computation, Mar 15 2015, Vol. 255, P. 36–43.
    DOI: 10.1016/j.amc.2014.06.037, WOS: 000351676900005, Scopus: 2-s2.0-85027935393, eLIBRARY: 41780849, EDN: GSGJUL, ISTINA: 19234599, IITP: 7045. 🪙RFBR 13-01-00006. i, PDF
  148. В.Г. Кановей, В.А. Любецкий. Обобщение одной конструкции Соловея. Сибирский математический журнал, 2015, том 56, № 6, стр. 1341–1350.
    DOI: 10.17377/smzh.2015.56.611, eLIBRARY: 24817524, EDN: UXCDDN, Mi: smj2717, ИСТИНА: 19233822, ИППИ: 6795. 🪙РФФИ 13-01-00006, РНФ 14-50-00150. PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. Generalization of one construction by Solovay. Siberian Mathematical Journal, Nov 2015, Vol. 56, Iss. 6, P. 1072–1079.
    DOI: 10.1134/S0037446615060117, WOS: 000367464500011, Scopus: 2-s2.0-84952911671, eLIBRARY: 26928676, EDN: WRHHFB, ISTINA: 19313820, IITP: 6795. 🪙RFBR 13-01-00006, RSF 14-50-00150. PDF
  149. В.Г. Кановей, В.А. Любецкий. Об эффективной σ-ограниченности и σ-компактности в модели Соловея. Математические заметки, 2015, том 98, вып. 2, стр. 247–257.
    DOI: 10.4213/mzm10415, eLIBRARY: 24073733, EDN: UGUYIB, Mi: mzm10415, ИСТИНА: 19233838, ИППИ: 6398. 🪙РФФИ 13-01-00006, РНФ 14-50-00150. PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. On effective σ-boundedness and σ-compactness in Solovay’s model. Mathematical Notes, Jul 2015, Vol. 98, Iss. 1, P. 273–282.
    DOI: 10.1134/S0001434615070299, WOS: 000360070400029, Scopus: 2-s2.0-84940102194, eLIBRARY: 24942013, EDN: UZUYRX, ISTINA: 19313800, IITP: 6398. 🪙RFBR 13-01-00006, RSF 14-50-00150. PDF
  150. V.G. Kanovei, V.A. Lyubetsky. A definable 𝖤0 class containing no definable elements. Archive for Mathematical Logic, Aug 2015, Vol. 54, Iss. 5-6, P. 711–723.
    DOI: 10.1007/s00153-015-0436-9, WOS: 000358581600014, Scopus: 2-s2.0-84938997026, eLIBRARY: 24005243, EDN: UFHZDT, ISTINA: 19234589, IITP: 6796. 🪙RFFI 13-01-00006, RSF 14-50-00150. PDF
  151. V.G. Kanovei, K.U. Katz, M.G. Katz, M. Schaps. Proofs and retributions, or: Why Sarah can’t take limits. Foundations of Science, Mar 2015, Vol. 20, Iss. 1, P. 1–25.
    DOI: 10.1007/s10699-013-9340-0, WOS: 000349337400001, Scopus: 2-s2.0-85027917336, eLIBRARY: 24033304, EDN: UFXYGL, eLIBRARY: 31054359, EDN: XNPTPU, IITP: 6399. 🪙RFBR 13-01-00006. i, PDF
  152. V.G. Kanovei, K.U. Katz, M.G. Katz, D. Sherry. Euler’s lute and Edwards’s oud. Mathematical Intelligencer, Dec 2015, Vol. 37, Iss. 4, P. 48–51.
    DOI: 10.1007/s00283-015-9565-6, WOS: 000366845100011, Scopus: 2-s2.0-84946430849, eLIBRARY: 29464529, EDN: YUUBVD, IITP: 6966. 🪙RSF 14-50-00150, RFBR 13-01-00006. PDF
  153. V.G. Kanovei. Some applications of finite-support products of Jensen’s minimal forcing. Book of abstracts, Logic Colloquium 2015, Annual European Summer Meeting of the Association for Symbolic Logic, University of Helsinki, Aug 3–8 2015, P. 670–671, PDF
  154. V.G. Kanovei, K.U. Katz, M.G. Katz, D. Sherry. Euler's lute and Edwards' oud. Eprint, arXiv:1506.02586 [math.HO], Jun 8 / Nov 10 2015, i, PDF
  155. V.G. Kanovei, V.A. Lyubetsky. Counterexamples to countable-section Π21 uniformization and Π31 separation. Annals of Pure and Applied Logic, Mar 2016, Vol. 167, No. 3, P. 262–283.
    DOI: 10.1016/j.apal.2015.12.002, WOS: 000368208900005, Scopus: 2-s2.0-84953218395, eLIBRARY: 26853147, EDN: WPQHXL, ISTINA: 38438390, IITP: 7032. 🪙RFFI 13-01-00006, RSF 14-50-00150. PDF
  156. V.G. Kanovei, V.A. Lyubetsky. On countable cofinality and decomposition of definable thin orderings. Fundamenta mathematicae, 2016, Vol. 235, P. 13–36.
    DOI: 10.4064/fm977-10-2015, WOS: 000387102600002, Scopus: 2-s2.0-84983356306, eLIBRARY: 27136881, EDN: WVVTDX, ISTINA: 38438503, IITP: 7002. 🪙RSF 14-50-00150. i, file
  157. P. Blaszczyk, A. Borovik, V.G. Kanovei, M.G. Katz, T. Kudryk, S.S. Kutateladze, D. Sherry. A non-standard analysis of a cultural icon: The case of Paul Halmos. Logica Universalis, Dec 2016, Vol. 10, Iss. 4, P. 393–405.
    DOI: 10.1007/s11787-016-0153-0, WOS: 000411397100001, Scopus: 2-s2.0-84978036267, eLIBRARY: 28444203, EDN: XYLOGB, IITP: 7262, PDF
  158. T. Bascelli, P. Blaszczyk, V.G. Kanovei, K.U. Katz, M.G. Katz, D.M. Schaps, D. Sherry. Leibniz versus Ishiguro: Closing a quarter century of syncategoremania. HOPOS: The Journal of the International Society for the History of Philosophy of Science, Mar 2016, Vol. 6, Iss. 1, P. 117–147.
    DOI: 10.1086/685645, WOS: 000377144100005, Scopus: 2-s2.0-85020489919, eLIBRARY: 43344801, EDN: WUMCVW, IITP: 7001. 🪙RFBR 13-01-00006. PDF
  159. V.G. Kanovei, K.U. Katz, M.G. Katz, T. Nowik. Small oscillations of the pendulum, Euler’s method, and adequality. Quantum Studies: Mathematics and Foundations, Sep 2016, Vol. 3, Iss. 3, P. 231–236.
    DOI: 10.1007/s40509-016-0074-x, eLIBRARY: 45542911, EDN: ZBOHMQ, IITP: 7236, PDF
  160. V.G. Kanovei. Some applications of finite-support products of Jensen's minimal forcing. Abstracts and slides of the Winter School in Abstract Analysis 2016, Hejnice, Czech Republic, Jan 30 – Feb 6 2016.
    IITP: 7221, PDF
  161. P. Blaszczyk, V.G. Kanovei, M.G. Katz, D. Sherry. Controversies in the foundations of analysis: Comments on Schubring's Conflicts. Eprint, arXiv:1601.00059 [math.HO], 1/31 Jan 2016, 24 pp., i, PDF
  162. M. Golshani, V.G. Kanovei, V.A. Lyubetsky. A Groszek-Laver pair of undistinguishable 𝖤0 classes. Eprint, arXiv:1601.03477 [math.LO], Jan 14 2016, 18 pp.
    IITP: 8169, i, PDF
  163. V.G. Kanovei. OD elements of countable OD sets in the Solovay model. Eprint, arXiv:1603.04237 [math.LO], 14/15 Mar 2016, 20 pp.
    IITP: 7228, i, PDF
  164. T. Bascelli, P. Blaszczyk, V.G. Kanovei, K.U. Katz, M.G. Katz, D.M. Schaps, D. Sherry. Leibniz vs Ishiguro: Closing a quarter-century of syncategoremania. Eprint, arXiv:1603.07209 [math.HO], Mar 23 2016, 37 pp., i, PDF
  165. V.G. Kanovei, K.U. Katz, M.G. Katz, T. Nowik. Small oscillations of the pendulum, Euler's method, and adequality. Eprint, arXiv:1604.06663 [math.HO], Apr 13 2016, i, PDF
  166. J. Bair, P. Blaszczyk, R. Ely, V. Henry, V.G. Kanovei, K.U. Katz, M.G. Katz, S.S. Kutateladze, T. McGaffey, P. Reeder, D.M. Schaps, D. Sherry, S. Shnider. Interpreting the infinitesimal mathematics of Leibniz and Euler. Eprint, arXiv:1605.00455 [math.HO], May 2 2016, 62 pp., i, PDF
  167. P. Blaszczyk, V.G. Kanovei, K.U. Katz, M.G. Katz, T. Kudryk, T. Mormann, D. Sherry. Is Leibnizian calculus embeddable in first order logic?. Eprint, arXiv:1605.03501 [math.LO], May 11 2016, 22 pp., i, PDF
  168. P. Blaszczyk, A. Borovik, V.G. Kanovei, M.G. Katz, T. Kudryk, S.S. Kutateladze, D. Sherry. A non-standard analysis of a cultural icon: The case of Paul Halmos. Eprint, arXiv:1607.00149 [math.HO], Jul 1 2016, 15 pp., i, PDF
  169. V.G. Kanovei. In Cohen generic extension, every countable OD set of reals belongs to the ground model. Eprint, arXiv:1607.02880 [math.LO], Jul 11 2016.
    IITP: 7366, i, PDF
  170. V.G. Kanovei, V.A. Lyubetsky. Countable OD sets of reals belong to the ground model. Eprint, arXiv:1609.01032 [math.LO], Sep 5 / Nov 20 2016, 16 pp.
    IITP: 7302, i, PDF
  171. P. Blaszczyk, V.G. Kanovei, K.U. Katz, M.G. Katz, S.S. Kutateladze, D. Sherry. Toward a history of mathematics focused on procedures. Eprint, arXiv:1609.04531 [math.HO], Sep 15 2016, 30 pp., i, PDF
  172. V.G. Kanovei, V.A. Lyubetsky. A generic property of Solovay's set Σ. Eprint, arXiv:1611.00176 [math.LO], Nov 1 2016.
    IITP: 7367, i, PDF
  173. T. Bascelli, P. Blaszczyk, V.G. Kanovei, K.U. Katz, M.G. Katz, S.S. Kutateladze, T. Nowik, D.M. Schaps, D. Sherry. Gregory's sixth operation. Eprint, arXiv:1612.05944 [math.HO], Dec 18 2016, 17 pp., i, PDF
  174. V.G. Kanovei. Some applications of finite-support products of Jensen's minimal 𝚫31 forcing. Winter School in Abstract Analysis 2016, Hejnice, Czech Republic, Jan 30 – Feb 6 2016, oral presentation, i, PDF
  175. В.Г. Кановей, В.А. Любецкий. Генерическое свойство множества Σ по Соловею. Сибирский математический журнал, 2017, том 58, вып. 6, стр. 1302–1305.
    DOI: 10.17377/smzh.2017.58.610, eLIBRARY: 30556277, EDN: ZSRFYF, Mi: smj2939, ИСТИНА: 88755181, ИППИ: 7353. 🪙РФФИ 13-01-00006, 17-01-00705, РНФ 14-50-00150. PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. A generic property of the Solovay set Σ. Siberian Mathematical Journal, Nov 2017, Vol. 58, Iss. 6, P. 1012–1014.
    DOI: 10.1134/S0037446617060106, WOS: 000425153500010, Scopus: 2-s2.0-85042169573, eLIBRARY: 35488594, EDN: XXHFJJ, ISTINA: 88755250, IITP: 7353. 🪙RFBR 13–01–00006, 17–01–00705, RSF 14–50–00150. PDF
  176. В.Г. Кановей, В.А. Любецкий. Определимое счетное множество, не содержащее определимых элементов. Математические заметки, 2017, том 102, вып. 3, стр. 369–382.
    DOI: 10.4213/mzm10842, eLIBRARY: 29864974, EDN: ZDNXOL, Mi: mzm10842, ИСТИНА: 87048645, ИППИ: 7151. 🪙РФФИ 13-01-00006, 17-01-00705, РНФ 14-50-00150. PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. A countable definable set containing no definable elements. Mathematical Notes, Sep 2017, Vol. 102, Iss. 3–4, P. 338–349.
    DOI: 10.1134/S0001434617090048, WOS: 000413455100004, Scopus: 2-s2.0-85032274221, eLIBRARY: 31091804, EDN: XOIYDN, ISTINA: 87048672, IITP: 7151. 🪙RFBR 13-01-00006, 17-01-00705, RSF 14-50-00150. PDF
  177. M. Golshani, V.G. Kanovei, V.A. Lyubetsky. A Groszek-Laver pair of undistinguishable 𝖤0-classes. Mathematical Logic Quarterly, Apr 2017, Vol. 63, Iss. 1–2, P. 19–31.
    DOI: 10.1002/malq.201500020, WOS: 000400361900002, Scopus: 2-s2.0-85017391646, eLIBRARY: 29498577, EDN: YVNLMN, ISTINA: 87048441, IITP: 7009. 🪙RFBR 13-01-00006, RSF 14-50-00150. html, PDF
  178. P. Blaszczyk, V.G. Kanovei, M.G. Katz, D. Sherry. Controversies in the foundations of analysis: Comments on Schubring’s conflicts. Foundations of Science, Mar 2017, Vol. 22, Iss. 1, P. 125–140.
    DOI: 10.1007/s10699-015-9473-4, WOS: 000394258500004, Scopus: 2-s2.0-84951766324, eLIBRARY: 29447240, EDN: YUKGBN, IITP: 7084. 🪙RFBR 13-01-00006. PDF
  179. P. Blaszczyk, V.G. Kanovei, K.U. Katz, M.G. Katz, T. Kudryk, T. Mormann, D. Sherry. Is Leibnizian calculus embeddable in first order logic?. Foundations of Science, Dec 2017, Vol. 22, Iss. 4, P. 717–731.
    DOI: 10.1007/s10699-016-9495-6, WOS: 000414693600004, Scopus: 2-s2.0-84975526213, eLIBRARY: 31037398, EDN: XNHBUR, IITP: 7222, PDF
  180. P. Blaszczyk, V.G. Kanovei, K.U. Katz, M.G. Katz, S.S. Kutateladze, D. Sherry. Toward a history of mathematics focused on procedures. Foundations of Science, Dec 2017, Vol. 22, Iss. 4, P. 763–783.
    DOI: 10.1007/s10699-016-9498-3, WOS: 000414693600007, Scopus: 2-s2.0-84988662718, eLIBRARY: 30985328, EDN: XMGKOL, IITP: 7245, PDF
  181. J. Bair, P. Blaszczyk, R. Ely, V. Henry, V.G. Kanovei, K.U. Katz, M.G. Katz, S.S. Kutateladze, T. McGaffey, P. Reeder, D.M. Schaps, D. Sherry, S. Shnider. Interpreting the infinitesimal mathematics of Leibniz and Euler. Journal for General Philosophy of Science, Jun 2017, Vol. 48, Iss. 2, P. 195–238.
    DOI: 10.1007/s10838-016-9334-z, WOS: 000403472000003, Scopus: 2-s2.0-84978654577, eLIBRARY: 31017552, EDN: UXADQD, IITP: 7190, PDF
  182. P. Fletcher, K. Hrbacek, V.G. Kanovei, M.G. Katz, C. Lobry, S. Sanders. Approaches to analysis with infinitesimals following Robinson, Nelson, and Others. Real Analysis Exchange, Fall 2017, Vol. 42, No. 2, P. 193–252.
    DOI: 10.14321/realanalexch.42.2.0193, WOS: 000431996500001, Scopus: 2-s2.0-85035096829, eLIBRARY: 35492795, EDN: UXRSYM, IITP: 7348. 🪙RFBR 17-01-00705. PDF
  183. V.G. Kanovei, M.G. Katz. A positive function with vanishing Lebesgue integral in Zermelo–Fraenkel set theory. Real Analysis Exchange, Fall 2017, Vol. 42, No. 2, P. 385–390.
    DOI: 10.14321/realanalexch.42.2.0385, WOS: 000431996500008, Scopus: 2-s2.0-85041594711, eLIBRARY: 35535971, EDN: XYCUAX, IITP: 7342. 🪙RFBR 17-01-00705. PDF
  184. J. Bair, P. Blaszczyk, R. Ely, V. Henry, V.G. Kanovei, K.U. Katz, M.G. Katz, T. Kudryk, S.S. Kutateladze, T. McGaffey, T. Mormann, D.M. Schaps, D. Sherry. Cauchy, infinitesimals and ghosts of departed quantifiers. Matematychni Studii, Fall 2017, Vol. 47, No. 2, P. 115–144.
    DOI: 10.15330/ms.47.2.115-144, Scopus: 2-s2.0-85035096937, eLIBRARY: 31143940, EDN: NCTUPF, IITP: 7604. 🪙RFBR 17-01-00705. i, PDF
  185. V.G. Kanovei. On “star” schemata of Kossak and Paris. In: Logic Colloquium '96, Lecture Notes in Logic, Cambridge University Press, 2017, P. 101–114.
    DOI: 10.1017/9781316716816.005
  186. V.G. Kanovei. The full basis theorem does not imply analytic wellordering. ASL European Summer Meeting Logic Colloquium 2017, Stockholm University, 14–20 August 2017, Programme and Abstracts, P. 136–137, i, PDF
  187. V.G. Kanovei, V.A. Lyubetsky. The full basis theorem does not imply analytic wellordering. Eprint, arXiv:1702.03566v2 [math.LO], 12/20 Feb 2017, 62 pp.
    IITP: 7434, i, PDF
  188. P. Fletcher, K. Hrbacek, V.G. Kanovei, M.G. Katz, C. Lobry, S. Sanders. Approaches to analysis with infinitesimals following Robinson, Nelson, and others. Eprint, arXiv:1703.00425 [math.CA], Mar 1 2017, 54 pp., i, PDF
  189. T. Bascelli, P. Blaszczyk, A. Borovik, V.G. Kanovei, K.U. Katz, M.G. Katz, S.S. Kutateladze, T. McGaffey, D.M. Schaps, D. Sherry. Cauchy's infinitesimals, his sum theorem, and foundational paradigms. Eprint, arXiv:1704.07723 [math.HO], Apr 25 / May 9 2017, 42 pp., i, PDF
  190. V.G. Kanovei, M.G. Katz. A positive function with vanishing Lebesgue integral in Zermelo-Fraenkel set theory. Eprint, arXiv:1705.00493 [math.CA], May 1 2017, i, PDF
  191. V.G. Kanovei, V.A. Lyubetsky. Definable 𝖤0 classes at arbitrary projective levels. Eprint, arXiv:1705.02975 [math.LO], May 8 2017.
    IITP: 7515, i, PDF
  192. F.S. Herzberg, V.G. Kanovei, M.G. Katz, V.A. Lyubetsky. Minimal axiomatic frameworks for definable hyperreals with transfer. Eprint, arXiv:1707.00202 [math.LO], Jul 1 2017.
    IITP: 8170, i, PDF
  193. V.G. Kanovei, V.A. Lyubetsky. Definable minimal collapse functions at arbitrary projective levels. Eprint, arXiv:1707.07320 [math.LO], Jul 23 2017, 30 pp.
    IITP: 7541, i, PDF
  194. J. Bair, P. Blaszczyk, R. Ely, V. Henry, V.G. Kanovei, K.U. Katz, M.G. Katz, T. Kudryk, S.S. Kutateladze, T. McGaffey, T. Mormann, D.M. Schaps, D. Sherry. Cauchy, infinitesimals and ghosts of departed quantifiers. Eprint, arXiv:1712.00226 [math.HO], Dec 1 2017, 45 pp., i, PDF
  195. V.G. Kanovei, V.A. Lyubetsky. Non-uniformizable sets with countable cross-sections on a given level of the projective hierarchy. Eprint, arXiv:1712.00769v1 [math.LO], Dec 3 2017.
    IITP: 7603, i, PDF
  196. V.G. Kanovei, V.A. Lyubetsky. Definable minimal collapse functions at arbitrary projective levels. Descriptive Set Theory in Turin, Turin, Italy, September 6–8 2017, oral presentation, i, PDF
  197. V.G. Kanovei, V.A. Lyubetsky. Definable 𝖤0 classes at arbitrary projective levels. Annals of Pure and Applied Logic, Sep 2018, Vol. 169, Iss. 9, P. 851–871.
    DOI: 10.1016/j.apal.2018.04.006, WOS: 000439538800001, Scopus: 2-s2.0-85046128737, eLIBRARY: 35495001, EDN: UXSPUK, ISTINA: 123276915, IITP: 7678. 🪙RFBR 17-01-00705, RSF 14-50-00150. PDF
  198. F.S. Herzberg, V.G. Kanovei, M.G. Katz, V.A. Lyubetsky. Minimal axiomatic frameworks for definable hyperreals with transfer. Journal of Symbolic Logic, Mar 2018, Vol. 83, Iss. 1, P. 385–391.
    DOI: 10.1017/jsl.2017.48, WOS: 000431290300022, Scopus: 2-s2.0-85043588162, eLIBRARY: 35521380, EDN: LYYBRR, ISTINA: 88755476, IITP: 7292. 🪙RFBR 17-01-00705, RSF 14-50-00150. PDF
  199. В.Г. Кановей, В.А. Любецкий. Неуниформизуемые множества второго проективного уровня со счетными сечениями в виде классов Витали. Известия Российской академии наук. Серия математическая, 2018, том 82, № 1, стр. 65–96.
    DOI: 10.4213/im8521, eLIBRARY: 32428079, EDN: YOREUG, Mi: im8521, ИСТИНА: 88754937, ИППИ: 7223. 🪙РФФИ 17-01-00705, РНФ 14-50-00150. file
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. Non-uniformizable sets of second projective level with countable cross-sections in the form of Vitali classes. Izvestiya: Mathematics, 2018, Vol. 82, No. 1, P. 61–90.
    DOI: 10.1070/IM8521, WOS: 000427245900004, Scopus: 2-s2.0-85043703476, eLIBRARY: 35523320, EDN: IKXZBT, ISTINA: 88755057, IITP: 7223. 🪙RFBR 17-01-00705, RSF 14-50-00150. i, PDF
  200. P. Blaszczyk, V.G. Kanovei, M.G. Katz, T. Nowik. Monotone subsequence via ultrapower. Open Mathematics, Mar 2 2018, Vol. 16, Iss. 1, P. 149–153.
    DOI: 10.1515/math-2018-0015, WOS: 000428396700002, Scopus: 2-s2.0-85043581249, eLIBRARY: 35521782, EDN: XXWIDB, IITP: 7666, html, PDF
  201. T. Bascelli, P. Blaszczyk, V.G. Kanovei, K.U. Katz, M.G. Katz, S.S. Kutateladze, T. Nowik, D.M. Schaps, D. Sherry. Gregory’s sixth operation. Foundations of Science, Mar 2018, Vol. 23, Iss. 1, P. 133–144.
    DOI: 10.1007/s10699-016-9512-9, WOS: 000426932100009, Scopus: 2-s2.0-85006833539, eLIBRARY: 41767269, EDN: EKKAOP, IITP: 7319, PDF
  202. T. Bascelli, P. Blaszczyk, A. Borovik, V.G. Kanovei, K.U. Katz, M.G. Katz, S.S. Kutateladze, T. McGaffey, D.M. Schaps, D. Sherry. Cauchy’s infinitesimals, his sum theorem, and foundational paradigms. Foundations of Science, Jun 2018, Vol. 23, Iss. 2, P. 267–296.
    DOI: 10.1007/s10699-017-9534-y, WOS: 000432736600008, Scopus: 2-s2.0-85021226787, eLIBRARY: 41771790, EDN: JCSTPZ, IITP: 7490. 🪙RFBR 17-01-00705. PDF
  203. V.G. Kanovei, V.A. Lyubetsky. Countable OD sets of reals belong to the ground model. Archive for Mathematical Logic, May 2018, Vol. 57, Iss. 3–4, P. 285–298.
    DOI: 10.1007/s00153-017-0569-0, WOS: 000428317500005, Scopus: 2-s2.0-85021254314, eLIBRARY: 41771824, EDN: VSZUDZ, ISTINA: 87048552, IITP: 7347. 🪙RSF 14-50-00150, RFBR 17-01-00705. PDF
  204. V.G. Kanovei, K.U. Katz, M.G. Katz, T. Mormann. What makes a theory of infinitesimals useful? A view by Klein and Fraenkel. Journal of Humanistic Mathematics, Jan 2018, Vol. 8, Iss. 1, P. 108–119.
    DOI: 10.5642/jhummath.201801.07, WOS: 000429301200006, IITP: 7572, i. 🪙RFBR 17-01-00705. PDF
  205. V.G. Kanovei, V.A. Lyubetsky. Non-uniformizable sets with countable cross-sections on a given level of the projective hierarchy. Eprint, arXiv:1712.00769v3 [math.LO], Jan 31 2018.
    IITP: 8137, i, PDF
  206. V.G. Kanovei, K.U. Katz, M.G. Katz, T. Mormann. What makes a theory of infinitesimals useful? A view by Klein and Fraenkel. Eprint, arXiv:1802.01972 [math.HO], Feb 1 2018, 10 pp., i, PDF
  207. P. Blaszczyk, V.G. Kanovei, M.G. Katz, T. Nowik. Monotone subsequence via ultrapower. Eprint, arXiv:1803.00312 [math.CA], Mar 1 2018, i, PDF
  208. V.G. Kanovei, V.A. Lyubetsky. Canonization of smooth equivalence relations on infinite-dimensional perfect cubes. Eprint, arXiv:1804.05174 [math.LO], 14/23 Apr 2018.
    IITP: 7677, i, PDF
  209. Sy-D. Friedman, V. Gitman, V.G. Kanovei. A model of second-order arithmetic satisfying AC but not DC. Eprint, arXiv:1808.04732 [math.LO], 14/15 Aug 2018.
    IITP: 7733, i, PDF
  210. V.G. Kanovei, V.A. Lyubetsky. A countable definable set of reals containing no definable elements. Eprint, arXiv:1408.3901v2 [math.LO], Sep 3 2018.
    IITP: 7740, i, PDF
  211. V.G. Kanovei, V.A. Lyubetsky. On Harrington's model in which Separation holds but Reduction fails at the 3rd projective level, and on some related models of Sami. Eprint, arXiv:1810.12542v2 [math.LO], Oct 30 / Nov 11 2018.
    IITP: 7780, i, PDF
  212. V.G. Kanovei, V.A. Lyubetsky. On intermediate extensions of generic extensions by a random real. Eprint, arXiv:1811.10568 [math.LO], Nov 26 2018.
    IITP: 7814, i, PDF
  213. V.G. Kanovei. What can hold exactly on N-th projective level. Descriptive set theory conference, Lausanne, Switzerland, June 18–22 2018, plenary report, i
  214. V.G. Kanovei. Canonization on product and iterated perfect and large perfect sets. Ramsey Theory in Logic, Combinatorics and Complexity, Bertinoro (Forli-Cesena), Italy, July 15–20 2018, plenary report, i
  215. В.А. Любецкий, В.Г. Кановей. Теория множеств: абсолютно неразрешимые классические проблемы. Учебное пособие для вузов, 2-е изд, М.: Юрайт, 2019, 348 стр.
    ⓘ ISBN: 978-5-534-10390-8, eLIBRARY: 41246148, EDN: BLLFMY, eLIBRARY: 43016711, EDN: NZCYQT, ИППИ: 8150
  216. Sy-D. Friedman, V. Gitman, V.G. Kanovei. A model of second-order arithmetic satisfying AC but not DC. Journal of Mathematical Logic, Jun 2019, Vol. 19, No. 1, Art. 1850013, 39 pp.
    DOI: 10.1142/S0219061318500137, WOS: 000471181200001, Scopus: 2-s2.0-85053776193, eLIBRARY: 41786105, EDN: RUOYQV, IITP: 7735. 🪙RFBR 17-01-00705. PDF
  217. V.G. Kanovei, V.A. Lyubetsky. Borel OD sets of reals are OD-Borel in some simple models. Proceedings of the American Mathematical Society, Mar 2019, Vol. 147, Iss. 3, P. 1277–1282.
    DOI: 10.1090/proc/14286, WOS: 000455239400032, Scopus: 2-s2.0-85065094740, eLIBRARY: 38660200, EDN: NOKDAD, ISTINA: 180632648, IITP: 7672. 🪙RFBR 17-01-00705. PDF
  218. V.G. Kanovei, V.A. Lyubetsky. Definable minimal collapse functions at arbitrary projective levels. Journal of Symbolic Logic, Mar 14 2019, Vol. 84, Iss. 1, P. 266–289.
    DOI: 10.1017/jsl.2018.77, WOS: 000461193400011, Scopus: 2-s2.0-85062940536, eLIBRARY: 38701647, EDN: HBGPXZ, ISTINA: 187639120, IITP: 7558. 🪙RFBR 17-01-00705, 18-29-13037. PDF
  219. V.G. Kanovei, V.A. Lyubetsky. Non-uniformizable sets with countable cross-sections on a given level of the projective hierarchy. Fundamenta mathematicae, 2019, Vol. 245, Iss. 2, P. 175–215.
    DOI: 10.4064/fm517-7-2018, WOS: 000459113000005, Scopus: 2-s2.0-85065486934, eLIBRARY: 38699148, EDN: HCYGXI, ISTINA: 180630026, IITP: 7679. 🪙RFBR 17-01-00705, 18-29-13037. PDF
  220. В.Г. Кановей, В.А. Любецкий. Определимые элементы определимых борелевских множеств. Математические заметки, 2019, том 105, вып. 5, стр. 696–707.
    DOI: 10.4213/mzm12001, eLIBRARY: 37424224, EDN: ZFEGFV, Mi: mzm12001, ИСТИНА: 187639130, ИППИ: 7673. 🪙РФФИ 17-01-00705, 18-29-13037. PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. Definable elements of definable borel sets. Mathematical Notes, May 2019, Vol. 105, No. 5, P. 684–693.
    DOI: 10.1134/S0001434619050055, WOS: 000473246800005, Scopus: 2-s2.0-85068117072, eLIBRARY: 41648591, EDN: SDWRPS, ISTINA: 192231151, IITP: 7673. 🪙RFBR 17-01-00705, 18-29-13037. PDF
  221. В.Г. Кановей, В.А. Любецкий. Абсолютность множества Σ по Соловею. Сибирский математический журнал, дек 2019, том 60, № 6, стр. 1286–1290.
    DOI: 10.33048/smzh.2019.60.608, eLIBRARY: 42322456, EDN: LWKGGY, Mi: smj3149, ИСТИНА: 278051983, ИППИ: 7830. 🪙РФФИ 17-01-00705, 18-29-13037. PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. Absoluteness of the Solovay set Σ. Siberian Mathematical Journal, Dec 2019, Vol. 60, No. 6, P. 1003–1006, Published: 18 February 2020.
    DOI: 10.1134/S0037446619060089, WOS: 000514796900008, Scopus: 2-s2.0-85079707739, eLIBRARY: 43265623, EDN: VBGBUM, ISTINA: 283161264, IITP: 7830. 🪙RFBR 17–01–00705, 18–29–13037. PDF
  222. E. Bottazzi, V.G. Kanovei, M.G. Katz, T. Mormann, D. Sherry. On mathematical realism and applicability of hyperreals. Matematychni Studii, 2019, Vol. 51, No. 2, P. 200–224.
    DOI: 10.15330/ms.51.2.200-224, Scopus: 2-s2.0-85070108205, eLIBRARY: 41623199, EDN: YJTKUG, IITP: 7935, i, PDF
  223. T. Bascelli, P. Blaszczyk, V.G. Kanovei, K.U. Katz, M.G. Katz, S.S. Kutateladze, T. Nowik, D.M. Schaps, D. Sherry. Gregory’s sixth operation. In: The Best Writing on Mathematics 2019, edited by Mircea Pitici, Princeton: Princeton University Press, 2019, P. 195–207.
    DOI: 10.1515/9780691197944-015, DOI: 10.2307/j.ctvggx33b.18, ISBN: 9780691197944, 0691197946, 9780691198675, IITP: 8069, PDF
  224. J. Bair, P. Blaszczyk, P. Heinig, V.G. Kanovei, M.G. Katz. 19th-century real analysis, forward and backward. Antiquitates Mathematicae, 2019, Vol. 13, P. 19–49.
    DOI: 10.14708/am.v13i1.6440, IITP: 8062, PDF
  225. V.G. Kanovei, R. Schindler. Definable Hamel bases and 𝖠𝖢ω (). Eprint, arXiv:1901.04750 [math.LO], Jan 15 2019, i, PDF
  226. V.G. Kanovei, V.A. Lyubetsky. Models of set theory in which separation theorem fails. Eprint, arXiv:1905.11241 [math.LO], May 24 2019.
    IITP: 7881, i, PDF
  227. E. Bottazzi, V.G. Kanovei, M.G. Katz, T. Mormann, D. Sherry. On mathematical realism and the applicability of hyperreals. Eprint, arXiv:1907.07040 [math.HO], Jul 16 2019, 41 pp., i, PDF
  228. J. Bair, P. Blaszczyk, P. Heinig, V.G. Kanovei, M.G. Katz. 19th century real analysis, forward and backward. Eprint, arXiv:1907.07451 [math.HO], Jul 17 2019, 28 pp., i, PDF
  229. V.G. Kanovei. Definable selector for 𝚫20 sets modulo countable. Eprint, arXiv:1910.00926 [math.LO], Sep 29 / Oct 8 2019.
    IITP: 8005, i, PDF
  230. V.G. Kanovei, V.A. Lyubetsky. Indiscernible pairs of countable sets of reals at a given projective level. Eprint, arXiv:1912.12962 [math.LO], Dec 30 2019.
    IITP: 8042, i, PDF
  231. V.G. Kanovei, V.A. Lyubetsky. Models of set theory in which nonconstructible reals first appear at a given projective level. Mathematics, Jun 3 2020, Vol. 8, No. 6, Art. 910.
    DOI: 10.3390/math8060910, WOS: 000559999700001, Scopus: 2-s2.0-85087437414, eLIBRARY: 45499008, EDN: PZYIRA, ISTINA: 301937374, IITP: 8093. 🪙RFBR 18-29-13037. html, PDF
  232. V.G. Kanovei, V.A. Lyubetsky. On the Δn1 problem of Harvey Friedman. Mathematics, Sep 1 2020, Vol. 8, No. 9, Art. 1477.
    DOI: 10.3390/math8091477, WOS: 000579995000001, Scopus: 2-s2.0-85091493755, eLIBRARY: 45269716, EDN: ILENFB, ISTINA: 320314481, IITP: 8114. 🪙RFBR 18-29-13037. html, PDF
  233. V.G. Kanovei, V.A. Lyubetsky. On the ‘definability of definable’ problem of Alfred Tarski. Mathematics, Dec 14 2020, Vol. 8, No. 12, Art. 2214.
    DOI: 10.3390/math8122214, WOS: 000601929400001, Scopus: 2-s2.0-85097954876, eLIBRARY: 45068739, EDN: PTGIKZ, ISTINA: 341395074, IITP: 8197. 🪙RFBR 18-29-13037. html, PDF
  234. В.Г. Кановей, В.А. Любецкий. Об отношении равенства с точностью до счетного множества. Математические заметки, 2020, том 108, вып. 4, стр. 629–631.
    DOI: 10.4213/mzm12753, eLIBRARY: 46682930, EDN: CCFOOT, Mi: mzm12753, ИСТИНА: 324004376, ИППИ: 8103. 🪙РФФИ 18-29-13037. PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. On the equality relation modulo a countable set. Mathematical Notes, Oct 26 2020, Vol. 108, Iss. 3–4, P. 615–616.
    DOI: 10.1134/S0001434620090357, WOS: 000584617700035, Scopus: 2-s2.0-85093816140, eLIBRARY: 45204573, EDN: ISTPHN, ISTINA: 329605712, IITP: 8103. 🪙RFBR 18-29-13037. PDF
  235. V.G. Kanovei, V.A. Lyubetsky. Canonization of smooth equivalence relations on infinite-dimensional 𝖤0-large products. Notre Dame Journal of Formal Logic, Jan 2020, Vol. 61, No. 1, P. 117–128.
    DOI: 10.1215/00294527-2019-0034, WOS: 000508660400006, Scopus: 2-s2.0-85085642476, eLIBRARY: 43294087, EDN: NHKODM, ISTINA: 263181106, IITP: 7690. 🪙RFBR 17-01-00705, 18-29-13037. PDF
  236. V.G. Kanovei, M.G. Katz, T. Nowik. Metric completions, the Heine-Borel property, and approachability. Open Mathematics, Jan 2020, Vol. 18, Iss. 1, P. 162–166.
    DOI: 10.1515/math-2020-0017, WOS: 000524984600001, Scopus: 2-s2.0-85082853273, eLIBRARY: 43274675, EDN: KBJJMT, IITP: 8065. 🪙RFBR 18-29-13037. html, PDF
  237. J. Bair, P. Blaszczyk, P. Heinig, V.G. Kanovei, M.G. Katz, T. McGaffey. Cauchy's work on integral geometry, centers of curvature, and other applications of infinitesimals. Real Analysis Exchange, 2020, Vol. 45, No. 1, P. 127–149.
    DOI: 10.14321/realanalexch.45.1.0127, WOS: 000564475700006, Scopus: 2-s2.0-85086857192, eLIBRARY: 48181613, EDN: MTNMXY, IITP: 8002. 🪙RFBR 17-01-00705. file
  238. J. Bair, P. Blaszczyk, E.F. Guillen, P. Heinig, V.G. Kanovei, M.G. Katz. Continuity between Cauchy and Bolzano: issues of antecedents and priority. British Journal for the History of Mathematics, Jun 05 2020, Vol. 35, Iss. 3, P. 207–224.
    DOI: 10.1080/26375451.2020.1770015, WOS: 000619264400002, Scopus: 2-s2.0-85086837880, eLIBRARY: 45501043, EDN: JKFVMU. 🪙RFBR 18-29-13037. PDF
  239. A. Enayat, V.G. Kanovei. An unpublished theorem of Solovay, revisited. Eprint, arXiv:2001.11058 [math.LO], Jan 29 / Feb 18 2020, i, PDF
  240. V.G. Kanovei, M.G. Katz, T. Nowik. Metric completions, the Heine-Borel property, and approachability. Eprint, arXiv:2002.07536 [math.DG], Feb 18 / Mar 4 2020, i, PDF
  241. J. Bair, P. Blaszczyk, P. Heinig, V.G. Kanovei, M.G. Katz, T. McGaffey. Cauchy's work on integral geometry, centers of curvature, and other applications of infinitesimals. Eprint, arXiv:2003.00438 [math.HO], Mar 1 2020, i, PDF
  242. J. Bair, P. Blaszczyk, E.F. Guillen, P. Heinig, V.G. Kanovei, M.G. Katz. Continuity between Cauchy and Bolzano: issues of antecedents and priority. Eprint, arXiv:2005.13259 [math.HO], May 27 2020, i, PDF
  243. V.A. Lyubetsky, V.G. Kanovei, (Eds.). Mathematical Logic and Its Applications 2020. Printed Edition of the Special Issue Published in Mathematics, MDPI, 2021, 196 pages.
    ⓘ ISBN: 978-3-0365-0778-1, ISBN: 978-3-0365-0779-8, DOI: 10.3390/books978-3-0365-0779-8, i, PDF
  244. A. Enayat, V.G. Kanovei, V.A. Lyubetsky. On effectively indiscernible projective sets and the Leibniz-Mycielski axiom. Mathematics, Jul 15 2021, Vol. 9, No. 14, Art. 1670.
    DOI: 10.3390/math9141670, WOS: 000677333600001, Scopus: 2-s2.0-85111731499, eLIBRARY: 46992231, EDN: LFUCFF, ISTINA: 384114997, IITP: 8246. 🪙RFBR 20-01-00670. html, PDF
  245. V.G. Kanovei, V.A. Lyubetsky. The full basis theorem does not imply analytic wellordering. Annals of Pure and Applied Logic, Apr 2021, Vol. 172, Iss. 4, Art. 102929.
    DOI: 10.1016/j.apal.2020.102929, WOS: 000635679200005, Scopus: 2-s2.0-85097932864, eLIBRARY: 45103057, EDN: ENNKGS, ISTINA: 341636009, IITP: 7736. 🪙RFBR 18-29-13037. html, PDF
  246. В.Г. Кановей, В.А. Любецкий. Модели теории множеств, в которых теорема отделимости неверна. Известия Российской академии наук. Серия математическая, 2021, том 85, вып. 6, стр. 164–204.
    DOI: 10.4213/im8937, ИСТИНА: 419305811, eLIBRARY: 47228305, EDN: URJJXB, Mi: im8937, ИППИ: 7882. 🪙РФФИ 20-01-00670. PDF
    Англоязычное издание:
    V.G. Kanovei, V.A. Lyubetsky. Models of set theory in which the separation theorem fails. Izvestiya: Mathematics, Dec 1 2021, Vol. 85, No. 6, P. 1181–1219.
    DOI: 10.1070/IM8937, WOS: 000745285700001, Scopus: 2-s2.0-85097931594, eLIBRARY: 48127305, EDN: LQXJJQ, IITP: 7882. 🪙RFBR 20-01-00670. PDF
  247. V.G. Kanovei, V.A. Lyubetsky. Factoring Solovay-random extensions, with application to the reduction property. Monatshefte fur Mathematik, 2021, Vol. 194, P. 105–117.
    DOI: 10.1007/s00605-020-01482-9, WOS: 000589136100001, Scopus: 2-s2.0-85096010422, eLIBRARY: 45177516, EDN: ZRDLIJ, ISTINA: 419306552, IITP: 7815. 🪙RFBR 18-29-13037. html, PDF
  248. A. Enayat, V.G. Kanovei. An unpublished theorem of Solovay on OD partitions of reals into two non-OD parts, revisited. Journal of Mathematical Logic, Dec 2021, Vol. 21, Iss. 3, Art. 2150014.
    DOI: 10.1142/S0219061321500148, WOS: 000710581100011, Scopus: 2-s2.0-85096017407, eLIBRARY: 45190522, EDN: OOLEBL, IITP: 8129. 🪙RFBR 18-29-13037. PDF
  249. V.G. Kanovei, R. Schindler. Definable Hamel bases and 𝖠𝖢ω (). Fundamenta mathematicae, 2021, Vol. 253, Iss. 3, P. 239–256.
    DOI: 10.4064/fm909-6-2020, WOS: 000613914200001, Scopus: 2-s2.0-85108168331, eLIBRARY: 46825331, EDN: VXCGNQ, IITP: 7860. 🪙RFBR 18-29-13037. PDF
  250. V.G. Kanovei, V.A. Lyubetsky. On Russell typicality in Set Theory. Eprint, arXiv:2111.07654 [math.LO], Nov 15 2021.
    DOI: https://doi.org/10.48550/arXiv.2111.07654, IITP: 8300, PDF
  251. V.G. Kanovei, V.A. Lyubetsky. A product forcing model in which the Russell-nontypical sets satisfy ZFC strictly between HOD and the universe. Eprint, arXiv:2111.13491 [math.LO], Nov 26 2021.
    DOI: 10.48550/arXiv.2111.13491, IITP: 8299, PDF
  252. V.G. Kanovei. Paradoxical partitions of the reals by Robert Solovay. Adian 90: Conference on Mathematical Logic, Algebra, and Computation, July 7 2021, 12:45–13:30, Moscow, Steklov Mathematical Institute of RAS (Moscow) and online in Zoom, oral presentation, i
  253. V.G. Kanovei, V.A. Lyubetsky. A generic model in which the Russell-nontypical sets satisfy ZFC strictly between HOD and the universe. Mathematics, Feb 3 2022, Vol. 10, No. 3, Art. 491.
    DOI: 10.3390/math10030491, WOS: 000757600500001, Scopus: 2-s2.0-85124972446, eLIBRARY: 48182173, EDN: XQNCDQ, ISTINA: 433615037, IITP: 8362, html, PDF
  254. V.G. Kanovei, V.A. Lyubetsky. A model in which the separation principle holds for a given effective projective Sigma-class. Axioms, Mar 10 2022, Vol. 11, No. 3, Art. 122.
    DOI: 10.3390/axioms11030122, WOS: 000775799100001, Scopus: 2-s2.0-85126659775, eLIBRARY: 48192874, EDN: BRVOXC, ISTINA: 441860467, IITP: 8368. 🪙RFBR 20-01-00670. html, PDF
  255. V.G. Kanovei, V.A. Lyubetsky. A model in which well-orderings of the reals appear at a given projective level. Axioms, Jul 22 2022, Vol. 11, No. 8, Art. 354.
    DOI: 10.3390/axioms11080354, WOS: 000846145500001, Scopus: 2-s2.0-85137356159, eLIBRARY: 56035606, EDN: EIICOI, ISTINA: 478694773, IITP: 8404. 🪙RFBR 20-01-00670. html, PDF
  256. V.G. Kanovei, V.A. Lyubetsky. On the ‘definability of definable’ problem of Alfred Tarski, Part II. Transactions of the American Mathematical Society, Dec 2022, Vol. 375, No. 12, P. 8651–8686.
    DOI: 10.1090/tran/8710, WOS: 000868298900001, Scopus: 2-s2.0-85141652568, eLIBRARY: 57340031, EDN: YSQQRY, ISTINA: 500535461, IITP: 8369. 🪙RFBR 20-01-00670. PDF
  257. J. Bair, M.G. Katz, A. Borovik, V.G. Kanovei, S.S. Kutateladze, S. Sanders, D. Sherry, M. Ugaglia. Historical infinitesimalists and modern historiography of infinitesimals. Antiquitates Mathematicae, 2022, Vol. 16, P. 189–257.
    DOI: 10.14708/am.v16i1.7169, PDF
  258. V.G. Kanovei, V.A. Lyubetsky. A model in which the Separation principle holds for a given effective projective Sigma-class. Eprint, arXiv:2204.03915 [math.LO], Apr 8 2022.
    DOI: 10.48550/arXiv.2204.03915, IITP: 8723, PDF
  259. V.G. Kanovei, V.A. Lyubetsky. The parameterfree Comprehension does not imply the full Comprehension in the 2nd order Peano arithmetic. Eprint, arXiv:2209.07599 [math.LO], Sep 15 2022.
    DOI: 10.48550/arXiv.2209.07599, IITP: 8724, PDF
  260. J. Bair, A. Borovik, V.G. Kanovei, M.G. Katz, S.S. Kutateladze, S. Sanders, D. Sherry, M. Ugaglia. Historical infinitesimalists and modern historiography of infinitesimals. Eprint, arXiv:2210.14504 [math.HO], Oct 26 2022.
    DOI: 10.48550/arXiv.2210.14504, PDF
  261. J. Bair, A. Borovik, V.G. Kanovei, M.G. Katz, S.S. Kutateladze, S. Sanders, D. Sherry, M. Ugaglia, M. van Atten. Is pluralism in the history of mathematics possible?. Eprint, arXiv:2212.12422 [math.HO], Dec 15 2022.
    DOI: 10.48550/arXiv.2212.12422, PDF
  262. V.G. Kanovei, V.A. Lyubetsky. On the significance of parameters in the choice and collection schemata in the 2nd order Peano arithmetic. Preprints, Dec 26 2022, Art. 2022120255.
    DOI: 10.20944/preprints202212.0255.v2, IITP: 8725, PDF
  263. V.A. Lyubetsky, L.I. Rubanov, M.B. Tereshina, A.S. Ivanova, K.R. Araslanova, L.A. Uroshlev, G.I. Goremykina, J. Yang, V.G. Kanovei, O.A. Zverkov, A.D. Shitikov, D.D. Korotkova, A.G. Zaraisky. Wide-scale identification of novel/eliminated genes responsible for evolutionary transformations. Biology Direct, Aug 11 2023, Vol. 18, No. 1, Art. 45.
    DOI: 10.1186/s13062-023-00405-6, WOS: 001048615900001, Scopus: 2-s2.0-85167749322, PMID: 37568147, PMC10416458, eLIBRARY: 62620845, EDN: WROZRY, ISTINA: 585804231, IITP: 8507. 🪙RSF 20-01-00670. html, PDF
  264. V.G. Kanovei, V.A. Lyubetsky. On the significance of parameters in the choice and collection schemata in the 2nd order Peano arithmetic. Mathematics, Feb 1 2023, Vol. 11, No. 3, Art. 726.
    DOI: 10.3390/math11030726, WOS: 000935705500001, Scopus: 2-s2.0-85147864401, eLIBRARY: 60461815, EDN: PCVDDE, ISTINA: 556631062, IITP: 8455. 🪙RFBR 20-01-00670. html, PDF
  265. V.G. Kanovei, V.A. Lyubetsky. A model in which well-orderings of the reals first appear at a given projective level, part II. Mathematics, May 30 2023, Vol. 11, No. 11, Art. 2517.
    DOI: 10.3390/math11112517, WOS: 001005595300001, Scopus: 2-s2.0-85161611445, eLIBRARY: 62427925, EDN: EPNRWC, ISTINA: 564518648, IITP: 8478. 🪙RFBR 20-01-00670. html, PDF
  266. V.G. Kanovei, V.A. Lyubetsky. A model in which well-orderings of the reals first appear at a given projective level, part III—The case of second-order PA. Mathematics, Jul 26 2023, Vol. 11, No. 15, Art. 3294.
    DOI: 10.3390/math11153294, WOS: 001046782300001, Scopus: 2-s2.0-85167581950, eLIBRARY: 62719094, EDN: FBTFMB, ISTINA: 583197390, IITP: 8501. 🪙RFBR 20-01-00670. html, PDF
  267. V.G. Kanovei, V.A. Lyubetsky. On Russell typicality in set theory. Proceedings of the American Mathematical Society, May 2023, Vol. 151, No. 5, P. 2201–2210.
    DOI: 10.1090/proc/16232, WOS: 000992714500010, Scopus: 2-s2.0-85150068546, eLIBRARY: 60091213, EDN: BLXSVX, ISTINA: 556631107, IITP: 8374. 🪙RFBR 20-01-00670. PDF
  268. J. Bair, A. Borovik, V.G. Kanovei, M.G. Katz, S.S. Kutateladze, S. Sanders, D. Sherry, M. Ugaglia, M. van Atten. Is pluralism in the history of mathematics possible?. Mathematical Intelligencer, Mar 2023, Vol. 45, Iss. 8.
    DOI: 10.1007/s00283-022-10248-0, WOS: 000921250100001, Scopus: 2-s2.0-85146666921, eLIBRARY: 60414252, EDN: COLGBB, PDF
  269. V.G. Kanovei, V.A. Lyubetsky. Jensen Δn1 reals by means of ZFC and second-order Peano arithmetic. Axioms, Jan 30 2024, Vol. 13, No. 2, Art. 96.
    DOI: 10.3390/axioms13020096, WOS: 001174744200001, eLIBRARY: 66380335, EDN: SSXCSD, ISTINA: 626173446, IITP: 8694. 🪙RSF 24-44-00099. html, PDF
  270. V.G. Kanovei, V.A. Lyubetsky. A good lightface Δn1 well-ordering of the reals does not imply the existence of boldface 𝚫n11 well-orderings. Annals of Pure and Applied Logic, Jun 2024, Vol. 175, Iss. 6, Art. 103426.
    DOI: 10.1016/j.apal.2024.103426, WOS: 001216585700001, Scopus: 2-s2.0-85187026902, eLIBRARY: 66945084, EDN: QDQSDH, ISTINA: 637784049, IITP: 8693. 🪙RSF 24-44-00099. PDF
  271. V.G. Kanovei, V.A. Lyubetsky. On the significance of parameters and the projective level in the Choice and Collection axioms. Eprint, arXiv:2407.20098 [math.LO], Jul 29 / Aug 2 2024, 124 pp.
    DOI: 10.48550/arXiv.2407.20098, IITP: 8700, PDF
  272. V.G. Kanovei, V.A. Lyubetsky. On the uniform projection and covering problems in descriptive set theory under the axiom of constructibility. Preprints, Oct 17 2024, Art. 2024101379.
    DOI: 10.20944/preprints202410.1379.v1, IITP: 8713, PDF
  273. V.G. Kanovei, V.A. Lyubetsky. On the uniform projection and covering problems in descriptive set theory under the axiom of constructibility. Mathematics, Jan 26 2025, Vol. 13, No. 3, Art. 409.
    DOI: 10.3390/math13030409, Scopus: 2-s2.0-85217634990, ISTINA: 733160557, IITP: 8749. 🪙RSF 24-44-00099. html, PDF
  274. V.G. Kanovei, V.A. Lyubetsky. On the uniform projection problem in descriptive set theory. Axioms, 2025, Vol. 14, No. 1, Art. 13, Published: 29 December 2024.
    DOI: 10.3390/axioms14010013, ISTINA: 730817491, IITP: 8748. 🪙RSF 24-44-00099. html, PDF
  275. V.G. Kanovei, V.A. Lyubetsky. Parameterfree comprehension does not imply full comprehension in second order Peano arithmetic. Studia Logica, Feb 2025, Vol. 113, P. 109–124, Published: 24 April 2024.
    DOI: 10.1007/s11225-024-10108-2, WOS: 001207645700001, Scopus: 2-s2.0-85191261230, eLIBRARY: 66936048, EDN: CRGYPW, ISTINA: 721118154, IITP: 8692. 🪙RSF 24-44-00099. PDF
  276. В.Г. Кановей, В.А. Любецкий. Независимость схемы свертки в арифметике второго порядка от счетного выбора без параметров. Математические заметки, 2025, том 117, вып. 2, стр. 257–269.
    DOI: 10.4213/mzm14255, Mi: mzm14255, ИСТИНА: 748025828, ИППИ: 8736. 🪙RSF 24-44-00099. PDF
  277. V.G. Kanovei, V.A. Lyubetsky. On the significance of parameters and the projective level in the Choice and Collection axioms. Memoirs of the American Mathematical Society, 2025, under review, IITP: 8750

Список обновлён: 02.04.2025